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Abstract

Building animatable and editable models of clothed hu-
mans from raw 3D scans and poses is a challenging prob-
lem. Existing reposing methods suffer from the limited ex-
pressiveness of Linear Blend Skinning (LBS), require costly
mesh extraction to generate each new pose, and typically
do not preserve surface correspondences across different
poses. In this work, we introduce Invertible Neural Skinning
(INS) to address these shortcomings. To maintain corre-
spondences, we propose a Pose-conditioned Invertible Net-
work (PIN) architecture, which extends the LBS process by
learning additional pose-varying deformations. Next, we
combine PIN with a differentiable LBS module to build an
expressive and end-to-end Invertible Neural Skinning (INS)
pipeline. We demonstrate the strong performance of our
method by outperforming the state-of-the-art reposing tech-
niques on clothed humans and preserving surface corre-
spondences, while being an order of magnitude faster. We
also perform an ablation study, which shows the usefulness
of our pose-conditioning formulation, and our qualitative
results display that INS can rectify artefacts introduced by
LBS well.

1. Introduction
Being able to create animatable representations of

clothed humans beyond skinned meshes is essential for
building realistic augmented or virtual reality experiences
and improving simulators. Towards this goal, we consider
the task of building animatable human representations from
raw 3D scans and corresponding poses. Prior work in this
area has seen a shift from building parametric models of
humans [6, 22, 31], to more recent works learning implicit
3D neural representations [1,12,13,50,51,55,56] from data
in canonical space. These canonical representations are an-
imated to a new pose by a learning skinning weight field
around them [11, 14, 37, 52, 57] and applying Linear Blend
Skinning (LBS) to warp the surface, where the pose is de-
fined by a bone skeleton underlying the 3D surface.

Figure 1. Fast and Invertible Posing. We propose an end-to-end
learnable reposing pipeline that allows animating implicit surfaces
with intricate pose-varying effects, without requiring mesh extrac-
tion [36] for each pose, while also maintaining correspondences
across poses.

These prior works generally suffer from the limited ex-
pressivity of LBS when handling complex pose-varying
deformations, such as those of loose clothes and body
tissue (i.e. muscle bulges, skin wrinkles). In paramet-
ric models like SMPL [31], such deformations are repre-
sented by adding simple linear pose correctives (aka blend
shapes), but these are restrictive and only work for un-
clothed humans. Implicit methods, to relieve this issue,
learn their canonical representations conditioned on the de-
formed pose [11, 14]. However, this conditioning comes
with two major drawbacks during reposing. Given the se-
quence of poses, a new mesh has to be extracted from
scratch for each pose, which becomes a bottleneck when
animating subjects at a high frame-rate or resolution. Also,
as a consequence of this step, correspondences (topology
preservation) between the surfaces of the same subject
across different poses are lost.

Invertible Neural Networks (INN) [15, 16, 26] are bijec-
tive functions that can preserve exact correspondences be-
tween their input and output spaces, while learning com-
plex non-linear transforms between them. This ability of
INNs makes them a suitable candidate for reposing, and in
this work, we leverage INNs to build an Invertible Neu-
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ral Skinning (INS) pipeline. For this, we first build a
Pose-conditioned Invertible Network, abbreviated as PIN1,
to learn pose-conditioned deformations. Next, to create
an end-to-end Invertible Neural Skinning (INS) pipeline,
we place two PINs around a differentiable LBS module,
and use a pose-free canonical representation. These PINs
help capture the non-linear surface deformations of clothes
across poses and alleviate the volume loss suffered from the
LBS operation. Since our canonical representation remains
pose-free, we perform the expensive mesh extraction ex-
actly once, and repose the mesh by simply warping it with
the learned LBS and an inverse pass through PINs.

We demonstrate the strong performance of INS by out-
performing the previous state-of-the-art reposing method
SNARF [11]. On clothed humans data, we find INS pro-
vides an absolute gain of roughly 1% when compared to
SNARF with pose-conditioning, and roughly 6% compared
to SNARF without pose-conditioning. We conduct experi-
ments on much simpler minimally clothed human data and
obtain competitive results. We also find INS to be an or-
der of magnitude faster at reposing long sequences. We ab-
late our INS and demonstrate the effectiveness of our pose-
conditioning formulation. Our results clearly show that the
proposed INS can correct the LBS artefacts well.

2. Related Work

Representing Articulate Characters in 3D. Over the
years, a significant amount of prior work for building para-
metric representations of the human body [2, 22, 30, 31, 40,
45, 61] or for specific parts such as hands and faces [39, 49]
was developed. Beyond humans, recent work developed
parametric animal models [4, 5, 65]. Encouraged by the
rapid progress in implicit neural 3D representations [36,38],
a number of works explored building implicit human repre-
sentations with and without clothing [20, 23, 33, 53, 57–60,
63,64]. Representing characters as implicit functions comes
with a cost of time-consuming mesh extraction via March-
ing Cubes [32].

Animating 3D Representations with Poses. Parametric
models usually define the correspondences between poses,
represented as a set of bones, and mesh vertices through
Linear Blend Skinning (LBS) weights. These weights pro-
vide a soft assignment of vertices to human bones. Thus
for animation, these models simply transform the vertices
using a linear combination of bone transformations. When
the parametric model is not available, these weights need to
be discovered. To this end, recent works adopt learning-
based solutions for discovering LBS weights [10, 11, 14,
29, 37, 46, 47, 52]. They usually assume a shared canon-
ical space and learn a canonical LBS weight field, which

1We avoid the abbreviation PINN to avoid confusion with Physics-
inspired Neural Networks [48]

is used for deforming the body in the novel pose during
inference. However, at training time, the character needs
to be warped backward from deformed to canonical space,
i.e. given deformed points, we need to obtain correspond-
ing canonical points. Thus some works [8, 17, 52, 56, 62]
learn LBS weights separately in deformed and canonical
spaces, which could be used for establishing correspon-
dences. These generally require cycle-consistency losses
for regularization. Recently, SNARF [11] proposed to com-
pute these correspondences by finding the solutions of the
LBS equation using an iterative solver. We adopt a similar
formulation, to discover the correspondences as well.

However, LBS is often insufficient to capture non-linear
deformations of flowy clothes and body tissue (i.e. muscle
bulges). To mitigate this problem, prior works [11, 14, 58]
condition their canonical representations on the deformed
pose. Such conditioning helps to alleviate the shortcomings
of pure-LBS deformations, but this comes at a cost follow-
ing two major limitations:

• Slow Reposing. To generate a new animation given a
sequence of poses across time, these methods extract
a separate mesh from scratch for each pose. This be-
comes a bottleneck if we want to pose the character at
a high frame-rate or resolution.

• No Correspondences. As a consequence of the above
step, two completely separate meshes get extracted at
each pose with no correspondence between them.

In our work, we address both these limitations by extend-
ing pure-LBS formulation with additional Pose-conditioned
Invertible Networks (PIN), while using a pose-free canoni-
cal representation.

Invertible Neural Networks for 3D Vision. INNs [15,
16, 18, 21, 24, 26, 41] were initially designed for tractable
density estimation of high-dimensional and generative mod-
eling, a.k.a. Normalizing Flows [3, 27]. Usually, INNs are
built by chaining together multiple conditional Coupling
Layers [15, 16], where a single coupling layer defines an
invertible transformation between its input and output. The
main idea behind Coupling Layers is that if we split the in-
put into two parts and only modify the first part while condi-
tioning this modification on the second, this should be triv-
ially invertible. Another popular type of invertible transfor-
mations are Invertible Residual layers [24] with small con-
ditioning numbers. They utilize fixed point iterations for
finding an inverse. In our work, we mostly rely on Coupling
Layers since they are faster, and we did not see any addi-
tional benefits from Residual layers. In the context of 3D
vision, INNs were explored for learning primitives of 3D
representations [43], doing 3D shape-completion tasks [28],
and reconstructing dynamic scenes [9]. However, to the best
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Figure 2. Space and Pose Aware Conditioning. We encode the
body pose using a per-bone MLP network operating on individual
bone transforms. The pose embedding is then fused with space
embedding to generate conditioning for PIN.

of our knowledge, their usage has not been explored for an-
imating 3D characters.

3. Method
Task Setup. The goal of our work is to learn a human

3D representation that allows the generation of novel poses
beyond original training data (a.k.a. reposing). For each
subject, we assume the availability of N pairs consisting of
bone poses and 3d meshes denoted as (θt,Mt)Nt=1. Such
data can be obtained from human scans, and the poses can
be estimated by fitting a parametric SMPL-like body model
to these scans. Given this data, we wish to learn a subject-
specific implicit neural representation in a canonical space
and a method to animate this representation.

Deformed and Canonical Spaces. We denote an input
point in deformed space as ptd ∈ R3 and a point in the
canonical space as pc ∈ R3. Since our input consists of
a sequence of deformed (posed) meshes, we use the super-
script t to indicate the time-step of capture. As our canon-
ical space is independent of the pose, it is shared across all
the time steps; hence, pc is not time-indexed.

Deformed and Canonical Poses. We follow the SMPL
model [31], which represents body pose as a set of bones
in a kinematic tree. While reposing, as we only require the
relative pose between canonical and deformed space at any
given time t, we represent this by θt = [B1, . . . ,Bnb

],
where Bi = [Ri|ti] represents a transformation of the ith

bone in 3D space, i.e. Bi ∈ SE(3) with corresponding
rotation Ri ∈ R3×3 and translation ti ∈ R2. We denote the
total number of bones by nb.

Pose-free Canonical Occupancy. To represent a spe-
cific subject, we use an Occupancy Network O [36] condi-
tioned solely on the input point pc. The canonical surface
Sc is then represented implicitly as a level-set (σ = 0.5) of
this occupancy network.

Sc = {pc | O(pc) = σ} and O : R3 → [0, 1]. (1)

To extract this canonical iso-surface as a mesh, we use
the MISE [36] algorithm. This is different from previous

Figure 3. Pose-conditioned 2D Coupling Layer. We use the
space-pose conditioning to predict the operation parameters using
two operation maps (MLPs), and use them to rotate and translate
the input split [x, y]. In this case, [z] remains unchanged.

works [11, 14] that use additional pose-conditioning in the
canonical occupancy network.

Sampling Points. For both training and evaluation of
INS, we sample 3D points in deformed space and get their
ground-truth occupancy values of zero or one based on
whether they lie outside or the mesh (scan). We put exact
details on this sampling in Appendix A.1.

3.1. Differentiable Forward Blend Skinning

To animate our subject from their canonical to deformed
pose we use Linear Blend Skinning (LBS), which involves
deforming the canonical surface according to a convex com-
bination of rigid bone transforms. Specifically, we use the
differentiable LBS formulation from SNARF [11] and sum-
marize it below.

Canonical Weight Field. We define a learnable weight
field in canonical space parameterized by a neural network,
wlbs : R3 → Rnb . For a given point in canonical space,
this weight field predicts the blend weights corresponding
to each bone:

wlbs(qc) = [w1, ..., wnb
] and wi ∈ R. (2)

To make weights (wi) convex for LBS, they are constrained
to be always non-negative and sum to 1 using softmax.

LBS. Given the above weight field and the relative body
pose as bone transforms θt = [B1, . . . ,Bnb

], we can for-
ward warp any point qc of our canonical space to deformed
space using Linear Blend Skinning as follows:

qtd = lbs(wlbs,qc,θ
t) =

[
nb∑
i=1

wlbs,i(qc) ·Bi

]
· qc (3)

where qtd represents the corresponding point in deformed
space where qc lands after LBS.

Searching Canonical Correspondences. While train-
ing on raw scans, we are only provided with points in
deformed space. To find their possible correspondences
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Figure 4. Invertible Neural Skinning. Our end-to-end differentiable reposing pipeline consists of two Pose-conditioned Invertible Net-
works (PINs) placed around a differentiable LBS block. These PINs (Hc and Hd) capture non-linear surface deformations of clothes and
attenuate LBS artefacts. Our canonical representation is not conditioned on the target pose and requires mesh extraction only once. The
green shade in Pre-LBS and Deformed spaces indicate the deformations introduced by PINs, and its intensity denotes their magnitudes.

in canonical space, we solve for the roots of Equation 3
using an iterative solver while keeping wlbs constant.
Specifically, we use Broyden’s Method [7] to find a set
of {q1

c , ...,q
K
c } point correspondences for each deformed

point qtd by initializing the root-finding algorithm at K dif-
ferent points in the canonical space.

{q1
c , . . . ,q

K
c } = broy(wlbs,θ

t,qtd). (4)

Differentiable Skinning. The above formulation is end-
to-end differentiable as it is possible to compute the gra-
dients of the weight field wlbs with respect to input point
qtd via implicit differentiation as shown in SNARF [11],
Section 3.4. In this work, we also extend these derivations
to compute the gradient of correspondences qic w.r.t. input
points. For more details, please refer to Appendix D.

Why is LBS insufficient? The above differentiable for-
mulation suffers from the same limitations of traditional
LBS, such as being unable to represent the clothed sur-
faces, and introducing volume loss, as shown in Figure 6,
b). This is especially problematic when learning from real-
world data of clothed humans in various poses.

3.2. Pose-conditioned Invertible Network (PIN)

Invertible networks [15, 16, 26] are bijective functions
composed of modular components called coupling layers,
which preserve 1-1 correspondences between their input
and output. In this section, we describe the construction
of our proposed pose-conditioned coupling layer, which is
chained together to construct a PIN.

2D Coupling Layer (Figure 3). A coupling layer op-
erates by splitting its input into two parts using a fixed
breaking pattern. After splitting, the first part of the input
is transformed by applying a sequence of invertible opera-
tions, such as translation and rotation. The parameters for

these operations can be produced by any arbitrary function
that is jointly conditioned on the second part of the input
and an external conditioning, such as pose in our case.

Formally, as we operate in 3D space, let the input point
be defined as [x, y, z], and the input splits are [x, y] and [z].
Then the 2D coupling layer Gxy([x, y, z], θt) defines an in-
vertible transformation as follows:

[x′, y′] = Rxy[x, y]
T + [tx, ty] and z′ = z, (5)

where Rxy ∈ R2×2, and [tx, ty] ∈ R2 is a rotation matrix
and translation vector produced by any arbitrary function
that takes as input only the bone pose θt and the coordinate
z. The inverse G−1xy ([x, y, z], θ

t) of the coupling layer can
be computed easily by:

[x, y] = R−1xy ([x
′, y′]− [tx, ty]) and z = z′. (6)

We describe computation of operation parameters Rxy

and [tx, ty] next.
Pose Embedding. We encode every bone transform in

pose θt using a MLP mb which takes a 6D input of con-
catenated 3D translation and rotation (as Euler angles). To
obtain pose embedding, we concatenate the outputs of each
bone eθ as follows:

mb : R6 → Rd/nb and eθ := concat[mb(Bi)]
nb
i=1. (7)

Space Embedding. We use SIREN [54], a learned and
periodic positional encoding, to map the spatial coordinates
denoting it as

ez := Φ(z) : R1 → Rd. (8)

We find that this helps to better represent high-frequency
surface details such as cloth wrinkles.
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Space and Pose Aware Conditioning (Figure 2). We
observe that when the relative pose θt between deformed
and canonical spaces is zero (i.e. Bi = [I|0], all bone
transforms have identity rotation and zero translation), the
coupling layer should not introduce any space-varying (i.e.
z-conditioned) changes.

To enforce this, we take the Hadamard product of the
space and pose embeddings, and subsequently concatenate
them obtaining

esp := concat[eθ � ez, eθ] ∈ R2d. (9)

We visualize the construction of our space and pose
aware conditioning esp in Figure 2.

Rotation and Translation Maps. Finally, to produce
parameters for coupling operations, we use two MLPs mt

and mr, which take as input the above conditioning vector:

[tx, ty] = mt(esp) : R2d → R2, (10)

γxy = mr(esp) : R2d → R1. (11)

Note that the output of mr only predicts the angle of ro-
tation γxy in radians (a single value). The axis of rotation
passes through the origin of the split input space, i.e. XY
space here. We convert γxy into a rotation matrix Rxy .

1D Coupling Layer. Unlike the 2D coupling layer
described above, we cannot use the rotation operator in
1D, and in this case, we only use translation. For layer
Gx([x, y, z], θt) with split pattern as [x] and [y, z] the cou-
pling operation becomes:

x′ = x+ tx and [y′, z′] = [y, z], (12)

where tx ∈ R1 produced in a similar fashion as a 2D cou-
pling layer using a translation map mt : R2d → R1 with
single scalar output instead of 2D translation. The space
embedding of Equation 8, in the 1D case, takes both coor-
dinates as input exy = Φ([x, y]) : R2 → Rd.

Pose-conditioned Invertible Network (PIN). Finally,
we compose our PIN by chaining together multiple 1D and
2D pose-conditioned coupling layers as:

H(p,θt) = G1 ◦G2 ◦ . . .Gn : R3 → R3, (13)

where p represents point in 3D space, Gi represents a cou-
pling layer, and θt represents pose. Inverting PIN is simply
equivalent to sequentially inverting each coupling layer in
the reverse order:

H−1(p,θt) = G−1n . . .G−12 ◦G−11 . (14)

Since the PIN is invertible by construction, it preserves ex-
act correspondences between its input and output spaces:

p = H−1(H(p,θt),θt) ∀ p ∈ R3. (15)

We visualize a single coupling layer of PINin Figure 3.

3.3. Invertible Neural Skinning

Overview (Figure 4). Our overall posing pipeline INS
is comprised of three previously described components
chained together:

• Hc: A Pose-conditioned Invertible Network (PIN) Hc

that operates after canonical space and before LBS.
• Hd: A Pose-conditioned Invertible Network (PIN) that

operates before deformed space and after LBS.
• Differentiable LBS network as described in Section 3.1

operating between above PINs.
Next, we discuss how we formulate an invertible map-
ping that preserves correspondences between deformed and
canonical spaces.

Deformed to Canonical (Training). For any point ptd
in deformed space, we first process it using PIN Hd, and
obtain qtd. Next, we use Broyden’s algorithm to get corre-
spondences of qtd in canonical space, let’s say {qic}Ki=1. Fi-
nally we use a second PIN Hc to map these points {pc}Ki=1

in the pose-independent canonical space.

ptd
Hd(.,θ

t)−−−−−→ qtd
broy(.,θt)−−−−−−→ {qic}

Hc(.,θ
t)−−−−−→ {pic}. (16)

To obtain the most suitable canonical correspondence, we
take the argmax over all predicted canonical occupancies

p∗c = argmax
i=1...K

{O(pic)}. (17)

During training, we approximate the argmax with a
softmax function in order to backpropagate gradients softly
through all correspondences following SNARF.

Training Objective. In our dataset, we are given points
in deformed space and corresponding ground truth occu-
pancy values of zero or one. We map these deformed points
to canonical space and apply binary cross-entropy loss to
jointly train all components of the posing network accord-
ing to

min
Hd,Hc,wlbs,O

Lbce(O(pc), ogt). (18)

Auxiliary Objectives. Following SNARF, we enforce a
prior on the canonical pose by using two additional losses
during the first epoch. First, we sample additional points on
bones in canonical pose and encourage their occupancies
to be one. Second, we encourage the skinning weight of
bone joints to be equal. However, no ground truth skinning
weights are required during these steps.

Canonical to Deformed (Inference). Once trained, we
can animate characters using INS in any given novel pose
θn in two simple steps. First, running mesh extraction on
the canonical occupancy network. Second, reposing the
mesh vertices via an inverse pass of our posing pipeline as
follow:

pc
H−1

c (.,θn)−−−−−−→ qc
lbs(.,θn)−−−−−−→ qtd

H−1
d (.,θn)
−−−−−−→ ptd. (19)

5



IoU Surface IoU Bounding Box

Subject Clothing AVG-LBS FIRST-LBS SNARF SNARF-NC INS (ours) AVG-LBS FIRST-LBS SNARF SNARF-NC INS (ours)

Average 65.01% 57.41% 72.24% 66.89% 73.13% 65.12% 57.5% 72.17% 66.78% 73.19%

Table 1. Quantitative Results on Clothed Humans. We find our approach INS outperforms all methods when averaged across 15 runs,
on both IoU Surface and IoU Bounding Box metrics.

IoU Surface IoU Bounding Box

Subject SNARF SNARF-NC INS (ours) SNARF SNARF-NC INS (ours)

Average 90.01% 85.22% 88.59% 97.21% 95.72% 96.35%

Table 2. Quantitative Results on Minimally Clothed Humans.
On DFAUST, INS outperforms SNARF-NC by a large margin
while performing competitively with SNARF, and being order
magnitude faster at reposing.

Fast Reposing. As our canonical occupancy network O
is independent of θn we only have to extract mesh exactly
once. And reposing this mesh for a sequence of poses sim-
ply becomes equivalent to performing multiple inferences
described in Equation 19.

4. Experiments
4.1. Evaluation

Datasets. Training our method requires sampled points
in the deformed space, along with corresponding occupan-
cies and poses. Thus, we benchmark INS on two datasets
CAPE [34], which features scanned humans in loose cloth-
ing, and DFAUST [35], containing only minimally clothed
human scans.

CAPE [34] contains scans of 15 subjects (8 males and
7 females), wearing 8 different types of garments while
performing a large number of actions. These actions were
recorded using a high-resolution body scanner (3dMD LLC,
Atlanta, GA), and the scans were registered using an SMPL
model [31]. Similarly to SNARF [11], INS requires train-
ing a new model every subject-cloth pair, and exhaustively
training on every combination quickly becomes expensive.
To manage computational costs, we use a subset of 15 se-
quences. This subset covers all garment types at least once
and most of the subjects, thus capturing variations in both
— body shape and clothing.

DFAUST is a subset of the AMASS [35] dataset consist-
ing of 10 subjects who are minimally clothed. Each subject
is scanned similarly to CAPE while performing 10 differ-
ent actions. As the subjects wear minimal clothing, much
of their motions can be represented accurately by rigid body
transformations. As a consequence of little subject clothing,
we observe that DFAUST contains significantly fewer pose-
specific deformations. Thus we note that DFAUST dataset
is not well-posed to test the true capabilities of INS.

Data Splits. For a given subject in DFAUST or a subject-
clothing pair in CAPE, we are provided with multiple tem-
poral sequences, each containing a different action. We di-

Figure 5. Reposing time comparison between INS and SNARF
We show the time taken by SNARF vs INS for reposing a mesh
extracted at 1283 resolution across 125 different target poses. INS
performs reposing an order of magnitude faster than SNARF.

vide these sequences in 9:1 ratio into train and test sets. This
split is similar to SNARF [11]. More details about training
sequences and garment types are provided in Appendix B.

Metrics. Following SNARF [11], we report the mean
Intersection-over-Union of points sampled near the mesh
surface (IoU surface), and of points sampled uniformly in
space (IoU bbox).

4.2. Baselines

SNARF-NC. We use SNARF [11] without pose-
conditioning in the canonical occupancy network as our first
and primary baseline. For this, we only remove the pose-
conditioning used by SNARF such that canonical space be-
comes pose-independent, i.e. O(pc). We do not make any
other changes. This setting is comparable to INS as it al-
lows for fast posing and preserves correspondences across
different poses.

SNARF. We also compare INS to the original
SNARF [11] which uses a pose-conditioned occupancy net-
work, i.e. O(pc, θ

t). However, we point out that the
above pose-conditioned occupancy comes at the sacrifice
of fast posing, by requiring expensive mesh extraction for
each new pose while not preserving correspondences across
them. These disadvantages make the direct comparison be-
tween INS and SNARF based solely on their performance a
little lopsided.
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Figure 6. Qualitative Samples on CAPE. We find that SNARF
(leftmost) struggles to represent finer details such as cloth wrin-
kles. Whereas SNARF-NC (second left) struggles with LBS arte-
facts such as volume loss, and candy-wrapper effects. Mean-
while INS (second right) is able to repose surfaces while capturing
sharper local-details. Best viewed under zoom.

To obtain SNARF and SNARF-NC results, we use the
official codebase 2 released by the authors.

AVG-LBS. In addition to the above strong learned base-
lines, we provide results on two simpler baselines, which
use the SMPL-fitted LBS weights to unpose the meshes
(scans) using forward skinning. For this, we simply take
an average of all the canonicalized training meshes to gen-
erate a final canonical mesh and deform it to any unseen
given pose using Foward LBS and SMPL weights.

FIRST-LBS. This baseline is similar to the AVG-LBS
baseline described above and uses SMPL-fitted weight for
reposing. Instead of using an average across all training
meshes, it only uses the first mesh, thus containing lesser
pose-conditioned details.

4.3. Main Results

CAPE. We demonstrate the results of INS on clothed hu-
man data in Table 1. Given the challenging nature of mod-
eling cloth deformations contained in this dataset, we find
that INS surpasses SNARF-NC (without pose-conditioning)
on average by +6.24% and +6.41% absolute percentage
points in Surface IoU and Bounding Box IoU respectively.
Moreover, INS also outperforms vanilla SNARF with pose-
conditioning by +0.89% and +1.02% absolute percentage
points in Surface IoU and Bounding Box IoU, respectively,
while also enjoying the benefits of fast posing, and matched
correspondences across various poses. We observe that the
simple aggregation baseline of AVG-LBS performs quite
closely with SNARF-NC with a performance drop of only
1.88% and 1.66% percentage points between them. How-
ever, AVG-LBS benefits from using a strong prior of para-
metric SMPL model and corresponding fitted weights.

DFAUST. We also report results on much simpler min-
imally clothed humans from the DFAUST dataset in Ta-
ble 2. We find that INS outperforms SNARF-NC (with-
out pose-conditioning) on average by +3.37% and +0.63%

2https://github.com/xuchen-ethz/snarf

# Ablation IoU Surface (%) IoU Bounding Box(%)

1 INS(vanilla) 72.83 72.69
2 w/o Pose Mul. 61.94−10.89 62.00−10.69
3 w/o SIREN 69.67−3.16 69.57−3.12
4 w/o Rotation 71.91−0.92 71.87−0.82
5 w/o Hd 72.66−0.17 72.58−0.11
6 w/o Hc 67.89−4.94 67.81−4.88
7 w/o LBS 40.79−32.04 40.65−32.04

Table 3. Ablation Table. We perform an ablation study of INS on
a clothed subject 03375 (Table 1, Row 1) from the CAPE dataset.

absolute percentage points in Surface IoU and Bounding
Box IoU metrics, respectively. When compared to SNARF
with pose conditioning, we find INS lags behind by -1.42%
and -0.86% absolute percentage points in Surface IoU and
Bounding Box IoU metrics, respectively. Given the min-
imal clothing and few pose-conditioned non-linear effects
in DFAUST, we hypothesize that this performance drop can
be attributed to SNARF overfitting easily to this benchmark.
We believe this result also reflects the importance of testing
on many realistic datasets such as CAPE.

Timing Study. In Figure 5, we compare the times taken
by SNARF and INS to repose a clothed character across a
sequence of 125 different poses. A single mesh extraction
pass with MISE [36] operating on the cube of resolution
1283, takes nearly 1.5 seconds. While reposing, SNARF
performs this operation for every given pose, whereas INS
requires mesh extraction only once. Reposing the extracted
mesh INS takes 0.13 seconds for an inference pass, which is
an order of magnitude faster than SNARF.

4.4. Ablations

We perform numerous ablations of our INS setup, the
results of which are summarized in Table 3.

Multiplying Pose and Space Embeddings is im-
portant. Reformulating the pose conditioning by sim-
ple concatenation, i.e. [ez, eθ] instead of multiply-then-
concatenate, i.e. [ez, ez � eθ] leads to a significant perfor-
mance drop of ∼ 11% points in both metrics (Row 2).

Hc contributes much more than Hd. The invertible
networks do not contribute equally to the performance. Re-
moving the canonical space PIN Hc leads to a sharp drop
in IoU Surface by 4.94%, when compared to removing the
deformed space INN Hd which drops performance by only
0.17% points (Rows 5,6). We attribute this partly to the
fact that editing an LBS-deformed mesh introduces the ad-
ditional complexity of resolving part-wise correspondences,
such as locating the new positions of joints and limbs.

Replacing SIREN positional embedding with MLP
hurts. IoU Surface drops by 3.16% if the learned sinu-
soidal embeddings are replaced by simple MLP layers. This
happens as fine surface details such as cloth wrinkles get
blurred when using MLP, which is prevented by SIREN.
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Figure 7. Comparison of INS and SNARF models undergoing extreme pose animation from PosePrior dataset.

PINs without rotation perform slightly worse. Re-
moving 2D operations from our PINs leads to a drop in IoU
Surface by 0.92%. This happens because twisting deforma-
tions in the surface have to be represented by only displace-
ments, which has previously been shown to be difficult to
learn [42].

Simply using PINs without LBS performs worse. En-
tirely removing the differential LBS module and relying
solely on PINs to capture the full articulate motion results
in a huge drop of 32% on both metrics (Row 7).

4.5. Qualitative Analysis

INS can represent finer details compared to SNARF.
In Figure 6, we demonstrate a subject in a challenging novel
pose from the CAPE dataset. We find that SNARF (left-
most) is unable to capture fine details of cloth wrinkles,
while also missing fingers as highlighted by the markers.
Whereas SNARF-NC (second left) struggles with LBS arte-
facts such as volume loss by shrinking the arched back
(highlighted), and displaying candy-wrapper effects. Fi-
nally, INS (second right) is able to capture much sharper lo-
cal details around the body joints, such as around the waist
and neck.

PINs can represent pose-varying deformations well.
In Figure 8, we tease apart the edits made by solely PIN
Hc in the canonical space (displayed in the top row) given
two unseen target poses (shown in the bottom row). As
highlighted in the figure, we find that PIN learns to intro-
duce pose-varying deformations such as raising cloth out-
lines around the neck and shoulder joint, introducing dress
wrinkles at near extremities, and even adjusting limbs such
as orienting feet.

Extreme poses from PosePrior. The most loose-fitted
sequence in CAPE is of subject 00375 wearing a blazer

Figure 8. Pre-LBS space deformations. We show the edits made
by PIN Hc before LBS operation for two novel target poses. Best
viewed under zoom.

and trouser, we show it animated in extreme poses from
Pose Prior in first two columns of Figure 7. We also vi-
sualize other subjects (both clothed and naked) in extreme
poses as well. We find that INS produces much more real-
istic cloth deformations compared to SNARF.

5. Conclusion

In this work, we presented an invertible, end-to-end dif-
ferentiable, and trainable pipeline called Invertible Neural
Skinning for reposing humans. For this, we built a Pose-
conditioned Invertible Network (PIN) that can handle non-
linear surface deformations of clothes and skin well, while
also retaining correspondences across different poses. By
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placing two PINs around a differentiable LBS network and
using a pose-free occupancy network, we created INS. We
show that INS outperforms previous methods on clothed hu-
mans, while staying competitive on simpler and minimally
clothed humans. Since reposing with our method requires
the expensive mesh extraction exactly once, INS provides
a speed-up of an order of magnitude compared to previous
methods when animating long pose sequences.

Future Work. While training INS, the correspondence
search performed by the differentiable LBS module often
becomes a bottleneck, and future works can explore the pos-
sibility of eliminating this module completely — by learn-
ing its behavior from data. Furthermore, the occupancy net-
work can be replaced with a neural representation that can
handle texture and lightning and thus learn directly from 2D
images and videos instead of raw scans.

A. Implementation Details
A.1. Sampling Points

Following SNARF, we sample 200K points at every
frame of the sequence. Half of these points (100K) are
near the mesh (scan) surface, which are obtained by first
sampling points on the mesh surface via Poisson disk sam-
pling and followed by displacement with isotropic Gaussian
noise (of σ = 0.01). Remaining half (100K) points are sam-
pled uniformly within a bounding box scaled to 110% of the
original bounding box.

A.2. Hyperparameters and Training Details

We trained all our models on a single Tesla V100 GPU
for 250 epochs, which took nearly 40 hours on average. We
used a learning rate of 1e−4 to train the PINs, while using
a learning rate of 1e−3 for remaining modules. We used
Adam [25] optimizer, with a linear warmup and no learning
rate decay. PyTorch [44] is used for all the experiments.
Please refer to Table 4 for full list.

A.3. Metrics

Given set of sampled points P to be evaluated, we can
represent the joint tuple of any point, its ground truth occu-
pancy (which can be either 0 or 1), and predicted occupancy
as (pid, g

i, hi) ∀ pid ∈ P respectively. Then Intersection
over Union (IoU) can be computed as follows:

IoU =
∑
pi

d∈P

gi ∩ hi

gi ∪ hi
(20)

To convert predicted probability to binary occupancy, we
simply check if it is greater than 0.5. IoU Bounding Box op-
erates with points sampled uniformly in the space, whereas
Surface IoU operates with points sampled close to the body
as described in Section A.1.

B. Data
CAPE. CAPE originally contains 15 subjects, with each

subject wearing 1-6 different types of clothing, and per-
forming 3-74 different actions. On average, it contains
nearly 249 frames for every subject-cloth pair. Due to high
variance as well as high number of subject-cloth pairs, we
use a subset of CAPE which contains 15 sequences of 13
subjects containing all 8 different types of clothings. A
clothing in CAPE is denoted by a joint string of upper and
lower body garment, for example, a subject wearing a blazer
and pants is annotated as blazerlong, and so on.

C. Invertible Neural Network
C.1. Initialization

We found that initializing the Pose-conditioned Invert-
ible Networks (PINs) as identity modules stabilizes train-
ing, and allows the LBS network to train better. For this,
we initialize the weights and biases of the last layer of the
operation maps mr and mt (shown in Figure 2) as zeros.

C.2. Volume Preservation

Previous works in INNs [15, 16, 26] operating on high-
dimensional (≥ 512-d) spaces constrained the Jacobian be-
tween input and output to an triangular matrix. This ensured
that the Jacobian determinant, used for density modeling,
was not expensive to compute. Determinant of a triangular
matrix is simply multiplication of its diagonal. However,
this prevented these works from using 2D operators such as
rotation. We note that such a requirement is unnecessary
in our setting, where Jacobian determinant is not needed.
Additionally, using rotations also helps to preserve volume
between the input and output spaces.

Next, we show that our PINs consisting of only rotations
and translations are volume preserving. Note that to show a
transform is volume preserving it is sufficient to show that
the determinant of the Jacobian of this transform is one.
From Equations 5 and 10, we can express the transform rep-
resented by a single 2D coupling layer as:

x′ = xcos(γxy)− ysin(γxy) + tx

y′ = xsin(γxy) + ycos(γxy) + ty

z′ = z

Then Jacobian of this transform becomes:

J =

cos(γxy) −sin(γxy) 0
sin(γxy) cos(γxy) 0

0 0 1

 (21)

And determinant of the above Jacobian is one, i.e. |J| = 1.
Since, our PINs are composed of chaining together such
coupling layers described in Equation 13, the overall de-
terminant is also one. Hence volume is preserved within
PINs.
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# Hyperparameters Value # Hyperparameters Value

1 No. of Parameters in INS 1.80M 2 No. of Coupling Layers in Hd/Hc 18
3 No. of Parameters in PIN Hd/Hc 0.41M 4 No. of Parameters in Occupancy Network O 0.46M
5 No. of Parameters in LBS Network 53K 6 No. of Parameters in Bone Encoder 0.46M
7 Pose Embedding Dimension 120 8 Space Embedding Dimension 120
9 Space and Pose Embedding 240 10 PIN input and output Dimension 3
11 Number of epochs 250 12 Optimizer Adam
13 Batch size (DFAUST/CAPE) 12/8 14 Learning rate (INNs/Rest) 1e-4/1e-3
15 Warm-up learning rate factor 0.2 16 Warm-up iterations 2400
17 No. of points per batch 60000 18 Gradient clipping (L-2 Norm) 4.0

Table 4. Hyperparameters and Training configuration to train INS.

D. Gradients

Training INS requires calculating gradients of the Binary
Cross Entropoy (BCE) lossLbce (Equation 18), with respect
to all the components. Let the weights of PINs Hc, Hd,
the LBS network wlbs, and the Occupancy network O be
denoted with σc, σd, σlbs, and σo respectively. Backprop-
agating through the occupancy network O and the PIN Hc

is straightforward:

∂Lbce
∂σo

=
∂Lbce
∂o

· ∂o

∂O(pc)
· ∂O(pc)

∂σo
(22)

∂Lbce
∂σc

=
∂Lbce
∂O(pc)

· ∂O(pc)

∂Hc(q∗c)
· ∂Hc(q

∗
c)

∂σc
(23)

where o is the predicted occupancy. While the gradients for
LBS network wlbs and second PIN Hd are:

∂Lbce
∂σlbs

=
∂Lbce

∂Hc(q∗c)
· ∂Hc(q

∗
c)

∂q∗c
· ∂q∗c
∂σlbs

(24)

∂Lbce
∂σd

=
∂Lbce
∂q∗c

· ∂q∗c
∂Hd(ptd)

· ∂Hd(p
t
d)

∂σd
(25)

where q∗c is the root of the Equation 17, and ptd is the input
point. Pytorch’s automatic differentiation can handle the
gradients in Equations 22 and 23. However, to obtain gra-
dients w.r.t. q∗c implicit differentiation is required, similar to
SNARF:

lbs(q∗c ,θ
t)− ptd = 0

⇔ ∂lbs(q∗c ,θ
t)

∂σlbs
+
∂lbs(q∗c ,θ

t)

∂q∗c
· ∂q∗c
∂σlbs

= 0

⇔ ∂q∗c
∂σlbs

= −
(
∂lbs(q∗c ,θ

t)

∂q∗c

)−1
· ∂lbs(q∗c ,θ

t)

∂σlbs
(26)

And we can find gradients of q∗c with respect to qtd as fol-
lows:

lbs(q∗c ,θ
t)− ptd = 0

⇔ ∂lbs(q∗c ,θ
t)

∂q∗c
· ∂q∗c
∂Hd(ptd)

+ 1 = 0

⇔ ∂q∗c
∂Hd(ptd)

= −
(
∂lbs(q∗c ,θ

t)

∂q∗c

)−1
(27)

E. Miscellaneous Failed Experiments
In order to help with a future research in this direction we

list several ideas that have been tried in our project, which
however did not improve performance.

E.1. Invertible Residual Layers

Idea. Beyond the invertible space-splitting layers, we
also experimented with using invertible residual layers [18,
24]. These layers operate by limiting the Lipschitz constant
of the residual branch, which has be less than one in order
to guarantee invertibility. Inversion of these layers can be
achieved using a fixed-point iteration method, with conver-
gence rate exponential in the number of iterations.

Outcome. We tried chaining residual layers with cou-
pling layers alternately, and also placing them in the start
and end of the invertible networks. However, these setups
performed close or worse than without using residual lay-
ers, and were slower due to the expensive inversion pass.

E.2. Coupling Layers with Scales

Idea. Previous works CaDeX [28], and NeuralParts [43]
utilized invertible networks with scale and translation op-
erations, following the architecture proposed in Real-
NVP [16]. Such a transform can be represented as:

x′ = xexp(sx) + tx

y′ = yexp(sy) + +ty

z′ = z

Outcome. When using these layers in our experiments we
encountered the following difficulties:
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• Unstable Training. Floating point overflows occurred
frequently during training due to the exponential scal-
ing term. Even after carefully tuned gradient clipping
and learning rate schedules, we encountered frequent
experiment failures.

• Squashing Effect. Since the scaling operator can lead
to very large outputs from INN, generally a sigmoid
squashing layer is used at the end to restrict the input
to a fixed range that matches output distribution. How-
ever, due to this sigmoid layer, the INN can no longer
be initialized as an Identity layer, even when all the ro-
tations are identity and translations are zero. This leads
to a squashing artefacts in outputs.

• Non-volume Preserving. The Jacobian of these lay-
ers [28] with scaling is not one, previously derived
Equation 21. Due to this additional regularization is
needed for training.

E.3. Pose-conditioned 3D rotation and translation
layers

Idea. We tried learning pose-conditioned global 3D ro-
tation and translation layers. We implemented it similar to
the coupling layers to predict rotation and translation pa-
rameters, but without any space conditioning.

Outcome. We did not find significant gains using this,
and decided against using them in the final version as they
had a big memory footprint. These layers often rotate the
canonical space creating issues during mesh extraction.

F. Visuals (video link)
We place all the qualitative results in this video, and dis-

cuss its contents below.
[Video Part-1] Pose-varying deformations in INS. In

the first part of the video, we visualize the deformations in-
troduced by PINs Hc and Hd under varying target poses
(shown in top right). Deformations introduced by Hc are
shown in the top-middle part, whereas those introduced by
Hd are shown in the bottom-left part shaded in green. We
demonstrate that INS is able to handle complex deforma-
tions of clothing across poses.

[Video Part-2] Baseline Comparison. In the second
part of the video, we compare our method INS against all
the five baselines discussed in Section 4.2 of the main pa-
per. While both the LBS baselines, and SNARF-NC suffers
from artifacts, we see that INS performs much better than
other methods.

[Video Part-3] INS Ablations. In the third part of the
video, we visualize results from various ablations reported
in Section 4.4 of the main paper. Here, we find that remov-
ing SIREN leads to an overly smooth surface, and removing
the LBS network makes it harder for the network to learn
limb movements correctly.

Figure 9. 1D and 2D Coupling Layers. We show comparison be-
tween both types of layers used in PINs. The bidirectional arrows
show invertible computations.

[Video Part-4] Texture Propagation. As INS can pre-
serve correspondences across poses, it becomes possible
to propagate mesh attributes such as texture across vari-
ous time frames. We conducted an experiment to test this,
where we applied texture to the pose-independent canon-
ical mesh. Next, we propagated this texture through the
INS network. We show the results of this experiment in
the fourth (and last) part of the video. We found that the
applied texture deformed realistically like clothing, while
being consistent across all frames, and was free of jittering.

To contrast and compare with the above experiment, we
conducted similar texture propagation using SNARF. Since,
SNARF decodes a separate mesh at each time-step, we color
this mesh using the same scheme for coloring INS canoni-
cal mesh above. Propagating this texture through the LBS
block, we find that it frequently leads to jittery artefacts
as the texture overflows across semantically different parts.
For example, the texture patch E4 applied to the blazer in a
particular frame, overflows onto pants in another frame, and
so on.

F.1. 1D and 2D Coupling Layers

We visualize both 1D and 2D coupling layers together
in Figure 9 for better understanding. In 1D case the space-
pose aware conditioning gets conditioned on the 2D input,
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# Experiment IoU Surf. IoU BBox Train Iter (sec)
1 SNARF-MLP 63.66 63.74 1.80
2 w/ Pose Mul. 68.62 68.64 1.80
3 SNARF-NC 66.10 66.11 1.16
4 INS 72.83 72.69 1.34

Table 5. Experiments with setup similar to IMAvatar [20].

which helps to improve expressiveness. In the 2D case, we
can make edits on an entire 2D plane conditioned on the 1D
input. We find out that these blocks provide complementary
benefits, thus we utilize both of them in the final architec-
ture.

G. Miscellaneous

G.1. Training speed of INS comparison.

Training the LBS module (Broyden’s method) takes
nearly 0.70s, while both PIN modules combined take 0.09s
per iteration. Accounting for loss computation and back-
prop, single iteration of SNARF takes 1.16s, while INS
takes 1.34s. Overall there is a 13.4% slowdown using INS.

H. Comparison with IMAvatar

We can model non-rigid deformations using MLP and
leverage Broyden’s method in training, similar to IMA-
vatar [20].
Experiment: We conducted a prelimnary study, where we
used a second MLP to model pose-conditioned vertex off-
sets before the LBS module similar to IMAvatar. We reused
the clothed sequence from ablation study, and name this ex-
periment as SNARF-MLP. We also added two tricks from
INS to make this setup work. First, we zero initialized the
last layer of offset MLP; second, we used the space-pose
aware conditioning described in Equation 19 (Section 3.2).

Quantative (Table 1): We found SNARF-MLP performs
subpar compared to INS (Row 1 vs 4), while training much
slowly due to multiple MLP runs (44% slowdown). More-
over, we find our pose-conditioning to boosts performance
(Row 2), while not using zero init. leads to divergence.

Qualitative (Fig.1, RHS): Visually, we found SNARF-
MLP to result in unnatural deformations (highlighted). We
hypothesize, this could be due to the complex landscape
of the resulting function which might make Broyden’s
vulnerable to local minima. Thus, points close to each
other, which ideally should have close solutions, converge
to different local minima producing bending artefacts. In
contrast, PINs optimized with SGD can avoid local min-
ima [19].

Figure 10. Visuals showing non-rigid deformations modeled
using a second MLP similar to IMAvatar [20].

IoU Surface IoU Bounding Box

Subject SNARF SNARF-NC INS (ours) SNARF SNARF-NC INS (ours)

03375 70.16% 66.1% 71.13% 62.57% 70.24% 71.02%
50007 90.28% 83.9% 86.63% 97.77% 96.16% 96.11%
50022 92.19% 88.09% 92.58% 98.05% 96.68% 98.12%
50026 91.13% 80.54% 89.26% 97.67% 94.37% 97.13%
50004 89.6% 85.4% 88.96% 97.48% 96.3% 97.21%
50009 87.05% 83.87% 85.77% 95.89% 94.63% 93.47%
50021 89.76% 87.26% 90.46% 96.79% 95.58% 96.95%
50025 90.95% 86.12% 91.59% 97.35% 95.82% 97.55%
50027 89.54% 86.9% 85.91% 96.74% 95.79% 93.75%
50002 89.25% 84.41% 85.98% 97.55% 96.67% 97.02%
50020 90.31% 85.69% 88.74% 96.85% 95.15% 96.23%

Average 90.01% 85.22% 88.59% 97.21% 95.72% 96.35%

Table 6. Quantitative Results on Minimally Clothed Humans.
On DFAUST, INS outperforms SNARF-NC by a large margin
while performing competitively with SNARF, and being order
magnitude faster at reposing.

I. Subjectwise result breakdown

Expanding on the results from main draft, we also report
per-subject breakdown on DFAUST (Table 6) and CAPE
(Table 7) datasets.
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