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Abstract

Recently, transformer-based methods have gained sig-
nificant success in sequential 2D-to-3D lifting human pose
estimation. As a pioneering work, PoseFormer captures
spatial relations of human joints in each video frame and
human dynamics across frames with cascaded transformer
layers and has achieved impressive performance. However,
in real scenarios, the performance of PoseFormer and its
follow-ups is limited by two factors: (a) The length of the
input joint sequence; (b) The quality of 2D joint detection.
Existing methods typically apply self-attention to all frames
of the input sequence, causing a huge computational burden
when the frame number is increased to obtain advanced es-
timation accuracy, and they are not robust to noise natu-
rally brought by the limited capability of 2D joint detectors.
In this paper, we propose PoseFormerV2, which exploits a
compact representation of lengthy skeleton sequences in the
frequency domain to efficiently scale up the receptive field
and boost robustness to noisy 2D joint detection. With min-
imum modifications to PoseFormer, the proposed method
effectively fuses features both in the time domain and fre-
quency domain, enjoying a better speed-accuracy trade-off
than its precursor. Extensive experiments on two benchmark
datasets (i.e., Human3.6M and MPI-INF-3DHP) demon-
strate that the proposed approach significantly outperforms
the original PoseFormer and other transformer-based vari-
ants. Code is released at https://github.com/
QitaoZhao/PoseFormerV2.

1. Introduction

3D human pose estimation (HPE) aims at localizing
human joints in 3-dimensional space based on monocular
videos (without intermediate 2D representations) [25,28] or
2D human joint sequences (referred to as 2D-to-3D lifting
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Figure 1. Comparisons of PoseFormerV2 and PoseFormerV1 [46]
on Human3.6M [13]. RF denotes Receptive Field and k×RF indi-
cates that the ratio between the full sequence length and the num-
ber of frames as input into the spatial encoder of PoseFormerV2
is k, i.e., the RF of the spatial encoder is expanded by k× with a
few low-frequency coefficients of the full sequence. The proposed
method outperforms PoseFormerV1 by a large margin in terms of
speed-accuracy trade-off, and the larger k brings more significant
improvements, e.g., 4.6× speedup with the k of 27.

approaches) [5,18,37,43]. With the large availability of 2D
human pose detectors [6, 26] plus the lightweight nature of
2D skeleton representation of humans, lifting-based meth-
ods are now dominant in 3D human pose estimation. Com-
pared to raw monocular videos, 2D coordinates of human
joints in each video frame are much more memory-friendly,
making it possible for lifting-based methods to utilize a long
joint sequence to boost pose estimation accuracy.

Transformers [36] first gain huge success in the field of
natural language processing (NLP) [3, 8] and then extend
their capacity to the computer vision community, becom-
ing the de facto approach for several vision tasks, e.g., im-
age classification [9, 19, 35], object detection [4, 47] and
video recognition [1,2,42]. The discreteness of human joint
representation and the requirement for long-range temporal
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Figure 2. Overview of PoseFormerV1. PoseFormerV1 mainly
consists of two modules: the spatial transformer encoder and the
temporal transformer encoder. The temporal encoder of Pose-
FormerV1 applies self-attention to all frames given a 2D joint se-
quence for human motion modeling.

Table 1. The computational cost and performance drop brought
by replacing ground-truth 2D detection with CPN [6] 2D pose
detection for the SOTA transformer-based methods. The perfor-
mance drop is reported on Human3.6M dataset (Protocol 1) [13].
RF: Receptive Field, sharing the same meaning as that in Fig. 1.

Method Seq.
Length GFLOPs Perform.

Drop (mm)
PoseFormerV1 [46] ICCV’21 81 1.36 13.0
StridedTransformer [15] TMM’22 243 1.37 15.2
MixSTE [44] CVPR’22 81 92.46 16.5
MHFormer [16] CVPR’22 81 3.12 11.8
P-STMO [32] ECCV’22 243 1.74 13.5
PoseFormerV2 (9×RF) 81 0.35 8.2
PoseFormerV2 (27×RF) 81 0.12 9.7

dependency modeling in a skeleton sequence make trans-
formers an excellent fit for lifting-based human pose esti-
mation. Previous works [15, 16, 32, 44, 46] have adopted
transformers as the backbone for 3D human pose estima-
tion and shown promising results.

As the pioneering work among transformer-based meth-
ods, PoseFormer [46] factorizes joint sequence feature ex-
traction into two stages (see Fig. 2) and outperforms tradi-
tional convolution-based approaches. First, all joints within
each frame are linearly projected into high-dimensional
vectors (i.e., joint tokens) as input into the spatial trans-
former encoder. The spatial encoder builds up inter-joint
dependencies in single frames with the self-attention mech-
anism. In the second stage, joint tokens of each frame are
combined as one frame token, serving as input to the tem-
poral encoder for human motion modeling across all frames
in sequence. More details are included in Sec. 3.1.

Despite its capacity, the performance of PoseFormer
(and other transformer-based methods) is limited by two
crucial factors. (a) The length (number of frames) of the
input 2D skeleton sequence. State-of-the-art transformer-
based methods typically use extremely long sequences to
obtain advanced performance, e.g., 81 frames for Pose-
Former [46], 243 frames for P-STMO [15] and 351 frames

for MHFormer [16]. However, densely applying self-
attention to such long sequences is highly computation-
ally expensive, e.g., the single-epoch wall-time training
cost of 3-frame PoseFormer is ∼5 minutes while for 81-
frame PoseFormer the cost surges to ∼1.5 hour on an RTX
3090 GPU. (b) The quality of 2D joint detection. 2D joint
detectors inevitably introduce noise due to bias in their
training dataset and the temporal inconsistency brought by
the single-frame estimation paradigm. For example, Pose-
Former achieves 31.3mm MPJPE (Mean Per Joint Position
Error) using the ground-truth 2D detection on the Hu-
man3.6M dataset [13]. This result drops significantly to
44.3mm when the clean input is replaced by the CPN [6]
2D pose detection. In practice, the long-sequence inference
may be unaffordable for hardware deployment on resource-
limited devices such as AR/VR headsets and high-quality
2D detection is hard to obtain. More quantitative results
about the efficiency to process long sequences and the ro-
bustness to noisy 2D joint detection of existing transformer-
based methods are available in Table 1.

Driven by these practical concerns, we raise two impor-
tant research questions:

• Q1: How to efficiently utilize long joint sequences for bet-
ter estimation precision?

• Q2: How to improve the robustness of the model against
unreliable 2D pose detection?

Few works have tried to answer either of these two ques-
tions by incorporating hand-crafted modules, e.g., the
downsampling-and-uplifting module [10] that only pro-
cesses a proportion of video frames for improved efficiency,
the multi-hypothesis module [16] to model the depth am-
biguity of body parts and the uncertainty of 2D detectors.
However, none of them manages to find a single solution
to these two questions simultaneously, and even worse, a
paradox seemingly exists between solutions to the questions
above, e.g., multiple hypotheses [16] improve robustness but
bring additional computation cost (see also Table 1).

In this paper, we present our initial attempt to “kill” two
birds with one stone. With restrained modifications to the
prior art PoseFormer, we show that the appropriate form
of representation for input sequences might be the key to
answering these questions simultaneously. Specifically, we
shed light on the barely explored frequency domain in 3D
HPE literature and propose to encode the input skeleton se-
quences into low-frequency coefficients. The insight be-
hind this representation is surprisingly simple: On the one
hand, low-frequency components are enough to represent
the entire visual identity [38, 41] (e.g., 2D images in im-
age compression and joint trajectories in this case), thus re-
moving the need for expensive all-frame self-attention; On
the other, the low-frequency representation of the skeleton
sequence itself filters out high-frequency noise (jitters and
outliers) [21, 22] contained in detected joint trajectories.
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We inherit the spatial-temporal architecture from Pose-
Former but force the spatial transformer encoder to only
“see” a few central frames in a long sequence. Then we
complement “short-sighted” frame-level features (the out-
put of the spatial encoder) with global features from low-
frequency components of the complete sequence. Without
resorting to the expensive frame-to-frame self-attention for
all time steps, the temporal transformer encoder is reformu-
lated as a Time-Frequency Feature Fusion module.

Extensive experiments on two 3D human pose es-
timation benchmarks (i.e., Human3.6M [13] and MPI-
INF-3DHP [23]) demonstrate that the proposed approach,
dubbed as PoseFormerV2, significantly outperforms its
precursor (see Fig. 1) and other transformer-based variants
in terms of speed-accuracy trade-off and robustness to noise
in 2D joint detection. Our contributions are three-fold:
• To the best of our knowledge, we are the first to utilize a

frequency-domain representation of input joint sequences
for 2D-to-3D lifting HPE. We find this representation an
ideal fit to concurrently solve two important issues in the
field (i.e., the efficiency to process long sequences and the
robustness to unreliable joint detection), and experimen-
tal evidence shows that this approach can easily general-
ize to other models.

• We design an effective Time-Frequency Feature Fusion
module to narrow the gap between features in the time do-
main and frequency domain, enabling us to strike a flexi-
ble balance between speed and accuracy.

• Our PoseFormerV2 outperforms other transformer-based
methods in terms of the speed-accuracy trade-off and ro-
bustness on Human3.6M and achieves the state-of-the-art
on MPI-INF-3DHP.

2. Related Work

Our method is built on conceptually simple PoseFormer
[46], and we aim at improving its efficiency to operate long
sequences and its robustness to noisy joint detection from a
frequency-domain perspective. Therefore, here we mainly
focus on this line of works (transformer-based methods)
in 2D-to-3D lifting HPE and introduce applications of fre-
quency domain representations in computer vision litera-
ture, especially in skeleton-based tasks that are most related
to lifting-based 3D HPE.

2.1. Transformer-based 3D Human Pose Estimation

PoseFormer [46] is the first work to adopt the vision
transformer as the backbone network in lifting-based 3D
human pose estimation, and it outperforms previous CNN-
based methods by a large margin. Though being com-
petitive, Zhang et al. [44] point out that the spatial-then-
temporal paradigm of PoseFormer may neglect distinct tem-
poral patterns for each joint, and propose to adopt alternate

spatial-temporal transformer layers for fine-grained joint-
specific feature extraction. MHFormer [16] further incor-
porates task-related prior knowledge into transformers for
3D HPE. Specifically, 2D-to-3D lifting is an inverse prob-
lem where more than one reasonable solutions exist, there-
fore they generate multiple hypotheses to model ambiguous
body parts and uncertainty in joint detectors, achieving ad-
vanced performance. Inspired by the progress of Masked
Image Modeling (MIM) in image classification [12,39,40],
P-STMO [32] applies Masked Joint Modeling to 3D HPE
with self-supervised learning.

Another line of works [10, 15] improves the efficiency
of transformer-based methods. Taking advantage of the
temporal redundancy in 2D joint sequences, StridedTrans-
former [15] replaces the parameter-heavy fully-connected
layers with strided convolutions. Einfalt et al. [10] claim
that the per-frame 2D joint detection is even more computa-
tionally expensive than lifting models themselves and pro-
pose to downsample input video frames with a fixed interval
and adopt the 2D joint detector and lifting model only on
these sampled frames. While being more efficient than pre-
vious works, aforementioned methods [10, 15] reduce par-
ticipants in self-attention along the temporal dimension uti-
lizing only the consistency in adjacent video frames rather
than from a global view, and therefore they may suffer from
a considerable performance drop.

2.2. Frequency Representation in Vision

Since the human visual system is more sensitive to low-
frequency components of images, traditional image com-
pression algorithms, e.g., JPEG [30] and JPEG 2000 [33],
reduce memory cost to store 2D images by allocating more
storage budget to low-frequency Discrete Cosine Transform
(DCT) coefficients of the image. Following the same logic,
[41] proposes to adaptively remove uninformative channels
of DCT components for 2D images to boost image clas-
sification efficiency. More recently, some works [11, 31]
propose to replace the costly self-attention mechanism with
frequency transforms that can be accelerated by their fast
algorithms. GFN [31] proposes to efficiently mix visual to-
kens with learnable frequency filters, and AFNO [11] fur-
ther improves the performance of token mixer in the fre-
quency domain with operator learning. Moreover, Wang et
al. [38] utilize low-frequency Fast Fourier Transform (FFT)
components to compress vision transformers.

Skeleton-based tasks are more relevant to our work that
takes 2D skeleton sequences as input. In the human mo-
tion prediction literature, previous works [21,22] transform
the skeleton sequence from the time domain into DCT co-
efficients to encode human dynamics as compared to static
joint coordinates. They observe that discarding a few high-
frequency coefficients does not necessarily bring a perfor-
mance drop but even improves the smoothness of predicted
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future motions. However, frequency-domain representa-
tions of 2D joint sequences have not yet been explored in
lifting-based 3D human pose estimation.

Our approach is inspired by these former attempts of ap-
plying frequency transforms to vision tasks but from a dif-
ferent view. We include more details about our motivations
to choose the DCT coefficient representation in Sec. 3.2.1.

3. Method
PoseFormer [46] facilitates 3D human pose estimation

by factoring sequence feature extraction into two stages,
i.e., the spatial encoder and temporal encoder, which has
proved to be effective. However, it suffers from a huge
computational burden when the length of input sequences
is increased, and is sensitive to noisy joint detection. In this
section, we introduce the details of PoseFormerV2 which
utilizes a frequency representation of the input sequence to
overcome two aforementioned problems.

3.1. Preliminaries of PoseFormerV1 [46]

We start by giving a brief overview of PoseFormerV1
(see Fig. 2), laying the basis for the discussions on its
improvements. PoseFormerV1 consists of two main mod-
ules, the spatial encoder for single-frame joint correlation
modeling and the temporal encoder for cross-frame human
motion modeling. Given an input 2D skeleton sequence
x ∈ RF×J×2, where F denotes the sequence length and
J denotes the joint number of the human representation.
First, coordinates of all joints of a person in each frame
are linearly projected to a c-dimensional vector (i.e., joint
embedding) denoted as z0 ∈ RF×J×c. A learnable spatial
positional embedding ESPos ∈ R1×J×c [9] is added to z0
to encode joint-dependent information.

Spatial transformer encoder builds up spatial depen-
dencies for joint embeddings of each frame zi0 ∈ R1×J×c

individually with the self-attention mechanism. In this
stage, the number of tokens fed into each transformer block
is J . The output of the spatial transformer encoder of L
layers for the i-th frame is denoted by ziL ∈ R1×J×c. Then
per-frame representations are flattened and concatenated as
input Z0 ∈ RF×(J·c) into the temporal transformer encoder.

Temporal transformer encoder. Similarly, the input
Z0 is added with a learnable temporal positional embed-
ding ETPos ∈ RF×(J·c) to encode index-dependent infor-
mation for each frame. The temporal encoder with M trans-
former layers densely models frame-to-frame dependencies
across the whole sequence, and its output is denoted by
ZM ∈ RF×(J·c). In this stage, the token number for each
transformer layer is F , which is the input sequence length.

Regression head. To estimate the 3D pose of the cen-
tral frame in sequence, a simple 1D convolution is used to
gather temporal information and a linear projection outputs
the final pose representation y ∈ R1×(J·3).

Figure 3. A randomly selected example of the CPN-detected [6]
joint trajectory in Human3.6M [13] and its reconstructions with
first 3, 9, and 27 DCT coefficients (81 in total). Note that even with
only the first 3 coefficients, the reconstructed (orange) curve cap-
tures the overall characteristics of the raw input, and is smoother.

Limitations of PoseFormerV1. Modeling joint de-
pendencies within each frame and human motions across
frames with transformer layers is straightforward. While
such dense modeling brings advanced estimation accuracy,
it is computationally unfriendly due to the quadratic com-
putation growth of self-attention with respect to the token
number (i.e., the joint number in the spatial encoder and the
sequence length in the temporal encoder) especially when
the input sequence length is increased. Although the token
number for spatial transformer layers (i.e., the joint num-
ber) is independent of the frame number, it is worth noting
that the sequence length implicitly affects the computational
budgets of the spatial encoder in real scenarios because of
the limited parallelization ability of GPUs. In addition to
the efficiency issue, PoseFormerV1 is sensitive to the qual-
ity of input 2D joint detection (experimental evidence is
available in Table 1 and Sec. 4.3).

In the following, we present an alternative solution
to overcome the limitations of PoseFormerV1 with the
frequency-domain representation of the input sequence.

3.2. PoseFormerV2

3.2.1 Frequency Representation of Skeleton Sequence

Motivation. We propose to transform the input skele-
ton sequence into the frequency domain with Discrete Co-
sine Transform (DCT) and utilize only a portion of low-
frequency coefficients. DCT coefficients encode multiple
levels of temporal information for the input time series.
Specifically, low-frequency coefficients encode its rough
contour while high-frequency ones encode its details, e.g.,
jitters or sharp changes. To better illustrate our motiva-
tion to choose this representation, we provide an 81-frame
example of the CPN-detected [6] joint trajectory of action
“Directions” in the Human3.6M [13] dataset and its recon-
structions with first 3, 9, and 27 DCT coefficients respec-
tively (see Fig. 3). As the number of kept DCT coefficients
increases, the reconstructed trajectory becomes closer to the
raw input but less smooth. Note that with only 3 DCT co-
efficients (denoted by the orange curve), the overall trend
of the original trajectory is captured, and with 9 and 27
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Figure 4. (a) Overview of PoseFormerV2. (b) Spatial Transformer and Time-Frequency Feature Fusion Transformer. (c) FreqMLP
(Frequency Multi-Layer Perceptron). To exemplify, in (a) we use 3 central frames (index -1, 0, and 1) for fine-grained frame-level feature
extraction and the first 3 DCT coefficients of the full 9-frame sequence for global frequency-domain feature extraction. Therefore, the
effective number of frames as input to the spatial encoder and temporal encoder is reduced compared to PoseFormerV1 (3,6 vs. 9,9).

coefficients (pink and green curves), the characteristics of
the raw sequence are better preserved while high-frequency
noise (zig-zags) is removed. These observations motivate
us to exploit a few highly informative low-frequency DCT
components of the input joint sequence as the compact and
denoised sequence representation in our work. With such
representation, we significantly reduce the effective length
of the sequence as input and promote the robustness of our
model against the noise contained in 2D joint detection. We
include a formal introduction to DCT in supplementary.

3.2.2 Architecture

In this part, we introduce the architecture of the proposed
approach, PoseFormerV2 (see Fig. 4 for an overview).

Spatial transformer encoder. Given a 2D skeleton se-
quence x ∈ RF×J×2 (preferably a long sequence, e.g.,
F is 81), we first sample F ′ (typically F ′ ≪ F ) frames
around the sequence center (the frame of index 0 in Fig.
4 (a)), denoted by x′ ∈ RF ′×J×2, as input to the spatial
encoder. The output of the spatial encoder is denoted by
zTime ∈ RF ′×(J·c) (frame-level features in the time do-
main). The design of the spatial encoder directly follows
PoseFormerV1.

Low-frequency DCT coefficients. zTime is referred
to as “short-sighted” because its receptive field (F ′) is re-
stricted in comparison to the entire sequence length (F ).
To efficiently exploit the long-range human dynamics of
the original sequence, we resort to its frequency-domain
representation. We first convert the full sequence x ∈
RF×J×2 into DCT coefficients, denoted by C ∈ RF×J×2.
Then we keep only the first N (≪ F ) coefficients C′ ∈
RN×J×2 using a low-pass filter for every joint trajectory,
where temporal information of the original sequence is
largely maintained and high-frequency noise is removed.

Low-frequency coefficients C′ are flattened and linearly
projected to zFreq ∈ RN×(J·c) (the embedding of fre-
quency coefficients). zFreq is summed with a learnable fre-
quency positional embedding EFPos (like ETPos in Pose-
FormerV1). Features from both the time domain and fre-
quency are concatenated together, formulated as

z = [zTime; zFreq], (1)

fed to the Time-Frequency Feature Fusion module.
Time-Frequency Feature Fusion. We adopt trans-

former layers for cross-frame temporal dependency mod-
eling as in PoseFormerV1. Compared to PoseFormerV1
which entirely extracts features in the time domain, the pro-
posed method fuses features from both the time domain
and frequency domain. To narrow the gap between the
two domains, we introduce simple modifications to vanilla
transformer layers. (1) Time-domain and frequency-domain
features share self-attention but use separate feed-forward
networks; (2) We apply FreqMLP (Frequency Multi-Layer
Perceptron) in the feed-forward networks for time-domain
features zTime (see Fig. 4 (b)(c)). In our FreqMLP, we uti-
lize DCT and IDCT before and after the vanilla MLP. The
intuition behind this approach is: High-frequency noise is
filtered out of frequency domain features with a low-pass
filter, but detailed human motion features (e.g., fast local
motions) may also be lost as noise. To address this issue,
FreqMLP acts as a trainable frequency-domain filter, allow-
ing us to adaptively adjust the weight of each frequency
component in the embedding of 2D joint coordinates (i.e.,
time-domain features), being a complement to frequency
features. These modules are formulated as:
z

′

k = MSA(zk), (2)

zTime
k , zFreq

k = z
′

k[: F
′], z

′

k[F
′ :], (3)

zk+1 = Concat(FreqMLP(zTime
k ),MLP(zFreq

k )), (4)
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where MSA denotes Multi-head Self-Attention and F ′ is
the number of sampled central frames. The effectiveness
of the aforementioned modifications is verified in Sec. 4.4.
It’s important to recognize that the concatenation operation
results in a higher number of tokens for the transformer.
However, by restricting the spatial encoder to only observe a
limited number of central frames and incorporating a small
percentage of low-frequency DCT coefficients to expand its
receptive field, we can decrease the overall computation in
a flexible manner. This approach not only reduces compu-
tational costs but also enhances the model’s resistance to
noise compared to PoseFormerV1.

Regression head and loss function. Following Pose-
FormerV1, we use the 1D convolution layer to gather tem-
poral information and a linear projection to obtain the final
3D pose y ∈ R1×(J·3) for the central frame of the sequence.
We use the standard MPJPE (Mean Per Joint Position Error)
loss as PoseFormerV1 to train our model.

4. Experiments
4.1. Datasets and Evaluation Metrics

We conduct experiments on two 3D human pose esti-
mation datasets, i.e., Human3.6M [13] and MPI-INF-3DHP
[23] to demonstrate the effectiveness of our method. More
detailed descriptions of both datasets and their respective
evaluation metrics are in the supplementary.

4.2. Implementation Details and Analysis

The proposed method includes three important hyper-
parameters that are specific to experimental settings. These
include the number of frames (f ) used as input in the spatial
encoder, the length of the entire input sequence (F ) repre-
senting the enlarged receptive field, and the number of kept
DCT coefficients (n) utilized to incorporate long-range tem-
poral information. If not specified, we simply set n = f for
convenience. In practice, they can be further tuned for a
flexible speed-accuracy trade-off. When f equals 1, n is
set to 3 because a single DCT coefficient may be insuffi-
cient to encode temporal information from lengthy input se-
quences. As f and n are fixed, the computational complex-
ity of the model is predetermined (i.e., the token number for
the spatial encoder and that for the feature-fusion module
are fixed). We may vary F to effectively expand the model’s
receptive field from a limited f to an arbitrary value, bring-
ing no additional computational overhead. This enables us
to efficiently use long sequences to improve accuracy. We
provide details of the hyper-parameters for model architec-
ture and training in the supplementary.

4.3. Comparisons with State-of-the-art Methods

Human3.6M. We compare our method with Pose-
FormerV1 and other transformer-based methods on Hu-

Table 2. Quantitative comparisons with previous transformer-
based methods on Human3.6M (in mm). f : number of frames as
input to the model, Seq. Len.: length of the entire input sequence
(i.e., the effective Receptive Field). The best scores are marked in
bold. (*) indicates using an additional pre-training stage and (†)
indicates our re-implementation.

Method f
Seq.
Len. MFLOPs MPJPE ↓ /

P-MPJPE ↓
PoseFormerV1 [46] ICCV’21 27 27 542.1 47.0/–
StridedTrans. [15] TMM’22 81 81 342.5 47.5/–
MixSTE [44](†) CVPR’22 3 3 3420 49.6/38.9
MHFormer [16] CVPR’22 9 9 342.9 47.8/–
MHFormer [16] CVPR’22 27 27 1031.8 45.9/–
P-STMO [32](*) ECCV’22 27 81 163 46.8/–
P-STMO [32](*) ECCV’22 81 81 493 45.6/–
Einfalt et al. [10] WACV’23 9 81 543 47.9/–
PoseFormerV2 1 9 77.2 49.9/38.7
PoseFormerV2 1 27 77.2 48.7/37.8
PoseFormerV2 1 81 77.2 47.6/37.3
PoseFormerV2 3 9 117.3 49.5/38.5
PoseFormerV2 3 27 117.3 47.9/37.4
PoseFormerV2 3 81 117.3 47.1/37.3
PoseFormerV2 9 27 351.7 47.6/37.1
PoseFormerV2 9 81 351.7 46.0/36.1
PoseFormerV2 27 243 1054.8 45.2/35.6
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Figure 5. Comparisons of PoseFormerV2 and other state-of-the-
art transformer-based methods on Human3.6M (in mm). RF: Re-
ceptive Field and k×RF indicates that the RF of PoseFormerV2
is expanded by k× with a few low-frequency DCT coefficients
of the full sequence. The proposed approach outperforms others
in terms of speed-accuracy trade-off, and the larger k, the larger
improvements over other methods. (Best viewed in color)

man3.6M (Table 2). We demonstrate the flexibility of
our model by varying the value of f and the sequence
length. Our method is particularly efficient when the ex-
panding ratio (i.e., the ratio of full sequence length to f )
is large. For example, with an expanding ratio of 81, it
achieves 47.6mm MPJPE with only 77.2 MFLOPs as com-
pared to the 47.8mm MPJPE of MHFormer [16] with 342.9
MFLOPs (4.4× slower). Moreover, with a similar compu-
tational budget (around 350 MFLOPs) and the same full se-
quence length (81), our method achieves 46.0mm MPJPE
whereas StridedTransformer [15] obtains 47.5mm MPJPE
(3.2%↑). Fig. 5 presents a clearer comparison, showing that
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Figure 6. Comparisons of PoseFormerV2 and other transformer-
based methods [16, 44, 46] in terms of robustness to noise on Hu-
man3.6M. Zero-mean Gaussian noise of standard deviation sigma
is added to ground truth 2D detection, and we show their perfor-
mance drop (△MPJPE, in mm) as sigma increases. The size of
markers indicates the computational cost of models.

Table 3. Quantitative comparisons with previous methods on MPI-
INF-3DHP. T : the entire sequence length, 1 by default. The best
scores are marked in bold. (*) indicates using an additional pre-
training stage and (†) indicates our re-implementation.

Method PCK ↑ AUC ↑ MPJPE ↓
Mehta et al. [23] 3DV’17 75.7 39.3 117.6
Mehta et al. [24] ACM ToG’17 76.6 40.4 124.7
Pavllo et al. [29] (T=81) CVPR’19 86.0 51.9 84.0
Pavllo et al. [29] (T=243) CVPR’19 85.5 51.5 84.8
Lin et al. [17] (T=25) BMVC’19 83.6 51.4 79.8
Li et al. [14] CVPR’20 81.2 46.1 99.7
Chen et al. [5] (T=81) TCSVT’21 87.9 54.0 78.8
PoseFormerV1 [46] (T=9)(†) ICCV’21 95.4 63.2 57.7
MHFormer [16] (T=9) CVPR’22 93.8 63.3 58.0
MixSTE [44] (T=27) CVPR’22 94.4 66.5 54.9
P-STMO [32] (T=81)(*) ECCV’22 97.9 75.8 32.2
PoseFormerV2 (T=81) 97.9 78.8 27.8

the proposed method outperforms other transformer-based
methods in terms of speed-accuracy trade-off. Note that the
methods with an additional pre-training stage and compu-
tationally heavy MixSTE [44] (3420 MFLOPs for only 3-
frame input) are not included. The improvements of Pose-
FormerV2 over PoseFormerV1 are provided in Fig. 1.

In order to demonstrate that the inclusion of low-
frequency DCT coefficients helps improve the robustness
of the proposed method, we make the lifting-based pose es-
timation task more challenging by adding zero-mean Gaus-
sian noise to the ground-truth 2D detection on the Hu-
man3.6M dataset [13] (Fig. 6). To ensure a fair comparison,
we keep the input sequence length the same for all meth-
ods (in this case, 27 frames). For our method, f = n = 3.
The experimental evidence reveals that PoseFormerV2 suf-
fers from less performance drop as the standard deviation
of Gaussian noise (sigma) increases while being more ef-
ficient. We observe that the performance of PoseFormerV1
drops drastically as sigma increases from 8 to 10. In con-

Table 4. Ablation study on several modifications to Pose-
FormerV1. We show how a 9-frame PoseFormerV1 is converted
to PoseFormerV2 (with 9 DCT coefficients from an 81-frame se-
quence) step by step. The evaluation is performed on Human3.6M
(Protocol 1, in mm). RF indicates Receptive Field.

Step Description RF MPJPE ↓
(0) Original 9-frame PoseFormerV1. 9 49.9
(1) Frames are sampled from a longer sequence. 9 49.9
(2) Append the embedding of DCT coefficients. 81 47.1 (2.8↓)
(3) Replace the vanilla MLP with FreqMLP. 81 46.0 (3.9↓)

Table 5. Ablation study on the number of frames and the number
of DCT coefficients that are used as input to PoseFormerV2. The
evaluation is performed on Human3.6M (Protocol 1, in mm).

Frame
Number (f )

Coefficient
Number (n)

Full
Length MFLOPs MPJPE

1 1 27 39.2 51.1
1 3 27 77.2 48.7 (2.4↓)
3 1 27 79.4 50.1 (1.0↓)
3 3 27 117.3 47.9 (3.2↓)
9 9 27 351.7 47.6 (3.5↓)

trast, the proposed method presents a more stable trend.
Moreover, our method even outperforms MHFormer [16]
that incorporates the uncertainty of 2D detectors into the
model design. Intriguingly, we find that minor noise may
improve the accuracy of 3D pose estimation (sigma = 3).

MPI-INF-3DHP. We also compare our method with oth-
ers on MPI-INF-3DHP [23] (Table 3). We use 9 central
frames and the first 9 DCT coefficients from the input 81-
frame sequence. The proposed method outperforms other
approaches including P-STMO [32] with masked joint pre-
training. This result verifies the effectiveness of our method.
Our implementation follows [32].

Qualitative comparisons. We provide qualitative com-
parisons of our method with competitive MHFormer [16]
and PoseFormerV1 [46] in Fig. 7. All methods use 81-
frame 2D joint sequences as input. To further illustrate the
robustness of our approach, we make the pose estimation
task more difficult by adding Gaussian noise to the sequen-
tial 2D detection of a randomly selected joint (e.g., “left
wrist”, “right foot”). The proposed method obtains reliable
3D human pose even under highly-deviated 2D detection
(indicated by the light-yellow arrows). Note that our model
is ∼9× more efficient than MHFormer (3.12 GFLOPs vs.
0.35 GFLOPs) and ∼4× more efficient compared to Pose-
FormerV1 (1.36 GFLOPs vs. 0.35 GFLOPs).

4.4. Ablation Study

In this section, we show how a few modifications to
PoseFormerV1 bring significant improvements in a step-by-
step way. Moreover, to investigate more insights into the
frequency-domain representation of input sequences, we re-
veal the impact of the number of input frames and that of
kept DCT coefficients on our method.

Convert PoseFormerV1 into PoseFormerV2. We in-
herit the overall spatial-temporal architecture from Pose-
FormerV1 and introduce restrained modifications to its tem-
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Figure 7. Qualitative comparisons of PoseFormerV2 with MHFormer [16] and PoseFormerV1 [46]. We randomly add Gaussian noise to
the 2D detection of a specific joint. We highlight the deviated 2D detection with light-yellow arrows and corresponding 3D pose estimations
with orange arrows. PoseFormerV2 shows better robustness to highly noisy input than existing methods.

poral transformer for better multi-domain feature fusion.
To exemplify, we illustrate how a 9-frame PoseFormerV1
is converted to PoseFormerV2 step by step: (1) the input
(i.e., 9 frames) is sampled from a longer sequence (e.g., 81
frames) at the sequence center. This step brings no perfor-
mance improvement or increase in the receptive field since
the input to the model is in fact unchanged. (2) The out-
put of the spatial encoder of PoseFormerV1, zTime, is ap-
pended to the embedding of the first n DCT coefficients
(denoted by zFreq) of the complete sequence (81 frames in
this case) as input into the temporal encoder. For conve-
nience, we set n to 9. (3) We replace the vanilla MLP for
zTime (zTime and zFreq already use separate vanilla MLPs
before replacement) in the temporal encoder with FreqMLP
(details in Sec. 3.2.2). PoseFormerV1 is converted to Pose-
FormerV2 after these steps, with an enlarged receptive field
(from 9 to 81). We present the improvement brought by
each step in Table 4. It is worth noting that by introducing 9
DCT coefficients from a longer sequence (i.e., 81 frames),
the MPJPE of 9-frame PoseFormerV1 is reduced by 7.8%
(49.9mm vs. 46.0mm), which verifies the effectiveness of
the proposed DCT representation of input joint sequences.

Number of input frames and DCT coefficients. In Ta-
ble 5, we investigate the impact of the number of frames (f )
as input to the spatial encoder and the number of retained
DCT coefficients (n). Here we keep the length of the en-
tire joint sequence fixed, i.e., 27. The baseline model uses
only one central frame and one DCT coefficient (f = n =

1). Increasing both parameters brings consistent improve-
ments, and the increase in n translates to more error reduc-
tion (2.4↓ for n = 3 vs. 1.0↓ for f = 3) since only a few
DCT coefficients help capture the global characteristics of
the entire sequence. We empirically find that the matched f
and n with an expanding ratio of 9 (i.e., f = n = 3) achieve
a satisfactory speed-accuracy trade-off.

4.5. Generalization Ability

The proposed frequency-domain approach can general-
ize to other methods, e.g., MixSTE [44] and MHFormer
[16], as they also use transformers for temporal modeling.
We improve both methods by incorporating low-frequency
DCT coefficients. Details are in supplementary.

5. Conclusion

We present a solution to reconcile two seemingly un-
related or even contracted issues in lifting-based 3D hu-
man pose estimation – the efficiency of processing long-
sequence input and the robustness to noisy joint detection –
simultaneously from a barely explored frequency-domain
perspective. The proposed method, PoseFormerV2, ex-
ploits a compact frequency representation of long 2D joint
sequences to efficiently enlarge the receptive field of the
model while improving its robustness. Experimental results
show that our method outperforms previous transformer-
based methods on Human3.6M and MPI-INF-3DHP.
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Supplementary Material

A. Overview

The supplementary material includes sections as follows:
• Section B: A formal introduction to Discrete Cosine

Transform.
• Section C: Datasets and evaluation metrics.
• Section D: More implementation details.
• Section E: Comparisons of PoseFormerV2 and a sim-

ple baseline model purely in the frequency domain.
• Section F: Generalization of our approach to more

models.
• Section G: Visualizations and analysis.
• Section H: Broader impacts and limitations.

B. Discrete Cosine Transform

We now give a formal introduction to DCT. Given a 2D
joint sequence denoted by x ∈ RF×J×2, where F is the
sequence length and J is the joint number in each frame,
the trajectory of the x (or y) coordinate of the j-th joint de-
noted as xj,0 ∈ RF (or xj,1 ∈ RF , both denoted by x̂j for
convenience) is a 1D time series and we apply DCT to each
trajectory (J ∗ 2 trajectories in total) individually.

For trajectory x̂j , the i-th DCT coefficient is calculated
as

Cj,i =
√

2
F

∑F
f=1 xj,f

1√
1+δi1

cos
(

π
2F (2f − 1)(i− 1)

)
, (5)

where δi1 = 1 when i = 1, otherwise δi1 = 0. Each
time step in trajectory yields one DCT coefficient, i.e., i ∈
{1, 2, · · · , F}. DCT coefficients encode multiple levels of
temporal information in the input time series. Specifically,
low-frequency coefficients (i.e., when i is small) encode the
rough contour of the input sequence while high-frequency
coefficients (i.e., for the large i) encode details, e.g., jitters
or sharp changes in the input sequence. The original input
sequence in the time domain can be restored using Inverse
Discrete Cosine Transform (IDCT), which is given by

xj,f =
√

2
F

∑F
i=1 Cj,i

1√
1+δi1

cos
(

π
2F (2f − 1)(i− 1)

)
, (6)

and f ∈ {1, 2, · · · , F}. DCT is lossless if we keep all its
coefficients intact. In practice, we can slightly lossily re-
cover the input sequence using only a few low-frequency
coefficients and set other coefficients to zero. It is worth
noting that the recovered curve would be smoother com-
pared to the original one since we discard some of the high-
frequency coefficients. This property of DCT is desirable –
only a small proportion of DCT coefficients are enough to
represent the whole input sequence, even in a cleaner man-
ner. This motivates us to use such representation to effi-
ciently operate long sequences while improving the robust-
ness of the model to low-quality 2D detection where high-
frequency noise often occurs.

C. Datasets and Evaluation Metrics
Human3.6M is the most widely used benchmark for 3D

human pose estimation. Over 3.6 million video frames are
captured indoors from 4 cameras at different places. This
dataset contains 11 subjects performing 15 different actions,
e.g., “Walking” and “Phoning”. We train our model on 5
subjects (S1, S5, S6, S7, S8) and use other 2 subjects (S9,
S11) for testing, following [5, 18, 29, 46].

MPI-INF-3DHP is collected in both controlled indoor
environments and challenging outdoor environments. It
also provides different subjects and actions from multiple
camera views similar to Human3.6M.

Evaluation Metrics. We report two common metrics,
MPJPE and P-MPJPE [45] on Human3.6M. MPJPE (Mean
Per Joint Position Error, referred to as Protocol 1) measures
the mean Euclidean distance between the estimated 3D pose
and the ground truth 3D pose. P-MPJPE (Protocol 2) ap-
plies a rigid transformation to the estimated 3D pose and
the distance is computed between the aligned estimated 3D
pose and the ground truth 3D pose.

For the MPI-INF-3DHP dataset, we report MPJPE, Per-
centage of Correct Keypoint (PCK) within the 150mm
range, and Area Under Curve (AUC) as in [5, 17, 37].

D. More Implementation Details
Our method is built upon PoseFormerV1 [46]. Aiming

at better demonstrating the effectiveness of our DCT co-
efficient representation of input sequences and providing
fair comparisons to PoseFormerV1, we directly adopt op-
timal hyper-parameters for model architecture from Pose-
FormerV1, although further investigation may bring addi-
tional improvements.

Model architecture hyper-parameters. The embedded
feature dimension c in the spatial transformer is 32 and the
layer number of the spatial transformer and feature-fusion
transformer is 4, following [46]. Plus, the design of Spatial-
Temporal Positional Embedding is also adopted from [46].

Experimental settings. Our experiments are conducted
with Pytorch [27] on a single NVIDIA RTX 3090. For both
training and testing, we apply horizontal flipping augmen-
tation following [5, 18, 29, 46]. We train our model using
the AdamW [20] optimizer for 80 epochs with a weight de-
cay of 0.1. The initial learning rate is set to 8e-4 with an
exponential learning rate decay schedule and the decay fac-
tor is 0.99. We adopt the CPN [7] 2D pose detection on
Human3.6M, following [5, 18, 29]. As for the MPI-INF-
3DHP dataset, we use ground truth 2D detection, follow-
ing [17, 24].

E. Simple Baseline
In our approach, the temporal encoder of PoseFormerV1

[46] is reformulated as a Time-Frequency Feature Fusion
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Table 6. Comparisons of PoseFormerV2 and a simple base-
line. The evaluation is performed on Human3.6M (Protocol 1,
MPJPE) [13] and the Frame Number (f ) is only applicable to
PoseFormerV2.

Frame
Number (f )

Coefficient
Number (n)

Full
Length Baseline PoseFormerV2

3 3 9 50.2 49.5 (0.7↓)
3 3 27 48.7 47.9 (0.8↓)
3 3 81 49.7 47.1 (2.6↓)
9 9 27 48.8 47.6 (1.2↓)
9 9 81 47.8 46.0 (1.8↓)

module and we show that the low-frequency coefficients of
the input sequence help improve the efficiency of the model
to process long sequences and its robustness against noisy
joint detection. Given the effectiveness of this representa-
tion, readers may raise a question: Why not entirely ex-
tract features from DCT coefficients of the input sequence
but additionally combine them with features in the time do-
main? Here we design a baseline model where we simply
replace the input to PoseFormerV1 [46] (joint coordinates
in the time domain) with low-frequency DCT coefficients
of the input sequence. The full sequence length and the
number of the retained DCT coefficients (denoted as n) are
kept the same for the baseline model and our approach. For
convenience, the number of frames (f ) as input into the
spatial encoder of PoseFormerV2 is set to n. We provide
quantitative results to demonstrate that this straightforward
approach does not work well, especially when the ratio be-
tween the full sequence length and n is increased (see Table
6). The features of only a few central frames in the sequence
significantly boost accuracy, e.g., with 3 central frames of
the full input sequence of length 81, the MPJPE is reduced
from 49.7mm to 47.1mm (5.2%↓, the 3rd row in Table 6).

Intuitively, the spatial encoder of PoseFormerV2 that en-
codes joint coordinates of a few central frames in the time
domain helps capture the fine-grained human motions, ben-
efiting 3D pose estimation for the frame at the sequence
center. In contrast, low-frequency coefficients of the input
sequence filter out high-frequency noise and human mo-
tion details (e.g., fast motions) that may be informative to
human pose estimation (i.e., the over-smoothing problem).
Therefore, features from the time domain and frequency do-
main, i.e., the joint coordinate of central frames and low-
frequency coefficients of the sequence, carry complemen-
tary semantics. These considerations necessitate our pro-
posed Time-Frequency Feature Fusion design.

F. Generalization to More Models
In the main text, we focus on improving PoseFormerV1

[46] from a barely explored frequency-domain perspective.
In this part, we show that the proposed frequency-domain
approach also generalizes well to other existing state-of-the-
art methods, e.g., MixSTE [44] and MHFormer [16]. Since
these approaches [16, 44] also apply self-attention along
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Figure 8. Comparisons of MixSTE [44] and its improved version
with frequency representations of the sequence on Human3.6M
[13]. RF: Receptive Field and k×RF indicate that the RF of
MixSTE is expanded by k× with a few low-frequency DCT coeffi-
cients of the full sequence. The proposed approach helps MixSTE
gain a better speed-accuracy trade-off. (Best viewed in color)
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Figure 9. Comparisons of MixSTE [44] and its improved version
using low-frequency DCT coefficients of the sequence in terms
of robustness to noise on Human3.6M [13]. Zero-mean Gaussian
noise of standard deviation sigma is added to ground truth 2D de-
tection, and we show their performance drop (△MPJPE) as sigma
increases. The size of markers indicates the computational cost of
models.

the time dimension to all frames as PoseFormerV1 [46],
the proposed method can be easily incorporated into their
model without complex redesigns for model architecture.
For fair comparisons, we directly adopt optimal hyper-
parameters (e.g., the layer number, channel dimension) for
these original methods. Further tuning of hyper-parameters
may bring additional improvements.

MixSTE [44] adopts the spatial-temporal architecture
as PoseFormerV1 [46]. Compared to the spatial-then-
temporal paradigm of PoseFormerV1, MixSTE alternately
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Figure 10. Comparisons of MHFormer [16] and its improved
version using low-frequency DCT coefficients of the sequence in
terms of robustness to noise on Human3.6M [13]. Experimental
settings follow Fig. 9. The size of markers indicates the computa-
tional cost of models.

uses spatial and temporal transformer encoders. Similarly,
we centrally sample a few video frames from a longer se-
quence as input into the spatial encoders of MixSTE. For
temporal encoders, we append the time-domain features
(the output of the spatial encoders) with the embedding of
low-frequency coefficients of the complete input sequence.
The comparisons of MixSTE and its improved version are
presented in Fig. 8, 9. Original MixSTE is highly com-
putationally expensive and our approach improves its effi-
ciency and accuracy simultaneously, e.g., MixSTE achieves
46.2mm MPJPE taking 30.8 GFLOPs, while its improved
version achieves 45.3mm MPJPE with 15.4 GFLOPs (2×
faster and 1.9%↑ error reduction, see the bright red curve
in Fig. 8). We also show that our method improves the
robustness of MixSTE against noisy 2D joint detection
(Fig. 9). Specifically, we add zero-mean Gaussian noise
to the ground-truth 2D joint sequence of 27 frames on
Human3.6M [13]. The improved MixSTE (denoted as
MixSTE+) uses 3 central frames as input to its spatial en-
coders and the first 3 DCT coefficients as a cleaner global
representation of the full sequence. MixSTE+ suffers from
less performance drop while being 6× more efficient (30.8
GFLOPs vs. 5.1 GFLOPs, indicated by the marker size).

MHFormer [16] introduces multiple hypotheses into its
architecture to model depth ambiguity of body parts and un-
certainty of joint detectors and is thus relatively robust (ex-
perimental results are available in the main paper). Besides,
MHFormer also includes spatial-temporal transformer mod-
ules as in PoseFormerV1 [46]. To further verify the uni-
versality of our approach, we similarly improve MHFormer
following MixSTE+. Experimental evidence shows that the
proposed method promotes the robustness of MHFormer
while reducing its computational cost (see Fig. 10), even

though it already equips itself with prior knowledge of noisy
joint detection. Therefore, this result demonstrates that, in
terms of improvements in the robustness of models, our
method is compatible with other approaches.

We have so far generalized our approach to other two
transformer-based methods, i.e., MixSTE [44] and MH-
Former [16]. We may explore the generalization of the pro-
posed method to a wider range of model architectures in the
future, such as CNN-based and GNN-based methods in 3D
human pose estimation. Moreover, we believe our method
can also be utilized in other tasks, especially skeleton-based
ones where the computational cost of long-sequence pro-
cessing and the quality of human skeleton representations
can become problems.

G. Visualizations and Analysis
In this section, we provide a series of qualitative results

on challenging in-the-wild images to showcase the robust-
ness of PoseFormerV2 in real scenarios.

Fig. 11 presents several representative hard cases with
HRNet [34] 2D joint detection: (a) Occlusions where joints
overlap with each other; (b)(c) Missed joints; (d) Switched
joints. Specifically, the right arm of the person in the 4th
image of (b) and the left arm of the person in the 3rd im-
age of (c) are missed. Moreover, in the 2nd image of (d),
two legs of the person are switched (highlighted with light-
yellow circles). Despite the imperfect 2D joint input, Pose-
FormerV2 still infers correct positions for these joints in 3D
space (marked with orange circles).

Analysis. The robustness of PoseFormerV2 is at-
tributed to the usage of an appropriate representation – low-
frequency DCT coefficients – of the input joint sequence,
instead of hand-crafted modules that may bring additional
computational cost such as the multi-hypothesis generation
module in [16]. Low-frequency DCT coefficients provide a
global vision of the input sequence and therefore the noise
contained in individual video frames is dwarfed. This uti-
lization of DCT coefficients also brings an extra advan-
tage to PoseFormerV2, the temporal consistency of the es-
timated 3D pose between adjacent frames. We provide a
video demo to illustrate that the proposed method keeps
an excellent consistency (i.e., temporal stability) under ex-
tremely corrupted 2D joint detection.

H. Broader Impacts and Limitations
Broader impacts. In this paper, we attempt to reconcile

two critical issues in real-scenario applications of 3D HPE,
i.e., the efficiency of models to process long sequences for
improved precision and their robustness against noisy 2D
detection as high-quality joint sequences are hard to obtain.
To encourage more real-world applications, we may shift
our research focus from marginal improvements on care-
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(a) (b)

(c) (d)
Figure 11. Qualitative results of PoseFormerV2 under challenging in-the-wild images: (a) Occlusions; (b)(c) Missed 2D joint detection;
(d) Switched 2D joints. We highlight the unreliable 2D detection with light-yellow circles and corresponding 3D pose estimations with
orange circles. PoseFormerV2 shows great robustness to imperfect 2D joint detection.

fully controlled datasets to overcoming the drawbacks of
existing approaches in practical use. We expect more re-
search to follow this line.

On the other hand, this work is done based on a scarcely
investigated frequency method, i.e., Discrete Cosine Trans-
form (DCT) which plays an important role in conventional
image compression algorithms. We hope this research will
inspire more research to revisit traditional signal processing
techniques as various data we treat in the deep learning era
is actually signals of different forms. An appropriate com-
bination of these choreographed techniques and recently de-
veloped deep learning approaches may bring surprising ad-
vantages.

Limitations. Our method includes two important hyper-
parameters – the number of sampled central frames and
that of the kept DCT coefficients of the complete input
sequence. Currently, they are chosen on the basis of ex-
perimental results or human experience for the trade-off
between speed and accuracy. In the future, we may re-
shape them as learnable parameters that can be automat-
ically learned from input data, or we may further theoreti-
cally formulate the optimal choices for them, thus removing
the need for parameter-searching.
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data-efficient image transformers & distillation through at-
tention. arXiv preprint arXiv:2012.12877, 2020. 1

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. 2017. 1

[37] Jingbo Wang, Sijie Yan, Yuanjun Xiong, and Dahua Lin.
Motion guided 3d pose estimation from videos. In European
Conference on Computer Vision, pages 764–780. Springer,
2020. 1, 9

[38] Zhenyu Wang, Hao Luo, Pichao WANG, Feng Ding, Fan
Wang, and Hao Li. VTC-LFC: Vision transformer compres-
sion with low-frequency components. In Thirty-Sixth Con-
ference on Neural Information Processing Systems, 2022. 2,
3

[39] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan
Yuille, and Christoph Feichtenhofer. Masked feature predic-
tion for self-supervised visual pre-training. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14668–14678, 2022. 3

[40] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9653–9663, 2022. 3

[41] Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang
Chen, and Fengbo Ren. Learning in the frequency domain.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020. 2, 3

[42] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu,
Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview
transformers for video recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3333–3343, 2022. 1

[43] Ailing Zeng, Xiao Sun, Fuyang Huang, Minhao Liu, Qiang
Xu, and Stephen Lin. Srnet: Improving generalization in 3d
human pose estimation with a split-and-recombine approach.
In ECCV, 2020. 1

[44] Jinlu Zhang, Zhigang Tu, Jianyu Yang, Yujin Chen, and Jun-
song Yuan. Mixste: Seq2seq mixed spatio-temporal encoder
for 3d human pose estimation in video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13232–13242, 2022. 2, 3, 6, 7, 8, 10, 11

[45] Ce Zheng, Wenhan Wu, Taojiannan Yang, Sijie Zhu,
Chen Chen, Ruixu Liu, Ju Shen, Nasser Kehtarnavaz, and
Mubarak Shah. Deep learning-based human pose estimation:
A survey, 2020. 9

[46] Ce Zheng, Sijie Zhu, Matias Mendieta, Taojiannan Yang,
Chen Chen, and Zhengming Ding. 3d human pose estima-
tion with spatial and temporal transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 11656–11665, October 2021. 1, 2, 3, 4,
6, 7, 8, 9, 10, 11

[47] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

14


	1 . Introduction
	2 . Related Work
	2.1 . Transformer-based 3D Human Pose Estimation
	2.2 . Frequency Representation in Vision

	3 . Method
	3.1 . Preliminaries of PoseFormerV1 Zheng2021ICCV
	3.2 . PoseFormerV2
	3.2.1 Frequency Representation of Skeleton Sequence
	3.2.2 Architecture


	4 . Experiments
	4.1 . Datasets and Evaluation Metrics
	4.2 . Implementation Details and Analysis
	4.3 . Comparisons with State-of-the-art Methods
	4.4 . Ablation Study
	4.5 . Generalization Ability

	5 . Conclusion
	A . Overview
	B . Discrete Cosine Transform
	C . Datasets and Evaluation Metrics
	D . More Implementation Details
	E . Simple Baseline
	F . Generalization to More Models
	G . Visualizations and Analysis
	H . Broader Impacts and Limitations

