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Source Zero-shot pose transfer onto stylized characters

Figure 1. Our algorithm transfers the pose of a reference avatar (source) to stylized characters. Unlike existing methods, at training time
our approach needs only the mesh of the source avatar in rest and desired pose, and the mesh of the stylized characater only in rest pose.

Abstract

Transferring the pose of a reference avatar to stylized 3D
characters of various shapes is a fundamental task in com-
puter graphics. Existing methods either require the stylized
characters to be rigged, or they use the stylized character in
the desired pose as ground truth at training. We present a
zero-shot approach that requires only the widely available
deformed non-stylized avatars in training, and deforms styl-
ized characters of significantly different shapes at inference.
Classical methods achieve strong generalization by deform-
ing the mesh at the triangle level, but this requires labelled
correspondences. We leverage the power of local deforma-
tion, but without requiring explicit correspondence labels.
We introduce a semi-supervised shape-understanding mod-
ule to bypass the need for explicit correspondences at test
time, and an implicit pose deformation module that deforms
individual surface points to match the target pose. Further-
more, to encourage realistic and accurate deformation of

*Work done during Jiashun Wang’s internship at NVIDIA.

stylized characters, we introduce an efficient volume-based
test-time training procedure. Because it does not need rig-
ging, nor the deformed stylized character at training time,
our model generalizes to categories with scarce annotation,
such as stylized quadrupeds. Extensive experiments demon-
strate the effectiveness of the proposed method compared
to the state-of-the-art approaches trained with compara-
ble or more supervision. Our project page is available at
https://jiashunwang.github.io/ZPT/

1. Introduction

Stylized 3D characters , such as those in Fig. 1, are com-
monly used in animation, movies, and video games. De-
forming these characters to mimic natural human or animal
poses has been a long-standing task in computer graphics.
Different from the 3D models of natural humans and an-
imals, stylized 3D characters are created by professional
artists through imagination and exaggeration. As a result,
each stylized character has a distinct skeleton, shape, mesh
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topology, and usually include various accessories, such as
a cloak or wings (see Fig. 1). These variations hinder the
process of matching the pose of a stylized 3D character to
that of a reference avatar, generally making manual rigging
a requirement. Unfortunately, rigging is a tedious process
that requires manual effort to create the skeleton and skin-
ning weights for each character. Even when provided with
manually annotated rigs, transferring poses from a source
avatar onto stylized characters is not trivial when the source
and target skeletons differ. Automating this procedure is
still an open research problem and is the focus of many
recent works [2, 4, 24, 53]. Meanwhile, non-stylized 3D
humans and animals have been well-studied by numerous
prior works [35, 41, 55, 63, 70]. A few methods generously
provide readily available annotated datasets [11,12,42, 70],
or carefully designed parametric models [41, 52, 70]. By
taking advantage of these datasets [12,42], several learning-
based methods [7, 14, 35, 63, 69] disentangle and transfer
poses between human meshes using neural networks. How-
ever, these methods (referred to as “part-level” in the fol-
lowing) carry out pose transfer by either globally deform-
ing the whole body mesh [14, 22, 48, 69] or by transform-
ing body parts [35, 49], both of which lead to overfitting
on the training human meshes and fail to generalize to styl-
ized characters with significantly different body part shapes.
Interestingly, classical mesh deformation methods [56, 57]
(referred to as “local” in the following) can transfer poses
between a pair of meshes with significant shape differences
by computing and transferring per-triangle transformations
through correspondence. Though these methods require
manual correspondence annotation between the source and
target meshes, they provide a key insight that by transform-
ing individual triangles instead of body parts, the mesh de-
formation methods are more agnostic to a part’s shape and
can generalize to meshes with different shapes.

We marry the benefits of learning-based methods [7, 14,
35, 63, 69] with the classic local deformation approach [56]
and present a model for unrigged, stylized character defor-
mation guided by a non-stylized biped or quadruped avatar.
Notably, our model only requires easily accessible posed
human or animal meshes for training and can be directly
applied to deform 3D stylized characters with a signifi-
cantly different shape at inference. To this end, we implic-
itly operationalize the key insight from the local deforma-
tion method [56] by modeling the shape and pose of a 3D
character with a correspondence-aware shape understand-
ing module and an implicit pose deformation module. The
shape understanding module learns to predict the part seg-
mentation label (i.e., the coarse-level correspondence) for
each surface point, besides representing the shape of a 3D
character as a latent shape code. The pose deformation
module is conditioned on the shape code and deforms in-
dividual surface point guided by a target pose code sampled

from a prior pose latent space [51]. Furthermore, to encour-
age realistic deformation and generalize to rare poses, we
propose a novel volume-based test-time training procedure
that can be efficiently applied to unseen stylized characters.

During inference, by mapping biped or quadruped poses
from videos, in addition to meshes to the prior pose la-
tent space using existing works [32,52,54], we can transfer
poses from different modalities onto unrigged 3D stylized
characters. Our main contributions are:

• We propose a solution to a practical and challenging
task – learning a model for stylized 3D character de-
formation with only posed human or animal meshes.

• We develop a correspondence-aware shape under-
standing module, an implicit pose deformation mod-
ule, and a volume-based test-time training procedure
to generalize the proposed model to unseen stylized
characters and arbitrary poses in a zero-shot manner.

• We carry out extensive experiments on both hu-
mans and quadrupeds to show that our method pro-
duces more visually pleasing and accurate deforma-
tions compared to baselines trained with comparable
or more supervision.

2. Related Work
Deformation Transfer. Deformation transfer is a long-

standing problem in the computer graphics community [3,
6, 8, 9, 56, 66]. Sumner et al. [56] apply an affine transfor-
mation to each triangle of the mesh to solve an optimiza-
tion problem that matches the deformation of the source
mesh while maintaining the shape of the target mesh. Ben-
Chen et al. [9] enclose the source and target shapes with two
cages and transfer the Jacobians of the source deformation
to the target shape. However, these methods need tedious
human efforts to annotate the correspondence between the
source and target shapes. More recently, several deep learn-
ing methods are developed to solve the deformation trans-
fer task. However, they either require manually providing
the correspondence [67] or cannot generalize [14, 22, 69] to
stylized characters with different shapes. Gao et al. [22]
propose a VAE-GAN based method to leverage the cycle
consistency between the source and target shapes. Nonethe-
less, it can only work on shapes used in training. Wang et
al. [63] introduce conditional normalization used in style
transfer for 3D deformation transfer. But the method is lim-
ited to clothed-humans and cannot handle the large shape
variations of stylized characters.

We argue that these learning-based methods cannot gen-
eralize to stylized characters because they rely on encoding
their global information (e.g., body or parts), which is dif-
ferent from traditional works that focus on local deforma-
tion, e.g., the affine transformation applied to each triangle
in [56]. Using a neural network to encode the global in-
formation easily leads to overfitting. For example, models



trained on human meshes cannot generalize to a stylized
humanoid character. At the same time, early works only fo-
cus on local information and cannot model global informa-
tion such as correspondence between the source and target
shapes, which is why they all need human effort to annotate
the correspondence. Our method tries to learn the corre-
spondence and deform locally at the same time.

Skeleton-based Pose Transfer. Besides mesh deforma-
tion transfer, an alternative way to transfer pose is to uti-
lize skeletons. Motion retargeting is also a common name
used for transferring poses from one motion sequence to an-
other. Gleicher et al. [24] propose a space-time constrained
solver aiming to satisfy the kinematics-level constraints
and to preserve the characters’ original identity. Follow-
ing works [5, 19, 33] try to solve inverse-kinematics or in-
verse rate control to achieve pose transfer. There are also
dynamics-based methods [4, 60] that consider physics dur-
ing the retargeting process. Recently, learning-based meth-
ods [20, 27, 38, 61, 62] train deep neural networks to pre-
dict the transformation of the skeleton. Aberman et al. [2]
propose a pooling-based method to transfer poses between
meshes with different skeletons.

All these works highly rely on the skeleton for pose
transfer. Other works try to estimate the rigging of the tem-
plate shape [7, 40, 53, 64, 65] when a skeleton is not avail-
able. But if the prediction of the skinning weights fails, the
retargeting fails as well. Liao et al. [37] propose a model
that learns to predict the skinning weights and pose trans-
fer jointly using ground truth skinning weights and paired
motion data as supervision, which limits the generalization
of this method to categories where annotations are more
scarce compared to humans (e.g., quadrupeds). Instead, our
method uses posed human or animal meshes for training and
deforms stylized characters of different shapes at inference.

Implicit 3D shape representation. Implicit 3D shape
representations have shown great success in reconstructing
static shapes [13,16,18,21,23,29,43,44,50] and deformable
ones [10, 28, 34, 45–49, 59]. DeepSDF [50] proposes to use
an MLP to predict the signed distance field (SDF) value of
a query point in 3D space, where a shape code is jointly op-
timized in an auto-decoding manner. Occupancy flow [46]
generalizes the Occupancy Networks [43] to learn a tem-
porally and spatially continuous vector field with a Neu-
ralODE [15]. Inspired by parameteric models, NPMs [48]
disentangles and represents the shape and pose of dynamic
humans by learning an implicit shape and pose function, re-
spectively. Different from these implicit shape representa-
tion works that focus on reconstructing static or deformable
meshes, we further exploit the inherent continuity and lo-
cality of implicit functions to deform stylized characters to
match a target pose in a zero-shot manner.

3. Method
We aim to transfer the pose of a biped or quadruped

avatar to an unrigged, stylized 3D character. We tackle this
problem by modeling the shape and pose of a 3D character
using a correspondence-aware shape understanding mod-
ule and an implicit pose deformation module, inspired by
classical mesh deformation methods [56, 57]. The shape
understanding module (Sec. 3.1, Fig. 2) predicts a latent
shape code and part segmentation label of a 3D character
in rest pose, while the pose deformation module (Sec. 3.2,
Fig. 3) deforms the character in the rest pose given the pre-
dicted shape code and a target pose code. Moreover, to
produce natural deformations and generalize to rare poses
unseen at training, we introduce an efficient volume-based
test-time training procedure (Sec 3.3) for unseen stylized
characters. All three modules, trained only with posed, un-
clothed human meshes, and unrigged, stylized characters in
a rest pose, are directly applied to unseen stylized charac-
ters at inference. We explain our method for humans, and
describe how we extend it to quadrupeds in Sec. 4.6.

3.1. Correspondence-Aware Shape Understanding

Given a 3D character in rest pose, we propose a shape
understanding module to represent its shape information as
a latent code, and to predict a body part segmentation label
for each surface point.

To learn a representative shape code, we employ an im-
plicit auto-decoder [48, 50] that reconstructs the 3D char-
acter taking the shape code as input. During training, we
jointly optimize the shape code of each training sample and
the decoder. Given an unseen character (i.e., a stylized
3D character) during inference, we obtain its shape code
by freezing the decoder and optimizing the shape code to
reconstruct the given character. Specifically, as shown in
Fig. 2, given the concatenation of a query point x ∈ R3

and the shape code s ∈ Rd, we first obtain an embedding
e ∈ Rd via an MLP denoted as F . Conditioned on the em-
bedding e, the occupancy ôx ∈ R of x is then predicted by
another MLP denoted as O. The occupancy indicates if the
query point x is inside or outside the body surface and can
be supervised by the ground truth occupancy as:

LO = −
∑
x

(ox · log(ôx) + (1− ox) · log(1− ôx)), (1)

where ox is the ground truth occupancy at point x.
Since our shape code eventually serves as a condition for

the pose deformation module, we argue that it should also
capture the part correspondence knowledge across different
instances, in addition to the shape information (e.g., height,
weight, and shape of each body part). This insight has
been utilized by early local mesh deformation method [56],
which explicitly utilizes correspondence to transfer local
transformations between the source and target meshes. Our
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Figure 2. The shape understanding module (Sec. 3.1). Given a query point and a learnable shape code, we take MLPs to predict the
occupancy, part segmentation label and further use an inverse MLP to regress the query point.
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Figure 3. The pose deformation module (Sec. 3.2). Given a
query point on the surface, the learned shape code and a target
pose code, we use an MLP to predict the offset of the query point.

pose deformation process could also benefit from learning
part correspondence. Take the various headgear, hats, and
horns on the stylized characters’s heads in Fig. 1 as an ex-
ample. If these components can be “understood” as exten-
sions of the character’s heads by their shape codes, they will
move smoothly with the character’s heads during pose de-
formation. Thus, besides mesh reconstruction, we effec-
tively task our shape understanding module with an addi-
tional objective: predicting part-level correspondence in-
stantiated as the part segmentation label. Specifically, we
propose to utilize an MLP P to additionally predict a part
label px = (p1x, ..., p

K
x )T ∈ RK for each surface point x.

Thanks to the densely annotated human mesh dataset, we
can also supervise part segmentation learning with ground
truth labels via:

LP =
∑
x

(−
K∑

k=1

1
k
xlog(p

k
x)), (2)

where K is the total number of body parts, and 1k
x = 1 if x

belongs to the kth part and 1k
x = 0 otherwise.

To prepare the shape understanding module for styl-
ized characters during inference, besides unclothed human
meshes, we also include unrigged 3D stylized characters in
rest pose during training. These characters in rest pose are
easily accessible and do not require any annotation. For
shape reconstruction, Eq. 1 can be similarly applied to the

stylized characters. However, as there is no part segmenta-
tion annotation for stylized characters, we propose a self-
supervised inverse constraint inspired by correspondence
learning methods [17,39] to facilitate part segmentation pre-
diction on these characters. Specifically, we reconstruct
the query point’s coordinates from the concatenation of the
shape code s and the embedding e through an MLP Q and
add an auxiliary objective as:

LQ = ||Q(s, e)− x||2. (3)

Intuitively, for stylized characters without part annotation,
the model learned without this objective may converge to
a trivial solution where similar embeddings are predicted
for points with the same occupancy value, even when they
are far away from each other, and belong to different body
parts. Tab. 4 further quantitatively verifies the effectiveness
of this constraint. Beyond facilitating shape understanding,
the predicted part segmentation label is further utilized in
the volume-based test-time training module which will be
introduced in Sec. 3.3.

3.2. Implicit Pose Deformation Module

Given the learned shape code and a target pose, the pose
deformation module deforms each surface point of the char-
acter to match the target pose. In the following, we first de-
scribe how we represent a human pose and then introduce
the implicit function used for pose deformation.

Instead of learning a latent pose space from scratch as
in [37, 48], we propose to represent a human pose by the
corresponding pose code in the latent space of VPoser [52].
Our intuition is that VPoser is trained with an abundance of
posed humans from the large-scale AMASS dataset [42].
This facilitates faster training and provides robustness to
overfitting. Furthermore, human poses can be successfully
estimated from different modalities (e.g., videos or meshes),
and mapped to the latent space of VPoser by existing meth-
ods [32, 52, 54]. By taking advantage of these works, our



model can be applied to transfer poses from various modali-
ties to an unrigged stylized character without any additional
effort. A few examples can be found in the supplementary.

To deform a character to match the given pose, we learn
a neural implicit function M that takes the sampled pose
code m ∈ R32, the learned shape code, and a query point
x around the character’s surface as inputs and outputs the
offset (denoted as ∆x̂ ∈ R3) of x in 3D space. Given the
densely annotated human mesh dataset, we directly use the
ground truth offset ∆x as supervision. The training objec-
tive for our pose deformation module is defined as:

LD =
∑
x

||∆x̂−∆x||2. (4)

Essentially, our implicit pose deformation module is
similar in spirit to early local mesh deformation meth-
ods [56] and has two key advantages compared to the part-
level pose transfer methods [22, 37, 63]. First, our implicit
pose deformation network is agnostic to mesh topology and
resolution. Thus our model can be directly applied to un-
seen 3D stylized characters with significantly different res-
olutions and mesh topology compared to the training human
meshes during inference. Second, stylized characters often
include distinct body part shapes compared to humans. For
example, the characters shown in Fig. 1 include big heads or
various accessories. Previous part-level methods [37] that
learn to predict a bone transformation and skinning weight
for each body part usually fail on these unique body parts,
since they are different from the corresponding human body
parts used for training. In contrast, by learning to deform in-
dividual surface point, implicit functions are more agnostic
to the overall shape of a body part and thus can general-
ize better to stylized characters with significantly different
body part shapes. Fig. 4 and Fig. 6 show these advantages.

3.3. Volume-based Test-time Training

The shape understanding and pose deformation mod-
ules discussed above are trained with only posed human
meshes and unrigged 3D stylized characters in rest pose.
When applied to unseen characters with significantly differ-
ent shapes, we observe surface distortion introduced by the
pose deformation module. Moreover, it is challenging for
the module to fully capture the long tail of the pose distribu-
tion. To resolve these issues, we propose to apply test-time
training [58] and fine-tune the pose deformation module on
unseen stylized characters.

To encourage natural pose deformation, we further pro-
pose a volume-preserving constraint during test-time train-
ing. Our key insight is that preserving the volume of each
part in the rest pose mesh during pose deformation results
in less distortion [35,63]. However, it is non-trivial to com-
pute the precise volume of each body part, which can have
complex geometry. Instead, we propose to preserve the Eu-

clidean distance between pairs of vertices sampled from the
surface of the mesh, as a proxy for constraining the volume.
Specifically, given a mesh in rest pose, we randomly sample
two points xc

i and xc
j on the surface within the same part c

using the part segmentation prediction from the shape un-
derstanding module. We calculate the offset of these two
points ∆x̂c

i and ∆x̂c
j using our pose deformation module

and minimize the change in the distance between them by:

Lv =
∑
c

∑
i

∑
j

(||xc
i−xc

j ||−||(xc
i+∆x̂c

i )−(xc
j+∆x̂c

j)||)2.

(5)
By sampling a large number of point pairs within a part and
minimizing Eq. 5, we can approximately maintain the vol-
ume of each body part during pose deformation.

Furthermore, in order to generalize the pose deformation
module to long-tail poses that are rarely seen during train-
ing, we propose to utilize the source character in rest pose
and its deformed shape as paired training data during test-
time training. Specifically, we take the source character in
rest pose, its target pose code, and its optimized shape code
as inputs and we output the movement ∆x̂dr, where xdr is
a query point from the source character. We minimize the
L2 distance between the predicted movement ∆x̂dr and the
ground truth movement ∆xdr,

Ldr =
∑
xdr

||∆x̂dr −∆xdr||2. (6)

Besides the volume-preserving constraint and the recon-
struction of the source character, we also employ the edge
loss Le used in [25, 37, 63]. Overall, the objectives for
the test-time training procedure are LT = λvLv + λeLe +
λdrLdr, where λv , λe, and λdr are hyper-parameters bal-
ancing the loss weights.

4. Experiments
4.1. Datasets

To train the shape understanding module, we use 40
human meshes sampled from the SMPL [41] parametric
model. We use both the occupancy and part segmenta-
tion label of these meshes as supervision (see Sec. 3.1).
To generalize the shape understanding module to stylized
characters, we further include 600 stylized characters from
RigNet [64]. Note that we only use the rest pose mesh
(i.e., occupancy label) of the characters in [64] for training.
To train our pose deformation module, we construct paired
training data by deforming each of the 40 SMPL charac-
ters discussed above with 5000 pose codes sampled from
the VPoser’s [51] latent space. In total, we collect 200,000
training pairs, with each pair including an unclothed human
mesh in rest pose and the same human mesh in target pose.

After training the shape understanding and pose defor-
mation modules, we test them on the Mixamo [1] dataset,



which includes challenging stylized characters, and the
MGN [11] dataset, which includes clothed humans. The
characters in both datasets have different shapes com-
pared to the unclothed SMPL meshes we used for training,
demonstrating the generalization ability of the proposed
method. Following [37], we test on 19 stylized characters,
with each deformed by 28 motion sequences from the Mix-
amo dataset. For the MGN dataset, we test on 16 clothed
characters, with each deformed by 200 target poses. Both
the testing characters and poses are unseen during training.

For quadrupeds, since there is no dataset including large-
scale paired stylized quadrupeds for quantitative evaluation,
we split all characters from the SMAL [70] dataset and use
the first 34 shapes (i.e., cats, dogs, and horses) for train-
ing. We further collect 81 stylized quadrupeds in rest pose
from the RigNet [64] to improve generalization of the shape
understanding module. Similarly to the human category,
we use occupancy and part segmentation supervision for
the SMAL shapes and only the occupancy supervision for
RigNet meshes. To train the pose deformation module, we
deform each of the 34 characters in SMAL by 2000 poses
sampled from the latent space of BARC [55], a 3D recon-
struction model trained for the dog category. We quanti-
tatively evaluate our model on the hippo meshes from the
SMAL dataset, which have larger shape variance compared
to the cats, dogs, and horses used for training. We produce
the testing data by deforming each hippo mesh with 500
unseen target poses from SMAL [70]. We show qualitative
pose transfer on stylized quadrupeds in Fig. 1.

4.2. Implementation Details

We use the ADAM [30] optimizer to train both the
shape understanding and pose deformation modules. For
the shape understanding module, we use a learning rate of
1e − 4 for both the decoder and shape code optimization,
with a batch size of 64. Given a new character at inference
time, we fix the decoder and only optimize the shape code
for the new character with the same optimizer and learning
rate. For the pose deformation module, we use a learning
rate of 3e − 4 with a batch size of 128. For test-time train-
ing, we use a batch size of 1 and a learning rate of 5e − 3
with the ADAM optimizer. We set λv , λe, and λdr (See
Sec. 3.3) as 0.05, 0.01, and 1 respectively.

4.3. Metrics and Baselines for Comparison

Metrics. We use Point-wise Mesh Euclidean Distance
(PMD) [37, 63] to evaluate pose transfer error. The PMD
metric reveals pose similarity of the predicted deforma-
tion compared to its ground truth. However, as shown in
Fig. 4, PMD can not fully show the smoothness and real-
ism of the generated results. Thus, we adopt an edge length
score (ELS) metric to evaluate the character’s smoothness
after the deformation. Specifically, we compare each edge’s

Dataset Metric SPT*(full) [37] NBS [35] SPT [37] Ours

MGN [11] PMD ↓ 1.62 1.33 1.82 0.99
ELS ↑ 0.86 0.70 0.85 0.89

Mixamo [1] PMD ↓ 3.05 7.04 5.29 5.06
ELS ↑ 0.61 0.66 0.59 0.88

Table 1. Quantitative comparison on MGN and Mixamo. Our
method achieves the lowest PMD with the highest ELS. We pro-
vide the performance of the SPT*(full) method, which uses more
supervision than the other methods as a reference. Our method is
even better or comparable to it.

length in the deformed mesh with the corresponding edge’s
length in the ground truth mesh. We define the score as

1

|E|
∑

{i,j}∼E

1− |||V̂i − V̂j ||2
||Vi − Vj ||2

− 1|, (7)

where E indicates all edges of the mesh, |E| is the number of
the edges in the mesh. V̂i and V̂j are the vertices in the de-
formed mesh. Vi and Vj are the vertices in the ground truth
mesh. For all the evaluation metrics, we scale the template
character to be 1 meter tall, following [37].

Baselines. We compare our method with Neural
Blend Shapes (NBS) [35] and Skeleton-free Pose Trans-
fer (SPT) [37]. NBS is a rigging prediction method trained
on the SMPL and MGN datasets, which include naked and
clothed human meshes with ground truth rigging informa-
tion. For SPT, we show the results of two versions, one is
trained only on the AMASS dataset, named SPT, which has
a comparable level of supervision to our method. We also
test the SPT*(full) version, which is trained on the AMASS,
RigNet and Mixamo datasets, using both stylized charac-
ters’ skinning weights as supervision and paired stylized
characters in rest pose and target pose.

4.4. Human-like Character Pose Transfer

We report the PMD metric on the MGN and Mixamo
datasets in Tab. 1. We also include the performance of
SPT*(full) for reference. On the MGN dataset which in-
cludes clothed humans, our method which is trained with
only unclothed humans achieve the best PMD score than all
baseline methods, including baselines trained with more su-
pervision (i.e., the NBS [35] learned with clothed humans
and the SPT*(full) [37] learned with skinning weight and
paired motion data). For the stylized characters, our method
outperforms the SPT baseline learned with a comparable
amount of supervision and gets competitive results with the
NBS [35] and SPT*(full) baseline trained with more super-
vision. Furthermore, when testing on the more challenging,
less human-like characters (e.g., a mouse with a big head in
Fig. 1), the baselines produce noticeable artifacts and rough
surfaces, which can be observed in the qualitative compar-
isons in Fig. 4. We provide the PMD value for each charac-
ter in the supplementary.



Source Target NBS [35] SPT [37] Ours GT
Figure 4. Qualitative comparison on Mixamo. The average PMD of these three results for NBS, SPT, and Ours are 8.16, 6.13, and 5.16
respectively and the average ELS for NBS, SPT, and Ours are 0.65, 0.78, and 0.93 respectively. Our method can successfully transfer the
pose to challenging stylized characters (e.g., the mouse with a big head in the second row).
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Figure 5. Part segmentation visualization. NBS makes wrong
predictions for hair while SPT may mix the upper legs.

We show the ELS score comparison of different meth-
ods on the MGN and Mixamo datasets in Tab. 1. For both
clothed humans and stylized characters, our method can
generate more realistic results which are consistent with the
target mesh and achieves the best ELS score.

We visually compare our method and the baseline meth-
ods in Fig. 4 on the Mixamo dataset. Although NBS is
trained with a clothed-human dataset, when testing on the
human-like characters, it still fails on parts that are separate
from the body such as the hair and the pants. When us-
ing only naked human meshes as supervision, SPT cannot
generalize to challenging human-like characters, producing
rough mesh surface with spikes.

OursSPT [37] GT

Figure 6. Quadrupedal pose transfer visualization. Our method
can achieve smooth and accurate pose transfer while SPT fails on
the mouth and leg regions.

Metric NBS [35] SPT [37] Ours
Accuracy ↑ 67.8% 75.6% 86.9%

Table 2. Part prediction accuracy on Mixamo [1]. Our method
achieves the best part segmentation accuracy.

4.5. Part Understanding Comparison

As discussed in Sec. 3.1, part segmentation plays an im-
portant role in both shape understanding and pose deforma-
tion. Though NBS [35] and SPT [37] do not explicitly pre-
dict part segmentation label, they are both skinning weight-
based methods and we can derive the part segmentation la-
bel from the predicted skinning weights. Specifically, by
selecting the maximum weight of each vertex, we can con-
vert the skinning weight prediction to part segmentation la-
bels for the vertices. We compare our part prediction results
with those derived from SPT and NBS. We report the part
segmentation accuracy on the Mixamo datasets in Tab. 2



w/o inv w/o v Ours GT
Figure 7. Qualitative comparison for ablation study. Removing
the constraint (eq. 1) in shape understanding leads to wrong pose
deformation results. The volume preserving loss (eq. 5) helps to
maintain the identity, e.g., the thickness of the arms in first row.

Metric SPT [37] Ours Metric SPT [37] Ours
PMD ↓ 10.28 8.28 ELS ↑ 0.28 0.86

Table 3. Comparison on Hippos from SMAL [70]. Our method
achieves better pose transfer accuracy with more smooth results.

and visualize the part segmentation results in Fig. 5. Even
trained with only part segmentation supervision of human
meshes, our method can successfully segment each part for
the stylized characters. On the contrary, SPT uses graph
convolution network [31] to predict the skinning weights.
When training only with human meshes, it often fails to
distinguish different parts. As shown in Fig. 5, it mixes up
the right and left upper legs, and incorrectly classifies the
shoulder as the head. Though NBS is trained with clothed
humans, it always classifies human hair as the human body
for characters from Mixamo. This is because that NBS uses
the MeshCNN [26] as the shape encoder. As a result, it is
sensitive to mesh topology and cannot generalize to meshes
with disconnected parts (e.g., disconnected hair and head).
Tab. 2 further quantitatively demonstrates that our method
achieves the best part segmentation accuracy, demonstrating
its ability to correctly interpret the shape and part informa-
tion in stylized characters.

4.6. Quadrupedal Pose Transfer Comparison

To further show the generalization ability of our method,
we conduct experiments on quadrupeds. We report the
PMD and ELS score of our method and the SPT [37] in
Tab. 3. When testing on hippos with large shape gap from
the training meshes, SPT has a hard time generalizing both
in terms of pose transfer accuracy and natural deformation.
While our method achieves both better qualitative and quan-
titative results. We visualize the qualitative comparisons in
Fig. 6. SPT produces obvious artifacts on the hippo’s mouth

Figure 8. Part prediction on stylized quadrupeds. Our method
successfully predicts the parts of unseen stylized quadrupeds.

Metric Ours w/o inv Ours w/o volume Ours
PMD ↓ 1.26 1.02 0.99
ELS ↑ 0.88 0.88 0.89

Table 4. Ablation study on inverse MLP and volume preserv-
ing loss. The inverse MLP and volume preserving loss helps to
improve pose transfer accuracy and produce smooth deformation.

and legs, while our method achieves accurate pose transfer
and maintains the shape characteristics of the original char-
acter at the same time. We provide more results in the sup-
plementary. We also show the part segmentation results on
stylized characters by our method in Fig. 8. Even for unique
parts such as the hats and antlers, our method correctly as-
signs them to the head part.

4.7. Ablation Study

To evaluate the key components of our method, we con-
duct ablation studies on the MGN dataset by removing the
inverse constraint (Eq. 3) in the shape understanding mod-
ule and the volume-preserving loss (Eq. 5) used during the
test-time training produce, we name them as “ours w/o inv”
and “ours w/o v” respectively. We report the PMD and
ELS metrics in Tab. 4. The model learned without the in-
verse constraint or volume-preserving loss has worse PMD
and ELS score than our full model, indicating the contri-
bution of these two objectives. We also provide qualitative
results in Fig. 7. We use red boxes to point out the arti-
facts. As shown in Fig. 7, our model trained without the
inverse constraint produces less accurate pose transfer re-
sults. Moreover, adding the volume-preserving loss helps
to maintain the character’s local details such as the thick-
ness of the arms.

5. Conclusion
In this paper, we present a model that deforms unrigged,

stylized characters guided by a biped or quadruped avatar.
Our model is trained with only easily accessible posed hu-
man or animal meshes, yet can be applied to unseen styl-
ized characters in a zero-shot manner during inference. To
this end, we draw key insights from classic mesh deforma-
tion method and develop a correspondence-aware shape un-
derstanding module, an implicit pose deformation module
and a volume-based test-time training procedure. We carry
out extensive experiments on both the biped and quadruped
category and show that our method produces more realis-
tic and accurate deformation compared to baselines learned
with comparable or more supervision.



Appendix
In this appendix, we introduce more details about the

evaluation data curation procedure, the implementation of
our method and the baseline methods, more qualitative re-
sults and the limitations of our method.

A. Evaluation Data Curation

Mixamo. Because the preprocessed Mixamo [1] testing
sequences used in [37] are not publicly available, we follow
the instructions in [37] and download the testing data from
the Mixamo website [1]. In [37], 20 stylized characters and
28 motion sequences are used for evaluation. Among the
20 characters, the “liam” character is not publicly available
on the Mixamo website, thus we evaluate our method and
the baselines on the other 19 stylized characters. More-
over, some evaluation motions (e.g., “Teeter”) include more
than one motion sequence on the Mixamo website with the
same name. However, it is not public information as to
what exact sequences were used for evaluation in the prior
work [37]. Thus, we download all motion sequences with
the same name and randomly pick one for evaluation. Given
a character in rest pose and the desired pose, we use the
linear blend skinning algorithm to obtain the ground truth
deformed mesh. We then compare the prediction from each
method with the ground truth mesh by computing the PMD
and ELS scores as discussed in Sec.4.3 in the main paper.
For a fair comparison, all poses in the evaluation motion
sequences are not used during training. All methods are
evaluated using these collected testing pairs.

MGN. We follow NBS [35] and download the MGN
dataset1, which includes 96 clothed human characters. We
use the same evaluation set (i.e., the last 16 human charac-
ters) as in NBS. To obtain the ground truth deformed char-
acters, we sample 200 poses (unseen during training) and
deform each of the 16 clothed characters using the Multi-
Garment Net [11].

Pose code extraction from Mixamo characters. To ob-
tain target poses from the Mixamo motion sequences, we
apply a similar fitting procedure introduced in [36]. We op-
timize the SMPL parameters to minimize the L2 distance
between the SMPL joints and the Mixamo joints. Different
from [36], we also add a constraint to minimize the Chamfer
distance between the SMPL shape vertices and the Mixamo
shape vertices. Similarly as [54], we directly optimize the
pose code in the VPoser’s [51] latent space, instead of the
parameters in SMPL. We fit the SMPL shape to the ”marker
man” character in Mixamo to get all the testing poses.

1https://github.com/bharat-b7/MultiGarmentNetwork

B. Implementation Details

Shape code computation. We use an off-the-shelf
method2 that computes occupancy with “virtual laser scans”
and does not require a watertight mesh. We sample 10,000
points in a unit space, which takes 2.35s on average. Then,
we use the occupancy of each query point as supervision
to optimize the shape code. We run 2,000 iterations with a
batch size of 2,000 to get the shape code, which takes 3.41s
on average. For each character, we only compute its shape
code once and use it to transfer poses from different motion
sequences. All the time cost reported in this supplementary
was measured on a laptop with I7-11700h and a RTX 3060.

Detailed test-time training (TTT) procedure. Follow-
ing the inference procedure in [37], TTT takes a stylized
character in T-pose, and a source human character in T-pose
and target pose as inputs. TTT finetunes the pose module
to perform two tasks: a) the T-pose stylized character is de-
formed to the target pose, while being constrained by the
self-supervised volume-preserving loss Lv . b) the source
human character in T-pose is deformed to the target pose,
while being supervised by the ground truth human char-
acter in the target pose (Ldr). TTT further refines the re-
sults’ smoothness and resemblance to driving poses. Ldr

helps the pose module understand and generalize to the tar-
get pose, rather than enforcing that the human and stylized
character have similar offsets. TTT is carried out for each
pair of stylized character and target pose. It is highly ef-
ficient and only requires fine-tuning the pose module for
20 iterations, which takes 18ms without batching. We can
speed it up to 12ms for each pair with a batch size of 8.

C. Baseline Methods Implementation

NBS [35]. We evaluate NBS using its publicly available
code and pre-trained model3. NBS [35] takes the SMPL
pose parameters as input, thus we feed the optimized SMPL
parameters discussed above to NBS.

SPT [37]. To evaluate both SPT(full) and SPT on
human-like stylized characters, we use the publicly avail-
able code4 and pre-trained models generously provided by
the authors. For the quadruped category, we train and eval-
uate the SPT model using its public code on the dataset dis-
cussed in Sec.4.1 in the main paper. Specifically, we utilize
the SMAL model [70] to produce motion pairs, including
an animal mesh in rest pose and the desired pose. We also
supervise SPT with the ground truth skinning weights from
SMAL. Note that our model is trained and evaluated using
the same quadruped dataset as SPT.

2https://github.com/marian42/mesh to sdf
3https://github.com/PeizhuoLi/neural-blend-shapes
4https://github.com/zycliao/skeleton-free-pose-transfer



D. Visualization
We provide more visualizations, including qualitative

comparisons (Fig. 9), deformation results by using source
poses from in-the-wild videos for both human-like (Fig. 10
and Fig. 11) and quadupeds (Fig. 12). To obtain the pose
code from a video frame, we apply PyMAF [68] for human
and BARC [55] for quadupeds. We provide more visualiza-
tions in the supplementary video.

E. Limitation
Although our approach exhibits good generalization per-

formance for bipedal and quadrupedal characters, modeling
other categories whose poses are not being studied well re-
mains difficult. Additionally, our method is unable to solve
the articulation of hands and just treats them as rigid parts.
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Figure 9. Qualitative comparisons on Mixamo [1].
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Figure 10. Transferring poses from in-the-wild videos to stylized characters.
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Figure 11. Transferring poses from in-the-wild videos to stylized characters.
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Figure 12. Transferring animal poses from in-the-wild videos to stylized quadrupedal characters.
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