
NeuWigs: A Neural Dynamic Model for Volumetric Hair Capture and Animation

Ziyan Wang1,2 Giljoo Nam2 Tuur Stuyck2 Stephen Lombardi3† Chen Cao2

Jason Saragih2 Michael Zollhöfer2 Jessica Hodgins1† Christoph Lassner4†
1Carnegie Mellon University 2Reality Labs Research 3Google 4Epic Games

Abstract

The capture and animation of human hair are two of the
major challenges in the creation of realistic avatars for the
virtual reality. Both problems are highly challenging, be-
cause hair has complex geometry and appearance, as well
as exhibits challenging motion. In this paper, we present a
two-stage approach that models hair independently from the
head to address these challenges in a data-driven manner.
The first stage, state compression, learns a low-dimensional
latent space of 3D hair states containing motion and ap-
pearance, via a novel autoencoder-as-a-tracker strategy. To
better disentangle the hair and head in appearance learn-
ing, we employ multi-view hair segmentation masks in com-
bination with a differentiable volumetric renderer. The sec-
ond stage learns a novel hair dynamics model that per-
forms temporal hair transfer based on the discovered latent
codes. To enforce higher stability while driving our dynam-
ics model, we employ the 3D point-cloud autoencoder from
the compression stage for de-noising of the hair state. Our
model outperforms the state of the art in novel view synthe-
sis and is capable of creating novel hair animations with-
out having to rely on hair observations as a driving signal.
Project page is here https://ziyanw1.github.io/neuwigs/.

1. Introduction

The ability to model the details of human hair with high
fidelity is key to achieving realism in human avatar creation
because hair establishes part of our personal identity.The
realism of human hair involves not only geometry, appear-
ance and interaction with light, but also motion. The sheer
number of hair strands leads to a very complex geometry,
while the interactions between light and hair strands lead to
non-trivial view-dependent appearance changes. Capturing
the dynamics of hair is difficult due to the complexity of the
motion space as well as severe self-occlusions. Generating
realistic dynamics given only the head motion is similarly
hard because the motion of hair is not solely controlled by

†Work done while at Meta.

Figure 1. Animation from Single View Captures. Our model can
generate realistic hair animation from single view video based on
head motion and gravity direction. Original captures of subjects
wearing a wig cap are shown in red boxes.

the head position but also influenced by gravity and inertial
forces. From a control perspective, hair does not respond
linearly to the head position and a zero-order system is in-
adequate for modeling hair dynamics.

These challenges lead to two major problems for cre-
ating realistic hair avatars: 3D hair capture and dynamics
modeling. While modern capture systems reconstruct the
hair geometry and appearance from a sparse and discrete
set of real world observations with high fidelity, they do not

ar
X

iv
:2

21
2.

00
61

3v
3

 [
cs

.C
V

]
 1

2
O

ct
 2

02
3

https://ziyanw1.github.io/neuwigs/

directly solve the problem of novel motion generation. To
achieve that, we need to go beyond reconstructing to create
a controllable dynamic hair model using captured data.

In conventional animation techniques, hair geometry is
created by an artist manually preparing 3D hair grooms.
Motion of the 3D hair groom is created by a physics simula-
tor where an artist selects the parameters for the simulation.
This process requires expert knowledge. In contrast, data-
driven methods aim to achieve hair capture and animation
in an automatic way while preserving metric photo-realism.
Most of the current data-driven hair capture and animation
approaches learn to regress a dense 3D hair representation
that is renderable directly from per-frame driving signals,
without modeling dynamics.

However, there are several factors that limit the practical
use of these data-driven methods for hair animation. First
of all, these methods mostly rely on sophisticated driving
signals, like multi-view images [21, 33], a tracked mesh of
the hair [23], or tracked guide hair strands [45], which are
hard to acquire. Furthermore, from an animation perspec-
tive, these models are limited to rendering hair based on hair
observations and cannot be used to generate novel motion of
hair . Sometimes it is not possible to record the hair driving
signals at all. We might want to animate hair for a person
wearing accessories or equipment that (partially) obstructs
the view of their hair, for example VR glasses; or animate
a novel hair style for a subject or animate hair for a bald
person.

To address these limitations of existing data-driven hair
capture and animation approaches, we present a neural dy-
namic model that is able to animate hair with high fidelity
conditioned on head motion and relative gravity direction.
By building such a dynamic model, we are able to gener-
ate hair motions by evolving an initial hair state into a fu-
ture one, without relying on per-frame hair observation as
a driving signal. We utilize a two-stage approach for creat-
ing this dynamic model: in the first stage, we perform state
compression by learning a hair autoencoder from multi-
view video captures with an evolving tracking algorithm.
Our method is capable of capturing a temporally consis-
tent, fully renderable volumetric representation of hair from
videos with both head and hair. Hair states with different
time-stamps are parameterized into a semantic embedding
space via the autoencoder. In the second stage, we sam-
ple temporally adjacent pairs from the semantic embedding
space and learn a dynamic model that can perform the hair
state transition between each state in the embedding space
given the previous head motion and gravity direction. With
such a dynamic model, we can perform hair state evolu-
tion and hair animation in a recurrent manner which is not
driven by existing hair observations. As shown in Fig 1,
our method is capable of generating realistic hair animation
with different hair styles on single view captures of a mov-

ing head with a bald cap. In summary, the contributions of
this work are

• We present NeuWigs, a novel end-to-end data-driven
pipeline with a volumetric autoencoder as the backbone
for real human hair capture and animation, learnt from
multi-view RGB images.

• We learn the hair geometry, tracking and appearance end-
to-end with a novel autoencoder-as-a-tracker strategy for
hair state compression, where the hair is modeled sepa-
rately from the head using multi-view hair segmentation.

• We train an animatable hair dynamic model that is robust
to drift using a hair state denoiser realized by the 3D au-
toencoder from the compression stage.

2. Related Work
We discuss related work in hair capture, data-driven hair

animation, and volumetric avatars.
Static Hair Capture. Reconstructing static hair is chal-
lenging due to its complex geometry. Paris et al. [31] and
Wei et al. [47] reconstruct 3D hair from multi-view images
and 2D orientation maps. PhotoBooth [32] further improves
this technique by applying calibrated projectors and cam-
eras with patterned lights to reconstruct finer geometry. Luo
et al. [24] and Hu et al. [12] leverage hair specific struc-
ture (strand geometry) and physically simulated strands for
more robust reconstruction. The state-of-the-art work on
static hair capture is Nam et al. [29]. They present a line-
based patch method for reconstructing 3D line clouds. Sun
et al. [42] extends this approach to reconstruct both geom-
etry and appearance with OLAT images. Rosu et al. [38]
presents a learning framework for hair reconstruction that
utilizes a hair strand prior trained on synthetic data.
Dynamic Hair Capture. Hair dynamics is hard to cap-
ture as a result of the complex motion patterns and self-
occlusions. Zhang et al. [53] refine hair dynamics by apply-
ing physical simulation techniques to per-frame hair recon-
struction. Hu et al. [11] invert the problem of hair tracking
by directly solving for hair dynamic parameters through it-
erative grid search on thousands of simulation results under
different settings. Xu et al. [51] perform hair strand track-
ing by extracting hair strand tracklets from spatio-temporal
slices of a video volume. Liang et al. [20] and Yang et
al. [52] design a learning framework fueled by synthetic
hair data to regress 3D hair from video. Winberg et al. [48]
perform dense facial hair and underlying skin tracking un-
der quasi-rigid motion with a multi-camera system. While
achieving good results on the capture of the hair geome-
try from dynamic sequences, those methods either do not
model hair appearance with photo-realism or do not solve
the problem of drivable animation.
Data-driven Hair Animation. Using physics-based sim-
ulation for hair animation is a common practice in both,

academia and the film/games industry [1, 46]. However,
generating hair animations with physics-based simulation
can be computationally costly. To remedy this problem, re-
duced data-driven methods [5, 6, 9] simulate only a small
portion of guide hair strands and interpolate the rest using
skinning weights learned from full simulations. With the
latest advances in deep learning, the efficiency of both dy-
namic generation [25] and rendering [4,30] of hair has been
improved using neural networks. Lyu et al. [25] uses deep
neural networks for adaptive binding between normal hair
and guide hair. Olszewski et al. [30] treats hair rendering
as an image translation problem and generates realistic ren-
dering of hair conditioned on 2D hair masks and strokes.
Similarly, Chai et al. [4] achieves faster rendering with pho-
torealistic results by substituting the rendering part in the
animation pipeline with screen-space neural rendering tech-
niques. Temporal consistency is enforced in this pipeline
by conditioning on hair flow. However, those methods still
build on top of conventional hair simulation pipelines and
use synthetic hair wigs, which require manual efforts by
an artist to set up and are non-trivial to metrically evalu-
ate. Wu et al. [49] propose to use a secondary motion graph
(SDG) for hair animation without relying on a conventional
hair simulation pipeline at runtime. However, this method
is limited by artist’s design of hair wigs and control of hair
simulation parameters and is not able to capture or animate
hair with realistic motion.

Volumetric Avatars. With the recent advent of differ-
entiable volumetric raymarching [21, 28], many works at-
tempt to directly build volumetric avatars from images or
videos. To the best of our knowledge, Neural Volumes [22]
is the earliest work that creates a volumetric head avatar
from multiview images using differentiable volumetric ray-
marching. One of the many strengths of this work is that
it directly optimizes a volume grid from multiview im-
ages while still producing high quality renders for semi-
transparent objects like hair. One followup work [44] com-
bines volumetric and coordinate-based representations into
a hybrid form for better rendering quality and drivability.
However, the level of detail either methods can capture is
limited by the resolution of the volume grid.

Another early work on differentiable volumetric render-
ing is NeRF [28], which parameterizes radiance fields im-
plicitly with MLPs instead of using a volumetric grid. Due
to the success of NeRF [28] for modeling 3D scenes from
multiple images, there are many works that build avatars
with NeRF [7, 8, 10, 14, 16, 17, 27, 33, 34, 36, 55]. PVA [36]
and KeypointNeRF [27] utilize pixel aligned information to
extend NeRF’s drivability and generalization over sequence
data. Nerfies [33], HyperNeRF [34] and TAVA [17] opti-
mize a deformation field together with a NeRF in a canon-
ical space given videos. NeRFace [7], IM Avatar [55] and
HeadNeRF [10] substitute the deformation field with face

models like 3DMM [2] or FLAME [18] for better control-
lablity. However, those methods mostly assume hair to be
rigidly attached to the head without motion and most of the
approaches suffer from prohibitively long rendering time.

In contrast to NeRF-based avatars, a mixture of volu-
metric primitives (MVP) [23] builds a volumetric represen-
tation that can generate high-quality real time renderings
that look realistic even for challenging materials like hair
and clothing. Several follow up works extend it to model
body dynamics [37], moderate hair dynamics [45] and even
for in-the-wild captures [3]. However, animating such vol-
umetric representations with dynamics is still an unsolved
problem.

3. Method
Our method for hair performance capture and animation

consists of two stages: state compression and dynamic mod-
eling (see also Fig. 2). The goal of the first stage is to per-
form dynamic hair capture from multi-view video of a head
in motion. To be more specific, in this stage, we aim to dis-
till a 3D renderable representation of hair from multi-view
images at each frame into an embedding space. To achieve
that, we train a volumetric autoencoder in a self-supervised
manner to model the hair geometry, tracking and appear-
ance. The output of this model is a set of tracked hair point
clouds pt, their corresponding local radiance fields in the
form of volumetric primitives Vt and a compact embedding
space that is spanned by the 1D hair state encoding zt. In
the second stage, we perform modeling of hair dynamics
based on the hair capture from the first stage. The goal
of this stage is to create a controllable, self-evolving rep-
resentation of hair without relying on online observations
of hair. We achieve this by learning a neural network to
regress the next possible hair state, which is conditioned on
the previous hair state as well as the previous head motion
and head-relative gravity direction. Equipped with the hair
encoding space acquired from the first stage, we can train
that model in a supervised manner by simply sampling data
pairs of temporally adjacent hair states from the encoding
space. Using both stages, we can perform dynamic hair an-
imation at test time given an initialization using a recurrent
strategy, without relying on direct observations of hair as a
per-frame driving signal.

3.1. State Compression

We assume that multi-view image captures Icami
with

their corresponding calibrated cameras are given. We de-
note the extrinsics of each camera i as Ri and ti. We
then run l-MVS [29] and non-rigid tracking [50] to obtain
the per-frame hair reconstructions pt ∈ RNpt×3 and head
tracked vertices xt ∈ RNxt×3 at time frame t, where Npt

and Nxt
denote the size of each. The pt and xt together

serves as a coarse representation for the hair and head. Dif-

Figure 2. Method Overview. Our method is comprised of two stages: state compression and dynamic modeling. In the first stage, we
train an autoencoder for hair and head appearance from multiview RGB images using differentiable volumetric raymarching; at the same
time we create an encoding space of hair states. In the dynamic modeling stage, we sample temporally adjacent hair encodings to train a
temporal transfer module (T2M) that performs the transfer between the two, based on head motion and head-relative gravity direction.

ferent from the head vertices, here the pt represent an un-
ordered set of hair point clouds. Due to the difference be-
tween hair and head dynamic patterns, we model them sep-
arately by training two different volumetric autoencoders.
For the head model, we use an autoencoder to regress the
volumetric texture in an unwrapped UV layout conditioned
on the tracked head mesh, similar to [23, 45]. For the hair
model, we optimize the hair volumetric texture and its track-
ing simultaneously. To better enforce the disentanglement
between hair and head, we attach head volumes only to the
head mesh and hair volumes only to the hair point clouds.
Moreover, we use a segmentation loss to constrain each of
them to only model the texture of their assigned category of
hair or head.
Autoencoder as a Tracker. Learning to track hair in a su-
pervised manner with manual annotation is infeasible. We
automatically discover the hair keypoints as well as their
tracking information by optimizing a variational autoen-
coder (VAE) [15] in a semi-supervised manner. By doing
autoencoding on hair point clouds, we find that the VAE
representing the hair point cloud can automatically align
hair shapes along the temporal axis and is capable of track-
ing through both long and discontinuous hair video seg-
ments such as captures of different hair motions.

The input to the point encoder E is the point coordinates
of the unordered hair point cloud pt. Given its innate ran-
domness in terms of point coverage and order, we use Point-
Net [35] to extract the corresponding encoding zt ∈ R256.
Besides being agnostic to the order of pt, it also can process
varying numbers of points and aggregate global informa-
tion from the input point cloud. The point decoder D is
a simple MLP that regresses the coordinate and point tan-
gential direction of the tracked point cloud qt ∈ RNprim×3,
dir(qt) ∈ RNprim×3 and st ∈ RNprim from zt, where
Nprim is the number of tracked hair points. We denote

dir(x) as the tangential direction of x. st is a per-point
scale factor which will be used later. We optimize the fol-
lowing loss to train the point autoencoder:

Lgeo = Lcham + ωtempLtemp + ωKLLKL.

The first term is the Chamfer distance loss which aims to
align the shape of tracked point cloud qt to pt:

Lcham = ||qt − Nqt,pt
||2 − cos(dir(qt),dir(Nqt,pt

))

+||pt − Nqt,pt
||2 − cos(dir(pt),dir(Nqt,pt

)),

where cos(·, ·) is the cosine similarity and Nx,y ∈ RNx×3

are the coordinates of the nearest neighbor of each point of
x in y. To further enforce temporal smoothness, we use
point flow

−→
fl(pt) and

←−
fl(pt) denoting forward and back-

ward flow from pt to pt+1 and pt−1 as additional supervi-
sion and formulate Ltemp as follows:

Ltemp = ||
←−
fl(p̂t)−

←−
fl(Nqt,pt

)||2 + ||
←−
fl(pt)−

←−
fl(Npt,qt)||2

+||
−→
fl(p̂t)−

−→
fl(Nqt,pt

)||2 + ||
−→
fl(pt)−

−→
fl(Npt,qt)||2,

where as qt is the tracked point, we can simply have
←−
fl(qt) = qt − qt−1 and

−→
fl(qt) = qt − qt+1. Please see

the supplemental materials for how we estimate
←−
fl(Nqt,pt).

The last term LKL is the KL-divergence loss [15] on the
encoding zt to enforce similarity with a normal distribution
N (0, 1).
Hair Volumetric Decoder. In parallel to the point decoder
D, we optimize a hair volumetric decoder that regresses a
volumetric radiance field around each of the hair points.
The hair volumetric primitives Vt ∈ RNprim×4×m3

store
RGB and alpha in resolution of m3. We use a decoder
similar to HVH [45] to regress the volume payload. The
pose of each volumetric primitive is directly determined by

the output of the point decoder: qt and dir(qt). We de-
note Rp,n

t ∈ SO(3) and dp,n
t ∈ R3 as the nth volume-to-

world rotation and translation of hair volume and per-hair-
volume scale sp,nt as the nth element in scale st. Similarly,
dn
t = qnt is the nth element of qt. Given the head center

xc
t extracted from the head vertices xt and hair head direc-

tion as h̄n
t = qnt − xc

t , we formulate the rotation Rp,n
t as

Rp,n
t = [l(qnt), l(q

n
t × h̄n

t), l(q
n
t × (qnt × h̄n

t))]
T , where

l(x) = x/||x||2 is the normalization function. The output
of the head model is similar to the hair part except that it
is modeling head related (non-hair) regions. We denote the
head volume payload as Ut ∈ RNprim×3×m3

and head re-
lated rotation Rx,n

t ∈ SO(3), translation dx,n
t ∈ R3 and

scale sx,nt ∈ R.
Differentiable Volumetric Raymarching. Given all vol-
ume rotations Rall

t = [Rx,n
t ,Rp,n

t], translations dall
t =

[dx,n
t ,dp,n

t], scales sallt = [sx,nt , sp,nt] and local radiance
fields V all

t = [Ut,Vt], we can render them into im-
age Icami

and compare it with Icami
to optimize all vol-

umes. Using an optimized BVH implementation similar to
MVP [23], we can efficiently determine how each ray in-
tersects with each volume. We define a ray as r(p, l) =
o(p)+ lv(p) shooting from pixel p in direction of v(p) with
a depth l in range of (lmin, lmax). The differentiable forma-
tion of an image given the volumes can then be formulated
as below:

Ip =

∫ lmax

lmin

Vall
t,rgb(rp(l))

dT (l)

dl
dl,

T (l) = min(

∫ l

lmin

Vall
t,α(rp(l))dl, 1),

where V all
t,rgb is the RGB part of V all

t and V all
t,α is the alpha

part of V all
t . To get the full rendering, we composite the

rendered image as Ĩp = Ip + (1 − Ap)Ip,bg where Ap =
T (lmax) and Ip,bg is the background image. We optimize
the following loss to train the volume decoder:

Lpho = ||Ĩp − Ip,gt||1 + ωV GGLV GG(Ĩp, Ip,gt),

where LV GG is the perceptual loss in [13] and Ip,gt is the
ground truth pixel value of p. We find that the usage of a
perceptual loss yields more salient rendering results.

However, as we optimize both Ut and Vt from the im-
ages, texture bleeding between the hair volume Vt and the
head volume Ut becomes a problem. The texture bleeding
issue is especially undesirable when we want to treat the
hair and head separately, for example, when we want to an-
imate just the hair. To prevent this, we additionally render a
hair mask map to regularize both Vt,α and Ut,α. We denote
the ground truth hair mask as Mp,gt and the rendered hair

mask asMp:

Mp =

∫ lmax

lmin

Vall
t,1(rp(l))

dT (l)

dl
dl,

T (l) = min(

∫ l

lmin

Vall
t,α(rp(l))dl, 1),

where Vall
t,1 is all one volume if it belongs to Vt other-

wise zero. We formulate the segmentation loss as Lmask =
||Mp −Mp,gt||1. The final objective for training the whole
autoencoder is L = Lgeo + Lpho + ωmaskLmask.

3.2. Dynamic Model

In the second stage, we aim to build a dynamic model
that can evolve hair states over time without relying on per-
frame hair observation as a driving signal. To achieve that,
we leverage the embedding space of hair states built at the
state compression stage and train a model that performs the
hair state transfer in a supervised manner. To this end, we
build a temporal transfer module (T2M) of hair dynamic pri-
ors, that evolves the hair state and can produce hair anima-
tion based on the indirect driving signals of head motion
and head-relative gravity direction in a self-evolving man-
ner. The design of T2M is similar to a hair simulator ex-
cept that it is fully data-driven. One of the inputs to T2M is
the encoding zt−1 of the previous time step. At the same
time, T2M is also conditioned on the head per-vertex dis-
placement ht = xt − xt−1 and ht−1 = xt−1 − xt−2 from
the previous two time steps as well as head relative grav-
ity direction gt ∈ R3 at the current time step. T2M will
then predict the next possible state ẑt from T2M based on
those inputs. Similar to the design of the VAE, the out-
put of T2M is a distribution instead of a single vector. To
be more specific, the mean and standard deviation of ẑt
are µ(ẑt), δ(ẑt) = T2M(zt−1|ht,ht−1, gt). During train-
ing, we take ẑt = µ(ẑt) + n ⊙ δ(ẑt) and during testing
ẑt = µ(ẑt). The per point normal distribution vector, n, is
the same shape as δ(ẑt) and⊙ is the element-wise multipli-
cation.
Training Objectives. We denote the point encoder as E(·)
and the point decoder as D(·). Across the training of T2M,
we freeze the parameters of both, E and D. We denote the
unordered point cloud at frame t as pt, its corresponding en-
coding as µ(zt), δ(zt) = E(pt) and the tracked point cloud
as qt = D(zt). The following loss enforces the prediction
of T2M to be similar to its ground truth:

Lmse = ||µ(ẑt+1)− µ(zt+1)||2 + ||δ(ẑt+1)− δ(zt+1)||2
Lcos = −cos(µẑt+1, µzt+1)− cos(δẑt+1, δzt+1)

Lptsmse = ||D(ẑt+1)−D(zt+1)||2,

where we not only minimize the ℓ2 distance between ẑt+1

and zt+1, but also enforce the cosine similarity and the cor-
responding tracked point cloud to be equivalent. To adapt

T2M to the tracked point cloud qt, we compute the above loss
again but using qt as input, where we generate the corre-
sponding encoding as z′

t from E(qt) and its prediction ẑ′
t+1

from T2M(z′
t|ht,ht−1, gt):

Lmse,cyc = ||µ(ẑ′
t+1)− µ(zt+1)||2 + ||δ(ẑ′

t+1)− δ(zt+1)||2
Lcos,cyc = −cos(µẑ′

t+1, µzt+1)− cos(δẑ′
t+1, δzt+1)

Lptsmse,cyc = ||D(ẑ′
t+1)−D(zt+1)||2.

Similar to how we train our autoencoder, we also enforce
two KL divergence losses on both the predicted ẑt+1 and
ẑ′
t+1 with a normal distribution N . The final objective for

training the T2M is a weighted sum of the above eight terms.
Animation. Given an initialized hair state, our dynamic
model T2M can evolve the hair state into future states condi-
tioned on head motion and head-relative gravity direction.
One straightforward implementation of the would be to di-
rectly propagate the hair state encoding zt. However, in
practice, we find this leads to severe drift in the semantic
space. As a simple feed forward neural network, T2M can
not guarantee that its output is noise free. The noise in the
output becomes even more problematic when we use T2M in
a recurrent manner, where the output noise will aggregate
and lead to drift. To remedy this, instead of propagating the
encoding zt directly, we reproject the predicted encoding zt
by the point autoencoder E and D every time for denoising.
To be more specific, we acquire the de-noised predicted hair
encoding ẑt+1 = E(D(ẑt+1)) from the raw prediction ẑt+1

of T2M. The use of the point autoencoder E and D can help
us remove the noise in zt+1, as the point cloud encoder E
can regress the mean µt+1 and standard deviation δt+1 of
zt+1 separately by using qt+1 as an intermediate variable.
Thus, we can extract the noise free part of zt+1 by taking
the mean µt+1 regressed from E . Please see our experi-
ments for further details of this approach.

4. Experiments
In order to test our proposed model, we conduct ex-

periments on both the hair motion data set presented in
HVH [45] and our own dataset with longer sequences fol-
lowing a similar capture protocol as HVH [45]. We collect
a total of four different hair wig styles with scripted head
motions like nodding, swinging and tilting. We also collect
an animation test set with the same scripted head motions
performed by different actors wearing a wig cap, which we
will refer to as “bald head motion sequence”. The anima-
tion test set contains both single view captures from a smart
phone and multiview captures. The total length of each hair
wig capture is around 1-1.5 minutes with a frame rate of
30Hz. 100 cameras are used during the capture where 93 of
them are used to obtain training views and the rest are pro-
viding held-out test views. We split each sequence into two
folds with similar amounts of frames and train our model

seq01 seq02 seq03
MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓ MSE↓ PSNR↑ SSIM↑ LPIPS↓

PFNeRF 51.25 31.16 0.9269 0.3717 103.41 28.15 0.8659 0.5067 76.59 29.50 0.9000 0.2949
NSFF 50.13 31.21 0.9346 0.3672 90.06 28.75 0.8885 0.4728 83.18 29.10 0.8936 0.3292

NRNeRF 56.78 30.78 0.9231 0.3554 132.16 27.13 0.8549 0.5241 79.83 29.33 0.8987 0.3067
MVP 47.54 31.60 0.9476 0.2587 77.23 29.62 0.9088 0.3051 73.78 29.66 0.9224 0.2455
HVH 41.89 32.17 0.9543 0.2019 59.84 30.69 0.9275 0.2353 71.58 29.81 0.9314 0.2021
Ours 40.34 32.28 0.9558 0.1299 56.47 30.94 0.9329 0.1254 73.65 29.69 0.9247 0.1496

Table 1. Novel view synthesis. We compute MSE↓, PSNR↑,
SSIM↑ and LPIPS↓ comparing rendered and ground truth images
on hold-out views. First and second best results are high-
lighted.

MVP [23] HVH [45] Ours Ground Truth

Figure 3. Novel View Synthesis. Compared with previous meth-
ods, our method captures hair with more details, including fly-
away hair strands and creates an overall more accurate hair recon-
struction with perceptually better rendering results.

exclusively on the training portion of each sequence.

4.1. Evaluation of the State Compression Model

We first test our state compression model to evaluate its
ability to reconstruct the appearance of hair and head.
Novel View Synthesis. We compare with volumetric meth-
ods like NeRF based methods [19,43] and volumetric primi-
tives based methods [23,45] on the data set from HVH [45].
In Tab 1, we show the reconstruction related metrics MSE,
SSIM, PSNR and LPIPS [54] between predicted images and
the ground truth image on hold out views. Our method
yields a good balance between perceptual loss and recon-
struction loss while keeping both of them relatively low.
Furthermore, our method achieves a much higher percep-
tual similarity with ground truth images. In Fig. 3 we show
that our method can capture high frequency details and even
preserve some fly-away hair strands.

Seq01 Seq02 Seq03
HVH [45] 0.6685 0.4121 0.3766

Ours 0.8289 0.9243 0.8571

Table 2. IoU(↑) between rendered hair silhouette and ground truth
hair segmentation.

HVH [45] Seq01 Ours Seq01 HVH [45] Seq02 Ours Seq02

Figure 4. Hair/Head Disentanglement. By explicitly enforcing
the semantic segmentation of head and hair through additional su-
pervision, we learn a more opaque hair texture while the result
suffers less from texture bleeding.

Ablation on Hair/Head Disentanglement. We test how
well our model handles hair/head disentanglement com-
pared to previous work. As hair and head are exhibiting
different dynamic patterns, disentanglement is usually re-
quired, especially to achieve independent controllability for
both. We compare with HVH, which implicitly separates
the hair and head using the dynamic discrepancy between
them and optical flow. In our model, we further facilitate the
disentanglement by using semantic segmentation. In Tab 2,
we show the IoU between the rendered silhouette of hair
volumes and ground truth hair segmentatation of the differ-
ent methods. We visualize the difference in Fig. 4. Our
method generates a more opaque hair texture with less tex-
ture bleeding between hair volumes and non-hair volumes.
Moreover, our model creates the hair shape in an entirely
data-driven fashion, which yields higher fidelity results than
the artist prepared hair in HVH [45].
Ablation on LV GG. We examine the synergy between
LV GG and the ℓ1 loss for improving the rendering qual-
ity. As shown in Tab. 3, we find that the perceptual loss
has positive effects on the reconstruction performance while
the improvements are negated when the weight is too large.
In Fig. 5, we compare the rendered images using different
LV GG weights. The results are more blurry when not using
LV GG and fewer details are reconstructed, such as fly-away
strands.
Ablation on Point Flow Supervision. Although with
Lcham we can can already optimize a reasonably tracked
point cloud pt, we find that point flow can help remove the
jittering in appearance. We show the temporal smoothness
enforced by the point flow supervision in Fig. 6. Our model

vgg=0.0 vgg=0.1 vgg=0.3 vgg=1.0 vgg=3.0 vgg=10.0
MSE 42.84 42.40 39.94 40.34 40.98 42.82
PSNR 32.04 32.09 32.34 32.28 32.25 32.07
SSIM 0.9544 0.9564 0.9576 0.9558 0.9541 0.9518
LPIPS 0.2021 0.1765 0.1511 0.1299 0.1238 0.1257

Table 3. Ablation on LV GG. We find using an additional comple-
mentary perceptual loss leads to better appearance reconstruction.

VGG 0.0 VGG 1.0 VGG 10.0 GT

Figure 5. Ablation on LV GG. Adding a perceptual loss leads to
sharper reconstruction results.

w/o flow (frame T) w/o flow (frame T+1) w/ flow (frame T) w/ flow (frame T+1)

Figure 6. Ablation on Point Flow. We find that adding point
flow to regularize the offsets between temporally adjacent tracked
points prevents jittering.

learns a more consistent hair texture with less jittering when
trained with point flow. Please see the videos in the supple-
mental material for a visualization over time.

4.2. Evaluation of the Dynamic Model

Lastly, we perform tests of our animation model. Com-
pared to a per-frame model that takes hair observations as
input, the input to our dynamic model and any of its varia-
tions is a subset of the head motion trajectory and hair point
cloud at the initialization frame. As a quantitative evalua-
tion, we compare our model with per-frame driven models
using either hair observations or head observations as driv-
ing signals. For qualitative evaluation, we render new hair
animations for the bald head motion sequences.
Quantitative Test of the Dynamic Model. We evaluate our
dynamic model on the test sequences of scripted hair mo-
tion capture. The goal is to test whether our dynamic model
generates reasonable novel content rather than only testing
how well it reconstructs the test sequence. To test the per-
formance of our dynamic model, we treat the model driven

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ChamDis(↓)
pf w/ hair img 37.36 32.94 0.9559 0.1333 10.47
dyn w/o cos 44.96 32.26 0.9458 0.1327 25.49
dyn w/o cyc 45.22 32.23 0.9453 0.1335 26.79
dyn w/o grav 40.12 32.64 0.9504 0.1268 13.76

dyn 38.49 32.80 0.9532 0.1211 11.12

Table 4. Ablation of Different Dynamic Models. We compare
different models in terms of rendering quality and tracking accu-
racy.

by per-frame (pf) hair observations as an oracle paradigm to
compare with, while our dynamic model does not use any
per-frame hair observation as a driving signal. In Tab. 4, we
compare the rendering quality of our dynamic model with
pf models and ablate several designs. The best performing
dynamic model (dyn) has similar performance with the pf
model even without the per-frame hair observation as driv-
ing signal. We find that both adding a cosine similarity loss
as an additional objective to MSE and adding a cycle consis-
tency loss helps improve the stability of the dynamic model.
Meanwhile, we find adding gravity as an auxiliary input
stabilizes our model on slow motions. This improvement
might be related to the fact that during slow motions of the
head, the hair motion is primarily driven by gravity.
Ablation for the Point Autoencoder E +D. Here, we an-
alyze how well the point autoencoder acts as a stabilizer
for the dynamic model. We compare two different models
in Fig. 7: encprop, that propagates the encoding directly,
and ptsprop that propagates the regressed hair point cloud
and generates the corresponding encoding from the point
encoder. The results are more salient with ptsprop. The
improvement of the ptsprop over the encprop is partially
because the mapping from point cloud to encoding is an
injective mapping and the point encoder serves as a noise
canceller in the encoding space. To further study this behav-
ior, we perform a cycle test on the point encoder, where we
add noise n to a certain encoding z and get a noisy version
of the encoding ẑ=z+n and its corresponding noisy point
cloud p̂. Then, we predict a cycled encoding z̄= E(D(ẑ)).
We compare z, ẑ and z̄ in Fig. 7. z and z̄ are consistently
close while ẑ jitters. This result suggests that the remapping
of ẑ using E and D counteracts the noise n.
Animation on Bald Head Sequences. We show animation
results driven by head motions on in-the-wild phone video
captures in Fig 1. We find our model generates reasonable
motions of hair under natural head motions like swinging
or nodding. Please refer to the supplemental materials and
videos for visualizations over time.

5. Discussion

We present a two-stage data-driven pipeline for volumet-
ric hair capture and animation. The core of our method is a
3D volumetric autoencoder that we find useful for both, au-

enc vis encprop ptsprop

Figure 7. encprop v.s. ptsprop. ptsprop generates sharper results
with less drifting than encprop.

sample 1 sample 2 sample 3

Figure 8. Point Encoder E as a Stabilizer. We sample several ẑ
and corresponding z̄= E(D(ẑ)) with a fixed z and visualize part
of them above. As we can see, z̄ stays similar to z while ẑ jitters.

tomatic hair state acquisition and stable hair dynamic gen-
eration. The first stage of our pipeline simultaneously per-
forms hair tracking, geometry and appearance reconstruc-
tion in a self-supervised manner via an autoencoder-as-a-
tracker strategy. The second stage leverages the hair states
acquired from the first stage and creates a recurrent hair
dynamics model that is robust to moderate drift with the
autoencoder as a denoiser. We empirically show that our
method performs stable tracking of hair on long and seg-
mented video captures while preserving high fidelity for
hair appearance. Our model also supports generating new
animations in both, lab- and in-the-wild conditions and does
not rely on hair observations.
Limitations. Like many other data-driven methods, our
method requires a large amount of diverse sstraining data
and might fail with data that is far from the training distri-
bution. Our model is currently not relightable and can not
animate new hairstyles. One future direction is to separately
model appearance and lighting, which can be learnt from
varied lighting captures. Another interesting direction is to

learn a morphable hair model for new hairstyle adaptation.

6. Appendix

6.1. Network Architecture

Here we provide details about how we design our neural
networks and further information about training.
Encoder. As training a point cloud encoder solely is ex-
tremely unstable, we first train an image encoder and use
it as a teacher model to train the point cloud encoder. In
practice, we train two encoders for our hair branch together.
Here we first illustrate the structure of both encoders. We
will go back to how we train them and use them later. One
of the encoders is an image encoder which is a convolu-
tional neural network (CNN) that takes multiple view im-
ages as input. We denote the image encoder as Eimg The
other one is E which is a PointNet encoder that takes ei-
ther an unordered hair point cloud pt or a tracked hair point
cloud qt as input. Positional encoding [28] is applied to the
raw point cloud coordinate before it is used as the input to
the network. We find this is very effective to help the net-
work capturing high frequency details. In practice, we use
frequencies of x2 where x ranges from 1 to 7. We show
the detailed architecture of Eimg in Tab 5. The architecture
of the point cloud encoder E is shown in Tab 6. Both of
the two encoders E and Eimg can produce a latent vector in
size of 256, which are supposed to describe the same con-
tent. Their output will be passed to Eµ and Eσ which are
two linear layers that produce µ and σ of zt respectively.

Encoder Eimg

1 Conv2d(3, 64)
2 Conv2d(64, 64)
3 Conv2d(64, 128)
4 Conv2d(128, 128)
5 Conv2d(128, 256)
6 Conv2d(256, 256)
7 Conv2d(256, 256)
8 Flatten()
9 Linear(256×ninpimg×15, 256)

Table 5. Encoder Eimg architecture. Each Conv2d layer in
the encoder has a kernel size of 3, stride of 1 and padding of
1. Weight normalization [41] and untied bias are applied. After
each layer, except for the last two parallel fully-connected layers,
a Leaky ReLU [26] activation with a negative slope of 0.2 is ap-
plied. Then a downsample layer with a stride of 2 is applied after
every conv2d layer. The first linear layer takes the concatenation
of all towers from different image views as input. ninpimg stands
for much many views we take.

Point Decoder. We use a 3-layer MLP as the point decoder
D, which takes a 1d latent code zt as input and outputs the

Encoder E
1 Conv2d(3, 128)
2 Conv2d(128, 256)
3 Conv2d(256, 256)
4 Conv2d(256, 256)
5 Conv2d(256, 512)
6 Conv2d(512, 512)
7 Conv2d(512, 512)
8 Conv2d(512, 1024)
8 MAM pooling()
9 Linear(1024×3, 512)

10 Linear(512, 256)
11 Linear(256, 256)

Table 6. Encoder E architecture. We use a E structure similar
to PointNet [35]. All Conv2d uses a kernel of 1 and stride of 1,
which serves as a shared MLP. We only use Conv2d for simpler
implementation. After each Conv2d layer, a Leaky ReLU [26]
activation with a negative slope of 0.2 is applied. Then we use
a MAM pool layer to aggregate features from all points. MAM
stands for min, avarage and max pooling, which concatenates the
results of min, average and max pooling into one. Then, two linear
layers are applied to the output of MAM pooling and generate a
256 latent vector.

coordinate of the corresponding tracked point cloud qt. We
show the architecture of D in Tab 7.

Decoder D
1 Linear(256, 256)
2 Linear(256, 256)
2 Linear(256, 4096×3)

Table 7. Decoder D architecture. We use an MLP with three
Linear layers as the decoder D. After each layer except the last
layer, a Leaky ReLU [26] activation with a negative slope of 0.2 is
applied.

Volume Decoder. The volumetric model is a stack of 2D
deconv layers. We align the x-axis and y-axis of each vol-
ume and put them onto a 2D imaginary UV-space. Then we
convolve on them to regress the z-axis content for each of
the x,y position. We show the architecture of the volume de-
coder in Tab 8. In our setting, we have two seperate volume
decoder for both RGB volume and alpha volume.
Dynamic Model. We use three different inputs to the dy-
namic model T2M, namely the hair encoding zt−1 at the pre-
vious frame t − 1, the head velocity ht−1 and ht−2 from
the previous two frames t− 1 and t− 2, and the head rela-
tive gravity direction gt at the current frame t. We first en-
code {ht−1,ht−2} and gt into two 1d vectors with 128 di-
mensions respectively. Then, we concatenate them together
with encoding zt−1 as the input to another MLP to regress

Volume Decoder
global encoding zt per-point

hair featurerepeat
concat

1 Linear(320, 512)
2 deconv2d(512, 256)
3 conv2d(256, 256)
4 deconv2d(256, 256)
5 conv2d(256, 256)
6 deconv2d(256, 128)
7 conv2d(128, 128)
8 deconv2d(128, 16×ch)

Table 8. Architecture of the Volume Decoder. We first repeat
the global encoding zt into the shape of the per-point hair feature.
The per-point hair feature is a tensor that is shared across all time
frames. We then concatenate those two into one. Each layer except
for the last one is followed by a Leaky ReLU layer with a negative
slope of 0.2. Each deconv2d layer has a filter size of 4, stride
size of 2 and padding size of 1. Each conv2d layer has a filter
size of 3, stride size of 1 and padding size of 1. ch stands for the
channel size of the output. It is set to 3 if it is an rgb decoder and
1 for a alpha decoder.

the next possible hair state encoding zt. As in Tab. 9, we
show the flow of T2M. For the head velocity branch, we first
extract the per-vertex velocity ht−1 = xt − xt−1 where
xt is the coordiante of the tracked head mesh at frame t.
To be noted, here the ht−1 contains only the information
of the rigid head motion but not any other non-rigid motion
like expression change. This representation of head motion
is redundant theoretically, but we find it helps our network
to converge better comparing to just using the pure 6-DoF
head rotation and translation. We then reshape it and use it
as the input to a two layer MLP to extract a 1d encoding of
size 128. For the gravity branch, we first encode the grav-
ity direction gt with cosine encoding [28]. The output of
the dynamic model is the mean µt+1 and standard deviation
σt+1 of the predicted hair state zt+1.

6.2. Training details

Dataset and Capture Systems. Following the setting in
HVH [45], we also captured several video sequences with
scripted hair motion performed under different hair styles
for animation tests. During the capture, we ask the par-
ticipants to put on different kind of hair wigs and perform
a varity of head motions like nodding, swinging and tilt-
ing for multiple times under both slow and fast speed. To
collect a demonstration set for animation, we also ask the
participants to put on a hair net (bare head) and perform the
same set of motions as when they are wearing a hair wig.
Hair Point Flow Estimation. There are three steps for
computing the hair point flow, namely per-point feature de-

Temporal Transfer Module (T2M)
1 head velocity {ht−1,ht−2} head relative gravity gt hair state zt−1

2 Linear(7306×3, 256) cosine encoding3 Linear(256, 128)
4 Linear(539, 256)
5 Linear(256, 256)
6 Linear(256, 256)
7 Linear(256, 256) Linear(256, 256)

Table 9. Temporal Transfer Module (T2M). We first encode the
head velocity {ht−1,ht−2} and head relative gravity gt into 1d
vectors, with a 2-layer MLP and cosine encoding respectively.
Then we concatenate hair state zt−1 with those vectors to serve
as the input to another MLP. The last two layers will be regressing
the mean µt+1 and standard deviation σt+1 of the predicted hair
state zt+1. All Linear expect for the last two are followed by a
Leaky ReLu activation with a negative slope of 0.2.

Figure 9

scriptor extraction, feature matching and flow filtering. In
the first step, we compute a per-point feature descriptor
based on the distribution of each point’s local neighboring.
In the second step, we match the points from two adjacent
time steps based on the similarity between their feature de-
scriptor. In the last step, we filter out outlier flows that are
abnormal.

To compute the point feature descriptor, we construct
Line Feature Histograms (LFH) inspired by Point Feature
Histograms (PFH) [40]. The LFH is a historgram of a 4-
tuple that describes the spatial relationship between a cer-
tain point pt

1 and its neighboring poit pt
2. As shown in

Fig. 9, we visualize two points pt
1 ∈ R3 and pt

2 ∈ R3

from the same time step t. Given pt
1 and pt

2, we define
the following four properties that describe their spatial re-
lationship. The first one is the relative position of pt

2 with
respect to pt

1, which is dt
1,2 = pt

2 − pt
1. Then we could

compute the relative distance as ||dt
1,2||2 ∈ R. The second

term is the angle θt1,2 between dir(pt
1) and dir(pt

2), where
dir(x) is the line direction of x from [29]. The last two
terms are the angles αt

1,2 and βt
1,2 between (dir(pt

1),d
t
1,2)

and (dir(pt
2),d

t
1,2) respectively. For all intersections, we

take the acute angle, which means θt1,2, α
t
1,2 and βt

1,2 are in
[0, π/2]. Thus, the 4-tuple we used to create LFH(pt

1) is
(||dt

1,2||2, θt1,2, αt
1,2, β

t
1,2) and we normalize the histogram

by its l2 norm. The designed LFH has three good proper-

ties. As we use the normalized feature, it is density invari-
ant. Since θt1,2, α

t
1,2 and βt

1,2 are always acute angles, the
feature is also rotation and flip invariant, where if we flip or
rotate dir(pt

1) the histogram are still the same. This design
helps us getting a more robust feature descriptor for match-
ing. We set the resolution for each entries of the 4-tuple to
be 4 and it results in a descriptor in size of 256.

In the second step, we compute the correspondence be-
tween points from adjacent time frames t and t + tδ where
tδ ∈ {−1, 1}. We use the method from Rusu et al. [39]
to compute the correspondence between two point clouds
from t and t + tδ . To further validate the flow we get, we
use several heuristic to filter out some obvious outliers. We
first discard all the flows that have a large magnitude. As
the flow is computed between two adjacent frames, it is sup-
posed to be not abrupt. The second heuristic we use to filter
the outliers is cycle consistency, where we compute the flow
both forward and backward to see if we can map back to the
origin. If the mapped back point departs too far away from
the origin, we discard their flow.

Training of Encoder. As mentioned before, we train two
encoders E and Eimg together. In practice, we find that di-
rectly training E is not very stable and might lead to not able
to converge. Thus, we learn the two encoders in a teach-
student manor, where we use Eimg as a teach model to train
E . We denote ximg,t as the output of Eimg and xpt,t as the
output of E . Then, we formulate the following MSE loss to
enforce the E to output similarly to Eimg:

Lts = ||ximg,t − xpt,t||2,

where we restraint the gradient from Lts from back-
propagating to Eimg while training.

6.3. Ablation on Different Encoders

We show quantitative evaluations on rendering quality of
different encoders on both SEEN and UNSEEN sequences
in Tab. 10. As we can see, our E performs similarly to the
Eimg on the novel views of the SEEN sequence. This is
as expected due to the nation of teach-student model and
we train our model on the SEEN sequence with the training
views. On the UNSEEN sequence, we find our E performs
better than Eimg . The reason could be that there are smaller
domain gap between the point clouds from SEEN sequence
and UNSEEN sequence while the multi-view images might
be varying a lot due to the head motion. And the CNN is
not good for handling such changes due to the head motion
while point encoder can process point clouds with better
structure awareness.

MSE↓ PSNR↑ SSIM↑ LPIPS↓
E on SEEN 29.48 34.05 0.9657 0.1109
Eimg on SEEN 29.44 34.05 0.9657 0.1109
E on UNSEEN 34.97 33.21 0.9587 0.1209
Eimg on UNSEEN 37.36 32.94 0.9559 0.1333

Table 10. Metrics on Novel Views. We show quantitative results
of different encoders under both SEEN and UNSEEN sequence of
the same hair styles.

6.4. Ablation on Different Designs of the Dynamic
Model

We show the comparisons of different dynamic models
and per-frame driven models in Tab. 11. We find that our
model offers a significant improvement over the per-frame
driven model that takes head pose or motion as input. This
is, because innately the hair motion is not only determined
by the head pose or the previous history of head pose but
also the initial status of the hair. In Fig. 10, we visualize
how each model drifts by plotting the Chamfer distance be-
tween the regressed point cloud and the ground truth point
cloud. We find that adding head relative gravity direction
can improve the model performance on slow motions.

Figure 10. ChamDist v.s. time. We plot Chamfer distance v.s.
time of different dynamic models to show drifting.

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓) ChamDis(↓)
pf w/ hair img 37.36 32.94 0.9559 0.1333 10.47
pf w/ hair pts 34.97 33.21 0.9587 0.1209 10.46

pf w/ head pos 47.43 32.01 0.9458 0.1522 18.94
pf w/ head mot 40.25 32.64 0.9508 0.1333 13.31

dyn w/o cos 44.96 32.26 0.9458 0.1327 25.49
dyn w/o cyc 45.22 32.23 0.9453 0.1335 26.79
dyn w/o grav 40.12 32.64 0.9504 0.1268 13.76

dyn 38.49 32.80 0.9532 0.1211 11.12

Table 11. Ablation of Different Dynamic Models.

6.5. Effect of the Initialization

We test how robust our model is to the initialization of
the hair point cloud. In Fig. 11, we show animation results
from models of two different hair styles (hs) with different
initialization hair point clouds. The results look sharp when
the model is matched with the correct hair style, but blurry
when we use mismatched hair point clouds for initializa-
tion. However, we find our model self-rectifies and returns
to a stable state after a certain number of iterations. This
could be partially due to the model prior stored in the point
encoder.

time 0 time n
hs1 init. hs2 init. hs1 init. hs2 init.

hs1
mod.

hs2
mod.

Figure 11. Effect of the Initialization. We initialize two dif-
ferent models (hs1 mod. and hs2 mod.) with two different hair
point clouds (hs1 and hs2) in two time steps. The green box in-
dicates matched initialization while orange indicates mismatched
initialization. Although the mismatched initialization starts shows
blurry results at first, the model automatically corrects itself when
there is no head motion.

6.6. Further Ablation on the Point Encoder

To further study the point encoder E’s ability on denois-
ing the encoding, we tested the encoder with inputs that
containing different level of noise. Similar to the study we
did in the main paper, we first extract a fixed encoding z
and add noise n to it as ẑ=z+n and do noise removal as
z̄= E(D(ẑ)). We extend this by adding different level of
noise by multiplying n with different scalars. Please refer
to the video navigation page for more details.

6.7. Further Ablation on Novel View Synthesis

We compare our method with MVP [23] on the longer
sequences we captured with scripted head motion. recon-
struction related metrics are shown in Tab.12. We found
that NeRF-based methods can not fit to longer sequences
properly. This problem might be due to the large range of
motion exhibited in the videos as well as the length of the
video. HVH is not applicable because it does not support

MSE(↓) PSNR(↑) SSIM(↑) LPIPS(↓)
MVP 66.21 30.36 0.9291 0.2830
Ours 29.44 34.05 0.9657 0.1109

Table 12

hair tracking across segmented sequences of different hair
motion. Compared to MVP, we achieve better reconstruc-
tion accuracy and improved perceptual similarity between
rendered image and ground truth with the hair specific mod-
eling in our design.

6.8. Animation on Bald Head Sequences

We show animation results driven by head motions both
on lab conditioned multi-view video captures and in-the-
wild phone video captures. For results on in-the-wild phone
video captures, please refer to the supplemental videos. For
phone captures, we ask the participants to face the frontal
camera of the phone and perform different head motions.
Then, we apply the face tracking algorithm in [3] to obtain
face tracking data that serves as the input to our method.
The initial hair state of the phone animation is sampled from
the lab captured dataset. We find our model generates rea-
sonable motions of hair under head motions like swinging,
nodding and etc.

We also test our model on lab conditioned multi-view
video captures. As shown in Figs. 12, 13, our model gener-
ates reasonable hair motions with respect to the head motion
while preserving multi-view consistency.

References
[1] Florence Bertails, Sunil Hadap, Marie-Paule Cani, Ming Lin,

Tae-Yong Kim, Steve Marschner, Kelly Ward, and Zoran
Kačić-Alesić. Realistic hair simulation: animation and ren-
dering. In ACM SIGGRAPH 2008 classes, pages 1–154.
2008. 3

[2] Volker Blanz and Thomas Vetter. A morphable model for
the synthesis of 3d faces. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, pages 187–194, 1999. 3

[3] Chen Cao, Tomas Simon, Jin Kyu Kim, Gabe Schwartz,
Michael Zollhoefer, Shun-Suke Saito, Stephen Lombardi,
Shih-En Wei, Danielle Belko, Shoou-I Yu, Yaser Sheikh, and
Jason Saragih. Authentic volumetric avatars from a phone
scan. ACM Trans. Graph., 41(4), jul 2022. 3, 12

[4] Menglei Chai, Jian Ren, and Sergey Tulyakov. Neural hair
rendering. In European Conference on Computer Vision,
pages 371–388. Springer, 2020. 3

[5] Menglei Chai, Changxi Zheng, and Kun Zhou. A reduced
model for interactive hairs. ACM Transactions on Graphics
(TOG), 33(4):1–11, 2014. 3

[6] Menglei Chai, Changxi Zheng, and Kun Zhou. Adaptive
skinning for interactive hair-solid simulation. IEEE transac-

Figure 12. Animation on Bald Sequence.

tions on visualization and computer graphics, 23(7):1725–
1738, 2016. 3

[7] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias
Nießner. Dynamic neural radiance fields for monocular 4d
facial avatar reconstruction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8649–8658, June 2021. 3

[8] Philip-William Grassal, Malte Prinzler, Titus Leistner,
Carsten Rother, Matthias Nießner, and Justus Thies. Neu-
ral head avatars from monocular rgb videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 18653–18664, June 2022.
3

[9] Peng Guan, Leonid Sigal, Valeria Reznitskaya, and Jessica K
Hodgins. Multi-linear data-driven dynamic hair model with
efficient hair-body collision handling. In Proceedings of the
11th ACM SIGGRAPH/Eurographics conference on Com-
puter Animation, pages 295–304, 2012. 3

Figure 13. Animation on Bald Sequence.

[10] Yang Hong, Bo Peng, Haiyao Xiao, Ligang Liu, and Juy-
ong Zhang. Headnerf: A real-time nerf-based parametric
head model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
20374–20384, June 2022. 3

[11] Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler.
Simulation-ready hair capture. In Computer Graphics Fo-
rum, volume 36, pages 281–294. Wiley Online Library,
2017. 2

[12] Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. Robust
hair capture using simulated examples. ACM Transactions
on Graphics (TOG), 33(4):1–10, 2014. 2

[13] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European conference on computer vision, pages 694–711.
Springer, 2016. 5

[14] Kacper Kania, Kwang Moo Yi, Marek Kowalski, Tomasz
Trzciński, and Andrea Tagliasacchi. CoNeRF: Controllable
Neural Radiance Fields. In Proceedings of the IEEE Con-

Figure 14. Animation on Bald Sequence.

ference on Computer Vision and Pattern Recognition, 2022.
3

[15] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013. 4

[16] Anastasiia Kornilova, Marsel Faizullin, Konstantin Pakulev,
Andrey Sadkov, Denis Kukushkin, Azat Akhmetyanov,
Timur Akhtyamov, Hekmat Taherinejad, and Gonzalo Fer-
rer. Smartportraits: Depth powered handheld smartphone
dataset of human portraits for state estimation, reconstruc-
tion and synthesis. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 21318–21329, June 2022. 3

[17] Ruilong Li, Julian Tanke, Minh Vo, Michael Zollhofer, Jur-
gen Gall, Angjoo Kanazawa, and Christoph Lassner. Tava:

Figure 15. Animation on Bald Sequence.

Template-free animatable volumetric actors. 2022. 3
[18] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and

Javier Romero. Learning a model of facial shape and expres-
sion from 4d scans. ACM Transactions on Graphics (TOG),
36(6):194–1, 2017. 3

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6498–
6508, 2021. 6

[20] Shu Liang, Xiufeng Huang, Xianyu Meng, Kunyao Chen,
Linda G Shapiro, and Ira Kemelmacher-Shlizerman. Video
to fully automatic 3d hair model. ACM Transactions on
Graphics (TOG), 37(6):1–14, 2018. 2

Figure 16. Animation on Bald Sequence.

[21] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4), 2019. 2, 3

[22] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Transactions on Graphics (TOG), 38(4), July 2019. 3

[23] Stephen Lombardi, Tomas Simon, Gabriel Schwartz,
Michael Zollhoefer, Yaser Sheikh, and Jason Saragih. Mix-
ture of volumetric primitives for efficient neural rendering.
ACM Transactions on Graphics (TOG), 40(4), July 2021. 2,
3, 4, 5, 6, 12

[24] Linjie Luo, Hao Li, Sylvain Paris, Thibaut Weise, Mark

Figure 17. Animation on Bald Sequence.

Pauly, and Szymon Rusinkiewicz. Multi-view hair capture
using orientation fields. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1490–1497.
IEEE, 2012. 2

[25] Qing Lyu, Menglei Chai, Xiang Chen, and Kun Zhou. Real-
time hair simulation with neural interpolation. IEEE Trans-
actions on Visualization and Computer Graphics, 2020. 3

[26] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-
fier nonlinearities improve neural network acoustic models.
In Proc. icml, volume 30, 2013. 9

[27] Marko Mihajlovic, Aayush Bansal, Michael Zollhoefer, Siyu
Tang, and Shunsuke Saito. Keypointnerf: Generalizing
image-based volumetric avatars using relative spatial encod-
ing of keypoints, 2022. 3

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision.
Springer, 2020. 3, 9, 10

[29] Giljoo Nam, Chenglei Wu, Min H Kim, and Yaser Sheikh.
Strand-accurate multi-view hair capture. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 155–164, 2019. 2, 3, 10

[30] Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria,
Zhili Chen, Weikai Chen, and Hao Li. Intuitive, interactive
beard and hair synthesis with generative models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7446–7456, 2020. 3

[31] Sylvain Paris, Hector M Briceno, and François X Sillion.
Capture of hair geometry from multiple images. ACM Trans-
actions on Graphics (TOG), 23(3):712–719, 2004. 2

[32] Sylvain Paris, Will Chang, Oleg I Kozhushnyan, Wojciech
Jarosz, Wojciech Matusik, Matthias Zwicker, and Frédo Du-
rand. Hair photobooth: geometric and photometric acqui-
sition of real hairstyles. ACM Transactions on Graphics
(TOG), 27(3):30, 2008. 2

[33] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 2, 3

[34] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T.
Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-
Brualla, and Steven M. Seitz. Hypernerf: A higher-
dimensional representation for topologically varying neural
radiance fields. arXiv preprint arXiv:2106.13228, 2021. 3

[35] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2017. 4,
9

[36] Amit Raj, Michael Zollhofer, Tomas Simon, Jason Saragih,
Shunsuke Saito, James Hays, and Stephen Lombardi. Pixel-
aligned volumetric avatars. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11733–11742, June 2021. 3

[37] Edoardo Remelli, Timur Bagautdinov, Shunsuke Saito,
Chenglei Wu, Tomas Simon, Shih-En Wei, Kaiwen Guo, Zhe
Cao, Fabian Prada, Jason Saragih, et al. Drivable volumet-
ric avatars using texel-aligned features. In ACM SIGGRAPH
2022 Conference Proceedings, pages 1–9, 2022. 3

[38] Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chen-
glei Wu, Sven Behnke, and Giljoo Nam. Neural strands:
Learning hair geometry and appearance from multi-view im-
ages. ECCV, 2022. 2

[39] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and
Michael Beetz. Aligning point cloud views using persistent
feature histograms. In 2008 IEEE/RSJ international con-
ference on intelligent robots and systems, pages 3384–3391.
IEEE, 2008. 11

[40] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and
Michael Beetz. Persistent point feature histograms for 3d

point clouds. In Proc 10th Int Conf Intel Autonomous Syst
(IAS-10), Baden-Baden, Germany, pages 119–128, 2008. 10

[41] Tim Salimans and Durk P Kingma. Weight normalization:
A simple reparameterization to accelerate training of deep
neural networks. Advances in neural information processing
systems, 29, 2016. 9

[42] Tiancheng Sun, Giljoo Nam, Carlos Aliaga, Christophe
Hery, and Ravi Ramamoorthi. Human Hair Inverse Render-
ing using Multi-View Photometric data. In Adrien Bousseau
and Morgan McGuire, editors, Eurographics Symposium on
Rendering - DL-only Track. The Eurographics Association,
2021. 2

[43] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 12959–12970, 2021. 6

[44] Ziyan Wang, Timur Bagautdinov, Stephen Lombardi, Tomas
Simon, Jason Saragih, Jessica Hodgins, and Michael Zoll-
hofer. Learning compositional radiance fields of dynamic
human heads. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5704–
5713, 2021. 3

[45] Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi,
Michael Zollhöfer, Jessica Hodgins, and Christoph Lassner.
Hvh: Learning a hybrid neural volumetric representation
for dynamic hair performance capture. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6143–6154, June 2022. 2, 3, 4,
6, 7, 10

[46] Kelly Ward, Florence Bertails, Tae-Yong Kim, Stephen R
Marschner, Marie-Paule Cani, and Ming C Lin. A sur-
vey on hair modeling: Styling, simulation, and rendering.
IEEE transactions on visualization and computer graphics,
13(2):213–234, 2007. 3

[47] Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung
Shum. Modeling hair from multiple views. In ACM SIG-
GRAPH 2005 Papers, pages 816–820. 2005. 2

[48] Sebastian Winberg, Gaspard Zoss, Prashanth Chandran,
Paulo Gotardo, and Derek Bradley. Facial hair tracking for
high fidelity performance capture. ACM Transactions on
Graphics (TOG), 41(4):1–12, 2022. 2

[49] Chenlei Wu and Takashi Kanai. Data-driven detailed hair
animation for game characters. Computer Animation and
Virtual Worlds, 27(3-4):221–230, 2016. 3

[50] Chenglei Wu, Takaaki Shiratori, and Yaser Sheikh. Deep
incremental learning for efficient high-fidelity face tracking.
ACM Transactions on Graphics (TOG), 37(6):1–12, 2018. 3

[51] Zexiang Xu, Hsiang-Tao Wu, Lvdi Wang, Changxi Zheng,
Xin Tong, and Yue Qi. Dynamic hair capture using spacetime
optimization. ACM Transactions on Graphics (TOG), 33(6),
nov 2014. 2

[52] Lingchen Yang, Zefeng Shi, Youyi Zheng, and Kun Zhou.
Dynamic hair modeling from monocular videos using deep
neural networks. ACM Transactions on Graphics (TOG),
38(6):1–12, 2019. 2

[53] Qing Zhang, Jing Tong, Huamin Wang, Zhigeng Pan, and
Ruigang Yang. Simulation guided hair dynamics modeling
from video. In Computer Graphics Forum, volume 31, pages
2003–2010. Wiley Online Library, 2012. 2

[54] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 6

[55] Yufeng Zheng, Victoria Fernández Abrevaya, Marcel C.
Bühler, Xu Chen, Michael J. Black, and Otmar Hilliges. I
m avatar: Implicit morphable head avatars from videos. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 13545–13555,
June 2022. 3

	. Introduction
	. Related Work
	. Method
	. State Compression
	. Dynamic Model

	. Experiments
	. Evaluation of the State Compression Model
	. Evaluation of the Dynamic Model

	. Discussion
	. Appendix
	. Network Architecture
	. Training details
	. Ablation on Different Encoders
	. Ablation on Different Designs of the Dynamic Model
	. Effect of the Initialization
	. Further Ablation on the Point Encoder
	. Further Ablation on Novel View Synthesis
	. Animation on Bald Head Sequences

