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Figure 1. BEDLAM is a large-scale synthetic video dataset designed to train and test algorithms on the task of 3D human pose and shape
estimation (HPS). BEDLAM contains diverse body shapes, skin tones, and motions. Beyond previous datasets, BEDLAM has SMPL-X
bodies with hair and realistic clothing animated using physics simulation. With BEDLAM’s realism and scale, we find that synthetic data
is sufficient to train regressors to achieve state-of-the-art HPS accuracy on real-image datasets without using any real training images.

Abstract

We show, for the first time, that neural networks trained
only on synthetic data achieve state-of-the-art accuracy on
the problem of 3D human pose and shape (HPS) estima-
tion from real images. Previous synthetic datasets have
been small, unrealistic, or lacked realistic clothing. Achiev-
ing sufficient realism is non-trivial and we show how to
do this for full bodies in motion. Specifically, our BED-
LAM dataset contains monocular RGB videos with ground-
truth 3D bodies in SMPL-X format. It includes a diver-
sity of body shapes, motions, skin tones, hair, and cloth-
ing. The clothing is realistically simulated on the moving
bodies using commercial clothing physics simulation. We
render varying numbers of people in realistic scenes with
varied lighting and camera motions. We then train vari-
ous HPS regressors using BEDLAM and achieve state-of-
the-art accuracy on real-image benchmarks despite train-
ing with synthetic data. We use BEDLAM to gain insights
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†This work was performed when JY was at MPI-IS.

into what model design choices are important for accu-
racy. With good synthetic training data, we find that a
basic method like HMR approaches the accuracy of the
current SOTA method (CLIFF). BEDLAM is useful for a
variety of tasks and all images, ground truth bodies, 3D
clothing, support code, and more are available for research
purposes. Additionally, we provide detailed information
about our synthetic data generation pipeline, enabling oth-
ers to generate their own datasets. See the project page:
https://bedlam.is.tue.mpg.de/.

1. Introduction

The estimation of 3D human pose and shape (HPS)
from images has progressed rapidly since the introduc-
tion of HMR [36], which uses a neural network to regress
SMPL [49] pose and shape parameters from an image. A
steady stream of new methods have improved the accuracy
of the estimated 3D bodies [25, 37, 39, 42, 45, 83, 106]. The
progress, however, entangles two things: improvements to
the architecture and improvements to the training data. This
makes it difficult to know which matters most. To answer
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this, we need a dataset with real ground truth 3D bodies
and not simply 2D joint locations or pseudo ground truth.
To that end, we introduce a new, realistic, synthetic dataset
called BEDLAM (Bodies Exhibiting Detailed Lifelike An-
imated Motion) and use it to analyze the current state of the
art (SOTA). Fig. 1 shows example images from BEDLAM
along with the ground-truth SMPL-X [63] bodies.

Theoretically, synthetic data has many benefits. The
ground truth is “perfect” by construction, compared with
existing image datasets. We can ensure diversity of the
training data across skin tones, body shapes, ages, etc., so
that HPS methods are inclusive. The data can also be easily
repurposed to new cameras, scenes, and sensors. Conse-
quently, there have been many attempts to create synthetic
datasets to train HPS methods. While prior work has shown
synthetic data is useful, it has not been sufficient so far. This
is likely due to the lack of realism and diversity in existing
synthetic datasets.

In contrast, BEDLAM provides the realism necessary to
test whether “synthetic data is all you need”. Using BED-
LAM, we evaluate different network architectures, back-
bones, and training data and find that training only using
synthetic data produces methods that generalize to real im-
age benchmarks, obtaining SOTA accuracy on both 3D hu-
man pose and 3D body shape estimation. Surprisingly, we
find that even basic methods like HMR [36] achieve SOTA
performance on real images when trained on BEDLAM.

Dataset. BEDLAM contains monocular RGB videos to-
gether with ground truth 3D bodies in SMPL-X format. To
create diverse data, we use 271 body shapes (109 men and
162 women), with 100 skin textures from Meshcapade [3]
covering a wide range of skin tones. In contrast to previous
work, we add 27 different types of hair (Reallusion [1]) to
the head of SMPL-X. To dress the body, we hired a profes-
sional 3D clothing designer to make 111 outfits, which we
drape and simulate on the body using CLO3D [2]. We also
texture the clothing using 1691 artist-designed textures [6].
The bodies are animated using 2311 motions sampled from
AMASS [51]. Because AMASS does not include hand mo-
tions, we replace the static hands with hand motions sam-
pled from the GRAB dataset [84]. We render single people
as well as groups of people (varying from 3-10) moving in a
variety of 3D scenes (8) and HDRI panoramas (95). We use
a simple method to place multiple people in the scenes so
that they do not collide and use simulated camera motions
with various focal lengths. The synthetic image sequences
are rendered using Unreal Engine 5 [5] at 30 fps with mo-
tion blur. In total, BEDLAM contains around 380K unique
image frames with 1-10 people per image, for a total of 1M
unique bounding boxes with people.

We divide BEDLAM into training, validation, and test
sets with 75%, 20% and 5% of the total bounding boxes
respectively. While we make all the image data available,

we withhold the SMPL-X ground truth from the test set and
provide an automated evaluation server. For the training and
validation sets, we provide all the SMPL-X animations, the
3D clothing, skin textures, and all freely available assets.
Where we have used commercial assets, we provide infor-
mation about how to obtain the data and replicate our re-
sults. We also provide the details necessary for researchers
to create their own data.

Evaluation. With sufficient high-quality training data,
fairly simple neural-network architectures often produce
SOTA results on many vision tasks. Is this true for HPS
regression? To tackle this question, we train two different
baseline methods (HMR [36] and CLIFF [42]) on varying
amounts of data and with different backbones; HMR repre-
sents the most basic method and CLIFF the recent SOTA.
Since BEDLAM provides paired images with SMPL-X pa-
rameters, we train methods to directly regress these parame-
ters; this simplifies the training compared with methods that
use 2D training data. We evaluate on natural-image datasets
including 3DPW [89] and RICH [30], a laboratory dataset
(Human3.6M [31]), as well as two datasets that evaluate
body shape accuracy (SSP-3D [76] and HBW [19]).

Surprisingly, despite its age, we find that training HMR
on synthetic data produces results on 3DPW that are bet-
ter than many recently published results and are close to
CLIFF. We find that the backbone has a large impact on
accuracy, and pre-training on COCO is significantly better
than pre-training on ImageNet or from scratch. We perform
a large number of experiments in which we train with just
synthetic data, just real data, or synthetic data followed by
fine tuning on real data. We find that there is a significant
benefit to training on synthetic data over real data and that
fine tuning with real data offers only a small benefit.

A key property of BEDLAM is that it contains realisti-
cally dressed people with ground truth body shape. Con-
sequently, we compare the performance of methods trained
on BEDLAM with two SOTA methods for body shape re-
gression: SHAPY [19] and Sengupta et al. [77] using both
the HBW and SSP-3D datasets. CLIFF trained with BED-
LAM does well on both datasets, achieving the best overall
of all methods tested. This illustrates how methods trained
on BEDLAM generalize across tasks and datasets.

Summary. We propose a large synthetic dataset of re-
alistic moving 3D humans. We show that training on syn-
thetic dataset alone, even with a basic network architecture,
produces accurate 3D human pose and shape estimates on
real data. BEDLAM enables us to perform an extensive
meta-ablation study that illuminates which design decisions
are most important. While we focus on HPS, the dataset has
many other uses in learning 3D clothing models and action
recognition. BEDLAM is available for research purposes
together with an evaluation server and the assets needed to
generate new datasets.



2. Related work
There are four main types of data used to train HPS re-

gressors: (1) Real images from constrained scenarios with
high-quality ground truth (lab environments with motion
capture). (2) Real images in-the-wild with 2D ground truth
(2D keypoints, silhouettes, etc.). (3) Real images in-the-
wild with 3D pseudo ground truth (estimated from 2D or
using additional sensors). (4) Synthetic images with perfect
ground truth. Each of these has played an important role in
advancing the field to its current state. The ideal training
data would have perfect ground truth 3D human shape and
pose information together with fully realistic and highly di-
verse imagery. None of the above fully satisfy this goal. We
briefly review 1-3 while focusing our analysis on 4.

Real Images. Real images are diverse, complex, and
plentiful. Most methods that use them for training rely
on 2D keypoints, which are easy to manually label at
scale [8, 32, 46, 52]. Such data relies on human annota-
tors who may not be consistent, and only provides 2D con-
straints on human pose with no information about 3D body
shape. In controlled environments, multiple cameras and
motion capture equipment provide accurate ground truth
[11, 14, 16, 28, 30, 31, 35, 41, 58, 79, 87, 89, 100, 107]. In
general, the cost and complexity of such captures limits the
number of subjects, the variety of clothing, the types of mo-
tion, and the number of scenes.

Several methods fit 3D body models to images to get
pseudo ground truth SMPL parameters [34, 39, 56]. Net-
works trained on such data inherit any biases of the meth-
ods used to compute the ground truth; e.g. a tendency to es-
timate bent knees, resulting from a biased pose prior. Syn-
thetic data does not suffer such biases.

Most image datasets are designed for 3D pose estimation
and only a few have addressed body shape. SSP-3D [76]
contains 311 in-the-wild images of 62 people wearing tight
sports clothing with pseudo ground truth body shape. Hu-
man Bodies in the Wild (HBW) [19] uses 3D body scans
of 35 subjects who are also photographed in the wild with
varied clothing. HBW includes 2543 photos with “perfect”
ground truth shape. Neither dataset is sufficiently large to
train a general body shape regressor.

In summary, real data for training HPS involves a fun-
damental trade off. One can either have diverse and natural
images with low-quality ground truth or limited variability
with high-quality ground truth.

Synthetic. Synthetic data promises to address the limita-
tions of real imagery and there have been many previous
attempts. While prior work has shown synthetic data to be
useful (e.g. for pre-training), no prior work has shown it to
be sufficient without additional real training data. We hy-
pothesize that this is due to the fact that prior datasets have
either been too small or not sufficiently realistic. To date, no

state-of-the-art method is trained from synthetic data alone.
Recently, Microsoft has shown that a synthetic dataset of

faces is sufficiently accurate to train high-quality 2D feature
detection [92]. While promising, human bodies are more
complex. AGORA [62] provides realistic images of clothed
bodies from static commercial scans with SMPL-X ground
truth. SPEC [38] extends AGORA to more varied camera
views. These datasets have limited avatar variation (e.g. few
obese bodies) and lack motion.

Synthetic from real. Since creating realistic people us-
ing graphics is challenging, several methods capture real
people and then render them synthetically in new scenes
[26,53,54]. For example, MPI-INF-3DHP [53] captures 3D
people, augments their body shape, and swaps out clothing
before compositing the people on images. Like real data,
these capture approaches are limited in size and variety. An-
other direction takes real images of people plus information
about body pose and, using machine learning methods, syn-
thesizes new images that look natural [71, 102]. This is a
promising direction but, to date, no work has shown that
this is sufficient train HPS regressors.

Synthetic data without clothing. Synthesizing images
of 3D humans on image backgrounds has a long history
[80]. We focus on more recent datasets for training HPS re-
gressors for parametric 3D human body models like SCAPE
[9] (e.g. Deep3DPose [18]) and SMPL [49] (e.g. SUR-
REAL [88]). Both apply crude textures to the naked body
and then render the bodies against random image back-
grounds. In [18, 29], the authors use domain adaptation
methods to reduce the domain gap between synthetic and
real images. In [88] the authors use synthetic data largely
for pre-training, requiring fine tuning on real images.

Since realistic clothes and textures are hard to gener-
ate, several methods render SMPL silhouettes or part seg-
ments and then learn to regress HPS from these [64,73,96].
While one can generate an infinite amount of such data,
these methods rely on a separate process to compute sil-
houettes from images, which can be error prone. For exam-
ple, STRAPS [76] uses synthetic data to regress body shape
from silhouettes.

Synthetic data with rigged clothing. Another approach
renders commercial, rigged, body models for which the
clothing deformations are not realistic. For example PSP-
HDRI+ [23], 3DPeople [65], and JTA [24] use rigged char-
acters but provide only 3D skeletons so they cannot be used
for body shape estimation. The Human3.6M dataset [31]
includes mixed-reality data with rigged characters inserted
into real videos. There are only 5 sequences, 7.5K frames,
and a limited number of rigged models, making it too small
for training. Multi-Garment Net (MGN) [13] constructs a
wardrobe from rigged 3D scans but renders them on im-
ages with no background. Synthetic data has also been
used to estimate ego-motion from head-mounted cameras



Figure 2. Dataset construction. Illustration of each step in the process, shown for a single character. Left to right: (a) sampled body
shape. (b) skin texture. (c) clothing simulation. (d) cloth texture. (e) hair. (f) pose. (g) scene and illumination. (h) motion blur.

Figure 3. Skin tone diversity. Example body textures from 50 male
and 50 female textures, covering a wide range of skin tones.

[7, 86, 95]. HSPACE [10] uses 100 rigged people with 100
motions and 100 3D scenes. To get more variety, they fit
GHUM [94] to the scans and reshape them. They train an
HPS method [103] on the data and note that “models trained
on synthetic data alone do not perform the best, not even
when tested on synthetic data.” This statement is consistent
with the findings of other methods and points to the need
for increased diversity to achieve generalization.

Simulated clothing with images. Physics-based cloth
simulation provides greater realism than rigged clothing and
allows us to dress a wide range of bodies in varied clothing
with full control. The problem, however, is that physics
simulation is challenging and this limits the size and com-
plexity of previous datasets. Liang and Lin [43] and Liu
et al. [48] simulate 3D clothing draped on SMPL bodies.
They render the people on image backgrounds with limited
visual realism. BCNet [33] uses both physics simulation
and rigged avatars but the dataset is aimed at 3D clothing
modeling more than HPS regression. Other methods use a
very limited number of garments or body shapes [21, 91].

Simulated clothing without images. Several methods
drape clothing on the 3D body to create datasets for learning
3D clothing deformations [12,27,61,75,85]. These datasets
are limited in size and do not contain rendered images.

Summary. The prior work is limited in one or more
of these properties: body shapes, textures, poses, motions,
backgrounds, clothing types, physical realism, cameras, etc.
As a result, these datasets are not sufficient for training HPS
methods that work on real images.

3. Dataset

Each step in the process of creating BEDLAM is ex-
plained below and illustrated in Fig. 2. Rendering is per-
formed using Unreal Engine 5 (UE5) [5]. Additionally, the
Sup. Mat. provides details about the process and all the 3D
assets. The Supplemental Video shows example sequences.

Figure 4. Diversity of clothing and texture. Top: samples from
BEDLAM’s 111 outfits with real-world complexity. Bottom: each
outfit has several clothing textures. Total: 1691.

3.1. Dataset Creation

Body shapes. We want a diversity of body shapes, from
slim to obese. We get 111 adult bodies in SMPL-X format
from AGORA dataset. These bodies mostly correspond to
models with low BMI. To increase diversity, we sample an
additional 80 male and 80 female bodies with BMI > 30
from the CAESAR dataset [70]. Thus we sample body
shapes from a diverse pool of 271 body shapes in total.
The ground truth body shapes are represented with 11 shape
components in the SMPL-X gender-neutral shape space.
See Sup. Mat. for more details about the body shapes.

Skin tone diversity. HPS estimation will be used in a wide
range of applications, thus it is important that HPS solutions
be inclusive. Existing HPS datasets have not been designed
to ensure diversity and this is a key advantage of synthetic
data. Specifically, we use 50 female and 50 male commer-
cial skin albedo textures from Meshcapade [3] with mini-
mal clothing and a resolution of 4096x4096. These artist-
created textures represent a total of seven ethnic groups
(African, Asian, Hispanic, Indian, Mideast, South East
Asian and White) with multiple variations within each. A
few examples are shown in Fig. 3.

3D Clothing and textures. A key limitation of previous
synthetic datasets is the lack of diverse and complex 3D
clothing with realistic physics simulation of the clothing in
motion. To address this, we hired a 3D clothing designer
to create 111 unique real-world outfits, including but not



Figure 5. Clothing as texture maps for high-BMI bodies. Left:
example simulated clothing. Right: clothing texture mapped on
bodies with BMIs of 30, 40, and 50.

Figure 6. 10 examples of BEDLAM’s 27 hairstyles.

limited to T-shirts, shirts, jeans, tank tops, sweaters, coats,
duvet jackets, suits, gowns, bathrobes, vests, shorts, pants,
and skirts. Unlike existing synthetic clothing datasets, our
clothing designs have complex and realistic structure and
details such as pleats, pockets, and buttons. Example out-
fits are shown in Fig. 4. We use commercial simulation
software from CLO3D [2] to obtain realistic clothing defor-
mations with various body motions for the bodies from the
AGORA dataset (see Supplemental Video). This 3D dataset
is a unique resource that we will make available to support
a wide range of research on learning models of 3D clothing.

Diversity of clothing appearance is also important. For
each outfit we design 5 to 27 clothing textures with different
colors and patterns using WowPatterns [6]. In total we have
1691 unique clothing textures (see Fig. 4).

For high-BMI bodies, physics simulation of clothing
fails frequently due to the difficulty of garment auto-
resizing and interpenetration between body parts. For such
situations, we use clothing texture maps that look like cloth-
ing “painted” on the body. Specifically, we auto-transfer the
textures of 1738 simulated garments onto the body UV-map
using Blender. We then render high-BMI body shapes using
these textures (see Fig. 5).

Hair. We use the Character Creator (CC) software from
Reallusion [1] and purchased hairstyles to generate 27
hairstyles (Fig. 6). We auto-align our SMPL-X female and
male template mesh to the CC template mesh and then
transfer the SMPL-X deformations to it. We then apply the
hairstyles in the CC software to match our custom head-
shapes. We export the data to Blender to automatically pro-
cess the hair mesh vertices so that their world vertex po-
sitions are relative to the head node positioned at the ori-
gin. Note that vendor-provided plugins take care of the ex-
tensive shader setup needed for proper rendering of these
hair-card-based meshes. Finally the “virtual toupees” are

imported into Unreal Engine where they are attached to the
head nodes of the target SMPL-X animation sequences. The
world-pose of each toupee is then automatically driven by
the Unreal Engine animation system.

Human motions. We sample human motions from the
AMASS dataset [51]. Due to the long-tail distribution of
motions in the dataset, a naive random sampling leads to a
strong bias towards a small number of frequent motions, re-
sulting in low motion diversity. To avoid this, we make use
of the motion labels provided by BABEL [66]. Specifically,
we sample different numbers of motion sequences for each
motion category according to their motion diversity (see
Sup. Mat. for details). This leads to 2311 unique motions.
Each motion sequence lasts from 4 to 8 seconds. Naively
transferring these motions to new body shapes in the format
of joint angle sequences may lead to self-interpenetration,
especially for high-BMI bodies. To avoid this, we follow
the approach in TUCH [57] to resolve collisions among
body parts for all the high-BMI bodies. While the released
dataset is rendered at 30fps, we only use every 5th frame for
training and evaluation to reduce pose redundancy. The full
sequences will be useful for research on 3D human track-
ing, e.g. [67, 82, 98, 101].

Unfortunately, most motion sequences in AMASS con-
tain no hand motion. To increase realism, diversity, and
enable research on hand pose estimation, we add hand mo-
tions sampled from the GRAB [84] dataset. While these
hand motions do not semantically “match” the body motion,
the rendered sequences still look realistic, and are sufficient
for training full-body and hand regressors.

Scenes and lighting. We represent the environment either
through 95 panoramic HDRI images [4] or through 8 3D
scenes. We manually select HDRI panoramas that enable
the plausible placement of animated bodies on a flat ground
plane up to a distance of 10m. We randomize the viewpoint
into the scenes and use the HDRI images for image-based
lighting. For the 3D scenes we focus on indoor environ-
ments since the HDRI images already cover outdoor envi-
ronments well. To light the 3D scenes, we either use Light-
mass precalculated global illumination or the new Lumen
real-time global illumination system introduced in UE5 [5].

Multiple people in the scene. For each sequence we ran-
domly select between 1 and 10 subjects. For each subject
a random animation sequence is selected. We leverage bi-
nary ground occupancy maps and randomly place the mov-
ing people into the scene such that they do not collide with
each other or scene objects. See Sup. Mat. for details.

Cameras. For BEDLAM, we focus on cameras that one
naturally encounters in common computer vision datasets.
For most sequences we use a static camera with random-
ized camera extrinsics. The extrinsics correspond to typical
ground-level hand-held cameras in portrait and landscape



mode. Some sequences use additional extrinsics augmenta-
tion by simulating a cinematic orbit camera shot. Camera
intrinsics are either fixed at HFOV of 52 and 65 or zoom in
from 65 to 25 HFOV.

Rendering. We render the image sequences using the UE5
game engine rasterizer with the cinematic camera model
simulating a 16:9 DSLR camera with a 36x20.25mm sensor
size. The built-in movie render subsystem (Movie Render
Queue) is used for deterministic and high-quality image se-
quence generation. We simulate motion blur caused by the
default camera shutter speed by generating 7 temporal im-
age samples for each final output image. A single Windows
11 PC using one NVIDIA RTX3090 GPU was used to ren-
der all color images and store them as 1280x720 lossless
compressed PNG files with motion blur at an average rate
of more than 5 images/s.

Depth maps and segmentation. While our focus is on HPS
regression, BEDLAM can support other uses. Since the
data is synthetic, we also render out depth maps and seg-
mentation masks with semantic labels (hair, clothing, skin).
These are all available as part of the dataset release. See
Sup. Mat. for details.

3.2. Dataset Statistics

In summary, BEDLAM is generated from a combination
of 271 bodies, 27 hairstyles, 111 types of clothing, with
1691 clothing textures, 2311 human motions, in 95 HDRI
scenes and 8 3D scenes, with on average 1-10 person per
scene, and a variety of camera poses. See Sup. Mat. for
detailed statistics. This results in 10K motion clips, from
which we use 380K RGB frames in total. We compute the
size of the dataset in terms of the number of unique bound-
ing boxes containing individual people. BEDLAM contains
1M such bounding boxes, which we divide into sets of about
750K, 200K, and 50K examples for training, validation, and
test, respectively. See Sup. Mat. for a detailed comparison
of BEDLAM’s size and diversity relative to existing real
and synthetic datasets.

4. Experiments
4.1. Implementation Details

We train both HMR and CLIFF on the synthetic data
(BEDLAM+AGORA) using an HRNet-W48 [81] back-
bone and refer to these as BEDLAM-HMR and BEDLAM-
CLIFF respectively. We conduct different experiments with
the weights of the backbone initialized from scratch, using
ImageNet [22], or using a pose estimation network trained
on COCO [93]. We represent all ground truth bodies in a
gender neutral shape space to supervise training; we do not
use gender labels. We remove the adversary from HMR
and set the ground truth hand poses to neutral when training
BEDLAM-HMR and BEDLAM-CLIFF. We apply a variety

of data augmentations during training. We experiment with
a variety of losses; the final loss is a combination of MSE
loss on model parameters, projected keypoints, 3D joints,
and an L1 loss on 3D vertices.

We re-implement CLIFF (called CLIFF†) and train it on
only real image data using the same settings as BEDLAM-
CLIFF. Following [42], we train CLIFF† using Human3.6M
[31], MPI-INF-3DHP [53], and 2D datasets COCO [47] and
MPII [8] with pseudo-GT provided by the CLIFF annotator.
Table 1 shows that, when trained on real images, and fine-
tuned on 3DPW training data, CLIFF† matches the accuracy
reported in [42] on 3DPW and is even more accurate on
RICH. Thus our implementation can be used as a reference.

We also train a full body network, BEDLAM-CLIFF-X,
to regress body and hand poses. To train the hand network,
we create a dataset of hand crops from BEDLAM training
images using the ground truth hand keypoints. Since hands
are occluded by the body in many images, MediaPipe [50]
is used to detect the hand in the crop. Only the crops where
the hand is detected with a confidence greater than 0.8 are
used in the training. For details see Sup. Mat.

4.2. Datasets and Evaluation Metrics

Datasets. For training we use around 750K crops
from BEDLAM and 85K crops from AGORA [62]. We
also finetune BEDLAM-CLIFF and BEDLAM-HMR on
3DPW training data; these are called BEDLAM-CLIFF*
and BEDLAM-HMR*. To do so, we convert the 3DPW
[89] GT labels in SMPL-X format. We use 3DPW for eval-
uation but, since it has limited camera variation, we also
use RICH [30] which has more varied camera angles. Both
3DPW and RICH have limited body shape variation, hence
to evaluate body shape we use SSP-3D [76] and HBW [19].
In Sup. Mat. we also evaluate on Human3.6M [31] and ob-
serve that, without fine-tuning on the dataset, training on
BEDLAM produces more accurate results than training us-
ing real images; that is, BEDLAM generalizes better to the
lab data. To evaluate the output from BEDLAM-CLIFF-X,
we use the AGORA and BEDLAM test sets.

Evaluation metrics. We use standard metrics to evalu-
ate body pose and shape accuracy. PVE and MPJPE rep-
resent the average error in vertices and joints positions,
respectively, after aligning the pelvis. PA-MPJPE further
aligns the rotation and scale before computing distance.
PVE-T-SC is per-vertex error in a neutral pose (T-pose) after
scale-correction [76]. P2P20k is per-vertex error in a neutral
pose, computed by evenly sampling 20K points on SMPL-
X’s surface [19]. All errors are in mm.

For evaluation on 3DPW and SSP-3D, we convert our
predicted SMPL-X meshes to SMPL format by using a ver-
tex mapping D ∈ R10475×6890 [63]. The RICH dataset
has ground truth in SMPL-X format but hand poses are less
reliable than body pose due to noise in multi-view fitting.



Figure 7. Example BEDLAM-CLIFF results from all test datasets. Left to right: SSP-3D × 2, HBW × 3, RICH, 3DPW.

Method 3DPW (14) RICH (24)

PA-MPJPE MPJPE PVE PA-MPJPE MPJPE PVE

PARE* [37] 46.5 74.5 88.6 60.7 109.2 123.5
METRO* [44] 47.9 77.1 88.2 64.8 114.3 128.9
CLIFF* [42] 43.0 69.0 81.2 56.6 102.6 115.0
CLIFF†* 43.6 68.8 82.1 55.7 91.6 104.4
BEDLAM-HMR* 43.3 71.8 83.6 50.9 88.2 101.8
BEDLAM-CLIFF* 43.0 66.9 78.5 50.2 84.4 95.6

HMR [36] 76.7 130 N/A 90.0 158.3 186.0
SPIN [39] 59.2 96.9 116.4 69.7 122.9 144.2
SPEC [38] 53.2 96.5 118.5 72.5 127.5 146.5
PARE [37] 50.9 82.0 97.9 64.9 104.0 119.7
HybrIK [40] 48.8 80 94.5 56.4 96.8 110.4
Pang et. al. [60] 47.3 81.9 96.5 63.7 117.6 136.5
CLIFF† 46.4 73.9 87.6 55.7 90.0 102.0
BEDLAM-HMR 47.6 79.0 93.1 53.2 91.4 106.0
BEDLAM-CLIFF 46.6 72.0 85.0 51.2 84.5 96.6

Table 1. Reconstruction error on 3DPW and RICH. *Trained with
3DPW training set. †Trained on real images with same setting as
BEDLAM-CLIFF. Parenthesis: (#joints).

Hence, we use it only for evaluating body pose and shape.
We convert the ground truth SMPL-X vertices to SMPL for-
mat using D after setting the hand and face pose to neutral.
To compute joint errors, we use 24 joints computed from
these vertices using the SMPL joint regressor. For evalua-
tion on AGORA-test and BEDLAM-test, we use a similar
evaluation protocol as described in [62].

4.3. Comparison with the State-of-the-Art

Table 1 summarizes the key results. (1) Pre-training on
BEDLAM and fine-tuning with a mix of 3DPW and BED-
LAM training data gives the most accurate results on 3DPW
and RICH (i.e. BEDLAM-CLIFF* is more accurate than
CLIFF†* or [42]). (2) Using the same training, makes HMR
(i.e. BEDLAM-HMR*) nearly as accurate on 3DPW and
more accurate than CLIFF†* on RICH. This suggests that
even simple methods can do well if trained on good data. (3)
BEDLAM-CLIFF, with no 3DPW fine-tuning, does nearly
as well as the fine-tuned version and generalizes better to
RICH than CLIFF with, or without, 3DPW fine-tuning. (4)
Both CLIFF and HMR trained only on synthetic data out-
perform the recent methods in the field. This suggests that
more effort should be put into obtaining high-quality data.

See Sup. Mat. for SMPL-X results.
Table 2 shows that BEDLAM-CLIFF has learned to es-

timate body body shape under clothing. While SHAPY
[104] performs best on HBW and Sengputa et al. [77] per-
forms best on SSP-3D, both of them perform poorly on
the other dataset. Despite not seeing either of the train-
ing datasets, BEDLAM-CLIFF ranks 2nd on SSP-3D and
HBW. BEDLAM-CLIFF has the best rank averaged across
the datasets, showing its generalization ability.

Qualitative results on all these benchmarks are shown in
Fig. 7. Note that, although we do not assign gender labels to
any of the training data, we find that, on test data, methods
trained on BEDLAM predict appropriately gendered body
shapes. That is, they have automatically learned the associ-
ation between image features and gendered body shape.

4.4. Ablation Studies

Table 3 shows the effect of varying datasets, backbone
weights and percentage of data; see Sup. Mat. for the full
table with results for HMR. We train with synthetic data
only and measure the performance on 3DPW. Note that the
backbones are pre-trained on image data, which is standard
practice. Training them from scratch on BEDLAM gives
worse results. It is sufficient to train using simple 2D task
for which there is plentiful data. Similar to [60], we find that
training the backbone on a 2D pose estimation task (COCO)
is important. We also vary the percentage of BEDLAM
crops used in training. Interestingly, we find that uniformly
sampling just 5% of the crops from BEDLAM produces
reasonable performance on 3DPW. Performance monoton-
ically improves as we add more training data. Note that
5% of BEDLAM, i.e. 38K crops, produces better results
than 85K crops from AGORA, suggesting that BEDLAM
is more diverse. Still, these synthetic datasets are comple-
mentary, with our best results coming from a combination
of the two. We also found that realistic clothing simulation
leads to significantly better results than training with tex-
tured bodies. This effect is more pronounced when using a
backbone pre-trained on ImageNet rather than COCO. See
Sup. Mat. for details.



Method Model SSP-3D HBW Average
PVE-T-SC Rank P2P20k Rank Rank

HMR [36] SMPL 22.9 8 - - -
SPIN [39] SMPL 22.2 7 29 4 5.5
SHAPY [19] SMPL-X 19.2 6 21 1 3.5
STRAPS [76] SMPL 15.9 4 47 6 5
Sengupta et al. [78] SMPL 15.2 3 - - -
Sengupta et al. [77] SMPL 13.6 1 32 5 3
CLIFF† SMPL 18.4 5 27 3 4
BEDLAM-CLIFF SMPL-X 14.2 2 22 2 2

Table 2. Per-vertex 3D body shape error on the SSP-3D and HBW
test set in T-pose (T). SC refers to scale correction.

Method Dataset Backbone Crops % PA-MPJPE MPJPE PVE

CLIFF B+A scratch 100 61.8 97.8 115.9
CLIFF B+A ImageNet 100 51.8 82.1 96.9
CLIFF B+A COCO 100 47.4 73.0 86.6

CLIFF B COCO 5 54.0 80.8 96.8
CLIFF B COCO 10 53.8 79.9 95.7
CLIFF B COCO 25 52.2 77.7 93.6
CLIFF B COCO 50 51.0 76.3 91.1

CLIFF A COCO 100 54.0 88.0 101.8
CLIFF B COCO 100 50.5 76.1 90.6

Table 3. Ablation experiments on 3DPW. B denotes BEDLAM
and A denotes AGORA. Crop %’s only apply to BEDLAM.

5. Limitations and Future Work

Our work demonstrates that synthetic human data can
stand in for real image data. By providing tools to enable re-
searchers to create their own data, we hope the community
will create new and better synthetic datasets. To support
that effort, below we provide a rather lengthy discussion of
limitations and steps for improvement; more in Sup. Mat.

Open source assets. There are many high-quality com-
mercial assets that we did not use in this project because
their licences restrict their use in neural network training.
This is a significant impediment to research progress. More
open-source assets are needed.

Motion and scenes. The human motions we use are
randomly sampled from AMASS. In real life, clothing and
motions are correlated, as are scenes and motions. Addi-
tionally, people interact with each other and with objects in
the world. Methods are needed to automatically synthesize
such interactions realistically [99]. Also, the current dataset
has relatively few sitting, lying, and complex sports poses,
which are problematic for cloth simulation.

Hair. BEDLAM lacks hair physics, long hairstyles, and
hair color diversity. Our solution, based on hair cards, is
not fully realistic and suffers from artifacts under certain
lighting conditions. A strand-based hair groom solution
would allow long flowing hair with hair-body interaction
and proper rendering with diverse lighting.

Body shape diversity. Our distribution of body shapes
is not uniform (see Sup. Mat.). Future work should use a
more even distribution and add children and people with di-
verse body types (scoliosis, amputees, etc.). Note that drap-
ing high-BMI models in clothing is challenging because the

mesh self-intersects, causing failures of the cloth simula-
tion. Retargeting AMASS motions to high-BMI subjects is
also problematic. We describe solutions in Sup. Mat.

More realistic body textures. Our skin textures are
diverse but lack details and realistic reflectance proper-
ties. Finding high-quality textures with appropriate li-
cences, however, is difficult.

Shoes. BEDLAM bodies are barefoot. Adding basic
shoes is fairly straightforward but the general problem is
actually complex because shoes, such as high heels, change
body posture and gait. Dealing with high heels requires re-
targeting, inverse kinematics, or new motion capture.

Hands and Faces. There is very little mocap data with
the full body and hands and even less with hands interacting
with objects. Here we ignored facial motion; there are cur-
rently no datasets that evaluate full body and facial motion.

6. Discussion and Conclusions
Based on our experiments we can now try to answer

the question “Is synthetic data all you need?” Our results
suggest that BEDLAM is sufficiently realistic that meth-
ods trained on it generalize to real scenes that vary signif-
icantly (SSP-3D, HBW, 3DPW, and RICH). If BEDLAM
does not well represent a particular real-image domain
(e.g. surveillance-camera footage), then one can re-purpose
the data by changing camera views, imaging model, mo-
tions, etc. Synthetic data will only get more realistic, clos-
ing the domain gap further. Then, does architecture mat-
ter? The fact that BEDLAM-HMR outperforms many re-
cent, more sophisticated, methods argues that it may be less
important than commonly thought.

There is one caveat to the above, however. We find
that HPS accuracy depends on backbone pre-training. Pre-
training the backbone for 2D pose estimation on COCO ex-
poses it to all the variability of real images and seems to
help it generalize. We expect that pre-training will eventu-
ally be unnecessary as synthetic data improves in realism.

We believe that there is much more research that BED-
LAM can support. None of the methods tested here estimate
humans in world coordinates [82, 98]. The best methods
also do not exploit temporal information or action seman-
tics. BEDLAM can support new methods that push these
directions. BEDLAM can also be used to model 3D cloth-
ing and learn 3D avatars using implicit shape methods.
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[3] Meshcapade GmbH, Tübingen, Germany. https://

meshcapade.com, 2022. 2, 4
[4] Poly Haven. https://polyhaven.com/hdris,

2022. 5
[5] Unreal Engine 5. https://www.unrealengine.

com, 2022. 2, 4, 5
[6] WowPatterns. https://www.wowpatterns.com/,

2022. 2, 5
[7] Hiroyasu Akada, Jian Wang, Soshi Shimada, Masaki Taka-

hashi, Christian Theobalt, and Vladislav Golyanik. Un-
realEgo: A new dataset for robust egocentric 3D human
motion capture. In European Conference on Computer Vi-
sion (ECCV), 2022. 4

[8] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and
Bernt Schiele. 2D human pose estimation: New benchmark
and state of the art analysis. In Computer Vision and Pattern
Recognition (CVPR), 2014. 3, 6

[9] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller,
Sebastian Thrun, Jim Rodgers, and James Davis. SCAPE:
Shape completion and animation of people. Transactions
on Graphics (TOG), 24(3):408–416, 2005. 3

[10] Eduard Gabriel Bazavan, Andrei Zanfir, Mihai Zanfir,
William T. Freeman, Rahul Sukthankar, and Cristian Smin-
chisescu. HSPACE: Synthetic parametric humans animated
in complex environments. arXiv, 2112.12867, 2021. 4, 16,
18

[11] Yizhak Ben-Shabat, Xin Yu, Fatemeh Saleh, Dylan Camp-
bell, Cristian Rodriguez-Opazo, Hongdong Li, and Stephen
Gould. The IKEA ASM dataset: Understanding people
assembling furniture through actions, objects and pose.
In Winter Conference on Applications of Computer Vision
(WACV), 2021. 3

[12] Hugo Bertiche, Meysam Madadi, and Sergio Escalera.
CLOTH3D: Clothed 3D humans. In European Conf. on
Computer Vision (ECCV), pages 344–359. Springer Inter-
national Publishing, 2020. 4

[13] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt,
and Gerard Pons-Moll. Multi-Garment Net: Learning to
dress 3D people from images. In IEEE International Con-
ference on Computer Vision (ICCV). IEEE, oct 2019. 3

[14] Bharat Lal Bhatnagar, Xianghui Xie, Ilya Petrov, Cristian
Sminchisescu, Christian Theobalt, and Gerard Pons-Moll.
BEHAVE: Dataset and method for tracking human object
interactions. In Computer Vision and Pattern Recognition
(CVPR), 2022. 3

[15] Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khved-
chenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A.
Kalinin. Albumentations: Fast and flexible image augmen-
tations. Information, 11(2), 2020. 17

[16] Zhongang Cai, Daxuan Ren, Ailing Zeng, Zhengyu Lin,
Tao Yu, Wenjia Wang, Xiangyu Fan, Yangmin Gao, Yi-
fan Yu, Liang Pan, Fangzhou Hong, Mingyuan Zhang,

Chen Change Loy, Lei Yang, and Ziwei Liu. HuMMan:
Multi-modal 4D human dataset for versatile sensing and
modeling. In European Conference on Computer Vision,
2022. 3

[17] Zhongang Cai, Mingyuan Zhang, Jiawei Ren, Chen Wei,
Daxuan Ren, Zhengyu Lin, Haiyu Zhao, Lei Yang, and Zi-
wei Liu. Playing for 3d human recovery. arXiv preprint
arXiv:2110.07588, 2021. 18

[18] Wenzheng Chen, Huan Wang, Yangyan Li, Hao Su, Zhen-
hua Wang, Changhe Tu, Dani Lischinski, Daniel Cohen-
Or, and Baoquan Chen. Synthesizing training images for
boosting human 3D pose estimation. In 2016 Fourth Inter-
national Conference on 3D Vision (3DV), pages 479–488.
IEEE, 2016. 3

[19] Vasileios Choutas, Lea Müller, Chun-Hao P. Huang, Siyu
Tang, Dimitrios Tzionas, and Michael J. Black. Accurate
3D body shape regression using metric and semantic at-
tributes. In IEEE/CVF Conf. on Computer Vision and Pat-
tern Recognition (CVPR), pages 2718–2728, June 2022. 2,
3, 6, 8

[20] Vasileios Choutas, Georgios Pavlakos, Timo Bolkart, Dim-
itrios Tzionas, and Michael J. Black. Monocular expres-
sive body regression through body-driven attention. In Eu-
ropean Conference on Computer Vision (ECCV), volume
12355, pages 20–40, 2020. 20
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Supplementary Material
This document supplements the main text with (1) More

details about the creation of the dataset. (2) More statistics
about the dataset’s contents. (3) More example images from
the dataset. (4) Experimental results referred to in the main
text. (5) Visual presentation of the qualitative results.

In addition to this document, please see the Supple-
mental Video, where the motions in the dataset are pre-
sented. The video, data, and related materials can be found
at https://bedlam.is.tue.mpg.de/

BEDLAM: Definition

noun
A scene of uproar and confusion: there was bed-
lam in the courtroom.

The name of the dataset refers to the fact that the synthetic
humans in the dataset are animated independently of each
other and the scene. The resulting motions have a chaotic
feel; please see the video for examples.

A. Dataset creation

Figure 8. Body diversity in BEDLAM. Top: BMI distribution of
the 271 different body shapes uses in BEDLAM. Bottom: BMI
distribution in all rendered videos; 55009 in total. Blue bars repre-
sent bodies from the AGORA dataset, while orange bars represents
high-BMI bodies from CAESAR dataset. BEDLAM uses both to
cover a wide range of BMIs.

Body shape diversity. The AGORA [62] dataset has 111
adult bodies in SMPL-X format [63]. These bodies mostly
correspond to models with low BMI. Why do we use the
bodies from AGORA? To create synthetic clothing we fo-
cused on creating synthetic versions of the clothed scans in
AGORA. That is, we create “digital twins” of the AGORA
scans. Our hope is that having 3D scans paired with sim-
ulated digital clothing will be useful for research on 3D

clothing. Thus our 3D clothing is designed around AGORA
bodies. Note that we do not make use of this property in
BEDLAM but did this to enable future use cases. To in-
crease diversity beyond AGORA, we sample an additional
80 male and 80 female bodies with BMI > 30 from the
CAESAR dataset [70].

Note that the AGORA and CAESAR bodies are repre-
sented in gendered shape spaces using 10 shape compo-
nents. When we render the images, we use these gendered
bodies. For BEDLAM we use a gender-neutral shape space,
enabling networks to automatically learn the appropriate
body shape within this space, effectively learning to recog-
nize gender. To make the ground truth shapes for BEDLAM
in this gender-neutral space, we fit the gender-neutral model
with 11 SMPL-X shape components to the gendered bodies.
This is trivial since the meshes are in full correspondence.
We use 11 shape components because, in the gender neutral
space, the first component roughly captures the differences
between male and female body shapes. Thus, adding one
extra component means that the SMPL-X ground truth (GT)
approximates the original gendered body shapes. There is
some loss of fidelity but it is minimal; the V2V error be-
tween the rendered bodies and the GT bodies in neutral pose
is 2.4mm.

Ideally, we want a diversity of body shapes, from slim
to obese. Figure 8 shows the distribution of body BMIs
in the training set. Specifically, we show the distribution
of AGORA and CAESAR bodies, from which we sample.
We also show the final distribution of BMIs in the training
images.

Notice that the AGORA bodies are almost all slim. We
add the CAESAR bodies to increase diversity and enable
the network to predict high-BMI shapes. There is a dip
in the distribution between 25-30 BMI. This happens to be
precisely where the peak of the real population lies. De-
spite this lack of average BMIs, BEDLAM does a good job
of predicting body shape, suggesting that it has learned to
generalize.

Note that is it not clear what the right distribution for
training is – one could mimic the distribution of a specific
population or uniformly sample across BMIs. We plan to
evaluate this and increase the diversity of the dataset; please
check the project page for updates. Future work should also
expand the types of bodies used to include children and peo-
ple with diverse body types (athletes, little people, scolio-
sis, amputees, etc.). Note that draping high-BMI models
in clothing is challenging because the mesh self-intersects,
causing failures of the cloth simulation. Future work could
address this by automatically removing such intersections.
Additionally, there is little motion capture data of obese
people. So we need to retarget AMASS motions [51] to
high-BMI subjects. But this is also problematic. Naive re-
targeting of motion from low-BMI bodies to high-BMI bod-
ies results in interpenetration.

https://bedlam.is.tue.mpg.de/


Figure 9. Clothing deformation is well modeled by physics-based
simulation.

Figure 10. Examples of animation ground trajectories. Top-view
pelvis trajectories, color coded by subject. These trajectories are
automatically placed so that the bodies do not collide. Here, 15
sample sequences are shown with varying numbers of subjects.

Here we use a simple solution to this problem. Given a
motion sequence from AMASS, we first replace the original
body shape with a high-BMI body. Then, we optimize the
pose for each frame to minimize the body-body intersec-
tion using the code provided by TUCH [57]. Although this
resolves interpenetration between body parts, it can create
jittery motion sequences. As a remedy, we then smooth the
jittery motion with a Gaussian kernel. Although this sim-
ple solution does not guarantee a natural motion without
body-body interpenetration, it is sufficient to create a good
amount of valid motion sequences for larger bodies. Future
work should address the capture or retargeting of motion for
high-BMI body shapes.

Skin tone diversity. Our skin tones were provided by
Meshcapade GmbH and are categorized into several ethnic
backgrounds, with skin-tone variety within each category.
To generate BEDLAM subjects, we sample uniformly from
the Meshcapade skins. This means the final renders are
sampled with the following representations

• African 20%,

• Asian 24%,

• Hispanic 6%,

• Indian 20%,

• Mideast 6%,

• South East Asian 10%,

• White 14%.

The same proportions hold in the training, validation and
test sets.

Motion sampling. Due to the imbalanced distribution of
motions in AMASS, we use the motion labels from BA-
BEL [66] to sample the motions for a wide and even cov-
erage of the motion space. After visualizing the motions in
each labelled category, we manually assign the number of
motions sampled from each category. Specifically, we sam-
ple 64 sequences for motions such as “turn”, “cartwheel”,
“bend”, “sit ”, “touch ground”, etc. We sample 4 sequences
from motion labels containing less pose variation, such as
“draw”, “smell”, “lick”, “listen ”, “look”, etc. We do not
sample any sequences from labels indicating static poses,
for example, “stand”, “a pose”, and “t pose”. For the re-
maining motion labels, we sample 16 random sequences
from each. Each sampled motion sequence lasts from 4 to
8 seconds.

Clothing. Our outfits are designed to reflect real-world
clothing complexity. We have layered garments and de-
tailed structures such as pleats and pockets. We also have
open jackets and many wide skirts, which usually have large
deformation under different body motion. These deforma-
tions can only be well modeled with a physics-based simu-
lation. See Fig. 9 for examples.

Putting multiple people in the scene. For each sequence
we randomly select between 1 and 10 subjects. For each
subject a random animation sequence is selected. The
shortest animation sequence determines the image sequence
length to ensure that there are no “frozen” body poses. We
then pick a random sub-motion of the desired sequence
length from each body motion in the sequence. Next the
body motions are placed in a desired target area of the scene
at a randomized position with a randomized camera yaw.
To avoid overlapping body motions and collisions with the
3D environment, we use 2D binary ground plane occupancy
masks of the pelvis location for each randomly placed mo-
tion. The order of motion placement is determined by the
ground plane pelvis coverage bounding box. This ensures
that walking motions, which are challenging to place in a
limited space, have the maximum free ground space avail-
able before more constrained motions fill the remaining



space; cf. [10]. Generated root trajectories can be seen in
Fig. 10. This is a simple strategy (cf. [10]) and future work
should explore the generation or placement of motions that
make more sense together and with respect to the scene.
One direction would use MIME [99] to take human motions
and produce 3D scenes that are consistent with them.

Additional limitations: Hair and shadows. Designing
high-quality hair assets requires experienced artists. Here
we used a commercial hair solution based on “hair cards”;
these are simpler than strand-based methods. The downside
is that they require the use of temporal accumulation buffers
in the deferred rendering system. This can introduce ghost-
ing artefacts when rendering fast motions at low frame rates.
We also observed hair shader illumination issues under cer-
tain conditions. When used with the new real-time global
illumination system (Lumen) in Unreal Engine 5 (UE5),
some hairstyles exhibit a strong hue shift. Also, the num-
ber of hair colors that we have is limited. When used in
the HDRI environments, with ray traced HDRI shadows en-
abled, most hairstyles turn black. For this reason we do not
use ray traced HDRI shadows in the HDRI environment ren-
ders, though the 3D scenes do have cast shadows. Adding
ground contact shadows to the HDRI scenes would require
the use of a separate ground shadow caster render pass to
composite the shadow into the image. We have not pursued
this because we plan to upgrade the hair assets to remove
these issues for future releases of the dataset.

Other body models. BEDLAM is designed around
SMPL-X but many methods in the field use SMPL [49].
In particular, most, if not all, current methods that process
video sequences are based on SMPL and not SMPL-X. We
will provide the ground truth in SMPL format as well for
backward compatibility. We also plan to support other body
models like GHUM [94] or SUPR [59] in the future.

Additional ground truth data: Depth maps and seman-
tic segmenation. Since BEDLAM is rendered with UE5,
we can render out more than RGB images. In particular, we
render depth maps and segmentation masks as illustrated
in Fig. 11. The segmentation information includes seman-
tic labels for hair, clothing and skin. With these additional
forms of ground truth, BEDLAM can be used to train and
evaluate methods that regress depth from images, fit bodies
to RGB-D data, perform semantic segmentation, etc.

Assets. We will make available the rendered images and
the SMPL-X ground truth. We also release the 3D clothing
and clothing textures as well as the skin textures. We also
will make available the process to create more data. All
assets used are described in Table 4. The table provides
a “shopping list” to recreate BEDLAM. The only asset that

presents a problem for recreating BEDLAM is the hair since
new licenses of the the hair assets prohibit training of neural
networks (we acquired the data under an older license). This
motivates us to develop new hair assets with an unrestricted
license. More information about how to create new data is
provided on the project website.

B. Comparison to other datasets
Table 5 compares synthetic datasets mentioned in the re-

lated work section of the main paper. Here we only sur-
vey methods that provide images with 3D ground truth; this
excludes datasets focused solely on 3D clothing modeling.
Some of the listed datasets are not public but we include
them anyway and some information is not provided in the
publications (“unk.” in the table).

Methods vary in terms of the number of subjects, from a
handful of bodies to over 1000 in the case of Ultrapose. Ul-
trapose, however, is not guaranteed to have realistic bodies
and the dataset is biased towards mostly thin Asian bodies.
The released dataset also has blurred faces. The number
of frames also varies significantly among datasets. To get a
sense of the diversity of images, one must multiply the num-
ber of frames by the average number of subjects per image
(Sub/image).

The methods vary in how images are generated. The
majority composite a rendered 3D body onto an image
background. This has limited realism. Human3.6M has
mixed reality data in which simple graphics characters
are inserted into real scenes using structure from motion.
Mixed/composite methods capture images of real people
with a green screen in a multi-camera setup. They can then
get pseudo-ground tuth and composite the original images
on new backgrounds. In the table, “rendered” means that
the synthetic body is rendered in a scene (HDRI panorama
or 3D model) with reasonable lighting. These are the most
realistic methods.

Clothing in previous datasets takes several forms. The
simplest is a texture map on the SMPL body surface (like
in SURREAL [88]). Some methods capture real clothing or
use scans of real clothing. Another class of methods uses
commercial “rigged” models with rigged clothing. This
type of clothing lacks the realism of physics simulation.
Most methods that do physics simulation use a very limited
number of garments (often as few as 2) due to the complex-
ity and cost.

It is hard to get good, comparable, data about motion di-
versity in these datasets. Here we list numbers of motions
gleaned from the papers but these are quite approximate.
Some of the low numbers describe classes of motions that
may be repeated with some unknown number of variations.
At the same time, some of the larger numbers may lack di-
vesity. With BEDLAM, we are careful to sample a diverse
set of motions.



Figure 11. Additional ground truth: Depth maps and semantic segmentation masks. The segmentation maps are color coded for each
individual and each material type (hair, clothing, skin).

Asset Type Name Source

Body Texture Various Meshcapade GmbH, https://meshcapade.com
Clothing Texture Various WowPatterns, https://www.wowpatterns.com/
Hair Prime Hairstyles Reallusion, https://www.reallusion.com/ContentStore/Character-Creator/Pack/Prime-hairstyles/
Hair Trendy Hairstyles for Men Vol. 1 Reallusion, https://www.reallusion.com/ContentStore/Pack/universal-hairstyles-vol-1
Hair Trendy Hairstyles for Men Vol. 2 Reallusion, https://www.reallusion.com/ContentStore/Pack/universal-hairstyles-vol-2
Environment - HDRI Various free HDRIs Poly Haven, CC0 1.0 Universal Public Domain Dedication, https://polyhaven.com/hdris
Environment - 3D ArchViz User Interface 3 https://www.unrealengine.com/marketplace/en-US/product/archviz-user-interface-3
Environment - 3D Big Office https://www.unrealengine.com/marketplace/en-US/product/big-office
Environment - 3D High School Basketball Gym https://www.unrealengine.com/marketplace/en-US/product/high-school-basketball-gym-day-night-afternoon-midnight-lighting
Environment - 3D Sports Stadium https://www.unrealengine.com/marketplace/en-US/product/sports-stadium
Environment - 3D Suburb Neighborhood House Pack https://www.unrealengine.com/marketplace/en-US/product/suburb-neighborhood-house-pack-modular

Table 4. Third-party assets used for rendering BEDLAM. All 3D environments are from the Unreal Marketplace.

For comparison with real-image datasets, 3DPW con-
tains 60 sequences captured with a moving camera, with
roughly 51K frames, and 7 subjects in a total of 18 cloth-
ing styles. With roughly 2 subjects per frame, this gives
around 100K unique bounding boxes. Human3.6M train-
ing data has 1,464,216 frames captured by 4 static cameras
at 50 fps, which means there are 366K unique articulated
poses. If one reduces the frame rate to 30 fps, that gives
roughly 220K bounding boxes of 5 subjects performing 15
different types of motions. We observe that the total num-
ber of frames is less important than the diversity of those
frames in terms of scene, body, pose, lighting, and clothing.

C. Implementation Details
BEDLAM-CLIFF-X. Since most HPS methods output
SMPL bodies, we focus on that in the main paper and de-
scribe the SMPL-X methods here. Specifically, we use
BEDLAM hand poses to train a full body network called
BEDLAM-CLIFF-X. For this, we train a separate hand net-
work on hand crops from BEDLAM with an HMR architec-
ture but replace SMPL with the MANO hand [72], which is
compatible with SMPL-X. We merge the body pose out-
put θb ∈ R22×3 from BEDLAM-CLIFF (see Sec. 4.1 of
the main paper) and hand pose output θh ∈ R16×3 from
the hand network to get the full body pose with articulated
hands θfb ∈ R55×3. The face parameters, θjaw, θleye and
θreye are kept as neutral. Since both BEDLAM-CLIFF and
the hand network output different wrist poses, we cannot
merge them directly. Hence, we train a small regressor Rfb

to combine them.
Specifically, we define the body pose θb = {θ̂b, θelbow,

θbwrist } and and hand pose θh = {θhwrist θfingers}, where
θ̂b ∈ R20×3 represents the first 20 pose parameters of
SMPL-X. Rfb takes global average pooled features as well
as θb and θh from the BEDLAM-CLIFF and hand networks,
and outputs θfb = {θ̂b, θelbow + ∆elbow, θbwrist+∆wrist,
θfingers }. Basically, Rfb learns an update of the elbow
and wrist pose from the body network using information
from both the body and hand network. Since we learn only
an update on the wrist pose generated by the body network,
this prevents the unnatural bending of the wrists. Similar
to BEDLAM-CLIFF, to train BEDLAM-CLIFF-X, we use
a combination of MSE loss on model parameters, projected
keypoints, 3D joints, and an L1 loss on 3D vertices. All
other details can be found the code (see project page).

Data augmentation. A lot of data augmentation is in-
cluded during training, including random crops, scale, dif-
ferent kinds of blur and image compression, brightness and
contrast modification, noise addition, gamma, hue and satu-
ration modification, conversion to grayscale, and downscal-
ing using [15].

D. Supplemental experiments
D.1. Ablation of training data and backbones

Table 6 expands on Table 3 from the main paper, pro-
viding the full set of dataset ablation experiments. The key



Dataset #Sub #Frames Image Subj/image Clothing Motion Ground truth

3D HUMANS-Train [26] 19 50K composite 1 captured >15 SMPL
SURREAL [88] 145 ≈6.5M composite 1 texture > 2000 SMPL
Human3.6M [31] few 7.5K mixed reality 1 rigged unk. 3D joints
MPI-INF-3DHP-Train [53] 8 >1.3M mixed/composite 1 real 8+ 3D joints
MuCo-3DHP [54] 8 ≈400K mixed/composite 1-4 real 8 3D joints
Daněček et al. [21] 10 unk. rendered (simple) 1 physics 20 min unk.
Liang and Lin [43] 100 128K composite 1 physics 5 seqs SMPL
BCNet (a) [33] 285 13K composite 1 rigged unk. SMPL
BCNet (b) [33] 3048 17K composite 1 static physics 55 SMPL
Liu et al. [48] unk. 3M composite 1 physics 5k SMPL
Ultrapose [97] >1000 ≈500K composite 1 physics n/a dense points
3DPeople [65] 80 ≈2.5M composite 1 rigged 70 3D joints
HSPACE [10] 100 1M rendered 5 avg. rigged (100) 100 GHUM
GTA-Human [17] >600 ≈ 1.4M game 1 rigged 20K SMPL
AGORA [62] >350 ≈18K rendered 5-15 scans n/a SMPL-X, SMPL

BEDLAM (ours) 217 380K rendered 1-10 physics (110) 2311 SMPL-X

Table 5. Comparison of synthetic human datasets that provide images with 3D human pose annotations. See text.

Method Dataset Backbone Crops % PA-MPJPE MPJPE PVE

HMR B+A scratch 100 67.9 108.8 129.0
HMR B+A ImageNet 100 57.3 91.7 108.8
HMR B+A COCO 100 47.6 79.0 93.1

CLIFF B+A scratch 100 61.7 96.5 115.0
CLIFF B+A ImageNet 100 51.8 82.1 96.9
CLIFF B+A COCO 100 47.4 73.0 86.6

HMR B COCO 5 55.8 86.9 104.3
HMR B COCO 10 55.5 85.7 102.9
HMR B COCO 25 53.9 83.9 100.4
HMR B COCO 50 53.8 81.1 97.3
HMR B+A COCO 100 47.6 79.0 93.1

CLIFF B COCO 5 54.0 80.8 96.8
CLIFF B COCO 10 53.8 79.9 95.7
CLIFF B COCO 25 52.2 77.7 93.6
CLIFF B COCO 50 51.0 76.3 91.1
CLIFF B+A COCO 100 47.4 73.0 86.6

HMR A COCO 100 58.3 94.9 109.0
HMR B COCO 100 51.2 80.6 96.1
HMR B+A COCO 100 47.6 79.0 93.1

CLIFF A COCO 100 54.0 88.0 101.8
CLIFF B COCO 100 50.5 76.1 90.6
CLIFF B+A COCO 100 47.4 73.0 86.6

Table 6. Ablation experiments on 3DPW. B denotes BEDLAM
and A denotes AGORA. Crops % only applies to BEDLAM.

takeaways are: (1) training with a backbone pretrained on
the 2D pose-estimation task on COCO produces the best
results, (2) training from scratch on BEDLAM does not
work as well as either pre-training on ImageNet or COCO,
(3) training only on BEDLAM is better than training only
on AGORA, (4) training on BEDLAM+AGORA is consis-
tently better than using either alone (note that both are syn-
thetic), (5) one can get by with using a fraction of BEDLAM
(50% or even 25% gives good performance), but training
error continues to decrease up to 100%. All of this suggest
that there is still room for improvement in the synthetic data
in terms of variety.

D.2. Ablation on losses

To understand which loss terms are important, we per-
form an ablation study on standard losses used in training
HPS methods including LSMPL, Lj3d, Lj2d, Lv3d, Lv2d. In-
dividual losses are described here and the ablation on them
is reported in Table 7.

LSMPL = ∥θ̂ − θ∥+ ∥β̂ − β∥

Lj3d = ∥Ĵ − J ∥

Lj2d = ∥ĵ − j∥

Lv3d = ∥V̂ − V∥

Lv2d = ∥v̂ − v∥

x̂ denotes the ground truth for the corresponding variable
x and ∥·∥ is the type of loss that can be L1 or L2. For
shape we always use L1 norm. J , V , β and θ denote the 3D
joints, 3D vertices, shape and pose parameters of SMPL-X
model respectively. j and v denote the 2D joints and ver-
tices projected into the full image using the predicted cam-
era parameters similar to [42]. θ is predicted in a 6D rota-
tion representation form [108] and converted to a 3D axis-
angle representation when passed to SMPL-X model. Since
we set the hand poses to neutral in BEDLAM-CLIFF, we
use only the first 22 pose parameters in the training loss.
We use a subset of BEDLAM training data for this ablation
study. Note that, to compute Lv2d we use a downsampled
mesh with 437 vertices, computed using the downsampling
method in [68]. We find this optimal for training speed
and performance. Since the downsampling module samples
more vertices in regions with high curvature, it helps pre-
serve the body shape and we can store the sampled vertices
directly in memory without the need to load them during



Loss type SSP-3D HBW

PVE-T-SC Height Chest Waist Hips P2P20k

L1 15.1 51 73 97 64 22
MSE 14.2 51 69 88 62 22

Table 8. Losses. The use of L2 or L1 losses are explored for shape
estimation accuracy using BEDLAM-CLIFF: error on HBW [57]
and SSP-3D [76] in mm.

Dataset attribute Backbone PAMPJPE MPJPE MVE

Simulation + Hair ImageNet 65.6 101.8 120.8
Simulation ImageNet 66.3 104.5 124.5
Texture ImageNet 72.2 116.1 136.7

Simulation + Hair COCO 51.6 77.8 92.4
Simulation COCO 51.6 78.7 93.0
Texture COCO 54.3 80.8 96.0

Table 9. Ablation of different dataset attributes. Error on
3DPW in mm. See text.

Method H3.6M 3DPW

PA-MPJPE MPJPE PA-MPJPE MPJPE PVE

CLIFF [42] 32.7 47.1 - - -
CLIFF†* 39.4 62.9 43.6 68.8 82.1
CLIFF†* w/o H3.6M 56.1 89.6 44.4 68.9 82.3
BEDLAM-HMR 51.7 81.6 47.6 79.0 93.1
BEDLAM-CLIFF 50.9 70.9 46.6 72.0 85.0

Table 10. Impact of training without Human3.6M on Hu-
man3.6M and 3DPW. CLIFF†* is the same model as Table 1 in
main paper.

Losses Type PAMPJPE MPJPE MVE

Lj3d MSE 59.1 86.1 105.1
Lv3d MSE 56.2 83.4 96.7
LSMPL MSE 51.3 83.8 96.7
LSMPL + Lj3d MSE 48.5 76.0 89.6
LSMPL + Lv3d MSE 48.2 74.7 87.9
LSMPL + Lv3d + Lj3d MSE 47.6 74.2 87.2
LSMPL + Lv3d + Lj3d + Lv2d MSE 48.7 74.4 87.6

Lj3d L1 59.4 85.7 114.6
Lv3d L1 72.5 97.4 111.6
LSMPL L1 50.6 83.6 96.0
LSMPL + Lj3d L1 46.9 74.7 87.6
LSMPL + Lv3d L1 48.8 76.2 88.8
LSMPL + Lv3d + Lj3d L1 46.9 73.0 86.0
LSMPL + Lv3d + Lj3d + Lv2d L1 47.4 73.5 86.8

Table 7. Ablation of different losses. Error on 3DPW in mm.

training. We include a 2D joints loss in all cases as it is
necessary to obtain proper alignment with the image.

As shown in Table 7, Lj3d or Lv3d alone do not pro-
vide enough supervision for training. Similar to [60] we
find that LSMPL provides stronger supervision reducing the

loss by a large margin when used in combination with Lv3d

and Lj3d. Surprisingly, we find that including Lv2d makes
the performance slightly worse. A plausible reason for this
could be that using Lv2d provides high weight on aligning
the predicted body to the image but the mismatch between
the ground truth and estimated camera used for projection
during inference makes the 3D pose worse, thus resulting in
higher 3D error. We suspect that Lv2d could provide strong
supervision in the presence of a better camera estimation
model; this is future work.

We also experiment with two different types of losses,
L1 and MSE and find that L1 loss yields lower error on
the 3DPW dataset as shown in Table 7. However, Table 8
shows that the model using L1 loss performs worse when
estimating body shape on the SSP and HBW datasets com-
pared to the model using MSE loss. This discrepancy may
be attributed to the L1 loss treating extreme body shapes as
outliers, thereby learning only average body shapes. Since
the 3DPW dataset does not have extreme body shapes, it
benefits from the L1 loss. Consequently, we opted to use
the MSE loss for our final model and all results reported in
the main paper. Note that Lj3d or Lv3d alone is worse with
L1 loss compared to MSE loss.

D.3. Ablation of dataset attributes

We also perform an ablation study by varying different
dataset attributes. We generated 3 different sets of around
180K images by varying the use of different assets. Keep-
ing the scenes and the motion sequences exactly the same,
we experiment by ablating hair and then further replacing
the cloth simulation with simple cloth textures. We use a
backbone pretrained with either COCO [46] or ImageNet
and study the performance on 3DPW [90]. When using
the ImageNet backbone, we find that training with cloth-
ing simulation leads to better accuracy than training with
clothing texture mapped onto the body. Adding hair gives
a modest improvement in MPJPE and MVE. Surprisingly,
with the COCO backbone, the difference in the training data
makes less difference. Still, clothing simulation is consis-
tently better than just using clothing textures. It is likely
that the backbone pretrained on a 2D pose estimation task
using COCO is already robust to clothing and hair. As men-
tioned above, however, our hair models are not ideal and not
as diverse as we would like. Future work, should explore
whether more diverse and complex hair has an impact.

D.4. Experiment on Human3.6M

We also evaluate our method on the Human3.6M dataset
[31] by calculating MPJPE and PA-MPJPE on 17 joints ob-
tained using the Human3.6M regressor on vertices. Previ-
ous methods have used Human3.6M training images when
evaluating on the test set. Specifically, CLIFF [42] and our
re-implementation, CLIFF†*, both use Human3.6M data for



Method MVE MPJPE

FB B F LH/RH FB B F LH/RH

SMPLify-X [63] 236.5 187.0 48.9 48.3/51.4 231.8 182.1 52.9 46.5/49.6
ExPose [20] 217.3 151.5 51.1 74.9/71.3 215.9 150.4 55.2 72.5/68.8
Frankmocap [74] 168.3 54.7/55.7 165.2 52.3/53.1
PIXIE [25] 191.8 142.2 50.2 49.5/49.0 189.3 140.3 54.5 46.4/46.0
BEDLAM-CLIFF-X 131.0 96.5 25.8 38.8/39.0 129.6 95.9 27.8 36.6/36.7

Hand4Whole+ [55] 135.5 90.2 41.6 46.3/48.1 132.6 87.1 46.1 44.3/46.2
PyMAF+ [105] 125.7 84.0 35.0 44.6/45.6 124.6 83.2 37.9 42.5/43.7
BEDLAM-CLIFF-X+ 103.8 74.5 23.1 31.7/33.2 102.9 74.3 24.7 29.9/31.3

Table 11. SMPL-X methods on the AGORA test set. + denotes methods include AGROA training set. FB is full-body, B is body only, F
is face, and LH/RH are the left and right hands respectively.

Method NMVE NMJE MVE MPJPE

FB B FB B FB B F LH/RH FB B F LH/RH

PyMAF-X [105] 172.1 123.6 167.2 120.1 161.8 117.4 50.3 40.5/42.6 157.2 114.1 51.6 38.2/39.7
Hand4Whole [55] 178.8 119.1 176.2 117.6 168.1 112.0 59.7 52.8/55.8 165.7 110.5 63.7 50.0/52.0
PIXIE [25] 160.0 107.2 154.8 103.5 150.4 100.8 51.4 47.2/50.2 145.6 97.3 55.4 43.6/46.0
BEDLAM-CLIFF-X 101.7 65.6 99.0 64.7 95.6 61.7 29.9 35.7/36.2 93.1 60.8 30.5 33.2/33.3
BEDLAM-CLIFF-X+ 93.4 61.2 92.5 60.4 87.8 56.8 27.3 31.9/33.9 87.0 57.5 28.0 29.5/31.1

Table 12. SMPL-X methods on the BEDLAM test set. Comparison of SOTA methods on the BEDLAM test set. + denotes methods
include AGROA training set.

training and, consequently get low errors on Human3.6M
test data. Note that our implementation does not get as low
an error as reported in [42] despite the fact that we match
their performance on 3DPW and RICH (see main paper).

To ensure a fair comparison and to measure the gener-
alization of the methods, we trained a version of CLIFF
(CLIFF†* w/o H3.6M) using 3D datasets MPI-INF-3DHP,
3DPW and 2D datasets COCO and MPII but excluding
Human3.6M, following the same settings as BEDLAM-
CLIFF. The results in Tab. 10 demonstrate that BEDLAM-
CLIFF outperforms CLIFF when Human3.6M is not in-
cluded in training. This is another confirmation of the re-
sults in the main paper showing that BEDLAM-CLIFF has
better generalization ability than CLIFF. Without using Hu-
man3.6M in training, BEDLAM-HMR is also better than
CLIFF on Human3.6M.

Note that this experiment illustrates how training on Hu-
man3.6M is crucial to getting low errors on that dataset.
The training and test sets are similar (same backgrounds
and similar conditions) meaning that methods trained on
the dataset can effectively over-fit to it. This can be seen
by comparing CLIFF†* with CLIFF†* w/o H3.6M. Training
on Human3.6M significantly reduces error on Human3.6M
without reducing error on 3DPW.

D.5. SMPL-X experiments on the AGORA dataset

AGORA is interesting because it is one of the few
datasets with SMPL-X ground truth. Table 11 evaluates

methods that estimate SMPL-X bodies on the AGORA
dataset. The results are taken from the AGORA leader-
board. BEDLAM-CLIFF-X does particularly well on the
face and hands. Since the BEDLAM training set contains
body shapes sampled from AGORA, it gives BEDLAM-
CLIFF-X an advantage over methods that are not fine-tuned
on the AGORA training set (bottom section of Tab. 11).
Consequently, we also compare a version of BEDLAM-
CLIFF-X that is trained only on the BEDLAM training set.
This still outperforms all the methods that were not trained
using AGORA (top section of Tab. 11). Please see Figure 13
for qualitative results.

D.6. SMPL-X experiments on BEDLAM

For completeness, Tab. 12 shows that BEDLAM-
CLIFF-X outperforms recent SOTA methods that estimate
SMPL-X on the BEDLAM test set. Not surpisingly, our
method is more accurate by a large margin. Note, how-
ever, that the prior methods are not trained on the BED-
LAM training data. We follow a similar evaluation protocol
as [62]. Since the hands are occluded in a large number
of frames, we use MediaPipe [50] to detect the hands and
evaluate hand accuracy only if they are visible. To detect in-
dividuals within an image during evaluation, we use the de-
tector that is included in the respective method’s demo code.



In cases where the detector is not provided, we use [69],
the same detector use by BEDLAM-CLIFF-X. Please see
Fig. 13 for qualitative results.

E. Qualitative Comparison
Figure 12 provides a qualitative comparison between

PARE [37], CLIFF [42] (includes 3DPW training) and
BEDLAM-CLIFF (only synthetic data). We show results
on both RICH (left two) and 3DPW (right two). We render
predicted bodies overlaid on the image and in a side view.
In the side view, the pelvis of the predicted body is aligned
(translation only) with the ground truth body. Note that,
when projected into the image, all methods look reasonable

and relatively well aligned with the image features. The side
view, however, reveals that BEDLAM-CLIFF (bottom row)
predicts a better aligned body pose with the ground truth
body in 3D despite variation in the cameras, camera angle,
and frame occlusion. Also, please notice that BEDLAM-
CLIFF produces more natural leg poses in the case of occlu-
sion compared to the other methods as shown in columns 1,
3 and 4 of Fig. 12

We also provide qualitative results of BEDLAM-CLIFF-
X on 3DPW and the RICH dataset in Fig. 14. In this case,
we also estimate the SMPL-X hand poses. All multi-person
results are generated by running the method on individual
crops found by a multi-person detector [69].



Figure 12. Qualitative results on RICH (left two columns) and 3DPW (right two columns). RGB images (row 1), PARE front (row 2),
PARE side (row 3), CLIFF front (row 4), CLIFF side (row 5), BEDLAM-CLIFF front (row 6), BEDLAM-CLIFF side (row 7). Ground
truth body is in blue and predicted body is in pink. The BEDLAM-CLIFF predicted 3D body is better aligned with ground truth in both
front and side views despite wide camera variation or frame occlusion.



Figure 13. BEDLAM-CLIFF-X results on the AGORA-test (top 4 rows) and the BEDLAM-test images (bottom 2 rows).



Figure 14. BEDLAM-CLIFF-X results on 3DPW-test (top 2 rows) and RICH-test (bottom 2 rows) images. Note the hand poses and that
the body shapes are appropriately gendered.
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