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Abstract

In this work, we study the black-box targeted attack prob-
lem from the model discrepancy perspective. On the the-
oretical side, we present a generalization error bound for
black-box targeted attacks, which gives a rigorous theoreti-
cal analysis for guaranteeing the success of the attack. We
reveal that the attack error on a target model mainly de-
pends on empirical attack error on the substitute model and
the maximum model discrepancy among substitute models.
On the algorithmic side, we derive a new algorithm for
black-box targeted attack based on our theoretical analy-
sis, in which we additionally minimize the maximum model
discrepancy (M3D) of the substitute models when training
the generator to generate adversarial examples. In this way,
our model is capable of crafting highly transferable ad-
versarial examples that are robust to the model variation,
thus improving the success rate for attacking the black-box
model. We conduct extensive experiments on the ImageNet
dataset with different classification models, and our pro-
posed approach outperforms existing state-of-the-art meth-
ods by a significant margin. Our codes will be released.

1. Introduction

Recently, researchers have shown that Deep Neural Net-
works (DNNs) are highly vulnerable to adversarial exam-
ples [9, 28, 36]. It has been demonstrated that by adding
small and human-imperceptible perturbations, images can
be easily misclassified by deep-learning models. Even
worse, adversarial examples are shown may have transfer-
ability, i.e., adversarial examples generated by one model
can successfully attack another model with a high prob-
ability [23, 28, 37]. Consequently, there is an increasing
interest in developing new techniques to attack an unseen
black-box model by constructing adversarial examples on
a substitute model, which is also known as black-box at-
tack [5, 6, 14–16, 20, 39, 40].

While almost all existing black-box attack works implic-

itly assume the transferability of adversarial examples, the
theoretical analysis of the transferability is still absent. To
this end, in this work, we aim to answer the question of
to what extent the adversarial examples generated on one
known model can be used to successfully attack another un-
seen model. In particular, we are specifically interested in
the targeted attack task, i.e., constructing adversarial exam-
ples that can mislead the unseen black-box model by out-
putting a highly dangerous specified class. We first present
a generalization error bound for black-box targeted attacks
from the model discrepancy perspective, in which we reveal
that the attack error on a target model depends on the attack
error on a substitute model and the model discrepancy be-
tween the substitute model and the black-box model. Fur-
thermore, the latter term can be bounded by the maximum
model discrepancy on the underlying hypothesis set, which
is irrelevant to the unseen target model, making it possi-
ble to construct adversarial examples by directly minimiz-
ing this term and thus the generalization error.

Based on the generalization error bound, we then design
a novel method called Minimizing Maximum Model Dis-
crepancy (M3D) attack to produce highly transferable per-
turbations for black-box targeted attack. Specifically, we
exploit two substitute models which are expected to main-
tain their model discrepancy as large as possible. At the
same time, we train a generator that takes an image as in-
put and generates an adversarial example to attack these two
substitute models and simultaneously minimize the discrep-
ancy between the two substitute models. In other words,
the generator and the two substitute models are trained in
an adversarial manner to play a min-max game in terms of
the model discrepancy. In this way, the generator is ex-
pected to generate adversarial examples that are robust to
the variation of the substitute models, thus being capable
of attacking the black-box target model successfully with a
high chance.

We conduct extensive experiments on the ImageNet
dataset using different benchmark models, where our M3D
approach outperforms state-of-the-art methods by a signifi-
cant margin on a wide range of attack settings. Especially,
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we show impressive improvements in the situations when
the black-box model has a large model discrepancy from the
substitute model, such as attacking the ResNet [11] model
by crafting adversarial examples on a VGG [35] model. The
main contributions of this paper are as follows:

• We present a generalization error bound for black-box
targeted attack based on the model discrepancy per-
spective.

• We design a novel generative approach called Mini-
mizing Maximum Model Discrepancy (M3D) attack
to craft adversarial examples with high transferability
based on the generalization error bound.

• We demonstrate the effectiveness of our method by
strong empirical results, where our approach outper-
forms the state-of-art methods by a significant margin.

2. Related Work
Adversarial Attack: Many works on the adversarial attack
have been proposed, since they reveal that deep neural net-
works (DNNs) are highly vulnerable to adversarial exam-
ples [4–6, 14, 16, 30, 39, 40]. Generally, methods for ad-
versarial attack can be divided into two branches: iterative
perturbation methods and generative perturbation methods.

Iterative Perturbations: Iterative instance-specific at-
tacks [5, 6, 38–40, 43] perturb a given sample by iteratively
using gradient information. Though good performances
have been achieved in white-box attack scenarios [9,18,25],
their black-box transferability are limited. Therefore, many
methods have been proposed to improve the transferabil-
ity against black-box models. Some works are inspired
by model training process such as introducing momentum
items to stabilize optimization [5] or adapting Nesterov
accelerated gradient into the iterative attacks [22]. Data
augmentation methods have also been shown effective in
boosting transferability. Xie et al. [40] apply random trans-
formations to the input images at each iteration, thus allevi-
ating overfitting to the substitute model. Dong et al. [6] pro-
pose a translation-invariant attack method to generate more
transferable adversarial examples against the defense mod-
els. Wang et al. [38] admix input image with a small portion
of each add-in image while using the original label of the in-
put. Some works also concentrate on modifying the source
model properly such as utilizing skip connections [39] or
the back-propagation process [10] to boost transferability.
Zhu et al. [43] boost the transferability by matching the
adversarial attacks with the directions which decrease the
ground truth density.

As for targeted attacks, Li et al. [20] take adversarial ex-
amples away from the true label and push towards the target
label, while [14,16] make the source image closer to an im-
age of the target class in feature space, and then Inkawhich

et al. [15] generate targeted perturbations along with clas-
sifier information which transfers better than previous iter-
ative methods. Gao et al. [7] align the source and target
feature maps by high-order statistics with translation invari-
ance. Zhao et al. [42] use logit loss and generate perturba-
tions by a large number of iterations. Usually, the iterative
perturbation methods often take a long time to generate ad-
versarial examples.

Generative Perturbations: Another branch of attack uses
generative models to craft adversaries. Compared with iter-
ative methods, generative attacks achieve higher efficiency
when attacking large-scale datasets, and they find adversar-
ial patterns on a data distribution independent of a single
sample. As long as the distribution of the clean images is
fixed, the effectiveness of the adversarial examples depends
on how the generator is trained. Therefore, many previ-
ous works about generative attacks aim to learn a strong
generator, which maps the distribution of clean images to
a distribution of adversarial examples that can generalize
well on different black-box models. Our method follows
this branch. GAP [30] proposes novel generative mod-
els to produce image-agnostic and image-dependent per-
turbations. CDA [27] uses relativistic training objective to
boost cross-domain transferability. BIA [41] enhance the
cross-domain transferability of adversarial examples from
the data and model perspectives. TTP [26] achieves state-
of-the-art performances in a targeted attack by maximizing
the mutual agreement between the given source and the tar-
get distribution.

However, to the best of our knowledge, the theoretical
analysis of the transferability is still absent, while in this
work we make the first attempt to provide a generaliza-
tion error analysis for black-box targeted attack based on
the model discrepancy. A new approach is also proposed
based on our theoretical analysis, which achieves new state-
of-the-art results for black-box targeted attack.
Hypothesis Discrepancy: Ben-David et al. [3] define hy-
pothesis discrepancy theory to measure the discrepancy of
different models over a given distribution. Based on hy-
pothesis discrepancy theory, the H-divergence [2, 3] and
H∆H-divergence [2, 3] are proposed for measuring the
difference between data distributions. These metrics are
widely used in Domain Adaptation theory [1–3, 31] to
derive upper bounds for generalization error. Many Do-
main Adaptation methods tried to minimize the generaliza-
tion error upper bound by minimizing hypothesis discrep-
ancy [19, 21, 24, 33]. These methods usually use multiple
models to maximize and minimize the hypothesis discrep-
ancy over the target domain such that the hypothesis dis-
crepancy is small in the entire hypothesis set H. Different
from these works, in this paper, we exploit the hypothesis
discrepancy principle for analyzing black-box targeted at-
tack.
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3. Methodology
In this section, we first present the preliminary and gen-

eralization error bound for black-box targeted attack in Sec-
tion 3.1 and 3.2. Then we introduce the Minimizing Maxi-
mum Model Discrepancy (M3D) attack in Section 3.3 and
its implementation details in Section 3.4.

3.1. Black-Box Targeted Attack

In the black-box targeted attack task, we are given an
unseen black-box classification model Db and an image
datasetA = {(x, y)} with x being an image and y being its
class label. Normally, Db is trained to classify these images
with high accuracy, i.e., we expect arg maxcDb(x) = y.
The goal is, given any image x, to produce an adversarial
example z to mislead the black-box model Db towards a
specified class yt such that arg maxcDb(z) = yt. With-
out loss of generality, the process of generating adversarial
example can be denoted as z = G(x), where G can be im-
plemented via an iterative optimization or a generator.

For ease of presentation, we define X = {x} as the set
of images and the underlying distribution of images as P ,
namely, the image x ∈ X is deemed being sampled from
the distribution P , i.e., x ∼ P . Correspondingly, the set of
adversarial examples is denoted by Z = {z}, and z ∼ Q
where Q is the underlying distribution.

Since the black-box model Db is inaccessible, existing
works usually construct adversarial examples based on a
substitute model Ds. Owing to the transferability, these ad-
versarial examples are often able to attack the black-box
Db with a decent chance. Formally, constructing adversar-
ial examples on a substitute model for black-box targeted
attack can be written as,

z = argmin
z

`
(
Ds (z) , yt

)
, s.t. ‖z− x‖∞ ≤ ε, (1)

where the l∞-norm is applied to constrain the impercep-
tibility of the perturbation, and ` is the classification loss
(e.g., cross-entropy loss).

3.2. Generalization Error Bound

Let us defineH as a hypothesis set that contains all clas-
sifiers which perform well on the specified classification
task. We also reasonably assume that the black-box model
hb and an arbitrary substitute model hs satisfy hb, hs ∈ H.
Let us define ft as the labeling function for the misclassi-
fied target category, namely, ft classifies all images into the
specified target category.

The generalization error EQ(hb, ft) for the black-box
targeted attack can be defined as:

EQ(hb, ft) = E
z∼Q

[`(hb(z), ft(z))] , (2)

where ` is the metric function that measures the prediction
difference between hb and ft for a sample z. Since we can-
not access the black-box model hb, we seek an upper bound
of the generalization error EQ(hb, ft) as follows.

Theorem 1. For any δ ≥ 0, with probability 1 − δ, we
have the following generalization bound for the black-box
classifier hb ∈ H and any substitute classifier hs ∈ H,

EQ(hb, ft) ≤ ÊZ(hs, ft) + sup
h,h′∈H

ÊZ(h, h′) + Ω, (3)

where h and h′ are two classifiers sampled fromH, Ê is the
empirical estimation of the generalization error, and Ω is a
minor term.

The proof can be derived based on the H-divergence
theory which was originally proposed for domain adap-
tation [3]. We sketch the proof here, and the completed
proof is provided in the supplementary. By introducing the
substitute model hs, we have EQ(hb, ft) ≤ EQ(hs, ft) +
EQ(hs, hb). Moreover, from the definition ofH-divergence,
we have EQ(hs, hb) ≤ suph,h′∈H EQ(h, h′). Finally, we
transform the generalization error EQ into an empirical es-
timation error ÊZ , where an additional minor term Ω is in-
troduced which usually can be neglected in optimization.

Despite the minor term Ω, the above generalization
bound mainly consists of two items: 1) the empirical error
of attacking the substitute model; 2) the maximum empir-
ical difference between any two models in the hypothesis
set H. Most existing black-box targeted attack works as-
sume the good transferability of the adversarial samples and
mainly focus on designing techniques for attacking the sub-
stitute model. This can be seen to minimize the first term
only in Eq. (3) while ignoring the second term. However,
the adversarial examples found in this way might not be
robust enough to the variation of models, especially when
there exists a model architecture difference between black-
box and substitute models. Next, we will present a new ap-
proach for constructing robust adversarial samples by tak-
ing the second term into consideration as well.

3.3. Minimizing Maximum Model Discrepancy

As analyzed above, the robust adversarial examples for
attacking a black-box model not only successfully attack
the substitute model but also should preserve a minimum
discrepancy between any two models in the hypothesis set.

To calculate the empirical maximum model discrepancy
suph,h′∈H ÊZ(h, h′) (i.e., the second term in Eq. (3)), we
introduce two discriminator models D1 and D2. Then, the
empirical maximum model discrepancy can be calculated
by

max
D1,D2

Ê
x∈X

d [D1 ◦G(x), D2 ◦G(x)], (4)

3



source class:
target class:

substitute model:
black-box model:

(a)

Maximize Discrepancy Minimize Discrepancy

(b)

Figure 1. Illustration on our M3D approach: (a) Traditional targeted attack methods craft adversarial examples (moving blue plots towards
orange plots) on one substitute model (orange line), which might not be always effective due to the model discrepancy between the
substitute model and the black-box model (black dash line); (b) Our M3D approach generates strong adversarial examples by a min-max
game to attack two substitute models with maximum model discrepancy, which are more robust to the model discrepancy (Best viewed in
color).

where Ê represents the empirical estimator, i.e.,
Êx∈Xd(·, ·) = 1

|X |
∑

x∈X d(·, ·), and d(·, ·) is the dis-
crepancy metric between the D1 and D2. We use the
`1 distance as the discrepancy metric. Note that here
we rewrite the empirical estimator ÊZ as Êx∈X , as each
adversarial example z ∈ Q is generated correspondingly
from the clean image x ∈ X .

On the other hand, the robust adversarial examples are
expected to preserve a minimum discrepancy for any two
models, which leads to the following min-max objective,

min
G

max
D1,D2

Ld = Ê
x∈X

d [D1 ◦G(x), D2 ◦G(x)]. (5)

Note the adversarial examples are also expected to suc-
cessfully attack a given substitute hs ∈ H. As hs can be
any classifier, without loss of generality, we use both D1

and D2 as the substitute models. Therefore, the generator
should be trained to mislead the two discriminators to clas-
sify the adversarial example into the specified category yt,

min
G
La= Ê

x∈X
`ce
(
D1 ◦G(x), yt

)
+`ce

(
D2 ◦G(x), yt

)
, (6)

where `ce(·, ·) is the cross-entropy loss.
Moreover, as we presume that the hypothesis setH con-

sisting of classifiers that perform well on the specified clas-
sification task, these two discriminators D1 and D2 should
maintain a low classification loss on the clean data as well,

min
D1,D2

Lc = Ê
(x,y)∈A

[`ce(D1(x), y) + `ce(D2(x), y)] ,

(7)
where `ce(·, ·) is the cross-entropy loss. By taking the losses
in Eq. (5), Eq. (6) and Eq. (7) into consideration, the over-
all objective function of our minimizing maximum model
discrepancy (M3D) attack approach can be written as,

min
G
La + max

D1,D2

[Ld − Lc]. (8)

By optimizing the above objective function, we can learn
a strong generator G(x), which maps the clean images to
the adversarial examples that are robust to the model varia-
tion. We illustrate the intuition behind our M3D approach
in Fig. 1. Previous targeted attack works mainly concen-
trate on crafting adversarial examples on a fixed substitute
model (orange line), which can be seen as moving the sam-
ples from source classes (blue plots) towards the samples
from the target class (orange plots) by adding small pertur-
bations on the original images. However, these adversar-
ial examples may fail to attack the black-box model (black
line) due to the model discrepancy between the substitute
and the black-box model. In contrast, in our M3D approach,
we generate strong adversarial examples to attack two sub-
stitute models, which are trained dynamically to maintain a
maximum discrepancy for predicting these adversarial ex-
amples. In this way, the adversarial examples would move
closer to the target class thus being more robust to the vari-
ation of the black-box model.

3.4. Implementation

We depict the training pipeline of our M3D approach in
Fig. 2, which consists of a generative model G and two dis-
criminators D1 and D2. The clean images pass through G
to get their adversarial versions, and then these adversar-
ial examples are respectively fed into D1 and D2. During
training, we alternatively train the discriminators and the
generator for an amount of iterations. For the discrimina-
tors, we fix G and train them to minimize the classification
loss on the clean images and simultaneously maximize the
discrepancy between the two discriminators. For the gener-
ator, we fixD1 andD2 and trainG to attack bothD1 andD2

and at the same time minimize the discrepancy between the
two discriminators. The whole training procedure is shown
in Algorithm 1. We detail the design of the generator and
discriminators as follows.
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Discriminator:C

Backbone:
Adversarial 
examples: zClean images: x

Maximize

Minimize

Classification Loss: ℒ�

Discrepancy Loss: ℒ�

Attack Loss: ℒ�

Generator: 

Clip

Discriminator:

Figure 2. Overview of our M3D approach for black-box targetd attack, which consists of a generator and two discriminators. The
discriminators act as the substitute models and are trained to keep a large discrepancy on the adversarial examples. The generator is trained
to generate robust adversarial examples that are able to attack two discriminators and keep their discrepancy as small as possible. The gray
rectangle labeled with C is the clipping operation. See the description in Section 3.4 for details.

Algorithm 1 Minimizing Maximum Model Discrepancy
for Black-box Targeted Attack
Require: Training data A, pretrained substitute models D1,D2,

perturbation budget ε.
1: Randomly initialize the generator G
2: repeat
3: Randomly sample a mini-batch of training data Ã =
{(x, y)} ⊂ A, and denote mini-batch of images as X̃ = {x}.

4: Forward-pass all images x ∈ X̃ through the generator and
generate bounded adversaries {z} using Eq. (9).

5: Forward pass all z through D1,D2.
6: Update G:
7: Calculate the loss La +Ld and perform backward pass to

update G while keeping D1,D2 frozen.
8: Update D1 and D2:
9: Forward pass all clean images x’s through D1,D2.

10: Calculate the loss Lc−Ld, and perform backward pass to
update D1, D2, while keeping G fixed.

11: until The stop criterion is reached.

Generator: For the generator, we use the same network
architecture as in previous generative attack works [26, 27,
30]. The generator consists of a backbone F and a clip op-
eration C. The generator backbone consists of downsam-
pling, residual and upsampling blocks whose output is an
adversarial sample with the same size as of input. The de-
tail of the generator network is provided in the supplemen-
tary. As the adversarial noise δ = ||G(x) − x|| is strictly
constrained under a norm distance for the imperceptibility
of perturbation i.e., ‖δ‖∞ ≤ ε, we follow [26] to scale the
output of F by using a differentiable clipping operation.

z = clip (min (x + ε,max (W ∗ F (x) ,x− ε))) , (9)

where W is a smoothing operator with fixed weights that

reduces high frequencies without violating the l∞ distance
constraint.

Discriminators: The discriminators can be any clas-
sification model. We follow the previous targeted attack
works [26] to attack a black-box model trained on Ima-
geNet, so we initialize the discriminators with the Ima-
geNet pretrained classification models using different archi-
tectures such as ResNet [11], DenseNet [13], VGGNet [35]
for an extensive evaluation (see Section 4.2 for details).

4. Experiments

4.1. Experiments Setup

For a fair comparison, we follow the recent state-of-the-
art method TTP [26] to evaluate our method. We adopt the
same architecture for the generator G and vary the sub-
stitute model with different architecture as similar as in
TTP [26]. Note that in each round of experiments (e.g., us-
ing ResNet50 as the substitute model), the substitute model
in all methods shares the same network architecture to en-
sure a fair comparison. Moreover, the two discriminator
models D1 and D2 in our M3D approach also share the
same network architecture. For the training data, we use
49.95K images sampled from ImageNet train set [32]. For
the testing data, we adopt the original ImageNet validation
set (50k samples). We use Adam optimizer [17] with a
learning rate of 0.0002 and the values of exponential de-
cay rate for the first and second moments are set to 0.5
and 0.999, respectively. We conduct all the experiments on
GeForce RTX 3090 GPUs with a PyTorch [29] implemen-
tation.

We evaluate our approach on both subset-source set-
ting [14] and all-source setting [26]. In the subset-source
setting, 10 classes in the test data are used for evaluation.
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Table 1. Target Transferability Against Unkown Models: Top-1(%) target accuracy in all-source and sub-source setting . Perturbation
budget: l∞ ≤ 16 . In comparison to previous state-of-the-art methods, our method outperforms them by a large margin. ’∗’ indicates
white-box attack. In subset-source setting, only black-box attack results are shown.

Attack Naturally Trained

All-source Subset-source

Method VGG19BN Dense121 ResNet50 ResNet152 WRN-50-2 Method VGG19BN Dense121 ResNet50

V
G

G
19

B
N

MIM [5] 99.91∗ 0.92 0.68 0.36 0.47 AA [16] – 0.8 0.6
DIM [40] 99.38∗ 3.10 2.08 1.02 1.29 FDA-fd [14] – 3.0 2.1
GAP [30] 98.23∗ 16.19 15.83 5.89 7.78 FDAN [15] – 6.0 5.4
CDA [27] 98.30∗ 16.26 16.22 5.73 8.35 CDA [27] – 17.82 17.09
TTP [26] 98.54 ∗ 45.77 45.87 27.18 32.63 TTP [26] – 48.29 47.07

Ours 99.22∗ 79.46 81.91 68.41 68.43 Ours – 80.47 81.44

D
en

se
12

1

MIM [5] 1.85 99.90∗ 2.71 1.68 1.88 AA [16] 0.0 – 0.0
DIM [40] 7.31 98.81∗ 9.06 5.78 6.29 FDA-fd [14] 34.0 – 34.0
GAP [30] 39.01 97.30∗ 47.85 39.25 34.79 FDAN [15] 42.0 – 48.3
CDA [27] 42.77 97.22∗ 54.28 44.11 46.01 CDA [27] 44.84 – 53.73
TTP [26] 58.90 97.61∗ 68.72 57.11 56.80 TTP [26] 61.75 – 69.60

Ours 92.73 98.60∗ 94.23 90.06 90.75 Ours 93.02 – 95.22

R
es

N
et

50

MIM [5] 1.58 3.37 98.76∗ 3.39 3.17 AA [16] 1.1 2.0 –
DIM [40] 9.14 15.47 99.01∗ 12.45 12.61 FDA-fd [14] 16.0 21.0 –
GAP [30] 58.47 71.72 96.81∗ 64.89 61.82 FDAN [15] 32.1 48.3 –
CDA [27] 64.58 73.57 96.30∗ 70.30 69.27 CDA [27] 68.55 75.68 –
TTP [26] 78.15 81.64 97.02∗ 80.56 78.25 TTP [26] 79.04 84.42 –

Ours 92.41 94.39 98.33∗ 93.85 93.87 Ours 92.24 95.36 –

Each round, we select one of these 10 classes as the tar-
get class (50 samples), and the remaining 9 classes (450
samples) are the samples that need to be attacked. In the
all-source setting, 1000 classes in the test data are used
for evaluation. Each round, we select one of these 1000
classes as the target (50 samples), and the remaining 999
classes (49,950 samples) are the samples that need to be
attacked. For both settings, we evaluate our model at
each round and report the average Top-1(%) target accuracy
over all rounds, where the Top-1(%) target accuracy means
the proportion of adversarial examples that the black-box
model predicts to the target class.

4.2. Comparison with State-of-the-art Methods

4.2.1 Attacking Unknown Models

We first evaluate our proposed approach for attacking un-
seen classification models pretrained on ImageNet with
both subset-source and all-source settings. Following [26],
we respectively conduct experiments using the VGG19BN ,
DenseNet121, ResNet50 to initialize our substitute mod-
els, and attack VGG19BN , DenseNet121, and ResNet50
models. The ResNet152 and WRN-50-2 are additionally
used as the black-box models in the all-source setting. We
follow [26] to compare with a bunch of baselines includ-
ing MIM [5], AA [16], FDA [14], DIM [40], GAP [30],
CDA [27] and TTP [26].

The visualization of our adversarial examples is shown
in Fig. 3. The results of all methods on different settings are
shown in Table 1, where the results of baselines are from
[26]. We observe that our proposed approach outperforms

all existing methods for black-box targeted attack with a
clear margin. Specifically, in the all-source setting, our
method outperforms the recent state-of-the-art TTP [26] for
black-box targeted attack by 12.75% to 41.23%. When the
substitute models are VGG19BN , DenseNet121, ResNet50,
our method averagely outperforms TTP [26] by 36.69%,
31.56%, 13.98% respectively. It is worth noting that our
method shows impressive improvements when the black-
box model has a large model discrepancy from the substi-
tute model.

For example, when the substitute model is VGG19BN

and the black-box model is ResNet152, our method can
reach 68.41% target accuracy while the TTP method is
27.18%. A similar tendency can also be observed in the
subset-source setting. These results clearly demonstrate the
effectiveness of our methods for black-box targeted attack.

4.2.2 Attacking Unknown Robust Models

To further evaluate the robustness of the adversarial exam-
ples, we follow TTP [26] to attack unknown robust models.
Three kinds of robust models are tested under the all-source
setting: 1) models trained with data augmentation methods
to be robust to natural corruptions, such as Augmix [12];
2) models trained on stylized ImageNet to have a higher
shape bias so that they are inherently more robust to image
style distortions, such as SIN and SIN-IN [8]; 3) adversar-
ially trained models which are shown to be able to defend
against adversarial examples to certain extent [25, 34]. We
craft adversarial examples by using the ResNet50 architec-
ture for the substitute models and then attack the ResNet50

6



Grey-Owl Hippopotamus Bulldog Snowmobile Parachute Cannon

Goose Cannon Model T Parachute Snowmobile Street Sign

clean image

before projection

after projection

Street Sign

Bulldog

Figure 3. Targeted adversaries produced by generator trained against ResNet50. 1st row shows original images while 2nd row shows
unrestricted outputs of an adversarial generator, and 3rd row shows adversaries after valid projection. The caption in the top represents the
original category. The caption below represents the target category. Perturbation budget is set to l∞ ≤ 16.

Table 2. Target Transferability Against Unknown Robust Models:
Top-1 (%) target accuracy in all-source setting. Generators are
trained against naturally trained ResNet50 . Perturbation are then
transferred to ResNet50 trained using different methods including
Augmix [12], Stylized [8] or adversarial [34].

ε Attack Augmix [12]
Stylized [8] Adversarial [34]

SIN-IN SIN l∞ l2

ε=.5 ε=1 ε=.1 ε=.5

16

GAP [30] 51.57 76.92 12.96 1.88 0.34 23.41 0.92
CDA [27] 59.79 75.93 9.21 2.10 0.39 23.89 1.18
TTP [26] 73.09 87.40 30.17 4.63 0.56 45.40 1.99

Ours 90.09 95.57 65.36 7.82 0.85 67.13 4.10

32

GAP [30] 54.86 81.15 28.07 26.32 6.36 59.04 16.53
CDA [27] 63.18 76.81 19.65 27.60 6.74 57.54 16.07
TTP [26] 78.66 91.27 41.52 46.82 16.35 75.97 30.94

Ours 94.26 97.53 81.71 65.20 22.84 92.19 44.48

models trained by different robust training mechanisms.
The results of all methods are shown in Table 2, where

the numbers for baseline methods are from [26]. We ob-
serve that our results outperform previous generative at-
tacks in all settings. Particularly, we can see a significant
improvement of 17.0%, 35.19%, 21.73% when attacking
Augmix [12] trained model, stylized ImageNet [8] models,
adversarially [25, 34] trained models, respectively. These
results prove that our adversarial examples are robust not
only to the variation of model architecture but also to popu-
lar defense mechanisms.

4.2.3 Attacking Real-world System

We also evaluate our methods in a more challenging task,
i.e., to fool a real-world computer vision system Google
Cloud Vision. As for each image, the Google Cloud Vi-
sion API will return a list of the ten most likely classes.
For targeted attack, as long as the target class is in the re-
turned list, we consider it a success. As the semantic la-
bels predicted by the API don’t correspond to the 1k Im-

ageNet labels, we consider semantically consistent classes
as the same class (The criteria of “semantically consistent”
is shown in Table 3 with our results). As for evaluation,
we randomly sample 100 adversarial examples crafted by
TTP [26] and our M3D method, respectively. Specifically,
the adversarial examples are generated on ResNet50. From
Table 3, we observe that even the real-world vision system
Google Cloud Vision can be attacked successfully by our
approach with a certain chance. This reveals the vulnerabil-
ity of real-world systems. Our M3D approach outperforms
TTP [26] on all classes with a significant difference.

Table 3. Target Transferability on Google Cloud Vision: Top-1(%)
target accuracy averaged across 100 images. Perturbation budget:
l∞ ≤ 16 .

Target Class Similar Class TTP Ours
Grey-Owl Owl, Screech owl, great grey owl 0 24

Goose Goose, geese 4 37
Bulldog Dog, Companion dog 25 61

Parachute Parachute 4 23
Street sign Signage, Street sign 26 47

4.3. Additional Analysis

Perturbation Robustness: We experimentally find that
the generated adversarial semantic pattern itself generalizes
well among the different models. We illustrate and corrobo-
rate our claim by directly feeding scaled adversarial pertur-
bations into different classifiers in the subset-source setting.
The result in Fig. 4 and Table 4 reveal that the perturbations
generated by our method can be considered as the target
class and have a higher attack success rate compared with
those by TTP [26].

Perturbation Effectiveness: In order to understand the
improvements of our method, we put a further analysis by
taking the classification error rate into consideration.
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Table 4. Target Transferability of Perturbations: Top-1 (%) target
accuracy in the subset-source setting.

Src. Attack VGG19BN Dense121 ResNet50

VGG19BN
TTP [26]
Ours

75.11
78.78

9.36
28.18

10.58
17.62

Dense121
TTP [26]
Ours

19.44
42.53

58.58
69.98

16.20
31.56

ResNet50
TTP [26]
Ours

25.02
45.62

33.96
53.73

40.69
54.56

Clean Image Adversarial Example Perturbation

TTP

Ours

Figure 4. The perturbation comparison with TTP [26] 1st column
shows the clean images while 2st column shows the clipped adver-
sarial examples, and 3rd column shows the perturbations.

The classification error rate is defined as the proportion
of adversarial examples that are not classified as their orig-
inal classes by the black-box model, which can be used to
measure the ability to move samples away from their orig-
inal classes. However, this does not necessarily mean the
targeted attack is successful since we expect the black-box
model could classify these samples to the specified class.

It can be seen from Fig. 5 that, though both TTP [26] and
our method have the similar ability to mislead the target
black-box model to predict wrong categories, our method
outperforms TTP [26] by a significant margin at attack suc-
cess. This confirms our analysis in the last paragraph of
Section 3.3 that our M3D approach help to draw the adver-
sarial examples closer to the target class.

4.4. Ablation Studies

To gain a better understanding of the effect of our M3D
approach, we present an ablative study in Table. 5. We con-
sider three cases: A) using one fixed substitute model; B)
using two trainable models without considering their model
discrepancy; C) the full model of our M3D method. For
all cases, the substitute models are initialized using the
ResNet50 pretrained on ImageNet, and we attack four nor-
mal models and one robust model. As shown in Table. 5,
compared to using one fixed substitute model, using two
trainable models gains improvements due to the model en-
semble, however, is still inferior to the full model with a
clear margin. This clearly demonstrates the effectiveness of

70.0

75.0

80.0

85.0

90.0

95.0

100.0

VGG19_BN Dense121 ResNet152 WRN-50-2

Classification Error Rate (in %)

70.0 

75.0 

80.0 

85.0 

90.0 

95.0 

100.0 

VGG19_BN Dense121 ResNet152 WRN-50-2

Target Transferability (in %) Ours

TTP

(a) (b)

Figure 5. Classification Error Rate and Target Transferability in
the all-source setting under the perturbation budget l∞ ≤ 16.
Though having similar classification error rate, our method out-
performs TTP in target transferability.

Table 5. Ablation study in the all-source setting. ’A’ indicates
training the generator with one fixed substitute model. ’B’ indi-
cates training the generator with two trainable substitute models
without considering model discrepancy. ’C’ indicates training the
generator with our method M3D. The substitute model is chosen
as ResNet50.

A B C

Number 1 2 2
Trainable - X X

Discrepancy - - X

VGG19BN 71.26 76.86 92.41
Dense121 81.73 85.07 94.39
ResNet152 78.36 79.51 93.85
WRN-50-2 78.88 80.19 93.87

SIN 24.18 31.48 65.36

minimizing the maximum model discrepancy (i.e., the sec-
ond term in Eq. (3)) in our M3D approach.

5. Conclusion

In this paper, we study the black-box targeted attack
problem from the model discrepancy perspective. We first
present a generalization error bound based on the model
discrepancy for the black-box targeted attack. Based on
this bound, we design a novel approach called Minimizing
Maximum Model Discrepancy (M3D) attack, which is ca-
pable of crafting highly transferable adversarial examples
by minimizing the maximum model discrepancy between
two substitute models. We show that our M3D approach can
be easily implemented with deep neural networks, which
are trained in the adversarial training manner between the
generator and the substitute models. Extensive experiments
demonstrate that our proposed M3D approach outperforms
existing state-of-the-art methods with a significant margin
for the black-box targeted attack using various models on
the ImageNet dataset.
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