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Abstract

Since training a deep neural network (DNN) is costly,
the well-trained deep models can be regarded as valuable
intellectual property (IP) assets. The IP protection asso-
ciated with deep models has been receiving increasing at-
tentions in recent years. Passport-based method, which re-
places normalization layers with passport layers, has been
one of the few protection solutions that are claimed to be
secure against advanced attacks. In this work, we tackle the
issue of evaluating the security of passport-based IP protec-
tion methods. We propose a novel and effective ambiguity
attack against passport-based method, capable of success-
fully forging multiple valid passports with a small train-
ing dataset. This is accomplished by inserting a specially
designed accessory block ahead of the passport parame-
ters. Using less than 10% of training data, with the forged
passport, the model exhibits almost indistinguishable per-
formance difference (less than 2%) compared with that of
the authorized passport. In addition, it is shown that our
attack strategy can be readily generalized to attack other IP
protection methods based on watermark embedding. Direc-
tions for potential remedy solutions are also given.

1. Introduction
With the geometric growth of computing power of com-

putational devices in recent decades, there have emerged
many deep learning applications that have contributed to
the human world such as super-resolution reconstruction
[7, 9, 30], image inpainting [31, 34, 35] and forgery detec-
tion [32]. It usually costs many resources to develop new
DNN models and developers will not tolerate the act of theft
of their IP. The IP protection problem of deep models be-
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comes more severe with the birth of Machine Learning as
a Service (MLaaS) [26]. Preventing the infringement be-
havior of deep models now emerges as a necessary concern
when developing new algorithms and systems.

Model watermark [20, 25, 27, 28, 37] has been a popu-
lar method to protect the IP of DNN models. In the em-
bedding process, the owners embed the secret signatures
(watermarks), and then in the verification process, they can
claim their ownership to the model by matching the ex-
tracted signatures with the original versions. The existing
model watermark methods can be roughly divided into two
categories [10, 11]: feature-based and trigger-based meth-
ods. Specifically, feature-based methods [4, 8, 24, 29] ap-
plied a regularizer to embed the secret watermark into the
activation functions or model weights. Uchida et al. [29]
proposed to use a regularizer to embed a watermark into the
model weights. Darvish et al. [8] embedded the fingerprints
in the Probability Density Function of trainable weights in-
stead. Aramoon et al. [3] inserted the signature into the
gradient of the cross-entropy loss function with respect to
the inputs. In contrast, trigger-based methods make the out-
put target respond to specific inputs. Along this line, Adi et
al. [1] used the backdoor attack as a means to watermark the
model. Merrer et al. [18] designed a zero-bit watermarking
algorithm that uses adversarial samples as watermarks to
claim the ownership. Zhang et al. [39] applied watermarks
to images and then trained the network to output target la-
bels when input images carry these watermarks.

Despite the strength in retaining ownership of DNN
models, most existing model watermark methods are shown
to be vulnerable to the so-called ambiguity attack, in which
the attacker manages to cast doubts on the ownership ver-
ification by crafting counterfeit (forged) watermarks [11].
Recently, Fan et al. [10] first designed a series of ambiguity
attacks, which are effective in attacking DNN watermark
methods. It was stated that for conventional watermark
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methods, a counterfeit watermark can be forged as along as
the model performance is independent of the signature [11].
Following this proposition, Fan et al. designed a passport
layer through which the functionality of the model is con-
trolled by the signature called passport. However, Fan et
al. encountered a heavy performance drop when batch nor-
malization layers exist. To solve this problem, Zhang et
al. [38] added learnable affine transformations to the scale
and bias factors. It was claimed that an attacker cannot find
a substitute passport that maintains the model performance,
which ensures the security of these passport-based methods
against existing ambiguity attacks.

In this work, we aim to design an advanced ambiguity
attack to the passport-based method, capable of generat-
ing valid substitute passports with only a small number of
data. Here, valid substitute passports are defined as those
leading to an indistinguishable model performance, but suf-
ficiently different from the original authorized passports.
Clearly, with such valid substitute passports, an attacker
can claim the ownership of the model. To this end, we
first experimentally justify the existence of multiple valid
substitute passports. Noticing the fact that it is easy to lo-
calize the passport layers, we then propose our ambiguity
attack by replacing passport layers with our designed two
types of structures, namely Individual Expanded Residual
Block (IERB) and Collective Expanded Residual Block
(CERB). Both structures are built in a way to encourage
the significant changes of the parameters in the passport
layers during the training, which could help us search for
valid substitute passports. Benefiting from these two struc-
tures and assisting with a small amount training data, we
can obtain valid substitute passports, and hence, defeat the
passport-based methods which are the only type of method
claimed to be immune to existing ambiguity attacks.

Our major contributions can be summarized as follows:
• We propose a novel and effective ambiguity attack

against the passport-based IP protection schemes.
With less than 10% of training data, our ambiguity at-
tack on passport-layer protected model can restore the
functionality of the model with a less than 2% perfor-
mance gap from the original accuracy.

• We design two novel structures for replacing the pass-
port layers, based on the multi-layer perceptron (MLP)
and skip connection to assist with our ambiguity attack
for searching valid substitute passports with a small
amount of training data.

• Experiments on both overlapping (attacker’s training
dataset is part of the original training dataset) and non-
overlapping datasets (attacker’s dataset and the origi-
nal one come from the same source but no overlap ex-
ists), and on different network structures have proved
the effectiveness of our ambiguity attack.

• Our attack method can be readily generalized to attack
other DNN watermark methods [8, 21, 29].

2. Related Works

DNN watermark methods have been popular solutions
for DNN model IP protection. However, these techniques
might still be vulnerable to flagrant infringement from no-
torious adversaries. In this section, we review the two
types of representative attack methods, namely, removal at-
tack [2, 5, 6, 14, 22, 33] and ambiguity attack [10, 11, 38],
along with the passport-based method attempting to defend
against ambiguity attacks [11].

Removal Attack: This type of attack tries to remove the
watermark from the protected model, malfunctioning the
ownership verification mechanism. Along this line, many
fine-tuning based methods have been proposed. Chen et al.
[5] combined a redesigned elastic weight consolidation al-
gorithm and unlabeled data augmentation to achieve unified
model watermark removal with limited data. Guo et al. [14]
used a dataset transformation method called PST (Pattern
embedding and Spatial-level Transformation) to preprocess
the data before fine-tuning. Chen et al. [6] utilized auxil-
iary unlabeled data to decrease the amount of labeled train-
ing data required for effective watermark removal. Aiken et
al. [2] provided a three-stage scheme to remove backdoor-
based watermarks by exploiting another trigger-free dataset
from the same domain. Liu et al. [22] designed a frame-
work to remove backdoor-based watermarks, in which a
data augmentation was proposed to imitate the behavior of
the backdoor triggers. Yan et al. [33] attempted to break the
passport-based method by scaling the neurons and flipping
the signs of parameters. However, this method assumed that
the authorized passports are available to the attacker, which
is not realistic in practice. Also, these aforementioned at-
tack methods only enable the attackers to remove the water-
marks, while unable to claim the ownership.

Ambiguity Attack: Another more threatening attack is
the ambiguity attack, where the attacker can forge another
substitute watermark to claim the model ownership. The
concept of ambiguity attack originally appeared in image
watermark community [19, 23], and recently has been ex-
tended to the DNN watermark methods. The pioneering
work was conducted by Fan et al. in [10], which pointed
out the vulnerability of Uchida’s watermark method [29]
under the ambiguity attack. They also showed that the same
weakness of Adi’s DNN watermark method [1] exists, by
proving that another trigger can be optimized exclusively to
cause the same model response as the original one.

Passport-based method: Passport-based method was
originally proposed by Fan et al. [11] as a remedy enabling
DNN watermark methods to defeat the ambiguity attack.
This is achieved by replacing the traditional normalization
layer with the so-called passport layer, whose difference
mainly lies in how the affine factors are obtained. In pass-
port layer, the scale factor γ and bias factor β are computed
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with the passport as follows:

γ = Avg(Wconv ∗ sγ), β = Avg(Wconv ∗ sβ), (1)

where s = {sγ , sβ} is called the passport, Wconv is the
convolutional layer weight before this layer, and Avg(·)
represents the average pooling function.

To embed the passport s into the model, the network Np

is optimized on the training set D = {(xi, yi)}Ni=1, where
xi is the input and yi is the corresponding label, using the
following loss:

L = Lr(Np[W, s](xi, yi)) + αLsign(sgn(γ),b), (2)

where Np[W, s] denotes the model N with the weight W
and the passport s. The first term Lr(·) is the classification
loss, and the second term Lsign(·) is a sign loss regulariza-
tion constraining the sign sequence of scale factors to be a
predefined C-bit signature b = {b1, ..., bC} ∈ {−1, 1}C .
Here, sgn(·) is the sign function.

Denote Q(Np[W, s]) as the inference performance of
model Np with the passport s. The verification pro-
cess mainly relies on the assumption that the performance
Q(Np[W, s]) seriously deteriorates when an unauthorized
passport is presented. Hence, the model ownership using
passport-based method is conducted by matching the signs
of scale factors sgn(γ) with the predefined signature b and
checking the DNN model inference performance.

3. Proposed Ambiguity Attack
Though the passport-based methods [11, 38] have been

claimed to be immune to the existing ambiguity attacks
[10], they do not preclude the existence of more advanced
ambiguity attacks. In this work, we cast doubt on the se-
curity of the passport-based methods, and propose a simple
yet effective ambiguity attack, capable of crafting valid sub-
stitute passports. Before diving into the detailed design of
our ambiguity attack, let us clarify our attack goal and the
information assumed to be available to the attacker.

Attack Goal: Essentially, the attack goal is to generate
substitute passport st, with which the model Np[W, st] has
indistinguishable performance with that of applying the au-
thorized passport so, i.e., Q(Np[W, so]). Specifically, fol-
lowing the ambiguity attack setting in [11], we assume that
the attacker has access to the model weights W except from
the passport. Note that, without the passport, the affine fac-
tors are missing in the normalization layer, through which
the attacker can easily localize the passport layers. Also, the
attacker is allowed to have a small number of training data,
namely, Ds = {(x̂i, ŷi)}ni=1, where n << N . Formally,
we have the following Definition 1, explicitly explaining
the successful ambiguity attack on passport-based method.

Definition 1: An ambiguity attack on passport layer pro-
tected model is successful, if

Figure 1. Valid substitute passports obtained by initializing scale
factors with different signs from the authorized so and retraining.
Horizontal axis denotes the number of different signs from so.

I) DNN inference accuracy with the substitute passport
st is close to that with the authorized passport so, i.e.,∣∣∣Q(Np[W, st])−Q(Np[W, so])

∣∣∣ < ϵ. (3)

II) Dissimilarity between the substitute passport st and
the authorized so should be large enough, i.e.:∣∣∣st − so

∣∣∣ > δ. (4)

Before presenting the details of our ambiguity attack, let
us first justify the existence of multiple valid substitute pass-
ports satisfying the conditions given in (3) and (4). To this
end, we here adopt an experimental approach and leave the
theoretical justification in our future work. Assume now
that we are given the complete training data D, though this
large amount of data are not required when launching the at-
tack. We initialize scale factors with different combinations
of {+1,−1} and fine-tune the model based on D. In Fig. 1,
we give the experimental results on ResNet18 trained on the
CIFAR10 dataset, where the passport layer is placed after
the first convolutional layer and the length of the scale fac-
tor is 64. The model with the authorized passport leads to an
inference performance of 94.70%. As can be seen, the ac-
curacy of the models after retraining is still close to 94.70%
(red line, see Fig. 1(a)). More importantly, the signs of re-
tained affine factors only have low coincidence rate (around
60%, see Fig. 1(b)) with the original ones, implying that re-
tained affine factors differ significantly from the authorized
affine factors. Therefore, these retrained affine factors could
simultaneously satisfy the conditions (3) and (4), and hence
are valid substitute passports.

Though the existence of substitute passports has been
justified, the difficulty of directly optimizing a passport re-
mains unsolved for very limited number of training data.
Clearly, in practical attacks, the attacker is only allowed to
have access to very limited data; otherwise, he can retrain
the entire model. Fan et al. [11] ascribed the robustness of
passport-based method against fine-tuning the scale factors
to the lazy-to-flip property, with which the scale factors are
rarely updated to cross the zero during the training.
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Figure 2. The structures of the ResNet18 with passport layer and our designed CERB/IERB structures.

To overcome the lazy-to-flip property for the scale fac-
tors, we attempt to add a trainable block after it, encourag-
ing scale factors to go across the zeros by non-linear trans-
formations. For efficiency, we adopt MLP for designing the
trainable blocks. Following this line, we design two struc-
tures namely IERB and CERB to replace the passport layer.

The overall structure: Motivated by the above observa-
tions, we now design a novel ambiguity attack on passport-
based method. The overall structure is given in Fig. 2,
where we use the ResNet18 embedded with passport lay-
ers for the illustration. Specifically, the protected ResNet18
is comprised of multiple residual blocks, each containing
several convolutional layers followed by the passport layer.
As aforementioned, the locations of the passport layers can
be easily determined. We can then insert either IERB or
CERB structure into these locations. In our structure, the
scale factor γ is the output of the IERB/CERB. For the bias
factor β, we do not add our new structure; but instead we
optimize it directly. We are now ready to introduce the de-
tails of CERB and IERB structures. After that, we will give
the complete algorithm of our ambiguity attack.

3.1. Individually Expanded Residual Block (IERB)

In this subsection, we present the details of the IERB
block. As showed in Fig. 3 (a), the i-th scale factor γl

i in
the l-th passport layer is transformed by a Two-Layer Per-
ceptron (TLP) with FC-LeakyReLU-FC structure where the
FC refers to fully connected layer. For the simplicity of no-
tations, we omit the superscript in γl

i in the sequel. The
output of this TLP is then used for the affine transformation

Figure 3. Details of (a) IERB and (b) CERB.

later. The first linear layer FC1→h with learnable parame-
ters maps the scale factor into a h-dimensional vector, while
the second linear layer FCh→1 maps the dimension back to
1, where h is the hidden layer size. A larger h brings a
larger optimization space in the hidden layer; but could add
burden to the training process. We empirically set h = 10,
striking a good balance between these two factors. In addi-
tion, a skip connection is added aside with the TLP structure
to facilitate the back-propagation. Benefiting from the ex-
panded parameter space brought by the TLP structure, the
output scale factor would more likely go across the zero
during the updating. This helps the attacker search for an
appropriate st satisfying (4).

Let {Wi,j ,bi,j} be the weights of the j-th linear
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layer connected after the i-th scale factor, where i ∈
{1, 2, · · · , C} and j ∈ {1, 2}. In IERB, the output of the
first linear layer taking the i-th scale factor as input is:

γ′
i = WT

i,1 ∗ γi + bT
i,1, (5)

where ∗ denotes the matrix multiplication operator. After
the activation function LeakyReLU, the output of the sec-
ond linear layer with the shortcut can be expressed as:

γ′′
i = WT

i,2 ∗ (LReLU(γ′
i)) + bT

i,2 + γi. (6)

3.2. Collective Expanded Residual Block (CERB)

The IERB discussed above handles each scale factor in-
dividually, but may ignore the inter-channel relationship
among scale factors. Instead of using isolated propagation
paths for each scale factor, we now attempt to enhance the
inter-channel relationship and optimize the scale factors in
a collective manner. As can be observed from Fig. 3 (b), we
choose to use a unified TLP structure to deal with all the C
scale factors as a whole. The output of the TLP structure is
then summed with the input scale factors to get the updated
ones. Different from the IERB, each activation in the hid-
den layer is now related to all the input scale factors, and
the fully connected structure ensures the exploitation of the
inter-channel information. Mathematically, the output scale
factors can be computed by:

γ′′ = (WT
2 ∗ (LReLU(WT

1 ∗ γ + bT
1 )) + bT

2 ) + γ, (7)

where W1 and W2 represent the parameters in the first and
second linear layers. Here we set the hidden layer size to be
C/8, where C is the number of channels in this layer.

3.3. Algorithm of Our Ambiguity Attack

With these newly proposed structures, we can summa-
rize our ambiguity attack strategy on the passport-based
method in Algorithm 1. For simplicity, we use Wγ to repre-
sent all the parameters in IERB or CERB. Let us briefly ex-
plain our workflow for better understanding. In Algorithm
1, lines 1∼4 are devoted to the model loading, normaliza-
tion layer substitution, CERB/IERB insertion, and parame-
ter initialization. The γ, β and Wγ are then updated in lines
5∼14 using the gradients with respect to each parameter by
back-propagating the cross entropy loss:

γ = γ −∇γ loss,

β = β −∇β loss,

Wγ = Wγ −∇Wγ
loss.

(8)

Eventually, the algorithm outputs the substitute scale and
bias factors γ′′ and β.

4. Experimental Results
In this section, we evaluate the effectiveness of our am-

biguity attack from different perspectives. Before present-

Algorithm 1 Proposed Ambiguity Attack
Input: Protected network Np[W] with passport layers ex-
cluded; training dataset Ds = {(x̂i, ŷi)}ni=1; checkpoint
state dict; training epoch M .
Output: substitute scale and bias factors γ′′, β.

1: Use normalization layers in the locations of the pass-
port layers.

2: Insert CERB/IERB structures after the scale factors of
these normalization layers.

3: Load weight W of Np[W] from state dict.
4: Initialize normalization layer weights γ and β with 1

and 0, respectively.
5: for epoch = 1 to M do
6: for minibatch (x̂i, ŷi) ⊂ Ds do
7: for each normalization layer with IERB/CERB do
8: γ′′ = CERB/IERB(γ,Wγ). ▷ Eq. (5/7).
9: Use γ′′ and β for affine transformation in nor-

malization layer.
10: end for
11: loss = cross entropy(Np[W](x̂i), ŷi).
12: Update γ, β and Wγ . ▷ Eq. (8).
13: end for
14: end for

ing the detailed results, let us clarify the experimental set-
tings including the datasets, target models, and the evalua-
tion metrics.

Dataset: Four image classification datasets: CIFAR10
[16], CIFAR100 [16], Caltech-101 [12], and Caltech-256
[13], are selected. Unless stated, the dataset used in the
attack process only accounts for 10% at maximum of the
full training set and does not overlap with the test set.

DNN architectures: Three DNN architectures, AlexNet
[17], ResNet-18 [15] and Wide-Residual Network [36] are
used in our experiments, following the tradition of passport-
based works [10, 11, 38]. To demonstrate that our attack
strategy remains effective for different number of pass-
port layers, we perform the experiments on AlexNet and
ResNet18, with at most 5 and 18 passport layers, respec-
tively. For notation convenience, we use a suffix to de-
termine the indices of the passport layers. For instance,
AlexNet-4 denotes the AlexNet with the first 4 normaliza-
tion layers replaced by the passport layers, and AlexNet-
last3 represents the version in which the last 3 normaliza-
tion layers are replaced by the passport layers.

Evaluation metrics: Prediction accuracy (ACC) of the
model is a natural choice for evaluating the attack effec-
tiveness, since a successfully forged passport is expected to
achieve similar performance as an authorized passport (see
Definition 1). Another metric considered is the bit dissim-
ilarity rate (BDR) of the signature derived from the forged
passport, with respect to the authorized one. Specifically,
let γ′ and γo be the forged and authorized scale factors, re-
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spectively. Note that the sign of γo is used as the signature.
The BDR is then defined as:

BDR =
1

C

C∑
i=1

I
[
sgn(γ′

i) ̸= sgn(γo
i )
]
, (9)

where the indicator function I[·] returns 1 when the condi-
tion is true and 0 otherwise. A high BDR also implies the
large dissimilarity with the authorized passport, which in
turn indicates a better performance of the ambiguity attack.

4.1. Attack performance using IERB/CERB

We now give the details on the effectiveness of our am-
biguity attack by replacing the passport layers of the pro-
tected model with our proposed IERB or CERB blocks. All
protected models with passport layers are trained over the
training dataset of CIFAR10. We randomly select 10% of
examples from this dataset for launching the ambiguity at-
tack, i.e., training the IERB or CERB blocks.

The attack results on AlexNet and ResNet18 are reported
in Table 1. Since our ambiguity attack is the first one at-
tacking passport-based methods, there are no comparative
algorithms available so far. It can be seen that, by using the
proposed CERB, our ambiguity attack is capable of achiev-
ing high ACC and BDR values for all the settings. Specifi-
cally, for AlexNet, the ACC gap is less than 1%, compared
with the case of the authorized passport. Also, the BDR can
be as large as 80.30%. For the more complex ResNet18,
similar observations can be obtained, where the ACC gap is
still less than 3%, and the BDR could approach 50%. We
even encounter several cases (AlexNet-1 and ResNet18-1),
in which the attacked models perform even better than the
original ones. These results imply that our proposed am-
biguity attack is successful in finding the valid substitute
passports with a small number of training data.

As a comparison, we also present the results of the am-
biguity attack with the IERB structure. It can be observed
that this variant attack is still somewhat effective with rea-
sonably high ACC and BDR values; but the attack perfor-
mance is much inferior to the attack with CERB, especially
when there are many passport layers. We attribute this phe-
nomenon to the capability of CERB in exploiting the inter-
channel relationship. For IERB, it is likely to optimize to-
wards the original sign of the scale factor, which naturally
results in similar signatures (small BDR) to the original
passports. In CERB, however, the collective optimization
mechanism explores more possibly optimal pairs of the sign
of scale factors, potentially leading to larger BDR of signa-
ture and higher ACC.

To further show the effectiveness of our proposed attack
strategy, we now compare the attack performance of the
models with and without CERB/IERB structures. As will
be clear soon, directly updating the affine factors cannot re-
trieve valid passports, especially when the available data is

Name Original IERB CERB

ACC ACC BDR ACC BDR

AlexNet-1 90.20 89.54 16.00 90.26 24.67
AlexNet-2 88.73 86.01 9.76 88.37 46.10
AlexNet-3 90.08 87.48 12.96 88.95 41.41
AlexNet-4 88.25 86.52 16.96 88.01 79.80
AlexNet-5 88.88 82.49 27.95 88.20 80.30
ResNet18-1 94.89 93.85 3.13 94.94 25.00
ResNet18-3 94.80 93.46 26.57 94.22 50.0
ResNet18-4 94.67 92.92 24.61 94.09 33.98
ResNet18-5 94.39 90.04 26.05 93.75 34.69
ResNet18-6 94.45 93.48 30.13 92.44 43.31
ResNet18-8 94.41 91.22 44.04 92.66 47.87
ResNet18-10 94.30 88.96 44.59 92.87 38.55
ResNet18-12 94.96 87.36 40.90 92.34 37.19
ResNet18-14 94.68 86.63 35.48 92.18 43.04
ResNet18-18 94.81 83.92 36.52 92.11 46.79

Table 1. ACC (%) and BDR (%) performance of ambiguity attacks
using IERB/CERB structure for AlexNet and ResNet18 with dif-
ferent number of passport layers on CIFAR10.

Dataset-Net Original DataSize Plain CERB IERB

CIFAR10
AlexNet 90.20

5000 (10%) 83.62 88.16 87.30
2500 (5%) 73.82 86.70 78.91
2000 (4%) 73.48 86.30 76.73
1500 (3%) 72.09 86.78 71.38
1000 (2%) 64.82 84.22 63.71

CIFAR100
ResNet18 75.05

5000 (10%) 70.73 73.26 70.51
3000 (6%) 69.14 72.26 69.35
2000 (4%) 62.81 71.42 68.89
1500 (3%) 62.86 71.69 68.50
1000 (2%) 53.91 70.12 68.44

Table 2. ACC (%) comparison with Plain attack for CIFAR10-
AlexNet and CIFAR100-ResNet18.

Dataset Passport Layer Original Plain CERB IERB

Caltech101

Last 3 layers 72.54 71.01 72.26 67.79
Last 5 layers 68.30 59.89 66.78 60.73
Last 8 layers 72.49 59.94 69.38 59.32
Last 10 layers 70.90 57.17 66.89 57.06

Caltech256

Last 5 layers 54.34 38.64 52.23 51.02
Last 7 layers 53.95 36.72 49.55 49.36
Last 10 layers 55.43 24.93 47.85 44.19

Table 3. ACC (%) comparison with Plain attack on Caltech-101
and Caltech-256, where 10% training data are used. Here the net-
work is fixed to be ResNet18.

rather limited. To this end, we embed 5 passport layers in
AlexNet and 10 passport layers in ResNet18, and train them
on CIFAR10 and CIFAR100, respectively. Let Plain attack
refer to the case without using our proposed structures. Ta-
ble 2 gives the ACC results of Plain attack and our ambigu-
ity attacks using CERB and IERB. For the simple AlexNet,
the performance of our attack with CERB overwhelms that
of Plain attack, and the performance gain becomes more
significant when smaller number of training data is avail-
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DataSize IERB CERB

ACC BDR ACC BDR
10000 (25%) 90.47 40.24 92.17 91.77
5000 (12.5%) 88.26 42.82 91.05 92.82
4000 (10%) 87.43 47.71 90.07 92.61
3000 (7.5%) 86.30 48.34 89.49 93.65
2500 (6.25%) 86.23 48.96 87.00 93.44
2000 (5%) 85.26 49.20 85.67 93.44

Table 4. ACC (%) and BDR (%) performance of ambiguity attacks
with IERB and CERB using non-overlapping CIFAR10 dataset.

able. For instance, when 2% training data are used, the
ACC gap is almost 20%. Such a property is very valuable
in practice, as attacks are usually launched with very lim-
ited number of data; otherwise, re-training an entire model
could be feasible as well. Also, for this simple AlexNet, our
attack with IERB has similar performance with Plain attack.
For the relatively large network ResNet18, our attack with
CERB achieves 4.93% ACC drop, compared with the orig-
inal accuracy, when only 2% training data are used. This
drop shrinks to 1.79% when 10% training data are avail-
able. Compared with Plain attack, the ACC gains of our
attack with CERB can be as large as 16.21%. In addition, it
is noted that our attack with IERB becomes much superior
to Plain attack, when very limited training data are adopted;
the ACC gain can be up to 14.53%. More results on more
complicated datasets including Caltech-101 and Caltech-
256 can be found in Table 3, and similar conclusions can
be drawn.

4.2. Attack with non-overlapping dataset

In the above experiments, we consider the case that the
attacker has access to a part of the original training data,
namely, the dataset for launching the attack overlaps with
the original one. We now investigate the attack performance
under a more challenging scenario, i.e., the dataset available
to the attacker and the original dataset come from the same
source; but do not overlap. This non-overlapping dataset
mimics the practical scenario that the attacker may not be
able to exactly access a part of the original training data;
but rather can only access some similar ones.

We randomly divide CIFAR10 into non-overlapping two
subsets: 40000 for training the passport-based network and
the remaining 10000 for the attack. Specifically, the attack-
ing model is a ResNet18 with 10 passport layers, and the
accuracy of the trained model is 93.12%. The attack per-
formance of our ambiguity attacks with IERB and CERB
under this new setting is tabulated in Table 4. With these
10000 non-overlapping data, our ambiguity attack with
CERB reaches a 92.17% accuracy, only 0.95% away from
the original one. Also, the BDR in this case is as high as
91.77%, indicating the recovered scale factors are very dif-
ferent from the authorized ones. When less number of non-

overlapping data are used, the ACC values drop while the
accompanied BDRs tend to improve. Even when only 5%
non-overlapping data are available, the ACC value can still
be 85.67% with BDR being 93.44%. Similar results can
be obtained by our ambiguity attack with IERB, but with
a much lowered BDR of around 40%. Another interesting
phenomenon is that the ambiguity attack with CEBR using
non-overlapping dataset leads to slightly worse ACC, but
much better BDR performance, compared with the same at-
tack with overlapping dataset. These results, again, show
that our proposed ambiguity attacks are still very effective
even in the challenging non-overlapping scenarios.

4.3. Result of ambiguity attack with CERB on other
DNN watermark methods

We now show that our proposed attack strategy can
be generalized well to other DNN watermark methods.
As the ambiguity attack with CERB overwhelms the one
with IEBR, we adopt it in the following evaluations. The
three DNN watermarking methods considered are: Greedy-
Residual [21], DeepSigns [8], and Uchida [29], which
used specific layer weights for the watermark embedding.
For Greedy-Residual, the watermark was embedded into
the first convolutional layer weight of the network, while
for DeepSigns, the watermark was hidden in the flattened
features before the last linear layer. Regarding Uchida’s
method, the watermark was injected into the third convo-
lutional layer weights of the network.

We flexibly adapt our CERB structure for different types
of embedded intermediaries such as model weights and fea-
tures in three DNN watermark methods. Following the at-
tack setting of Fan et al. [11], we assume that the network
structure and model weights except those from the water-
mark are available to the attacker. As a result, for Greedy-
Residual, we can replace the normalization layer after the
embedded convolutional parameters with the CERB. Simi-
larly, for DeepSigns, the normalization layer before the em-
bedded feature map is replaced by our CERB. For Uchida’s
method, a CERB structure is added after the embedded con-
volutional parameters. We preset a different signature and
only train the parameters embedded with the watermarks
and the CERB parameters to match this new signature.
More implementation details can be found in Appendix A.

We introduce signature detection rate (SDR) to evalu-
ate if a signature is successfully embedded in the model.
The SDR is defined as the percentage of the watermark bits
wm = {wm1, ..., wmC} extracted from the model that are
coincident with the signature sig = {sig1, ..., sigC} used
during the embedding process, i.e.,

SDR =
1

C

C∑
i=1

I
[
wmi = sigi

]
. (10)

The attack results on three watermark methods are pre-
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WM method Dataset-Net Embed-Position DataSize Original ACC Attack ACC BDR SDR

Greedy-Residual Caltech256-ResNet18 First Conv layer 10% 54.98 54.37 49.22 100
DeepSigns CIFAR10-WRN Last Linear layer 10% 91.30 91.15 37.5 100

Uchida CIFAR10-WRN Third Conv layer 10% 90.11 89.77 45.31 100

Table 5. Results of our ambiguity attack on other DNN watermark methods, in terms of ACC (%), BDR (%), and SDR (%).

# of CERB Original 0 4 6 8 10

ACC (%) 55.42 25.03 28.99 38.50 42.58 47.07

Table 6. Results of using different number of CERB on Caltech-
256 with ResNet18.

sented in Table 5. For Greedy-Residual method, the infer-
ence performance of the model after the attack is quite sim-
ilar to that of the original one, with a very slight drop of
0.61%. In addition, the SDR is 100%, implying that the at-
tacker can claim the ownership to this model with the new
signature. Meanwhile, a high BDR of 49.22% well demon-
strates the high dissimilarity between the forged and orig-
inal watermarks. Very similar observations can be made
when attacking DeepSigns and Uchida’s methods. There-
fore, we validate the generalization capability of our attack
strategy to other DNN watermark methods.

4.4. Ablation study

Different number of CERB structures: To study the
effect on attack performance with different number of
CERB structures, we use a ResNet18 with the last 10 lay-
ers embedded with passports for the illustration. As can
be seen from Table 6, the original performance evaluated
on Caltech-256 is 55.42%. For Plain attack with 0 CERB
structure, the ACC is very low, i.e., 25.05%. By gradually
applying more CERB structures, the ACC values improve
constantly. Eventually, with all 10 passport layers replaced
by our CERB structures, the ACC of our ambiguity attack
reaches 47.07%.

Increasing the depth of CERB: The CERB in the de-
fault setting is a two-layer perceptron with LeakyReLU. We
now try to testify if using perceptron with more layers leads
to better attack performance. To this end, we experiment on
the ResNet18 with 10 passport layers trained on CIFAR10,
and launch the ambiguity attacks by varying the number of
layers in CERB. As can be seen from Table 7, the ACC
restored by CERB with 2 layers is the highest, reaching
92.24%. With more layers being involved, the ACC perfor-
mance actually drops surprisingly. We conjecture that the
two-layer perceptron is enough for our ambiguity attack;
while increasing the number of layers places heavier bur-
den to the training and eventually affects the performance
of the ambiguity attack.

Using other activation functions in CERB: We also
evaluate the impact of the activation functions in CERB on
the overall attack performance. Again, we experiment on

# of MLP layers in CERB Original 2 3 4 5

ACC (%) 94.40 92.24 86.85 84.18 86.45

Table 7. Results of changing the number of layer in CERB.

Activation Functions LeakyReLU tanh Sigmoid

ACC (%) 92.87 92.54 92.80

Table 8. Result of using different activation functions.

the ResNet18 with 10 passport layers trained on CIFAR10.
We then replace every passport layer with CERB, and adopt
different activation functions in CERB. We list the ACC re-
sults by using tanh and Sigmoid, in addition to our default
LeakyReLU in Table 8. As can be noticed, all ACC results
with different activation functions are similar. This implies
that the attack performance is not sensitive to the activation
functions adopted.

5. Conclusion
In this paper, we propose an advanced ambiguity attack

that defeats the passport-based model IP protection scheme.
We combine multi-layer perceptron with skip connection to
find valid substitute passports using less than 10% of the
training dataset. Extensive experimental results validate the
effectiveness of our ambiguity attack. Further, it is demon-
strated that our attack strategy can be easily extended to
other DNN watermark methods.

Regarding the remedy solutions, one potential direction
is to exploit random locations for inserting the passport-
layers, in which the randomness is controlled by a secret
key. Additionally, another promising attempt is to change
the embedding position from model weights to the activa-
tions. To make sure the next convolutional layer can extract
proper features from the activation, the statistic of the ac-
tivation should stay in a restricted scope. Such a statistic
could be unique for a given signature, which may be help-
ful to resist our ambiguity attack.
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