
NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models

Seung Wook Kim1,2,3* Bradley Brown1,5*† Kangxue Yin1 Karsten Kreis1 Katja Schwarz6†

Daiqing Li1 Robin Rombach7† Antonio Torralba4 Sanja Fidler1,2,3

1NVIDIA 2University of Toronto 3Vector Institute 4 CSAIL, MIT 5University of Waterloo
6University of Tübingen, Tübingen AI Center 7LMU Munich

https://research.nvidia.com/labs/toronto-ai/NFLDM

Figure 1. We introduce NeuralField-LDM, a generative model for complex open-world 3D scenes. This figure contains a panorama
constructed from NeuralField-LDM’s generated scene. We visualize different parts of the scene by placing cameras on them.

Abstract

Automatically generating high-quality real world 3D
scenes is of enormous interest for applications such as vir-
tual reality and robotics simulation. Towards this goal, we
introduce NeuralField-LDM, a generative model capable of
synthesizing complex 3D environments. We leverage Latent
Diffusion Models that have been successfully utilized for ef-
ficient high-quality 2D content creation. We first train a
scene auto-encoder to express a set of image and pose pairs
as a neural field, represented as density and feature voxel
grids that can be projected to produce novel views of the
scene. To further compress this representation, we train a
latent-autoencoder that maps the voxel grids to a set of la-
tent representations. A hierarchical diffusion model is then
fit to the latents to complete the scene generation pipeline.
We achieve a substantial improvement over existing state-
of-the-art scene generation models. Additionally, we show
how NeuralField-LDM can be used for a variety of 3D con-
tent creation applications, including conditional scene gen-
eration, scene inpainting and scene style manipulation.

1. Introduction
There has been increasing interest in modelling 3D real-

world scenes for use in virtual reality, game design, digi-
*Equal contribution.
†Work done during an internship at NVIDIA.

tal twin creation and more. However, designing 3D worlds
by hand is a challenging and time-consuming process, re-
quiring 3D modeling expertise and artistic talent. Recently,
we have seen success in automating 3D content creation
via 3D generative models that output individual object as-
sets [17, 53, 85]. Although a great step forward, automating
the generation of real-world scenes remains an important
open problem and would unlock many applications ranging
from scalably generating a diverse array of environments
for training AI agents (e.g. autonomous vehicles) to the de-
sign of realistic open-world video games. In this work, we
take a step towards this goal with NeuralField-LDM (NF-
LDM), a generative model capable of synthesizing complex
real-world 3D scenes. NF-LDM is trained on a collection
of posed camera images and depth measurements which are
easier to obtain than explicit ground-truth 3D data, offering
a scalable way to synthesize 3D scenes.

Recent approaches [3, 7, 9] tackle the same problem of
generating 3D scenes, albeit on less complex data. In [7,9],
a latent distribution is mapped to a set of scenes using ad-
versarial training, and in GAUDI [3], a denoising diffusion
model is fit to a set of scene latents learned using an auto-
decoder. These models all have an inherent weakness of
attempting to capture the entire scene into a single vector
that conditions a neural radiance field. In practice, we find
that this limits the ability to fit complex scene distributions.

Recently, diffusion models have emerged as a very pow-
erful class of generative models, capable of generating high-

ar
X

iv
:2

30
4.

09
78

7v
1

 [
cs

.C
V

]
 1

9
A

pr
 2

02
3

https://research.nvidia.com/labs/toronto-ai/NFLDM

quality images, point clouds and videos [20, 27, 45, 55, 60,
85,91]. Yet, due to the nature of our task, where image data
must be mapped to a shared 3D scene without an explicit
ground truth 3D representation, straightforward approaches
fitting a diffusion model directly to data are infeasible.

In NeuralField-LDM, we learn to model scenes using a
three-stage pipeline. First, we learn an auto-encoder that en-
codes scenes into a neural field, represented as density and
feature voxel grids. Inspired by the success of latent diffu-
sion models for images [60], we learn to model the distribu-
tion of our scene voxels in latent space to focus the genera-
tive capacity on core parts of the scene and not the extrane-
ous details captured by our voxel auto-encoders. Specif-
ically, a latent-autoencoder decomposes the scene voxels
into a 3D coarse, 2D fine and 1D global latent. Hierar-
chichal diffusion models are then trained on the tri-latent
representation to generate novel 3D scenes. We show how
NF-LDM enables applications such as scene editing, birds-
eye view conditional generation and style adaptation. Fi-
nally, we demonstrate how score distillation [53] can be
used to optimize the quality of generated neural fields, al-
lowing us to leverage the representations learned from state-
of-the-art image diffusion models that have been exposed to
orders of magnitude more data.

Our contributions are: 1) We introduce NF-LDM, a hi-
erarchical diffusion model capable of generating complex
open-world 3D scenes and achieving state of the art scene
generation results on four challenging datasets. 2) We ex-
tend NF-LDM to semantic birds-eye view conditional scene
generation, style modification and 3D scene editing.

2. Related Work
2D Generative Models In past years, generative adver-
sarial networks (GANs) [4, 19, 31, 48, 65] and likelihood-
based approaches [38, 56, 58, 78] enabled high-resolution
photorealistic image synthesis. Due to their quality, GANs
are used in a multitude of downstream applications rang-
ing from steerable content creation [34,39,41,42,68,89] to
data driven simulation [30,35,36,39]. Recently, autoregres-
sive models and score-based models, e.g. diffusion models,
demonstrate better distribution coverage while preserving
high sample quality [11, 12, 15, 23, 25, 50, 55, 60, 61, 79].
Since evaluation and optimization of these approaches in
pixel space is computationally expensive, [60, 79] apply
them to latent space, achieving state-of-the-art image syn-
thesis at megapixel resolution. As our approach operates on
3D scenes, computational efficiency is crucial. Hence, we
build upon [60] and train our model in latent space.

Novel View Synthesis In their seminal work [49],
Mildenhall et al. introduce Neural Radiance Fields (NeRF)
as a powerful 3D representation. PixelNeRF [84] and IBR-
Net [82] propose to condition NeRF on aggregated features
from multiple views to enable novel view synthesis from

a sparse set of views. Another line of works scale NeRF
to large-scale indoor and outdoor scenes [46, 57, 86, 88].
Recently, Nerfusion [88] predicts local radiance fields and
fuses them into a scene representation using a recurrent neu-
ral network. Similarly, we construct a latent scene represen-
tation by aggregating features across multiple views. Dif-
ferent from the aforementioned methods, our approach is a
generative model capable of synthesizing novel scenes.

3D Diffusion Models A few recent works propose to ap-
ply denoising diffusion models (DDM) [23,25,72] on point
clouds for 3D shape generation [45,85,91]. While PVD [91]
trains on point clouds directly, DPM [45] and LION [85]
use a shape latent variable. Similar to LION, we design a
hierarchical model by training separate conditional DDMs.
However, our approach generates both texture and geometry
of a scene without needing 3D ground truth as supervision.

3D-Aware Generative Models 3D-aware generative
models synthesize images while providing explicit control
over the camera pose and potentially other scene proper-
ties, like object shape and appearance. SGAM [69] gener-
ates a 3D scene by autoregressively generating sensor data
and building a 3D map. Several previous approaches gen-
erate NeRFs of single objects with conditional coordinate-
based MLPs [8, 51, 66]. GSN [9] conditions a coordinate-
based MLP on a “floor plan”, i.e. a 2D feature map, to
model more complex indoor scenes. EG3D [7] and Vox-
GRAF [67] use convolutional backbones to generate 3D
representations. All of these approaches rely on adversarial
training. Instead, we train a DDM on voxels in latent space.
The work closest to ours is GAUDI [3], which first trains an
auto-decoder and subsequently trains a DDM on the learned
latent codes. Instead of using a global latent code, we en-
code scenes onto voxel grids and train a hierarchical DDM
to optimally combine global and local features.

3. NeuralField-LDM
Our objective is to train a generative model to synthe-

size 3D scenes that can be rendered to any viewpoint. We
assume access to a dataset {(i, κ, ρ)}1..N which consists of
N RGB images i and their camera poses κ, along with a
depth measurement ρ that can be either sparse (e.g. Lidar
points) or dense. The generative model must learn to model
both the texture and geometry distributions of the dataset in
3D by learning solely from the sensor observations, which
is a highly non-trivial problem.

Past work typically tackles this problem with a gener-
ative adversarial network (GAN) framework [7, 9, 66, 67].
They produce an intermediate 3D representation and ren-
der images for a given viewpoint with volume render-
ing [29, 49]. Discriminator losses then ensure that the 3D
representation produces a valid image from any viewpoint.
However, GANs come with notorious training instability

Volume
Rendering

& Decoding

N images +
Camera
Parameters

Density & Feature
Voxel Grid

Encoding
& Lifting

Output
Image

Generated Voxel
Representation

Hierarchical Latent Diffusion ModelScene Auto-Encoder

concat

Encoded Voxel
Representation

Latents

Latent Auto-Encoder

Training
Sampling

Enc Enc Enc

Dec

Dec

Sampled Latents

1D Global 3D Voxel 2D BEV

1D Global 3D Voxel 2D BEV Conditioning

Figure 2. Overview of NeuralField-LDM. We first encode RGB images with camera poses into a neural field represented by density and
feature voxel grids. We compress the neural field into smaller latent spaces and fit a hierarchical latent diffusion model on the latent space.
Sampled latents can then be decoded into a neural field that can be rendered into a given viewpoint.

and mode dropping behaviors [1, 18, 40]. Denoising Dif-
fusion models [23] (DDMs) have recently emerged as an
alternative to GANs that avoid the aforementioned disad-
vantages [60, 63, 64]. However, DDMs model the data like-
lihood explicitly and are trained to reconstruct the training
data. Thus, they have been used in limited scenarios [85,90]
since ground-truth 3D data is not readily available at scale.

To tackle the challenging problem of generating an en-
tire scene with texture and geometry, we take inspiration
from latent diffusion models (LDM) [60], which first con-
struct an intermediate latent distribution of the training data
then fit a diffusion model on the latent distribution. In
Sec. A.1, we introduce a scene auto-encoder that encodes
the set of RGB images into a neural field representation
consisting of density and feature voxel grids. To accurately
capture a scene, the voxel grids’ spatial dimension needs to
be much larger than what current state-of-the-art LDMs can
model. In Sec. 3.2, we show how we can further compress
and decompose the explicit voxel grids into compressed la-
tent representations to facilitate learning the data distribu-
tion. Finally, Sec. 3.3 introduces a latent diffusion model
that models the latent distributions in a hierarchical manner.
Fig. 12 shows an overview of our method, which we name
NeuralField-LDM (NF-LDM). We provide training and ad-
ditional architecture details in the supplementary.

3.1. Scene Auto-Encoder

The goal of the scene auto-encoder is to obtain a 3D
representation of the scene from input images by learning
to reconstruct them. Fig. 3 depicts the auto-encoding pro-
cess. The scene encoder is a 2D CNN and processes each
RGB image i1..N separately, producing a RH×W×(D+C)

dimensional 2D tensor for each image, where H and W are
smaller than i’s size. We follow a similar procedure to Lift-
Splat-Shoot (LSS) [52] to lift each 2D image feature map
and combine them in the common voxel-based 3D neural
field. We build a discrete frustum of size H ×W ×D with
the camera poses κ for each image. This frustum contains
image features and density values for each pixel, along a
pre-defined discrete set of D depths. Unlike LSS, we take
the firstD channels of the 2D CNN’s output and use them as

density values. That is, the d’th channel of the CNN’s out-
put at pixel (h,w) becomes the density value of the frustum
entry at (h,w, d). Motivated by the volume rendering equa-
tion [49], we get the occupancy weight O of each element
(h,w, d) in the frustum using the density values σ ≥ 0:

O(h,w, d) = exp(−
d−1∑
j=0

σ(h,w,j)δj)(1−exp(−σ(h,w,d)δd))

(1)
where h,w denotes the pixel coordinate of the frustum and
δj is the distance between each depth in the frustum. Using
the occupancy weights, we put the last C channels of the
CNN’s output into the frustum F :

F (h,w, d) = [O(h,w, d)ϕ(h,w), σ(h,w, d)] (2)

where ϕ(h,w) denotes the C-channeled feature vector at
pixel (h,w) which is scaled by O(h,w, d) for F at depth d.

After constructing the frustum for each view, we trans-
form the frustums to world coordinates and fuse them into
a shared 3D neural field, represented as density and feature
voxel grids. Let VDensity and VFeat denote the density and
feature grid, respectively. This formulation of representing
a scene with density and feature grids has been explored be-
fore [74] for optimization-based scene reconstruction and
we utilize it as an intermediate representation for our scene
auto-encoder. VDensity,Feat have the same spatial size, and
each voxel in V represents a region in the world coordinate
system. For each voxel indexed by (x, y, z), we pool all
densities and features of the corresponding frustum entries.
In this paper, we simply take the mean of the pooled fea-
tures. More sophisticated pooling functions (e.g. attention)
can be used, which we leave as future work.

Finally, we perform volume rendering using the camera
poses κ to project V onto a 2D feature map. We trilinearly
interpolate the values on each voxel to get the feature and
density for each sampling point along the camera rays. 2D
features are then fed into a CNN decoder that produces the
output image î. We denote rendering of voxels to output im-
ages as î = r(V, κ). From the volume rendering process, we
also get the expected depth ρ̂ along each ray [57]. The scene

2D CNN
Encoder

Lift Into a FrustumEncode & Get FeaturesIndependently For Each Image

Merge The Frustums
Across Different Views

Volume
Rendering

Get 2D Features with
Volume Rendering

2D CNN
Decoder

Decode Features

Figure 3. Scene Auto-Encoder: Each input image is processed
with a 2D CNN then lifted up to 3D and merged into the shared
voxel grids. Density prediction is not shown here for brevity.

auto-encoding pipeline is trained with an image reconstruc-
tion loss ||i − î|| and a depth supervision loss ||ρ − ρ̂||. In
the case of sparse depth measurements, we only supervise
the pixels with recorded depth. We can further improve the
quality of the auto-encoder with adversarial loss as in VQ-
GAN [15] or by doing a few optimization steps at inference
time, which we discuss in the supplementary.

3.2. Latent Voxel Auto-Encoder
It is possible to fit a generative model on voxel grids

obtained from Sec. A.1. However, to capture real-world
scenes, the dimensionality of the representation needs to
be much larger than what SOTA diffusion models can
be trained on. For example, Imagen [63] trains DDMs
on 256 × 256 RGB images, and we use voxels of size
128 × 128 × 32 with 32 channels. We thus introduce a la-
tent auto-encoder (LAE) that compresses voxels into a 128-
dimensional global latent as well as coarse (3D) and fine
(2D) quantized latents with channel dimensions of four and
spatial dimensions 32×32×16 and 128×128 respectively.

We concatenate VDensity and VFeat along the channel
dimension and use separate CNN encoders to encode the
voxel grid V into a hierarchy of three latents: 1D global la-
tent g, 3D coarse latent c, and 2D fine latent f , as shown in
Fig. 12. The intuition for this design is that g is responsi-
ble for representing the global properties of the scene, such
as the time of the day, c represents coarse 3D scene struc-
ture, and f is a 2D tensor with the same horizontal size
X × Y as V , which gives further details for each location
(x, y) in bird’s eye view perspective. We empirically found
that 2D CNNs perform similarly to 3D CNNs while being
more efficient, thus we use 2D CNNs throughout. To use 2D
CNNs for the 3D input V , we concatenate V ’s vertical axis
along the channel dimension and feed it to the encoders. We
also add latent regularizations to avoid high variance latent
spaces [60]. For the 1D vector g, we use a small KL-penalty
via the reparameterization trick [38], and for c and f , we im-
pose a vector-quantization [15,80] layer to regularize them.

The CNN decoder is similarly a 2D CNN, and takes c,

Forward Process

Reverse Process

Forward Process

Reverse Process

Forward Process

Reverse Process

Data

Conditioning

Data

Data

Conditioning

Optional
Cond.

Optional
Cond.

Optional
Cond.

Figure 4. Hierarchical LDM. Top: LDM ψg for KL-regulairzed
global latent g. Middle: LDM ψc for vector-quantized coarse
latent c. Bottom: LDM ψf for vector-quantized fine latent f . All
LDMs optionally take an additional conditioning variable as input,
such as a Bird’s Eye View segmentation map as depicted here.

concatenated along vertical axis, as the initial input. The de-
coder uses conditional group normalization layers [83] with
g as the conditioning variable. Lastly, we concatenate f to
an intermediate tensor in the decoder. The latent decoder
outputs V̂ which is the reconstructed voxel. LAE is trained
with the voxel reconstruction loss ||V − V̂ || along with the
image reconstruction loss ||i− î|| where î = r(V̂ , κ). Note
that the image reconstruction loss only helps with the learn-
ing of LAE, and the scene auto-encoder is kept fixed.

3.3. Hierarchical Latent Diffusion Models

Given the latent variables g, c, f that represent a voxel-
based scene representation V , we define our generative
model as p(V, g, c, f) = p(V |g, c, f)p(f |g, c)p(c|g)p(g)
with Denoising Diffusion Models (DDMs) [24]. In gen-
eral, DDMs with discrete time steps have a fixed Marko-
vian forward process q(xt|xt−1) where q(x0) denotes the
data distribution and q(xT) is defined to be close to the
standard normal distribution, where we use the subscript to
denote the time step. DDMs then learn to revert the for-
ward process pθ(xt−1|xt) with learnable parameters θ. It
can be shown that learning the reverse process is equivalent
to learning to denoise xt to x0 for all timesteps t [24,27] by
reducing the following loss:

E
t,ϵ,x0

[
w(λt)||x0 − x̂θ(xt, t)||22

]
(3)

where t is sampled from a uniform distribution for
timesteps, ϵ is sampled from the standard normal to noise
the data x0, w(λt) is a timestep dependent weighting con-
stant, and x̂θ denotes the learned denoising model.

We train our hierarchical LDM with the following losses:

E
t,ϵ,g0

[
w(λt)||g0 − ψg(gt, t)||22

]
(4)

E
t,ϵ,g0,c0

[
w(λt)||c0 − ψc(ct, g0, t)||22

]
(5)

E
t,ϵ,g0,c0,f0

[
w(λt)||f0 − ψf (ft, g0, c0, t)||22

]
(6)

where ψ denotes the learnable denoising networks for
g, c, f . Fig. 4 visualizes the diffusion models. ψg is im-
plemented with linear layers with skip connections and ψc

and ψf adopt the U-net architecture [62]. g is fed into ψc

and ψf with conditional group normalization layers. c is
interpolated and concatenated to the input to ψf . The cam-
era poses contain the trajectory the camera is travelling, and
this information can be useful for modelling a 3D scene as it
tells the model where to focus on generating. Therefore, we
concatenate the camera trajectory information to g and also
learn to sample it. For brevity, we still call the concatenated
vector g. For conditional generation, each ψ takes the con-
ditioning variable as input with cross-attention layers [60].

Each ψ can be trained in parallel and, once trained, can
be sampled one after another following the hierarchy. In
practice, we use the v-prediction parameterization [64] that
has been shown to have better convergence and training sta-
bility [63, 64]. Once g, c, f are sampled, we can use the
latent decoder from Sec. 3.2 to construct the voxel V which
represents the neural field for the sampled scene.. Follow-
ing the volume rendering and decoding step in Sec. A.1, the
sampled scene can be visualized from desired viewpoints.

3.4. Post-Optimizing Generated Neural Fields

Samples generated from our model on real-world data
contain reasonable texture and geometry (Fig. 10), but can
be further optimized by leveraging recent advances in 2D
image diffusion models trained on orders of magnitude
more data. Specifically, we iteratively update initially gen-
erated voxels, V , by rendering viewpoints from the scene
and applying Score Distillation Sampling (SDS) [53] loss
on each image independently:

∇V LSDS = E
ϵ,t,κ

[
w(λt)(ϵ− ϵ̂θ(r(V, κ), t))

∂r(V, κ)

∂V

]
(7)

where κ is sampled uniformly in a 6m2 region around the
origin of the scene with random rotation about the vertical
axis, w(λt) is the weighting schedule used to train ϵ̂θ and
t ∼ U [0.02T, 0.2T] where T is the amount of noise steps
used to train ϵ̂θ. Note that for latent diffusion models, the
noise prediction step is applied after encoding r(V, κ) to
the LDM’s latent space and the partial gradient term is up-
dated appropriately. For ϵ̂θ, we use an off-the-shelf latent
diffusion model [60], finetuned to condition on CLIP image
embeddings [54]1. We found that CLIP contains a represen-

1https://github.com/justinpinkney/stable-diffusion

Figure 5. Datasets: Top-left: VizDoom [33]. Top-right:
Replica [73]. Middle: Carla [13] . Bottom: AVD. For Carla and
AVD, we visualize a subset of available cameras.

tation of the quality of images that the LDM is able to inter-
pret: denoising an image while conditioning on CLIP image
embeddings of our model’s samples produced images with
similar geometry distortions and texture errors. We leverage
this property by optimizing LSDS with negative guidance.
Letting y, y′ be CLIP embeddings of clean image condition-
ing (e.g. dataset images) and artifact conditioning (e.g. sam-
ples) respectively, we perform classifier-free guidance [26]
with conditioning vector y, but replace the unconditional
embedding with y′. As shown in the supplementary, this
is equivalent (up to scale) to sampling from p(x|y)α

p(x|y′) at each
denoising step where α controls the trade-off between sam-
pling towards dataset images and away from images with
artifacts. We stress that this post-optimization is only suc-
cessful due to the strong scene prior contained in our voxel
samples, as shown by our comparison to running optimiza-
tion on randomly initialized voxels in the supplementary.

4. Experiments
We evaluate NeuralField-LDM on the following four

datasets (Fig. 5). Each dataset contains RGB images and a
depth measurement with their corresponding camera poses.

VizDoom [32] consists of front-view sensor observa-
tions obtained by navigating inside a synthetic game envi-
ronment. We use the dataset provided by [10], which con-
tains 34 trajectories with a length of 600.

Replica [73] is a dataset of high-quality reconstructions
of 18 indoor scenes, containing 101 front-view trajectories
with a length of 100. We use the dataset provided by [10].

Carla [13] is an open-source simulation platform for
self-driving research. We mimic the camera settings for a
self-driving car, by placing six cameras (front-left, front,
front-right, back-left, back, back-right), covering 360 de-
grees with some overlaps, and move the car in a randomly
sampled direction and distance for 10 timesteps. We sample
43K datapoints, each containing 60 images.

AVD is an in-house dataset of human driving recordings
in roads and parking lots. It has ten cameras with varying

Front-Left Front Front-Right

EG3D

GSN

Ours

EG3D

GSN

Ours

Figure 6. Generated Scenes: The top three rows are samples from
Carla, and the bottom three rows are samples from AVD.

Front-Left Front Front-Right

Back Back-RightBack-Left

Ego Car

Figure 7. We run marching-cubes [43] on the density voxels to
visualize the geometry of the samples generated by NF-LDM. The
structure of the scene is reflected well in the mesh.

lens types along with Lidar for depth measurement. It has
73K sequences, each with 8 frames extracted at 10 fps.

4.1. Baseline Comparisons

Unconditional Generation We evaluate the uncondi-
tional generation performance of NF-LDM by comparing
it with baseline models. All results are without the post-

Criterion Method Depth VizDoom Replica

FID (↓)

GRAF [66] ✗ 47.50 65.37
π-GAN [5] ✗ 143.55 166.55

GSN [9] ✓ 37.21 41.75
GAUDI [3] ✓ 33.70 18.75
NF-LDM ✓ 19.54∗ 14.59

Table 1. FID [22] scores on VizDoom and Replica. NF-LDM
outperforms all baseline models. Baseline numbers are from [3].

Criterion Method Depth Carla AVD

FID (↓)
EG3D [6] ✗ 76.89 194.34
GSN [9] ✓ 75.45 166.07
NF-LDM ✓ 35.69 54.26

Table 2. FID [22] scores on Carla and AVD datasets. Baseline
models have trouble learning the distribution of complex outdoor
datasets, in particular AVD, while NF-LDM models them well.

In
pu

t
Re

co
ns

tru
ct

io
n:

 G
SN

Re
co

ns
tru

ct
io

n:
 O
ur
s

Figure 8. Reconstructing held-out scenes not seen during training.

optimization step (Sec. 3.4), unless specified. Tab. 1 shows
the results on VizDoom and Replica. GRAF [66] and π-
GAN [5], which do not utilize ground truth depth in train-
ing, have shown successes in modelling single objects, but
they exhibit worse performance than others that leverages
depth information for modelling scenes. GAUDI [3] is an
auto-decoder-based diffusion model. Their auto-decoder
optimizes a small per-scene latent to reconstruct its match-
ing scene. GAUDI comes with the advantage that learning
the generative model is simple as it only needs to model
the small dimensional latent distribution that acts as the key
to their corresponding scenes. On the contrary, NF-LDM is
trained on the latents that are a decomposition of the explicit
3D neural field. Therefore, GAUDI puts more modelling

Criterion Method Depth Carla AVD

FVD (↓)
EG3D [6] ✗ 134.94 1232.38
GSN [9] ✓ 184.30 1659.81
NF-LDM ✓ 91.80 242.50

Table 3. FVD [77] scores on Carla and AVD Datasets. As for FID,
baseline models have trouble learning to model complex datasets.

capacity into the auto-decoder part, and NF-LDM puts it
more into the generative model part. We attribute our im-
provement over GAUDI to our expressive hierarchical LDM
that can model the details of the scenes better. In VizDoom,
only one scene exists, and each sequence contains several
hundred steps covering a large area in the scene, which our
voxels were not large enough to encode. Therefore, we
chunked each VizDoom trajectory to be 50 steps long.

Tab. 2 shows results on complex outdoor datasets: Carla
and AVD. We compare with EG3D [6] and GSN [9]. Both
are GAN-based 3D generative models, but GSN utilizes
ground truth depth measurements. Note that we did not in-
clude GAUDI [3] as the code was not available. NF-LDM
achieves the best performance, and both baseline models
have difficulty modelling the real outdoor dataset (AVD).
Fig. 6 compares the samples from different models.

Since the datasets are composed of frame sequences, we
can treat them as videos and further evaluate with Fréchet
Video Distance (FVD) [77] to compare the distributions of
the dataset and sampled sequences. This can quantify sam-
ples’ 3D structure by how natural the rendered sequence
from a moving camera is. For EG3D and GSN, we ran-
domly sample a trajectory from the datasets and for NF-
LDM, we sample a trajectory from the global latent diffu-
sion model. Tab. 3 shows that NF-LDM achieves the best
results. We empirically observed GSN sometimes produced
slightly inconsistent rendering, which could attribute to its
lower FVD score than EG3D’s. We also visualize the geom-
etry of NF-LDM’s samples by running marching-cubes [43]
on the density voxels. Fig. 7 shows that our samples pro-
duce a coarse but realistic geometry.

Ablations We evaluate the hierarchical structure of NF-
LDM. Tab. 4 shows an ablation study on Carla. The model
with the full hierarchy achieves the best performance. The
global latent makes it easier for the other LDMs to sample
as conditioning on the global properties of the scene (e.g.
time of day) narrows down the distribution they need to
model. The 2D fine latent helps retain the residual infor-
mation missing in the 3D coarse latent, thus improving the
latent auto-encoder and, consequently, the LDMs.

Scene Reconstruction Unlike previous approaches, NF-
LDM has an explicit scene auto-encoder that can be used for
scene reconstruction. GAUDI [3] is auto-decoder based, so
it is not trivial to infer a latent for a new scene. GSN [9]
can invert a new scene using a GAN inversion method [59,

BEV-Cond.
Sample

+ Add Trees

+ Edit Car

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 9. BEV-Conditioned Synthesis: NF-LDM allows control-
lable generation by editing the BEV segmentation map. From the
initial sample, we add trees (green) and then edit the location of the
car (blue). Note the ego car is at the center and thus not rendered.

Coarse lat. c + Fine lat. f + Global lat. g

FID (↓) 46.43 43.52 35.69

Table 4. FID [22] on ablating the choice of hierarchy on the Carla
dataset. The first column is for training both LAE and LDM only
with the coarse latent. The last column is our full model.

92], but as Fig. 8 shows, it fails to get the details of the
scene correct. Our scene auto-encoder generalizes well and
is scalable as the number of scenes grow.

4.2. Applications and Limitations

Conditional Synthesis NF-LDM can utilize additional
conditioning signals for controllable generation. In this
paper, we consider Bird’s Eye View (BEV) segmentation
maps, but our model can be extended to other conditioning
variables. We use cross attention layers [60], which have
been shown to be effective for conditional synthesis. Fig. 28
shows that NF-LDM follows the given BEV map faithfully
and how the map can be edited for controllable synthesis.

Scene Editing Image diffusion models can be used for
image inpainting without explicit training on the task [60,
72]. We leverage this property to edit scenes in 3D by re-
sampling a region in the 3D coarse latent c. Specifically, at
each denoising step, we noise the region to be kept and con-
catenate with the region being sampled, and pass it through
the diffusion model. We use reconstruction guidance [27]
to better harmonize the sampled and kept regions. After we
get a new c, the fine latent is also re-sampled conditioned
on c. Fig. 11 shows results on scene editing with NF-LDM.

Post-Optimization Fig. 10 shows how post-

Initial
Sample

With
Post
Optim.
(a)

With
Post
Optim.
(b)

Figure 10. Panoramas from NF-LDM’s samples: From the initial sample at the top, we apply post-optimization with Score Distillation
Sampling [53] (Sec. 3.4). (a) demonstrates improved sample quality. (b) showcases style modification by conditioning on evening scenes.

Initial
Sample

Re-sample
Right Half

Re-sample
Center

Initial
Sample

Re-sample
Right Half

Re-sample
Center

Front-Left Front Front-Right

Figure 11. Scene Editing: We use the 3D coarse latent c for scene
editing. From the initial sample indicated by light green, we re-
sample a part of the latent, indicated by dark green.

optimization (Sec. 3.4) can improve the quality of
NF-LDM’s initial sample while retaining the 3D structure.
In addition to improving quality, we can also modify scene
properties, such as time of day and weather, by conditioning
the LDM on images with the desired properties. SDS-based
style modification is effective for changes where a set of
clean image data is available with the desired property

and is reasonably close to our dataset’s domain (e.g. street
images for AVD). In the supplementary, we also provide
results experimenting with directional CLIP loss [16] to
quickly finetune our scene decoder for a given text prompt.

Limitations NF-LDM’s hierarchical structure and three
stage pipeline allows us to achieve high-quality genera-
tions and reconstructions, but it comes with a degradation
in training time and sampling speed. In this work, the neu-
ral field representation is based on dense voxel grids, and
it becomes expensive to volume render and learn the dif-
fusion models as they get larger. Therefore, exploring al-
ternative sparse representations is a promising future direc-
tion. Lastly, our method requires multi-view images which
limits data availability and therefore risks universal prob-
lems in generative modelling of overfitting. For example,
we found that output samples in AVD had limited diversity
because the dataset itself was recorded in a limited number
of scenes.

5. Conclusion
We introduced NeuralField-LDM (NF-LDM), a genera-

tive model for complex 3D environments. NF-LDM first
constructs an expressive latent distribution by encoding in-
put images into a 3D neural field representation which is
further compressed into more abstract latent spaces. Then,
our proposed hierarchical LDM is fit onto the latent spaces,
achieving state-of-the-art performance on 3D scene genera-
tion. NF-LDM enables a diverse set of applications, includ-
ing controllable scene generation and scene editing. Fu-
ture directions include exploring more efficient sparse voxel
representations, training on larger-scale real-world data and
learning to continously expand generated scenes.

References
[1] Martin Arjovsky and Léon Bottou. Towards principled meth-

ods for training generative adversarial networks. In ICLR,
2017. 3

[2] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 5855–5864,
2021. 13

[3] Miguel Ángel Bautista, Pengsheng Guo, Samira Abnar, Wal-
ter Talbott, Alexander Toshev, Zhuoyuan Chen, Laurent
Dinh, Shuangfei Zhai, Hanlin Goh, Daniel Ulbricht, Afshin
Dehghan, and Josh M. Susskind. GAUDI: A neural architect
for immersive 3d scene generation. 2022. 1, 2, 6, 7

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale GAN training for high fidelity natural image synthesis.
In ICLR, 2019. 2

[5] Eric Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. arXiv,
2012.00926, 2020. 6

[6] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In arXiv, 2021. 6, 7

[7] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero
Karras, and Gordon Wetzstein. Efficient geometry-aware 3D
generative adversarial networks. In CVPR, 2022. 1, 2

[8] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. Pi-gan: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthesis. In
CVPR, 2021. 2

[9] Terrance DeVries, Miguel Ángel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields. In
ICCV, 2021. 1, 2, 6, 7, 14

[10] Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava,
Graham W. Taylor, and Joshua M. Susskind. Unconstrained
scene generation with locally conditioned radiance fields.
arXiv, 2021. 5

[11] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion
models beat gans on image synthesis. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, NeurIPS, 2021. 2

[12] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-
based generative modeling with critically-damped langevin
diffusion. In ICLR, 2022. 2

[13] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. 2017. 5

[14] Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-
weighted linear units for neural network function approxima-

tion in reinforcement learning. Neural Networks, 107:3–11,
2018. 14

[15] Patrick Esser, Robin Rombach, and Björn Ommer. Taming
transformers for high-resolution image synthesis. In CVPR,
2021. 2, 4, 14, 15

[16] Rinon Gal, Or Patashnik, Haggai Maron, Gal Chechik, and
Daniel Cohen-Or. Stylegan-nada: Clip-guided domain adap-
tation of image generators, 2021. 8, 37

[17] Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. In Advances In Neural
Information Processing Systems, 2022. 1

[18] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial
networks. arXiv preprint arXiv:1701.00160, 2016. 3

[19] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville,
and Yoshua Bengio. Generative adversarial nets. In NeurIPS,
2014. 2

[20] William Harvey, Saeid Naderiparizi, Vaden Masrani, Chris-
tian Weilbach, and Frank Wood. Flexible diffusion modeling
of long videos, 2022. 2

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 14

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NeurIPS, 2017. 6, 7

[23] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, NeurIPS, 2020. 2, 3

[24] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages
6840–6851. Curran Associates, Inc., 2020. 4, 15, 16

[25] Jonathan Ho, Chitwan Saharia, William Chan, David J. Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffusion
models for high fidelity image generation. J. Mach. Learn.
Res., 2022. 2

[26] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[27] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. arXiv:2204.03458, 2022. 2, 4, 7

[28] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Proc. of the International Conf. on Machine
learning (ICML), 2015. 13

[29] James T Kajiya and Brian P Von Herzen. Ray tracing volume
densities. ACM SIGGRAPH computer graphics, 18(3):165–
174, 1984. 2

[30] Amlan Kar, Aayush Prakash, Ming-Yu Liu, Eric Cameracci,
Justin Yuan, Matt Rusiniak, David Acuna, Antonio Torralba,
and Sanja Fidler. Meta-sim: Learning to generate synthetic
datasets. In ICCV, 2019. 2

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In CVPR, 2020. 2, 13, 14

[32] Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub
Toczek, and Wojciech Jaśkowski. Vizdoom: A doom-based
ai research platform for visual reinforcement learning. In
2016 IEEE conference on computational intelligence and
games (CIG), pages 1–8. IEEE, 2016. 5

[33] Margret Keuper, Siyu Tang, Bjoern Andres, Thomas Brox,
and Bernt Schiele. Motion segmentation & multiple object
tracking by correlation co-clustering. IEEE TPAMI, 2018. 5

[34] Seung Wook Kim, Karsten Kreis, Daiqing Li, Antonio
Torralba, and Sanja Fidler. Polymorphic-gan: Generating
aligned samples across multiple domains with learned morph
maps. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2022. 2

[35] Seung Wook Kim, Jonah Philion, Antonio Torralba, and
Sanja Fidler. Drivegan: Towards a controllable high-quality
neural simulation. In CVPR, 2021. 2

[36] Seung Wook Kim, Yuhao Zhou, Jonah Philion, Antonio Tor-
ralba, and Sanja Fidler. Learning to simulate dynamic envi-
ronments with gamegan. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 1231–1240, 2020. 2

[37] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Proc. of the International Conf.
on Machine learning (ICML), 2015. 15

[38] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. ICLR, 2014. 2, 4, 14

[39] Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis,
Adela Barriuso, Sanja Fidler, and Antonio Torralba. Big-
datasetgan: Synthesizing imagenet with pixel-wise annota-
tions. arXiv, 2201.04684, 2022. 2

[40] Ke Li and Jitendra Malik. On the implicit assumptions of
gans. arXiv preprint arXiv:1811.12402, 2018. 3

[41] Yiyi Liao, Katja Schwarz, Lars Mescheder, and Andreas
Geiger. Towards unsupervised learning of generative models
for 3d controllable image synthesis. In CVPR, 2020. 2

[42] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim,
Antonio Torralba, and Sanja Fidler. Editgan: High-precision
semantic image editing. In NeurIPS, 2021. 2

[43] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In ACM
Trans. on Graphics, 1987. 6, 7, 19, 25

[44] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019. 17

[45] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In CVPR, 2021. 2

[46] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the Wild: Neural Radiance Fields for Un-
constrained Photo Collections. In CVPR, 2021. 2

[47] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-
Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis and
editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021. 26

[48] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge?
In Proc. of the International Conf. on Machine learning
(ICML), 2018. 2, 14

[49] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 2, 3

[50] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. GLIDE: towards photoreal-
istic image generation and editing with text-guided diffu-
sion models. In Kamalika Chaudhuri, Stefanie Jegelka, Le
Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, ed-
itors, Proc. of the International Conf. on Machine learning
(ICML), 2022. 2

[51] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In CVPR, 2021. 2

[52] Jonah Philion and Sanja Fidler. Lift, splat, shoot: Encoding
images from arbitrary camera rigs by implicitly unprojecting
to 3d. In ECCV, 2020. 3, 19

[53] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. arXiv,
2022. 1, 2, 5, 8

[54] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. arXiv, 2103.00020, 2021. 5, 17

[55] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with CLIP latents. arXiv, abs/2204.06125, 2022. 2

[56] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Gen-
erating diverse high-fidelity images with VQ-VAE-2. In
NeurIPS, 2019. 2

[57] Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan,
Jonathan T. Barron, Andrea Tagliasacchi, Thomas A.
Funkhouser, and Vittorio Ferrari. Urban radiance fields. In
CVPR, 2022. 2, 3

[58] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wier-
stra. Stochastic backpropagation and approximate inference
in deep generative models. In Proc. of the International Conf.
on Machine learning (ICML), 2014. 2

[59] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan,
Yaniv Azar, Stav Shapiro, and Daniel Cohen-Or. Encoding
in style: a stylegan encoder for image-to-image translation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2287–2296, 2021. 7

[60] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2, 3, 4,
5, 7, 14, 16, 17, 26

[61] Robin Rombach, Patrick Esser, and Björn Ommer.
Geometry-free view synthesis: Transformers and no 3d pri-
ors. In ICCV, 2021. 2

[62] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 5, 14, 17

[63] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 3, 4, 5

[64] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 3, 5, 16

[65] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-
xl: Scaling stylegan to large diverse datasets. ACM Trans. on
Graphics, 2022. 2

[66] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. 2020. 2, 6

[67] Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthesis
with sparse voxel grids. In NeurIPS, 2022. 2

[68] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Inter-
preting the latent space of gans for semantic face editing. In
CVPR, 2020. 2

[69] Yuan Shen, Wei-Chiu Ma, and Shenlong Wang. SGAM:
Building a virtual 3d world through simultaneous generation
and mapping. In Thirty-Sixth Conference on Neural Infor-
mation Processing Systems, 2022. 2

[70] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256–2265. PMLR, 2015.
15

[71] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. arXiv:2010.02502, October
2020. 17

[72] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Ab-
hishek Kumar, Stefano Ermon, and Ben Poole. Score-based
generative modeling through stochastic differential equa-
tions. arXiv preprint arXiv:2011.13456, 2020. 2, 7, 15, 16

[73] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J. Engel, Raul Mur-Artal,
Carl Ren, Shobhit Verma, Anton Clarkson, Mingfei Yan,
Brian Budge, Yajie Yan, Xiaqing Pan, June Yon, Yuyang
Zou, Kimberly Leon, Nigel Carter, Jesus Briales, Tyler
Gillingham, Elias Mueggler, Luis Pesqueira, Manolis Savva,
Dhruv Batra, Hauke M. Strasdat, Renzo De Nardi, Michael
Goesele, Steven Lovegrove, and Richard Newcombe. The
Replica dataset: A digital replica of indoor spaces. arXiv,
1906.05797, 2019. 5

[74] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. CVPR, 2022. 3

[75] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In Proc. of the
International Conf. on Machine learning (ICML), 2019. 13

[76] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. arXiv, 1607.08022, 2016. 13

[77] Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach,
Raphael Marinier, Marcin Michalski, and Sylvain Gelly. To-
wards accurate generative models of video: A new metric &
challenges. arXiv preprint arXiv:1812.01717, 2018. 7

[78] Arash Vahdat and Jan Kautz. NVAE: A deep hierarchical
variational autoencoder. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, NeurIPS, 2020. 2

[79] Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based
generative modeling in latent space. In NeurIPS, 2021. 2

[80] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete
representation learning. Advances in neural information pro-
cessing systems, 30, 2017. 4, 14, 15

[81] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 14

[82] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul P.
Srinivasan, Howard Zhou, Jonathan T. Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas A. Funkhouser.
Ibrnet: Learning multi-view image-based rendering. In
CVPR, 2021. 2

[83] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 4, 14

[84] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In CVPR, 2021. 2

[85] Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic,
Or Litany, Sanja Fidler, and Karsten Kreis. LION: latent
point diffusion models for 3d shape generation. In NeurIPS,
2022. 1, 2, 3

[86] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv, 2010.07492, 2020. 2

[87] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018. 13

[88] Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and
Zexiang Xu. Nerfusion: Fusing radiance fields for large-
scale scene reconstruction. In CVPR, 2022. 2

[89] Yuxuan Zhang, Wenzheng Chen, Huan Ling, Jun Gao, Yi-
nan Zhang, Antonio Torralba, and Sanja Fidler. Image gans
meet differentiable rendering for inverse graphics and inter-
pretable 3d neural rendering. In ICLR, 2021. 2

[90] Yan Zheng, Lemeng Wu, Xingchao Liu, Zhen Chen, Qiang
Liu, and Qixing Huang. Neural volumetric mesh generator.
arXiv preprint arXiv:2210.03158, 2022. 3

[91] Linqi Zhou, Yilun Du, and Jiajun Wu. 3d shape genera-
tion and completion through point-voxel diffusion. In ICCV,
2021. 2

[92] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. In European
conference on computer vision, pages 592–608. Springer,
2020. 7

Supplementary Materials for
NeuralField-LDM: Scene Generation with Hierarchical Latent Diffusion Models

Volume
Rendering

& Decoding

N images +
Camera
Parameters

Density & Feature
Voxel Grid

Encoding
& Lifting

Output
Image

Generated Voxel
Representation

Hierarchical Latent Diffusion ModelScene Auto-Encoder

concat

Encoded Voxel
Representation

Latents

Latent Auto-Encoder

Training
Sampling

Enc Enc Enc

Dec

Dec

Sampled Latents

1D Global 3D Voxel 2D BEV

1D Global 3D Voxel 2D BEV Conditioning

Figure 12. Overview of NeuralField-LDM. We put the model overview from the main text for reference. We first encode RGB images
with camera poses into a neural field represented by density and feature voxel grids. We compress the neural field into smaller latent spaces
and fit a hierarchical latent diffusion model on the latent space. Sampled latents can then be decoded into a neural field that can be rendered
into a given viewpoint.

This supplementary document is organized as follows:

• Section A includes additional model architecture and training details.

• Section B includes additional qualitative results.

• We also include a supplementary video which has better visualizations for evaluating the 3D aspect of our model.

A. Model Architecture and Training Details
We use the convention C × Z × X × Y to denote a 3D tensor with C channels, where the Z-axis points in the upward

direction in 3D. Similarly, C ×H ×W denotes a 2D tensor with C channels, with height H and width W . In practice, we
found that perceptual loss [87] works better than L1 or L2 loss as an image reconstruction loss, and we use it throughout the
paper as the loss function for image reconstruction.

A.1. Scene Auto-Encoder

At every iteration, the scene auto-encoder takes as input {(i, κ, ρ)}1..(N+M) consisting of N +M RGB images i from
the same scene along with their known camera posses κ and depth measurements ρ, which can either be sparse (e.g. Lidar
points) or dense. We use all cameras as supervision, but only use the first N cameras as input to the model.

Encoder Architecture. We encode each of these N images independently through an EfficientNet-B1 [75] encoder,
replacing Batchnorm layers [28] with Instance normalization [76]. Additionally, the second and eigth blocks’ padding and
stride are modified to preserve spatial resolutions so that each image is downsampled by a factor of eight. The EfficientNet-B1
head is replaced with a bilinear upsampling layer followed by a concatenation with the features before the last downsampling
layers along the channel dimension and then two consecutive Conv2d, ReLU, BatchNorm2d layers, where the first Conv2D
layer increases the channel dimension from 432 to 512. These features are then processed by two seperate two-layer Conv
networks that reduce the channel dimensions to C and D, producing the feature and density values respectively for each
pixel. These feature and density values are used to define the frustum as explained in the Section 3.1 of the main text. We
clamp the density to lie in [−10, 10] and apply the softplus activation function. Each voxel in the density and feature voxel
grids VDensity and VFeat represents a region in the world coordinate system. For all datasets considered in this paper, we
define the dimension of voxels to be 32× 128× 128 (Z ×X ×Y). For VizDoom, each voxel represents a region of (4 game
unit)3. For Replica, each voxel represents a region of (0.125m)3. For Carla, each voxel represents a region of (0.75m)3.
For AVD, we use non-uniform voxel sizes. The voxels at the center have 0.2m side length, and the furthest voxels from the
center have 1.6m horizontal side length and 2.4m vertical side length.

Decoder Architecture. We perform volumetric rendering, using the Mip-NeRF [2] implementation on VDensity and VFeat
using {(κ)}1..(N+M) to get target features. These features are then fed through a decoder, using the blocks in StyleGAN2 [31]

to produce output image predictions {̂i}1..(N+M). The decoder consists of ten StyledConv blocks, where the convolution
operation of the fourth layer is replaced with a transposed convolution to upsample the features by a factor of 2. A StyledConv
block contains a style modulation layer [31], but we effectively skip the modulation process by feeding in a constant vector
of 1s.

Training. The parameters of the encoder and decoder are trained with an image construction loss, ||i− î|| across allN+M
inputs with a coefficient of 1. We also supervise the expected depth obtained from volumetric rendering with an MSE loss on
pixels that contain a ground truth depth measurement weighted with a coefficient of 5. Finally, we also add a regularization
term on the sum over the entropy of all sampled opacity values from volumetric rendering to encourage very high or low
values in the density voxels, weighted with a coefficient of 0.01. For all models, we use the Adam optimizer with a learning
rate of 0.0002 and betas of (0., 0.99). After training, we are able to further improve image quality by adding adversarial loss.
We use StyleGAN2’s [31] discriminator along with an R1 gradient regularization [48]. Furthermore, to capture the missing
details from the encoding step while ensuring the distribution of training voxels does not diverge, we optionally perform a
small number of additional per-scene optimization steps on the encoded voxels V . Specifically, for VizDoom, Replica and
AVD, we perform 60 optimization steps by randomly sampling input views and reducing the image reconstruction loss, per
encoded scene voxel.

Camera Settings. For VizDoom and Replica, we directly use the camera settings used in GSN [9]. For Replica, we use
all 100 consecutive frames per training sequence, and for VizDoom, as the area each sequence covers was too large for our
voxel size, we chunk each training sequence into 50 consequtive frames. For Carla, at every iteration we sample a scene and
a camera. We sample N +M = 9 consecutive frames from that scene and camera as our scene-encoder input, and randomly
sample N = 6 of those frames to input into the encoder. We do this so we can obtain information across multiple timesteps,
without incurring the memory cost of using all camera views at every iteration. At inference time, for a given scene, we
encode frames for all viewpoints at every timestep. For AVD, we create a set of 5 groups, each comprised of overlapping
cameras. We sample N +M = 8 consecutive frames from a sampled scene and camera group as our scene-encoder input.
We use N = 5 fish-eye cameras as input to the encoder as they have the largest field-of-view and so the encoder does not
have to learn to process different types of cameras. We use all cameras for the losses. We use histogram equalization on the
input images. At inference time for AVD, we encode only the fish-eye cameras.

A.2. Latent Voxel Auto-Encoder

We concatenate VDensity and VFeat along the channel dimension and use separate CNN encoders to encode the voxel grid
V into a hierarchy of three latents: 1D global latent g, 3D coarse latent c, and 2D fine latent f , as shown in Fig. 12. The
intuition for this design is that g is responsible for representing the global properties of the scene, such as the time of the day,
c represents coarse 3D scene structure, and f is a 2D tensor with the same horizontal size X × Y as V , which gives further
details for each location (x, y) in bird’s eye view perspective. We empirically found that 2D CNNs perform similarly to 3D
CNNs while being more efficient, thus we use 2D CNNs throughout. To use 2D CNNs for the 3D input V , we concatenate
V ’s vertical axis along the channel dimension and feed it to the encoders.

Encoder Architecture. We use the building blocks of the encoder architecture from VQGAN [15]. Tables 1-3 contain
the descriptions of the encoder architectures. Resblocks [21] contain two convolution layers and each conv layer has a group
normalization [83] and a SiLU activation [14] prior to it. AttnBlocks are implemented as self-attention modules [81] and
MidBlocks represent a block of {ResBlock, AttnBlock, ResBlock}. We add latent regularizations to avoid high variance
latent spaces [60]. For the 1D vector g, we use a small KL-penalty via the reparameterization trick [38], and for c and f , we
impose a vector-quantization [15, 80] layer. c is quantized with a codebook containing 1024 entries, and f is quantized with
a codebook containing 128 entries. Blocks that end with “-CGN” have group normalization layers replaced with conditional
group normalization and they take in the global latent g as the conditioning input. Blocks that start with “Unet-” have a
unet connection [62] from their counterpart downsampling blocks that have the same feature dimension. For example, in the
encoder for f , the Unet-ResBlocks take in the features of the first few ResBlocks and concatenate them to their input.

Decoder Architecture. The latent decoder architecture is presented in Table 4. It is similarly a 2D CNN, and takes c,
concatenated along the vertical axis, as the initial input. It also uses conditional group normalization layers with g as the
conditioning variable. The fine latent f is combined with an intermediate tensor in the decoder. This process is represented
as “Combine f” in the table. Specifically, we expand the channel dimension of f to 128 with a 3×3 Conv2D layer, and
concatenate with the output tensor of the previous block. Then, it goes through three ResBlock-CGN layers to output a
512× 128× 128 tensor. Finally, the tensor goes through a Conv2D layer and then is reshaped to the reconstructed voxel V̂ .

Training. The LAE is trained with the voxel reconstruction loss ||V − V̂ || along with the image reconstruction loss ||i− î||
where î = r(V̂ , κ). Note that the image reconstruction loss only helps with learning the LAE, and the scene auto-encoder

Layer Output dimension
Input V (3D) 32× 32× 128× 128
Concat Z-axis (32× 32)× 128× 128
Conv2D 3×3 128× 128× 128

6 × {ResBlock
ResBlock 128× 2× 2

Conv2D 3×3 stride 2}
ResBlock 128× 2× 2
ResBlock 128× 2× 2
AttnBlock 128× 2× 2
MidBlock 128× 2× 2

Conv2D 2×2 256× 1× 1
Reparameterization (1D) 128

Table 5. Encoder for the global latent g

Layer Output dimension
Input V (3D) 32× 32× 128× 128
Concat Z-axis (32× 32)× 128× 128
Conv2D 3×3 512× 128× 128

2 × {ResBlock
ResBlock 512× 32× 32

Conv2D 3×3 stride 2}
ResBlock 512× 32× 32
ResBlock 512× 32× 32
AttnBlock 512× 32× 32
MidBlock 512× 32× 32

Conv2D 3×3 32× 32× 32
Split Z-axis 4× 8× 32× 32

Quantization (3D) 4× 8× 32× 32

Table 6. Encoder for the coarse latent c

Layer Output dimension
Input V (3D) 32× 32× 128× 128
Concat Z-axis (32× 32)× 128× 128
Conv2D 3×3 256× 128× 128

2 × {ResBlock
ResBlock 256× 32× 32

Conv2D 3×3 stride 2}
MidBlock 256× 32× 32

Conv2D 3×3 32× 32× 32
Unet-MidBlock 256× 32× 32

2 × {Unet-ResBlock-CGN
Unet-ResBlock-CGN

ResBlock-CGN 256× 128× 128
Upsample2×}
Conv2D 3×3 4× 128× 128

Quantization (2D) 4× 128× 128

Table 7. Encoder for the fine latent f

Layer Output dimension
Input c (3D) 4× 8× 32× 32

Concat Z-axis (4× 8)× 32× 32
Conv2D 3×3 512× 32× 32

MidBlock-CGN 512× 32× 32
ResBlock-CGN 512× 32× 32
ResBlock-CGN 512× 32× 32
ResBlock-CGN 512× 32× 32

2 × {ResBlock-CGN
ResBlock-CGN
ResBlock-CGN 512× 128× 128
Upsample2×}

Combine f 512× 128× 128
Conv2D 3×3 1024× 128× 128

Split Z-axis (3D) 32× 32× 128× 128

Table 8. Decoder of the latent auto-encoder

is kept fixed. For the voxel reconstruction loss, we divide V into two groups. One group contains empty voxels that does
not encode any information, and the other group have voxels filled in from the scene-autoencoding step in Section A.1. The
reconstruction loss is equally weighted between the two groups (i.e., we take the mean of the losses for the two groups
separately and add them up). We use different weightings for VDensity and VFeat. The reconstruction loss for VDensity is
weighted 2.5× higher to encourage the model to reconstruct the geometry of the scene well. We use a small KL coeffcient
2e-05 for g which is multiplied to the KL loss. We use a coefficient of 1.0 for the vector-quantization losses [15,80] for c and
f . The image reconstruction loss is multiplied by 10. We train the LAE with the Adam optimizer [37] with a learning rate of
0.0002.

A.3. Hierarchical Latent Diffusion Models

Background on Denoising Diffusion Models Denoising Diffusion Models [24,70,72] (DDMs) are trained with denoising
score matching to model a given data distribution q(x0). DDMs sample a diffused input xt = αtx+ σtϵ, ϵ ∼ N (0, I) from
a data point x ∼ q(x0) where αt and σt define a time t-dependent noise schedule. The schedule is pre-defined such that the
logarithmic signal-to-noise ratio log(α2

t /σ
2
t) decreases monotonically. Now, a neural network model ψ is trained to denoise

VizDoom Replica Carla AVD

Global Latent Dimension 128 128 128 128
Trajectory Dimension 200 400 18 24

Number of Linear Blocks 10 10 10 6
Channel dimension 2048 2048 512 2048

Learning Rate 5e-05 5e-05 5e-05 5e-05

Table 9. Hyperparameters for ψg . Each training sequence in VizDoom consists of 50 timesteps, each with three-dimensional (x, y, z)
location information and one-dimensional yaw information totalling 200 dimensions per trajectory. Similarly, Replica has 100 timesteps,
totalling 400 dimensions per trajectory. Carla has the same z location for the Z-axis across different timesteps, so we only model the
(x, y) trajectory information from nine consecutive timesteps. For AVD, we model all three (x, y, z) translation parameters across eight
timesteps, totalling 24 dimensions per trajectory.

the diffused input by reducing the following loss

Ex∼q(x0),t∼pt,ϵ∼N (0,I)

[
∥y − ψ(xt; t)∥22

]
, (8)

where the target y is either the sampled noise ϵ or v = αtϵ− σtx. We use the latter target v following [64] which empirically
demonstrates faster convergence. pt denotes the distribution over time t and we use a uniform discrete time distribution
pt ∼ U{0, 1000}, following [24] . We use the variance-preserving noise schedule [72], for which σ2

t = 1− α2
t .

Global Latent Diffusion Model. The global LDM ψg is implemented with linear blocks where each block is a residual
block with skip connections:

h = linear(x)

hemb = linear(temb)

h = h+ hemb

h = linear(h)

return linear(x) + h

(9)

Here, x is the input to the block and temb is the timestep embedding for the diffusion time step t. We follow [60] to get the
embedding. We have N such linear blocks. The inputs to the second half of the linear blocks are the concatenation of the
previous block’s output and the output of the corresponding first half of the linear block in a U-net fashion as depicted in
Figure 13.

z v

Figure 13. Architecture diagram of ψg . z is the input to the network and v is the output. The green blocks are the linear blocks with skip
connections (Eq. 9). The model is a 1D analogous version of the 2D Unet commonly used in 2D diffusion models.

As mentioned in the main text, the input to ψg is both g and the camera trajectory information which is flattened to 1D.
For Carla and AVD, we implement ψg as two separate networks that have the same architecture for the global latent and
the camera trajectory. For Replica and VizDoom, we use a single network to model both the global latent and the camera
trajectory as they are highly correlated (e.g. we found that each global latent in Replica represents a scene in the training
dataset and trajectories should be sampled within the given scene, as otherwise, it could go out of the bound of the scene).
Table 9 contains the hyperparameter choices for ψg .

VizDoom Replica Carla AVD

Input Shape 4× 8× 32× 32 4× 8× 32× 32 4× 8× 32× 32 4× 8× 32× 32
Channels 224 128 288 256

Channel Multiplier 1,2,3,4 1,2,3,4 1,2,3,4 1,2,3,4
Attention Resolutions 4,8,16 4,8,16 4,8,16 4,8,16

Learning Rate 6.4e-05 6.4e-05 6.4e-05 6.4e-05

Table 10. Hyperparameters for ψc. Channels denote the base number of channels. Each group of layers (four groups in our case as
indicated by the number of channel multipliers) in the Unet (see [60] for further details) have the number of channels equal to the base
channels multiplied by the corresponding channel multiplier. Attention layers are applied at the specified 2D spatial resolutions. The tensor
with the smallest spatial resolution in the Unet has 4× 4 spatial resolution.

VizDoom Replica Carla AVD

Input Shape 4× 128× 128 4× 128× 128 4× 128× 128 4× 128× 128
Channels 128 128 288 512

Channel Multiplier 1,2,2,2,4,4 1,2,2,2,4,4 1,2,2,2,4,4 1,1,1,1,1,1
Attention Resolutions 16,32,64 16,32,64 16,32,64 8,16,32

Learning Rate 6.4e-05 6.4e-05 6.4e-05 6.4e-05

Table 11. Hyperparameters for ψf . Channels denote the base number of channels. Each group of layers (six groups in our case as indicated
by the number of channel multipliers) in the Unet (see [60] for further details) has the number of channels equal to the base channels
multiplied by the corresponding channel multiplier. Attention layers are applied at the specified 2D spatial resolutions. The tensor with the
smallest spatial resolution in the Unet has a 4× 4 spatial resolution.

Coarse and Fine Latent Diffusion Model. ψc and ψf adopt the U-net architecture [62] and closely follow the 2D Unet
architecture used in [60]. The input to ψc is 3D but we concatenate it along the Z-axis and use the 2D Unet architecture
without introducing 3D components. The output is split along the channel dimension to recover the 3D output shape. ψf

also takes in c as the conditioning input. We first concatenate c along the Z-axis, making its shape 32 × 32 × 32, and then
interpolate it to match the spatial dimension of f to be a tensor with shape 32 × 128 × 128. Finally, the interpolated c is
concatenated to f (so the shape of the concatenated tensor is 36 × 128 × 128) and fed into the Unet model whose output
matches the shape of f , 4 × 128 × 128. Similar to ψg , ψc and ψf also take the timestep embedding temb for the sampled
diffusion time step t. Table 10 and Table 11 contain the hyperparameter settings for ψc and ψf , respectively.

The cross attention layers in [60] are equivalent to self-attention layers if no extra conditioning information is given. For
Bird’s eye view (BEV) segmentation conditioned models, we additionally train a 2D convolution encoder network that takes
in the segmentation map with size R3×128×128 and produces a BEV embedding with size R256×32×32. This BEV embedding
is fed into the cross attention layers for conditional synthesis for ψc and ψf . For ψg , we take the mean of the embedding
across the spatial dimension, and concatenate with the timestep embedding that goes into the linear blocks.

Training. We follow [60] for the choice of diffusion steps (1000), noise schedule (linear), and optimizer (AdamW [44])
for all experiments. For sampling, we use the DDIM sampler [71] with 250 steps.

A.4. Post-Optimizing Generated Neural Fields

Given a set of voxels V , obtained either through sampling or by encoding a set of views, we are able to increase the quality
of V through post-optimization using SDS loss as shown in Figures 16 and 17. For the entire optimization, we use a fixed set
of camera parameters {κ}1...N sampled from the training dataset scene as the base camera position where, for AVD, N = 6
and all intrinsic matrices are replaced with the camera intrinsic parameters from the non-fisheye left-facing camera. At every
iteration, we uniformly sample a translation offset in both the forwards and sideways directions between −3 and 3 metres as
well as a rotation offset about the Z-axis uniformly between −10 and 10 degrees. We apply these offsets to {κ}1...N to obtain
{κ̂}1...N , and render out images î = r(V, κ̂) for each viewpoint. We then either use random cropping or left/right cropping
to make the aspect ratio square and bilinearly resize î to 512 × 512 resolution, matching the required input dimensions for
the diffusion model. We obtain the gradient for the voxels using Equation 7 in the main text, leaving the decoder parameters
fixed.

We use an off-the-shelf latent diffusion model [60], finetuned to condition on CLIP image embeddings [54]. We train with

negative guidance, as detailed in Section A.4.1. For the positive conditioning, we sample 23k images from the front, left and
right facing non-fisheye cameras from our dataset and take the average of their CLIP image embeddings. For the negative
conditioning, we sample 80 voxels from our model and use the average CLIP image embeddings from 23k images rendered
from the voxels using the same camera jitter distribution we use for post-optimization. We attempted to use classifier-free
guidance without the negative conditioning, but found the outputs to be blurry as seen in Figure 27. At every update, we
uniformly sample the noising timestep, t ∈ [20, 200], independently for each image in the batch.

We train with a batch-size of 3 and a gradient accumulation of 2 steps, fixing the cameras in the even updates and odd
updates so every gradient step contains updates from every camera view exactly once. We use the Adam optimizer with a
learning rate of 1e-3, betas of (0.9, 0.99) and epsilon set to 1e-15. We optimize a single scene for 20k iterations, taking
approximately 13 hours on a single V 100 GPU, but also see drastic quality improvements after 2k iterations.

We note that as seen in Figure 27, having a voxel initialization sampled or encoded from our model is critical to the success
of post-optimization.

A.4.1 Negative-guidance

Let y, y′ be positive conditioning (e.g. dataset image) and negative conditioning (e.g. sampled images with artifacts), respec-
tively, and x a diffusion-step sample. Intuitively, we want to sample the diffusion model so that p(x|y) is high and p(x|y′) is
low. Thus, we want to sample from p(x|y)α

p(x|y′) where α trades off the importance of sampling towards y and away from y′. We
see then that:

∇x log
p(x|y)α

p(x|y′)
= α∇x log p(x|y)−∇x log p(x|y′)

which is equal to classifier free guidance with γ = 2, α = γ = 2 and the unconditional embedding replaced with y′.
For reference, classifier-free guidance is defined as:

γ∇x log p(x|y) + (1− γ)∇x log p(x)

Empirically, we implement classifier-free guidance and replace the uncondtional embedding with y′ which, as shown
below, is equivalent to setting α = γ

γ−1 and multiplying the gradient by (γ − 1):

γ∇x log p(x|y) + (1− γ)∇x log p(x|y′) = γ∇x log p(x|y)− (γ − 1)∇x log p(x|y′))

= (γ − 1)(
γ

γ − 1
∇x log p(x|y)−∇x log p(x|y′))

= (γ − 1)∇x log
p(x|y)

γ
γ−1

p(x|y′)

32× 32× 8 64× 64× 16 128× 128× 32

Percept. Loss (↓) 0.3508 0.2688 0.2237

Table 12. Ablation of the voxel dimensions of the scene autoencoder. We report the validation perceptual loss.

ds = 16 ds = 8 ds = 4

Vox. Recon Loss (↓) 0.6076 0.5949 0.4915

Table 13. Ablation of the downsampling factors (ds) of the latent autoencoder. We report the validation voxel reconstruction loss.

B. Additional Results
B.1. More Ablations

(1) Scene Encoder: the voxel size used by the scene encoder is crucial in capturing details of the scene. If we use larger
voxel size and encoder frustum size, the voxel would be able to contain more pixel-level detail and consequently output
better quality images. However, this comes with the disadvantage that modelling such high-dimensional voxel space with a
generative model becomes challenging. In Fig. 14, we show samples from a diffusion model fit to our first-stage voxels for
Carla. We hypothesize that current DMs cannot perform well on very high dimensional data, highlighting the importance
of our hierarchical latent space. Tab. 12 reports perceptual loss on reconstructed output viewpoints. We concluded that
128× 128× 32 provides a satisfactory output quality while still being small enough for the consequent stages to model and
to not consume excessive GPU memory.

(2) Latent Encoder: as mentioned, having larger voxels gives better reconstruction, but fitting a generative model becomes
more challenging. Therefore, our latent auto-encoder compresses voxels into smaller latents, and in Tab. 13, we report how
downsampling factors (for the coarse 3D latent) in the encoder affect the voxel reconstruction quality. We found that ds = 4
gives a good compromise between having a low reconstruction loss and a latent size small enough to fit a diffusion model.

(3) Explicit Density: in Fig. 15, we show that having explicit feature and density grids outperforms implicitly inferring
density from the voxel features with an MLP. Our encoder explicitly predicts the occupancy of each frustum entry before
merging frustums across multiple views and thus prevents incorrect feature mixing due to occlusions that can happen if
frustums are merged with naive mean-pooling without accounting for occupancy. Implicit depth prediction similar to Lift-
Splat [52] can also account for occlusion but this requires an additional density prediction step for volume rendering which
we avoid by predicting densities directly from each view.

(4) Sampling Steps: sampling with a larger number of steps only marginally improved FID - 50/37.18, 125/36.74,
250/35.69 (# steps/FID with DDIM sampler η = 1.0).

B.2. Generated Scenes

We provide additional generated samples on AVD in Figures 16 and 17. For Carla, we provide samples in Figure 18 and
19. Figure 20 contains visualizations of 3D meshes obtained by running marching-cubes [43] on samples.

Figure 14. Directly fitting a diffusion model without compression with latent auto-encoder is challenging. Each row is a sample from
a diffusion model trained directly on the 128× 128× 32 grids from the first stage autoencoder.

Figure 15. Renderings from the scene autoencoder. Top row: without explicit density & feature grids, Bottom row: the full model.

Initial
Sample

With
Post

Optim.

Initial
Sample

With
Post

Optim.

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 16. Additional generated samples on AVD. Each initial sample is further improved with post-optimization (Section A.4).

Initial
Sample

With
Post

Optim.

Initial
Sample

With
Post

Optim.

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 17. Additional generated samples on AVD. Each initial sample is further improved with post-optimization (Section A.4).

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 18. Additional generated samples on Carla.

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 19. Additional generated samples on Carla.

Front-Left Front Front-Right

Back Back-RightBack-Left

Front-Left Front Front-Right

Back Back-RightBack-Left

Ego Car

Ego Car

Figure 20. We run marching-cubes [43] on the density voxels to visualize the geometry of the samples generated by NF-LDM.

B.3. Stylization using Score Distillation Sampling (SDS) loss

In addition to using SDS loss to post-optimize our voxels for quality, we can also use it to modify the style of a given
scene. Given a desired target style (e.g. a medieval castle), we first generate a dataset of target (positive) and source (negative)
images using one of two methods:

• Image translation: We use stable diffusion [60] for text-guided image-to-image translation as introduced by
SDEdit [47]. Specifically, we autoencode scenes from our dataset to contruct a set of reconstructed images which
we use as the source images. We then run the image to image translation on the source’s matching dataset images, using
a strength of 0.4 and guidance scale of 10, using the text of the target style to get target images. We repeat this for 500
images and take the average of the source images’ CLIP embeddings and target images’ CLIP embeddings as y′ and y
used in negative guidance respectively.

• Scraping: We use the same negative conditioning y′ as we do for quality post-optimization. For, y, we search and
download 100 images from the internet with the target query, manually filter these images for relevance and take the
average CLIP embedding.

We run SDS optimization with these modified conditioning vectors using the same procedure outlined in Section A.4. The
stylization results can be seen in Figure 21-23. Moreover, as our neural fields are represented as voxel grids, we can easily
combine different neural fields. In Figure 24-26, we combine two sampled voxels by replacing the center region (32×80×80)
of one voxel with the center region of the other one. We qualitatively show the importance of having our initial voxel samples
and the effect of negative guidance in Figure 27.

We note that the stylized scenes match the target style well, but do not perfectly preserve the content of the original scene
(e.g. the cars). For the scraping method, images for conditioning are randomly chosen and do not necessarily contain street
scenes which could result in these semantic changes. For the image translation method, we empirically found that parts of
the translated scene with worse content preservation appeared differently when doing stylization with SDEdit multiple times
on a single rendered image (e.g. for lego stylization, cars contain different brick details and colors in each translation). We
hypothesize that doing SDS loss with this conditioning for thousands of iterations encourages the optimization to satisfy these
multiple possible translations which results in blurring and a lack of content preservation in these regions. Performing the
post-optimization jointly with a reconstruction loss on images that preserves content and have the desired style (e.g. obtained
through the same img2img translation) could improve content preservation.

Front-Left Front Front-Right

Back Back-RightBack-Left

Reference
Sample

Stylized
- Desert

Stylized
- Winter

Stylized
- Futuristic

Figure 21. Additional stylized samples. All stylized samples start the post-optimization step from the same initial sample.

Front-Left Front Front-Right

Back Back-RightBack-Left

Reference
Sample

Stylized
- Kyoto

Stylized
- Minecraft

Stylized
- Medieval

Figure 22. Additional stylized samples. All stylized samples start the post-optimization step from the same initial sample.

Front-Left Front Front-Right

Back Back-RightBack-Left

Reference
Sample

Stylized
- Kyoto

Stylized
- Winter

Stylized
- Lego

Figure 23. Additional stylized samples. All stylized samples start the post-optimization step from the same initial sample.

Front-Left Front Front-Right

Back Back-RightBack-Left

Sample

Stylized
Sample

Combined
Sample

+

=

Figure 24. Combining voxels: we replace the center part of the stylized voxel with that of the sample at the top.

Front-Left Front Front-Right

Back Back-RightBack-Left

Sample

Stylized
Sample

Combined
Sample

+

=

Figure 25. Combining voxels: we replace the center part of the stylized voxel with that of the sample at the top.

Front-Left Front Front-Right

Back Back-RightBack-Left

Sample

Stylized
Sample

Combined
Sample

+

=

Figure 26. Combining voxels: we replace the center part of the stylized voxel with that of the sample at the top.

Figure 27. Ablating the post-optimization method. We show initial samples, samples optimized with classifier-free guidance and sam-
ples optimized with negative guidance for two scenes. Additionally, we show the result of post-optimization using a random gaussian
intialization for the voxels.

B.4. Bird’s Eye View Conditioned Synthesis

We provide additional Bird’s Eye View conditioned synthesis results in Figure 28.

BEV-Cond.
Sample

Front-Left Front Front-Right

Back Back-RightBack-Left

BEV-Cond.
Sample

Front-Left Front Front-Right

Back Back-RightBack-Left

BEV-Cond.
Sample

Front-Left Front Front-Right

Back Back-RightBack-Left

BEV-Cond.
Sample

Front-Left Front Front-Right

Back Back-RightBack-Left

Figure 28. Additional results on Birds’ Eye View Conditioned generation. In the BEV segmentation map, colors denote different region
types: green - trees and vegetations, blue - water, grey - buildings, purple - road, pink - sidewalk, dark blue - vehicles (note that the ego car
is at the center and thus not visualized).

B.5. Scene Editing

We provide additional scene editing results in Figure 29 and 30.

Front-Left Front Front-Right

Back Back-RightBack-Left

Initial
Sample

Re-sample
Right Half

Re-sample
Center

Figure 29. Additional results on scene editing by re-sampling. Given an initial sample, we edit the specified regions by re-sampling them
with our model.

Front-Left Front Front-Right

Back Back-RightBack-Left

Initial
Sample

Re-sample
Right Half

Re-sample
Center

Figure 30. Additional results on scene editing by re-sampling. Given an initial sample, we edit the specified regions by re-sampling them
with our model.

B.6. Text-Guided Style Transfer

In addition to stylization using SDS loss, which is effective for high-quality large structural modifications, in Figure 31,
we show results of applying CLIP directional loss [16] to finetune our decoder for quick global style changes that generalize
across scenes. The target domain is expressed in natural language (e.g. sketch of a city) and the source domain is either
“photo” or “photo of a city”. We first obtain the update direction in CLIP space, ut = etarget − esource, where etarget and
esource are the CLIP text embeddings of the source and domain respectively. Then, we sample an encoded or sampled voxel,
V , and initialize a frozen and trainable copy of our scene-autoencoder’s decoder Df and Dt respectively. Additionally, we
sample a set of camera paramaters {κ}1...N from our dataset as our base poses.

At every iteration, we uniformly sample a translation offset in both the forwards and sideways directions between −1 and
1 metres which we apply to the base poses to obtain jittered camera poses {κ̂}1...N . We render out images with the jittered
poses using both the frozen and trainable decoders, obtaining îf and ît respectively. We then obtain the current decoder’s
image update direction as ui = êtarget − êsource where etarget and esource are the CLIP image embeddings of îf and ît
respectively. The loss is then 1 minus the cosine similarity of ui and ut, which is used to update only Dt.

We train using the Adam optimizer with learning rate set to 0.002 and betas of (0.9, 0.999) between 20 − 100 iterations,
taking around a minute on a single V100 GPU. We empirically found that while finetuning with CLIP directional loss is
fast and training a domain-adapted model only requires optimizing on a single scene, SDS based stylization (Sections B.3)
produces much higher quality results.

Figure 31. Text-guided style transfer results on an encoded Carla scene and a sampled AVD scene. Each result was obtained using a
decoder finetuned by running CLIP directional loss with the specified style on a separate scene.

	1 . Introduction
	2 . Related Work
	3 . NeuralField-LDM
	3.1 . Scene Auto-Encoder
	3.2 . Latent Voxel Auto-Encoder
	3.3 . Hierarchical Latent Diffusion Models
	3.4 . Post-Optimizing Generated Neural Fields

	4 . Experiments
	4.1 . Baseline Comparisons
	4.2 . Applications and Limitations

	5 . Conclusion
	Appendices
	A . Model Architecture and Training Details
	A.1 . Scene Auto-Encoder
	A.2 . Latent Voxel Auto-Encoder
	A.3 . Hierarchical Latent Diffusion Models
	A.4 . Post-Optimizing Generated Neural Fields
	A.4.1 Negative-guidance

	B . Additional Results
	B.1 . More Ablations
	B.2 . Generated Scenes
	B.3 . Stylization using Score Distillation Sampling (SDS) loss
	B.4 . Bird's Eye View Conditioned Synthesis
	B.5 . Scene Editing
	B.6 . Text-Guided Style Transfer

