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(a) A LiDAR scan captured in a snowy day

(b) Point-level annotations

Figure 1. We introduce SemanticSTF, an adverse-weather LiDAR point cloud dataset with dense point-level annotations that can be
exploited for the study of point cloud semantic segmentation under all-weather conditions (including fog, snow, and rain). The graph on
the left shows one scan sample captured on a snowy day, and the one on the right shows the corresponding point-level annotations.

Abstract

Robust point cloud parsing under all-weather condi-
tions is crucial to level-5 autonomy in autonomous driving.
However, how to learn a universal 3D semantic segmen-
tation (3DSS) model is largely neglected as most existing
benchmarks are dominated by point clouds captured under
normal weather. We introduce SemanticSTF, an adverse-
weather point cloud dataset that provides dense point-level
annotations and allows to study 3DSS under various ad-
verse weather conditions. We study all-weather 3DSS mod-
eling under two setups: 1) domain adaptive 3DSS that
adapts from normal-weather data to adverse-weather data;
2) domain generalizable 3DSS that learns all-weather 3DSS
models from normal-weather data. Our studies reveal the
challenge while existing 3DSS methods encounter adverse-
weather data, showing the great value of SemanticSTF in
steering the future endeavor along this very meaningful re-
search direction. In addition, we design a domain random-
ization technique that alternatively randomizes the geome-
try styles of point clouds and aggregates their embeddings,
ultimately leading to a generalizable model that can im-
prove 3DSS under various adverse weather effectively. The
SemanticSTF and related codes are available at https :
//github.com/xiaoaoran/SemanticSTF.
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1. Introduction

3D LiDAR point clouds play an essential role in se-
mantic scene understanding in various applications such as
self-driving vehicles and autonomous drones. With the re-
cent advance of LiDAR sensors, several LIDAR point cloud
datasets [2, 11, 51] such as SemanticKITTI [2] have been
proposed which greatly advanced the research in 3D se-
mantic segmentation (3DSS) [19, 43, 64] for the task of
point cloud parsing. As of today, most existing point cloud
datasets for outdoor scenes are dominated by point clouds
captured under normal weather. However, 3D vision ap-
plications such as autonomous driving require reliable 3D
perception under all-weather conditions including various
adverse weather such as fog, snow, and rain. How to learn
a weather-tolerant 3DSS model is largely neglected due to
the absence of related benchmark datasets.

Although several studies [3, 34] attempt to include ad-
verse weather conditions in point cloud datasets, such as the
STF dataset [3] that consists of LiDAR point clouds cap-
tured under various adverse weather, these efforts focus on
object detection benchmarks and do not provide any point-
wise annotations which are critical in various tasks such as
3D semantic and instance segmentation. To address this
gap, we introduce SemanticSTF, an adverse-weather point
cloud dataset that extends the STF Detection Benchmark by
providing point-wise annotations of 21 semantic categories,
as illustrated in Fig. 1. Similar to STF, SemanticSTF cap-
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tures four typical adverse weather conditions that are fre-
quently encountered in autonomous driving including dense
fog, light fog, snow, and rain.

SemanticSTF provides a great benchmark for the study
of 3DSS and robust point cloud parsing under adverse
weather conditions. Beyond serving as a well-suited test
bed for examining existing fully-supervised 3DSS meth-
ods that handle adverse-weather point cloud data, Semantic-
STF can be further exploited to study two valuable weather-
tolerant 3DSS scenarios: 1) domain adaptive 3DSS that
adapts from normal-weather data to adverse-weather data,
and 2) domain generalizable 3DSS that learns all-weather
3DSS models from normal-weather data. Our studies reveal
the challenges faced by existing 3DSS methods while pro-
cessing adverse-weather point cloud data, highlighting the
significant value of SemanticSTF in guiding future research
efforts along this meaningful research direction.

In addition, we design PointDR, a new baseline frame-
work for the future study and benchmarking of all-weather
3DSS. Our objective is to learn robust 3D representations
that can reliably represent points of the same category
across different weather conditions while remaining dis-
criminative across categories. However, robust all-weather
3DSS poses two major challenges: 1) LiDAR point clouds
are typically sparse, incomplete, and subject to substantial
geometric variations and semantic ambiguity. These chal-
lenges are further exacerbated under adverse weather con-
ditions, with many missing points and geometric distortions
due to fog, snow cover, etc. 2) More noises are introduced
under adverse weather due to snow flicks, rain droplets, etc.
PointDR addresses the challenges with two iterative oper-
ations: 1) Geometry style randomization that expands the
geometry distribution of point clouds under various spatial
augmentations; 2) Embedding aggregation that introduces
contrastive learning to aggregate the encoded embeddings
of the randomly augmented point clouds. Despite its sim-
plicity, extensive experiments over point clouds of different
adverse weather conditions show that PointDR achieves su-
perior 3DSS generalization performance.

The contribution of this work can be summarized in three
major aspects. First, we introduce SemanticSTF, a large-
scale adverse-weather point cloud benchmark that provides
high-quality point-wise annotations of 21 semantic cate-
gories. Second, we design PointDR, a point cloud do-
main randomization baseline that can be exploited for future
study and benchmarking of 3DSS under all-weather condi-
tions. Third, leveraging SemanticSTF, we benchmark exist-
ing 3DSS methods over two challenging tasks on domain
adaptive 3DSS and domain generalized 3DSS. The bench-
marking efforts lay a solid foundation for future research on
this highly meaningful problem.

2. Related Works

3D semantic segmentation aims to assign point-wise se-
mantic labels for point clouds. It has been developed
rapidly over the past few years, largely through the devel-
opment of various deep neural networks (DNNs) such as
standard convolutional network for projection-based meth-

ods [9,30,48,52, 61], multi-layer perceptron (MLP)-based
networks [19, 35, 35], 3D voxel convolution-based net-
works [7,64], or hybrid networks [6,27,43,53,59]. While

existing 3DSS networks are mainly evaluated over normal
weather point clouds, their performance for adverse weather
point clouds is far under-investigated. The proposed Se-
manticSTF closes the gap and provides a solid ground for
the study and evaluation of all-weather 3DSS. By enabling
investigations into various new research directions, Seman-
ticSTF represents a valuable tool for advancing the field.
Vision recognition under adverse conditions. Scene un-
derstanding under adverse conditions has recently attracted
increasing attention due to the strict safety demand in var-
ious outdoor navigation and perception tasks. In 2D vi-
sion, several large-scale datasets have been proposed to
investigate perceptions tasks in adverse visual conditions
including localization [29], detection [58], and segmenta-
tion [37]. On the other hand, learning 3D point clouds of
adverse conditions is far under-explored due to the absence
of comprehensive dataset benchmarks. The recently pro-
posed datasets such as STF [3] and CADC [34] contain
LiDAR point clouds captured under adverse weather con-
ditions. However, these studies focus on the object detec-
tion task [15, 16] with bounding-box annotations, without
providing any point-wise annotations. Our introduced Se-
manticSTF is the first large-scale dataset that consists of Li-
DAR point clouds in adverse weather conditions with high-
quality dense annotations, to the best of our knowledge.
Domain generalization [4,3 ] aims to learn a generalizable
model from single or multiple related but distinct source do-
mains where target data is inaccessible during model learn-
ing. It has been widely studied in 2D computer vision
tasks [1, 21, 26, 63] while few studies explore it in point
cloud learning. Recently, [25] studies domain generaliza-
tion for 3D object detection by deforming point clouds via
vector fields. Differently, this work is the first attempt that
explores domain generalization for 3DSS.

Unsupervised domain adaptation is a method of transfer-
ring knowledge learned from a labeled source domain to a
target domain by leveraging the unlabeled target data. It has
been widely studied in 2D image learning [ 12, 14,20,22-24]
and 3D point clouds [15, 16, 28,40, 54, 55, 60]. Recently,
domain adaptive 3D LiDAR segmentation has drawn in-
creasing attention due to the challenge in point-wise an-
notation. Different UDA approaches have been designed
to mitigate discrepancies across LiDAR point clouds of
different domains. For example, [48, 62] project point



clouds into depth images and leverage 2D UDA techniques
while [38,50,51,57] directly work in the 3D space. How-
ever, these methods either work for synthetic-to-real UDA
scenarios [48, 51] or normal-to-normal point cloud adap-
tation [57], ignoring normal-to-adverse adaptation which
is highly practical in real applications. Our SemanticSTF
dataset fills up this blank and will inspire more development
of new algorithms for normal-to-adverse adaptation.

3. The SemanticSTF Dataset
3.1. Background

LiDAR sensors send out laser pulses and measure their
flight time based on the echoes it receives from targets. The
travel distance as derived from the time-of-flight and the
registered angular information (between the LiDAR sensors
and the targets) can be combined to compute the 3D coordi-
nates of target surface which form point clouds that capture
the 3D shape of the targets. However, the active LIDAR
pulse system can be easily affected by the scattering media
such as particles of rain droplets and snow [10, 18,33,36],
leading to shifts of measured distances, variation of echo
intensity, point missing, etc. Hence, point clouds captured
under adverse weather usually have clear distribution dis-
crepancy as compared with those collected under normal
weather as illustrated in Fig. 1. However, existing 3DSS
benchmarks are dominated by normal-weather point clouds
which are insufficient for the study of universal 3DSS un-
der all-weather conditions. To this end, we propose Seman-
ticSTF, a point-wise annotated large-scale adverse-weather
dataset that can be explored for the study of 3DSS and point
cloud parsing under various adverse weather conditions.

3.2. Data Selection and Split

We collect SemanticSTF by leveraging the STF bench-
mark [3], a multi-modal adverse-weather dataset that was
jointly collected in Germany, Sweden, Denmark, and Fin-
land. The data in STF have multiple modalities including
LiDAR point clouds and they are collected under various
adverse weather conditions such as snow and fog. How-
ever, STF provides bounding-box annotations only for the
study of 3D detection tasks. In SemanticSTF, we manu-
ally selected 2,076 scans captured by a Velodyne HDL64
S3D LiDAR sensor from STF that cover various adverse
weather conditions including 694 snowy, 637 dense-foggy,
631 light-foggy, and 114 rainy (all rainy LiDAR scans in
STF). During the selection, we pay special attention to the
geographical diversity of the point clouds aiming for min-
imizing data redundancy. We ignore the factor of day-
time/nighttime since LiDAR sensors are robust to lighting
conditions. We split SemanticSTF into three parts including
1,326 full 3D scans for training, 250 for validating, and 500
for testing. All three splits have approximately the same

proportion of LiDAR scans of different adverse weathers.

3.3. Data Annotation

Point-wise annotation of LiDAR point clouds is an ex-
tremely laborious task due to several factors, such as 3D
view changes, inconsistency between point cloud display
and human visual perception, sweeping occlusion, point
sparsity, etc. However, point-wise annotating of adverse-
weather point clouds is even more challenging due to two
new factors. First, the perceived distance shifts under ad-
verse weather often lead to various geometry distortions in
the collected points which make them different from those
collected under normal weather. This presents significant
challenges for annotators who must recognize various ob-
jects and assign a semantic label to each point. Second,
LiDAR point clouds collected under adverse weather often
contain a significant portion of invalid regions that consist
of indiscernible semantic contents (e.g., thick snow cover)
that make it difficult to identify the ground type. The exis-
tence of such invalid regions makes point-wise annotation
even more challenging.

We designed a customized labeling pipeline to handle
the annotation challenges while performing point-wise an-
notation of point clouds in SemanticSTF. Specifically, we
first provide labeling instructions and demo annotations and
train a team of professional annotators to provide point-
wise annotations of a set of selected STF LiDAR scans.
To achieve reliable high-quality annotations, the annotators
leverage the corresponding 2D camera images and Google
Street views as extra references while identifying the cate-
gory of each point in this initial annotation process. After
that, the annotators cross-check their initial annotations for
identifying and correcting labeling errors. At the final stage,
we engaged professional third parties who provide another
round of annotation inspection and correction.

Annotation of SemanticSTF is a highly laborious and
time-consuming task. For instance, while labeling down-
town areas with the most complex scenery, it took an anno-
tator an average of 4.3 hours to label a single LiDAR scan.
Labeling a scan captured in a relatively simpler scenery,
such as a highway, also takes an average of 1.6 hours. In ad-
dition, an additional 30-60 minutes are required per scan for
verification and correction by professional third parties. In
total, annotating the entire SemanticSTF dataset takes over
6,600 man-hours.

While annotating SemanticSTF, we adopted the same set
of semantic classes as in the widely-studied semantic seg-
mentation benchmark, SemanticKITTI [2]. Specifically, we
annotate the 19 evaluation classes of SemanticKITTI, which
encompass most traffic-related objects in autonomous driv-
ing scenes. Additionally, following [37], we label points
with indiscernible semantic contents caused by adverse
weather (e.g. ground covered by snowdrifts) as invalid. Fur-
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Figure 2. Number of annotated points per class in SemanticSTF.

thermore, we label points that do not belong to the 20 cat-
egories or are indistinguishable as ignored, which are not
utilized in either training or evaluations. Detailed descrip-
tions of each class can be found in the appendix.

3.4. Data Statistics

SemanticSTF consists of point-wise annotations of 21
semantic categories, and Fig. 2 shows the detailed statistics
of the point-wise annotations. It can be seen that classes
road, sidewalk, building, vegetation, and terrain appear
most frequently whereas classes motor, motorcyclist, and
bicyclist have clearly lower occurrence frequency. Such
class imbalance is largely attributed to the various object
sizes and unbalanced distribution of object categories in
transportation scenes, and it is also very common in many
existing benchmarks. Overall, the statistics and distribu-
tion of different object categories are similar to that of
other 2D and 3D semantic segmentation benchmarks such
as Cityscapes [8], ACDC [37], and SemanticKITTI [2].

To the best of our knowledge, SemanticSTF is the first
large-scale adverse-weather 3DSS benchmark that provides
high-quality point-wise annotations. Table 1 compares it
with several existing point cloud datasets that have been
widely adopted for the study of 3D detection and semantic
segmentation. We can observe that existing datasets are ei-
ther collected under normal weather conditions or collected
for object detection studies with bounding-box annotations
only. 3DSS benchmark under adverse weather is largely
blank, mainly due to the great challenge in point-wise an-
notations of adverse-weather point clouds as described in
previous subsections. From this sense, SemanticSTF fills
up this blank by providing a large-scale benchmark and test
bed which will be very useful to future research in universal
3DSS under all weather conditions.

3.5. Data illustration

Fig. 3 provides examples of point cloud scans captured
under adverse weather conditions in SemanticSTF (in row
1) as well as the corresponding annotations (in row 2).
Compared with normal-weather point clouds, point clouds
captured under adverse weather exhibit four distinct prop-
erties: 1) Snow coverage and snowflakes under snowy
weather introduce many white points (labeled as “invalid”)
as illustrated in Fig. 3(a). The thick snow coverage may lead
to object deformation as well; Rainy conditions may cause
specular reflection of laser signals from water on the ground

Dataset #CIs Type Annotation Fog Rain Snow
KITTI[13] 8 real bounding box
nuScenes [5] 23 real bounding box
Waymo [41] 4 real bounding box
STF[3] S5 real bounding box

N X X X %[N X% X% X%
WX X% X XN X X X
WX X X %[N X% X% X%

SemanticKITTI [2] 25 real  point-wise
nuScenes-LiDARSeg [11] 32 real point-wise
Waymo-LiDARSeg [41] 21 real point-wise
SynLiDAR [51] 32 synth. point-wise
SemanticSTF (ours) 21 real  point-wise

Table 1. Comparison of SemanticSTF against existing outdoor
LiDAR benchmarks. #Cls means the class number.

and produce many noise points as shown in Fig.3(b); 3)
Dense fog may greatly reduce the working range of LIDAR
sensors, leading to small spatial distribution of the collected
LiDAR points as illustrated in Fig. 3(c); 4) Point clouds un-
der light fog have similar characteristics as normal-weather
point clouds as illustrated in Fig. 3(d). The distinct prop-
erties of point clouds under different adverse weather intro-
duce different types of domain shift from normal-weather
point clouds which complicate 3DSS greatly as discussed
in Section 5. They also verify the importance of develop-
ing universal 3DSS models that can perform well under all
weather conditions.

4. Point Cloud Domain Randomization

Leveraging SemanticSTF, we explore domain general-
ization (DG) for semantic segmentation of LiDAR point
clouds under all weather conditions. Specifically, we de-
sign PointDR, a domain randomization technique that helps
to train a generalizable segmentation model from normal-
weather point clouds that can work well for adverse-weather
point clouds in SemanticSTF.

4.1. Problem Definition

Given labeled point clouds of a source domain § =
{Sk = {2k, yr}},_, where z represents a LiDAR point
cloud scan and y denotes its point-wise semantic annota-
tions, the goal of domain generalization is to learn a seg-
mentation model F' by using the source-domain data only
that can perform well on point clouds from an unseen tar-
get domain 7. We consider a 3D point cloud segmentation
model F' that consists of a feature extractor ' and a clas-
sifier G. Note under the setup of domain generalization,
target data will not be accessed in training as they could be
hard and even impossible to acquire at the training stage.

4.2. Point Cloud Domain Randomization

Inspired by domain randomization studies in 2D com-
puter vision research [44,45], we explore how to employ
domain randomization for learning domain generalizable
models for point Specifically, we design PointDR, a point
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Figure 4. The framework of our point cloud randomization method
(PointDR): Geometry style randomization creates different point
cloud views with various spatial perturbations while embedding
aggregation encourages the feature extractor to aggregate random-
ized point embeddings to learn perturbation-invariant representa-
tions, ultimately leading to a generalizable segmentation model.

cloud randomization technique that consists of two com-
plementary designs including geometry style randomization
and embedding aggregation as illustrated in Fig. 4.
Geometry style randomization aims to enrich the geome-
try styles and expand the distribution of training point cloud
data. Given a point-cloud scan x as input, we apply weak
and strong spatial augmentation to obtain two copies of x
including a weak-view 2% = A" (z) and a strong-view
z® = A%(z). For the augmentation schemes of A", we
follow existing supervised learning methods [43] and adopt
the simple random rotation and random scaling. While for
the augmentation schemes of .A°, we further adopt random
dropout, random flipping, random noise perturbation, and
random jittering on top of A" to obtain a more diverse and
complex copy of the input point cloud scan z.

Embedding aggregation aims to aggregate encoded em-
beddings of randomized point clouds for learning domain-

invariant representations. We adopt contrastive learn-
ing [17] as illustrated in Fig. 4. Given the randomized point
clouds =% and x®, we first feed them into the feature extrac-
tor E and a projector P (a two-layer MLP) which outputs
normalized point feature embeddings f* and f*, respec-
tively (f = P(E(z))). fo € RPXC (D: feature dimen-
sion; C: number of semantic classes) is then derived by
class-wise averaging the feature embeddings ™ in a batch,
which is stored in a memory bank B € RP*¢ that has
no backpropagation and is momentum updated by iterations
(i.e., B < mx B+ (1—m) x f with a momentum coeffi-
cient m). Finally, we employ each point feature embedding
f; of the strong-view f® as query and feature embeddings
in B3 as keys for contrastive learning, where the key sharing
the same semantic class as the query is positive key 5 and
the rest are negative keys. The contrastive loss is defined as

N S
£, — 1 S~ log §Xp (f; B+,/ 7)
N S5y exp (fiB;/7)

where 7 is a temperature hyper-parameter [49]. Note there
is no back-propagation for the “ignore” class in optimizing
the contrastive loss.

ey

Contrastive learning pulls point feature embeddings of
the same classes closer while pushing away point feature
embeddings of different classes. Therefore, optimizing the
proposed contrastive loss will aggregate randomized point
cloud features and learn perturbation-invariant representa-
tions, ultimately leading to a robust and generalizable seg-
mentation model. The momentum-updated memory bank
provides feature prototypes of each semantic class for more
robust and stable contrastive learning.

Combining the supervised cross-entropy loss L., for
weakly-augmented point clouds in Eq. 1, the overall train-
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Oracle ‘89.4 42.1 0.0 59.9 61.2 69.6 39.0 0.0 82.2 21.5 58.2 45.6 86.1 63.6 80.2 52.0 77.6 50.1 61.7‘51.9 54.6 57.9 53.7‘ 54.7
SemanticKITTI— SemanticSTF
Baseline 559 0.0 02 19 109 10.3 6.0 0.0 61.2 10.9 32.0 0.0 67.9 41.6 49.8 27.9 40.8 29.6 17.5(29.5 26.0 28.4 21.4| 24.4
Dropout [39] |62.1 0.0 15.5 3.0 11.5 54 2.0 0.0 58.4 12.8 26.7 1.1 72.1 43.6 52.9 34.2 43.5 28.4 15.5|29.3 25.6 29.4 24.8| 25.7
Perturbation 744 0.0 0.0 233 0.6 19.7 0.0 0.0 60.3 10.8 33.9 0.7 72.0 45.2 58.7 17.5 42.4 22.1 9.7 |26.3 27.8 30.0 24.5| 25.9
PolarMix [50] |57.8 1.8 3.8 16.7 3.7 265 0.0 2.0 65.7 2.9 32.5 0.3 71.0 48.7 53.8 20.5 45.4 25.9 15.8(29.7 25.0 28.6 25.6| 26.0
MMD [26] 63.6 0.0 2.6 0.1 11.4 281 0.0 0.0 67.0 14.1 379 0.3 67.3 41.2 57.1 27.4 479 28.2 16.2|30.4 28.1 32.8 25.2| 26.9
PCL [56] 659 0.0 00 17.7 04 84 0.0 0.0 59.6 12.0 35.0 1.6 74.0 47.5 60.7 15.8 48.9 26.1 27.5(28.9 27.6 30.1 24.6| 26.4
PointDR (Ours) |67.3 0.0 4.5 19.6 9.0 188 2.7 0.0 62.6 129 38.1 0.6 73.3 43.8 56.4 32.2 45.7 28.7 27.4|31.3 29.7 31.9 26.2| 28.6
SynLiDAR— SemanticSTF
Baseline 27.1 3.0 06 158 0.1 252 1.8 5.6 239 03 146 0.6 363 199 379 179 41.8 9.5 23169 17.2 17.2 11.9] 15.0
Dropout [39] |28.0 3.0 14 9.6 0.0 17.1 0.8 0.7 342 6.8 19.1 0.1 355 19.1 42.3 17.6 36.0 14.0 2.8 |15.3 16.6 20.4 14.0| 15.2
Perturbation 27.1 23 23 16.0 0.1 23.7 1.2 4.0 27.0 3.6 162 0.8 29.2 16.7 35.3 22.7 38.3 17.9 5.1 |16.3 16.7 19.3 13.4| 15.2
PolarMix [50] [39.2 1.1 1.2 83 1.5 17.8 0.8 0.7 23.3 1.3 17.5 0.4 452 24.8 46.2 20.1 38.7 7.6 1.9 |16.1 155 19.2 15.6| 15.7
MMD [26] 255 23 2.1 132 0.7 22.1 14 7.5 308 04 17.6 0.2 309 19.7 37.6 193 43.5 99 2.6 [17.3 16.3 20.0 12.7| 15.1
PCL [56] 309 0.8 14 100 04 233 4.0 7.9 285 1.3 17.7 1.2 39.4 18.5 40.0 16.0 38.6 12.1 2.3 |17.8 16.7 19.3 14.1| 15.5
PointDR (Ours) |37.8 2.5 24 23.6 0.1 263 22 33279 7.7 17.5 0.5 47.6 253 45.7 21.0 37.5 17.9 5.5 |19.5 19.9 21.1 16.9| 18.5

Table 2. Experiments on domain generalization with SemanticKITTI [2] or SynLiDAR [

ing objective of PointDR can be formulated by:

‘CPointDR = ‘Cce + Act£0t (2)

5. Evaluation of Semantic Segmentation

SemanticSTF can be adopted for benchmarking different
learning setups and network architectures on point cloud
segmentation. We perform experiments over two typical
learning setups including domain generalization and unsu-
pervised domain adaptation. In addition, we evaluate sev-
eral state-of-the-art point-cloud segmentation networks to
examine their generalization capabilities.

5.1. Domain Generalization

We first study domain generalizable point cloud segmen-
tation. For DG, we can only access an annotated source
domain during training and the trained model is expected
to generalize well to unseen target domains. Leveraging
SemanticSTF, we build two DG benchmarks and examine
how PointDR helps learn a universal 3DSS model that can
work under different weather conditions.

The first benchmark is SemanticKITTI [2] — Seman-
ticSTF where SemanticKITTI is a large-scale real-world
3DSS dataset collected under normal weather conditions.
This benchmark serves as a solid testing ground for eval-
uating domain generalization performance from normal to
adverse weather conditions. The second benchmark is Syn-
LiDAR [5]] — SemanticSTF where SynLiDAR is a large-
scale synthetic 3DSS dataset. The motivation of this bench-
mark is that learning a universal 3DSS model from synthetic
point clouds that can work well across adverse weather
is of high research and application value considering the

] as source and SemanticSTF as target.

challenges in point cloud collection and annotation. Note
this benchmark is more challenging as the domain discrep-
ancy comes from both normal-to-adverse weather distribu-
tion shift and synthetic-to-real distribution shift.

Setup. We use all 19 evaluating classes of SemanticKITTI
in both domain generalization benchmarks. The category
of invalid in SemanticSTF is mapped to the ignored since
SemanticKITTI and SynLiDAR do not cover this cate-
gory. We adopt MinkowskiNet [7] (with TorchSparse li-
brary [43]) as the backbone model, which is a sparse convo-
lutional network that provides state-of-the-art performance
with decent efficiency. We adopt the evaluation metrics of
Intersection over the Union (IoU) for each segmentation
class and the mean IoU (mloU) over all classes. All ex-
periments are run over a single NVIDIA 2080Ti (11GB).
More implementation details are provided in the appendix.
Baseline Methods. Since domain generalizable 3DSS is
far under-explored, there is little existing baseline that can
be directly adopted for benchmarking. We thus select two
closely related approaches as baseline to evaluate the pro-
posed PointDR. The first approach is data augmentation
and we select three related augmentation methods includ-
ing Dropout [39] that randomly drops out points to simulate
LiDAR points missing in adverse weather, Noise perturba-
tion that adds random points in the 3D space to simulate
noise points as introduced by particles like falling snow, and
PolarMix [50] that mixes point clouds of different sources
for augmentation. The second approach is to adapt 2D do-
main generalization methods for 3DSS. We select two 2D
domain generalization methods including the widely stud-
ied MMD [26] and the recently proposed PCL [56].
Results. Table 2 shows experimental results over the valida-



Method | Lee Lo B | mloU
Baseline v 244
PointDR-CT v v 27.4
PointDR v v v 28.6

Table 3. Ablation study of PointDR over domain generalized seg-
mentation task SemanticKITTI— SemanticSTF.

tion set of SemanticSTF. For both benchmarks, the Baseline
is a source-only model that is trained by using the training
data of SemanticKITTI or SynLiDAR. We can see that the
Baseline achieves very low mloU while evaluated over the
validation set of SemanticSTF, indicating the large domain
discrepancy between point clouds of normal and adverse
weather conditions. In addition, all three data augmentation
methods improve the model generalization consistently but
the performance gains are limited especially for the chal-
lenging benchmark SynLiDAR— SemanticSTF. The two
2D generalization methods both help SemanticKITTI —
SemanticSTF clearly but show very limited improvement
over SynLiDAR — SemanticSTF. The proposed PointDR
achieves the best generalization consistently across both
benchmarks, demonstrating its superior capability to learn
perturbation-invariant point cloud representations and ef-
fectiveness while handling all-weather 3DSS tasks.

We also evaluate the compared domain generalization
methods over each individual adverse weather condition as
shown in Table 2. It can be observed that the three data
augmentation methods work for data captured in rainy and
snowy weather only. The 2D generalization method MMD
shows clear effectiveness for point clouds under dense fog
and rain while PCL works for point clouds under rainy and
snowy weather instead. We conjecture that the performance
variations are largely attributed to the different properties
of point clouds captured under different weather conditions.
For example, more points are missing in rain while object
points often deform due to the covered snow (more illus-
trations are provided in the appendix). Such data variations
lead to different domain discrepancies across weather which
further leads to different performances of the compared
methods. As PointDR learns perturbation-tolerant represen-
tations, it works effectively across different adverse weather
conditions. We also provide qualitative results, please refer
to the appendix for details.

Ablation study. We study different PointDR designs to
examine how they contribute to the overall generalization
performance. As Table 3 shows, we report three models
over the benchmark “SemanticKITTI — SemanticSTF”: 1)
Baseline that is trained with L... 2) PointDR-CT that is
jointly trained with £.. and L. without using the mem-
ory bank B. 3) The complete PointDR that is trained with
Lece, Loy and the memory bank 5. We evaluate the three
models over the validation set of SemanticSTF and Table 3

shows experimental results. We can see that the Base-
line performs poorly at 24.4% due to clear domain dis-
crepancy between point clouds of normal weather and ad-
verse weather. Leveraging the proposed contrastive loss,
L.+ achieves clearly better performance at 27.4%, indicat-
ing that learning perturbation-invariance is helpful for uni-
versal LIDAR segmentation of all-weather conditions. On
top of that, introducing the momentum-updated memory
bank B further improves the segmentation performance at
28.6%. This is because the feature embeddings in B serve
as the class prototypes which help the optimization of the
segmentation network, finally leading to more robust repre-
sentations of 3DSS that perform better over adverse weather
point clouds.

5.2. Domain Adaptation

We also study SemanticSTF over a domain adaptive
point cloud segmentation benchmark SemanticKITTI —
SemanticSTF. Specifically, we select four representative
UDA methods including ADDA [46], entropy minimiza-
tion (Ent-Min) [47], self-training [65], and CoSMix [38]
for adaptation from the source SemanticKITTI [2] to-
ward the target SemanticSTF. Following the state-of-the-
art [38, 50, 51] on synthetic-to-real adaptation, we adopt
MinkowskiNet [7] as the segmentation backbone for all
compared methods. Table 4 shows experimental results
over the validation set of SemanticSTF. We can see that all
UDA methods outperform the Source-only consistently un-
der the normal-to-adverse adaptation setup. At the other
end, the performance gains are still quite limited, showing
the great improvement space along domain adaptive 3DSS
from normal to adverse weather conditions.

In addition, we examined the adaptability of the four
UDA methods in relation to each individual adverse weather
condition. Specifically, we trained each of the four methods
for adaptation from SemanticKITTI to SemanticSTF data
for each adverse weather condition. Table 5 shows the ex-
perimental results over the validation set of SemanticSTF.
We can see all four methods outperform the Source-only
method under Dense-fog and Light-fog, demonstrating their
effectiveness in mitigating domain discrepancies. However,
for rain and Snow, only CoSMix achieved marginal perfor-
mance gains while the other three UDA methods achieved
limited performance improvements. We conjecture that
snow and rain introduce large deformations on object sur-
faces or much noise, making adaptation from normal to ad-
verse weather more challenging. CoSMix works in the in-
put space by directly mixing source and target points, allow-
ing it to perform better under heavy snow and rain which
have larger domain gaps. However, all methods achieved
relatively low segmentation performance, indicating the sig-
nificance of our research and the large room for improve-
ment in our constructed benchmarks.
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Source-only 648 00 00 138 1.8 50 2.1 0.0 627 7.5 340 0.0 66.7 362 539 313 443 24.0 142 | 243
ADDA [46] 656 00 00 210 13 28 13 167 647 12 354 00 665 41.8 57.2 326 422 233 264 | 263
Ent-Min[47] 692 00 10.0 310 53 28 26 00 659 26 357 00 725 428 524 325 447 247 21.1| 272
Self-training [65] | 715 0.0 10.3 331 74 59 13 00 651 65 366 00 678 413 517 329 429 251 250 276
CoSMix [35] | 650 17 220 252 77 332 00 00 647 115 311 0.9 625 37.8 446 305 41.1 30.9 28.6| 28.4

Table 4. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI— SemanticSTF adaptation. SemanticKITTI serves
as the source domain and the entire SemanticSTF including all four weather conditions serves as the target domain.

Method \ Dense-fog  Light-fog ~ Rain  Snow
Source-Only 26.9 252 27.7 235
ADDA [46] 31.5 27.9 274 234
Ent-Min [47] 31.4 28.6 303 249
Self-training [65] 31.8 29.3 279 251
CoSMix [38] 31.6 30.3 331 329

Table 5. Comparison of state-of-the-art domain adaptation meth-
ods on SemanticKITTI—SemanticSTF adaptation for individual
adverse weather conditions. We train a separate model for each
weather-specific subset of SemanticSTF and evaluate the trained
model on the weather condition it has been trained for.

5.3. Network Models vs All-Weather 3DSS

We also study how different 3DSS network architec-
tures generalize when they are trained with normal-weather
point clouds and evaluated over SemanticSTF. Specifically,
we select five representative 3DSS networks [9, 19,43, 64]
that have been widely adopted in 3D LiDAR segmen-
tation studies. In the experiments, each selected net-
work is first pre-trained with SemanticKITTI [2] and then
evaluated over the validation set of SemanticSTF. We di-
rectly use the officially released code and the pre-trained
weights for evaluation. Table 6 shows experimental results.
We can observe that the five pre-trained models perform
very differently though they all achieve superior segmenta-
tion over SemanticKITTI. Specifically, RandLA-Net [19],
SPVCNN [43], and SPVNAS [43] perform clearly better
than SalsaNext [9] and Cylinder3D [64]. In addition, none
of the five pre-trained models perform well, verifying the
clear domain discrepancy between point clouds of normal
and adverse weather conditions. The experiments further
indicate the great value of SemanticSTF in the future explo-
ration of robust point cloud parsing under all weather con-
ditions. In addition, the supervised performance of these
3DSS networks over SemanticSTF is provided in the ap-
pendix.

6. Conclusion and Outlook

This paper presents SemanticSTF, a large-scale dataset
and benchmark suite for semantic segmentation of LiDAR

3DSS Model | D-fog L-fog Rain Snow All
RandLA-Net [19] 26.5 26.0 25.1 22.7 25.3
SalsaNext [9] 16.0 9.6 7.8 3.5 9.1
SPVCNN [43] 30.4 22.8 21.7 18.3 22.4
SPVNAS [43] 25.5 18.3 17.0 13.0 18.0
Cylinder3D [64] 14.8 7.4 5.7 4.0 7.3

Table 6. Performance of state-of-the-art 3DSS models that are
pre-trained over SemanticKITTI and tested on validation set of
SemanticSTF for individual weather conditions and jointly for all
weather conditions.

point clouds under adverse weather conditions. Semantic-
STF provides high-quality point-level annotations for point
clouds captured under adverse weather including dense fog,
light fog, snow and rain. Extensive studies have been con-
ducted to examine how state-of-the-art 3DSS methods per-
form over SemanticSTF, demonstrating its significance in
directing future research on domain adaptive and domain
generalizable 3DSS under all-weather conditions.

We also design PointDR, a domain randomization tech-
nique that aims to use normal-weather point clouds to train
a domain generalizable 3DSS model that can work well
over adverse-weather point clouds. PointDR consists of two
novel designs including geometry style randomization and
embedding aggregation which jointly learn perturbation-
invariant representations that generalize well to various new
point-cloud domains. Extensive experiments show that
PointDR achieves superior point cloud segmentation per-
formance as compared with the state-of-the-art.
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We provide more experiment details of domain adaptation and domain generalization in Section A and Section B, respec-
tively, supervised learning on adverse conditions in Section C and additional details on SemanticSTF dataset in Section D.

A. Domain generalization
A.1. Implementation details

We provide the detailed training configurations for semantic segmentation of LiDAR point clouds that have been adopted
as described in Sec. 5.1 of the submitted paper. Specifically, we implement the backbone model MinkowskiNet [7] with
the TorchSparse library [42]. For training, we use SGD optimizer. The learning rate, momentum and weight decays are set
as 0.24,0.9, and 1.4e — 4, respectively. 7 in Eq. 1 in the paper is set as 0.07 [17,49] and A.; in Eq. 2 is set as 0.1. The
momentum coefficient m is set at 0.99. We train 50 epochs with one NVIDIA 2080Ti with 11GB GPU memory and set the
batch size at 4. The augmentations of training data in the source-domain are implemented as follows: For rotation, LIDAR
points are rotated with the range of [0, 360°] along Z axis. For scale, the coordinates of LiDAR points are randomly scaled
within [0.95, 1.05]. For drop-out, we randomly drop-out 0-20% points of input LIDAR scans with a probability of 0.5. As
for noise perturbation, 0 — 2,000 random points are added into the 3D space of each LiDAR scan with a probability of 0.5.
When using flipping, we randomly flip coordinates of LiDAR point clouds along x or y axis with a probability of 0.5. As for
Jittering, random coordinate shifts with a range of [—0.05, 0.05] meters are added into LiDAR points with a probability of
0.5.

In training the oracle model, we employ the SGD optimizer with the hyperparameters including initial learning rate at
0.1, momentum at 0.9, weight decay at 1.0e — 4, and dampening at 0.1. We train the segmentation model with 500 epochs
using a single NVIDIA 2080Ti with 11GB GPU memory. The batch size is set as 4. We use Poly learning rate policy with
power= 0.9. As for data augmentations, we follow [43] and adoptes random rotation ([—, 7]) and scaling ([0.95, 1.05]); We
also adopts PolarMix [50] with following parameter settings: Rotation angles along the Z-axis, denoted as (2, are randomly
scaled within normal distributions with a mean of ; = 0 and standard deviation of o = %ﬂ'. We keep the original instance
classes for rotate-pasting in PolarMix.

A.2. Evaluation of individual adverse weather conditions

We noticed that for certain individual adverse weather conditions, some class has no data captured in the validation set
of SemanticSTF. Specifically, there are no points of bicycle and motorcycle in the validation set of dense fog; no points of
bicyclist and motorcyclist in the validation set of snow, and no bicycle and motorcyclist in the validation set of rain. This
is reasonable as the LiDAR data of SemanticSTF is collected in European countries including Germany, Sweden, Denmark,
and Finland where motorcycles are not widely used for the reason of environmental protection. In addition, people usually
do not ride bicycles or motorcycles in adverse weather conditions. As a result, classes motor, motorcyclist, and bicyclist
have extremely lower occurrence frequency, leading to an absence of these classes in the validation set of SemanticSTF
under relevant weather conditions. Tables 7, 8, 9, and 10 present corresponding class-level IoU performance for each adverse
weather in Table 3 of the submitted paper.

A.3. Ablation study

Data augmentation. We study how data augmentation techniques affect generalized semantic segmentation of point clouds
(3DSS) and compare them with the proposed PointDR. As Table 11 shows, we report seven models over the benchmark
“SemanticKITTI—SemanticSTF”: 1) The Baseline is a source-only model that is trained by using the training data of Se-
manticKITTT; 2) The drop-out, noise perturbation, flipping, and jittering are segmentation models with different augmen-
tation techniques over input data; All is the model that combines of all these augmentation techniques; 3) Our proposed
PointDR. We can see that implementing each of these augmentation techniques improves the generalization capability of
the segmentation model clearly and consistently. However, the combination of them all did not yield the best segmentation
performance, largely because the combination brings too many distortions to the input point clouds. On the contrary, the pro-
posed PointDR achieves the best segmentation performance, indicating its superior ability to learn universal representations
for all-weather 3DSS.
Parameter analysis. We examine the parameter \.; in Eq. 2 in the paper that balances the cross entropy loss and the
contrastive loss. As Table 12 shows, optimizing the proposed contrastive loss is able to improve segmentation performance
consistently while different A.; produce quite different mIoUs. The best mloU is obtained when A, = 0.10.

Table 13 below shows segmentation performance with different momentum values (m) used for updating the memory
bank 5. It performs reasonably well when m is 0.98 or 0.99, showing that a slowly progressing memory bank is beneficial.
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SemanticKITTI— SemanticSTF(dense fog)

Baseline 747 - - 7.8 00 64 89 00 722 0.6 338 00 596 48.7 569 274 564 272 21.1
Dropout [39] 67.5 - 1.9 0.0 89 28 00 709 56 290 0.8 646 440 60.0 316 606 28.1 213
Perturbation 68.6 - - 8.8 00 6.0 00 00 666 148 243 0.1 522 435 60.1 194 541 163 115
PolarMix [50] 523 - - 172 00 36 00 193 752 00 287 06 624 495 605 290 554 208 307
MMD [26] 755 - - 0.3 00 42 00 00 754 112 336 05 648 517 647 261 623 230 23.0
PCL [56] 64.3 - - 11.7 00 06 0.0 0.0 72.4 3.8 31.3 08 63.1 465 657 194 643 185 289
PointDR (Ours) | 69.2 - - 7.1 0.0 24 6.7 0.0 735 8.5 336 02 656 476 636 31.0 60.7 244 388

SynLiDAR—SemanticSTF(dense fog)

Baseline 21.6 - - 64 00 37 29 189 257 0.0 7.7 1.0 412 225 523 154 555 9.3 2.4
Dropout [39] 127 - - 7.7 00 19 04 2.5 38.3 0.1 102 03 373 21.8 574 13.1 445 10.1 1.0
Perturbation 133 - - 104 00 43 28 191 300 0.7 8.8 1.2 305 175 489 184 503 16.3 5.2
PolarMix [50] 158 - - 106 00 15 1.7 3.5 27.7 0.0 99 03 462 289 592 135 495 4.4 1.7
MMD [26] 26.5 - - 127 00 27 40 223 306 0.0 94 0.0 316 217 526 139 543 8.9 2.5

PCL [56] 229 - - 201 00 22 62 283 290 0.0 92 26 379 229 545 114 459 8.5 1.1
PointDR (Ours) | 42.5 - - 166 00 24 32 122 319 02 90 0.8 428 27.1 59.8 183 440 154 57
Table 7. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of dense fog in

SemanticSTF as the target. ’-

> represents no samples captured in dense fog in the validation set of SemanticSTFE.

T . 7z Z g E w05 08 o5 ;
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Methods 5§ & 8 &8 ¥ & £ &8 ¢ & % 8 B & ¢ E &8 & E
SemanticKITTI— SemanticSTF(light fog)
Baseline 60.0 00 0.0 1.3 109 123 0.0 00 686 45 360 00 615 531 556 380 447 292 182
Dropout [39] 632 00 00 3.2 102 5.5 00 00 638 49 294 0.1 625 53.1 58.6 425 46,6 278 143
Perturbation 76.6 0.0 0.0 382 00 219 00 00 666 88 346 0.1 624 56.1 632 253 462 224 6.5
PolarMix [50] 426 02 00 294 33 170 00 02 698 0.7 331 0.1 562 563 549 247 448 241 16.6
MMD [26] 636 00 00 0.1 133 259 00 00 739 56 428 0.1 641 553 619 36.6 507 292 99
PCL [56] 663 00 00 267 02 8.7 00 00 678 50 367 04 643 580 66.1 212 531 255 246
PointDR (Ours) | 659 0.0 0.0 29.7 44 114 09 00 709 88 433 00 665 551 61.3 430 49.1 29.1 243
SynLiDAR—SemanticSTF(light fog)
Baseline 320 42 05 273 02 140 62 00 310 00 126 09 387 248 51.5 267 464 85 1.3
Dropout [39] 225 30 09 160 0.1 10,0 52 02 403 13 181 00 389 221 576 235 385 138 3.7
Perturbation 311 19 16 215 0.0 12.5 26 00 332 16 143 1.1 343 20.1 487 298 420 167 45
PolarMix [50] 273 03 04 89 1.4 8.2 1.2 00 290 02 155 0.7 399 274 573 288 409 58 1.5
MMD [26] 31.0 21 05 160 0.0 10.5 1.7 00 377 03 163 0.6 292 249 518 29.6 478 83 1.8
PCL [56] 31.7 0.7 0.8 10.1 0.1 102 21.6 00 339 06 16.1 0.1 37.8 222 525 238 426 113 22
PointDR (Ours) | 44.7 1.7 1.0 339 03 129 47 00 360 09 158 0.7 444 303 60.0 283 424 151 5.7
Table 8. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of light fog in

SemanticSTF as the target.
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Methods § £ 8§ & ¥ & &£ 8 & & ¥ ¥ B & ¢ E 8 & E

SemanticKITTI— SemanticSTF(rain)
Baseline 724 00 - 00 163 69 00 - 716 127 581 00 700 33.0 51.8 99 242 333 229
Dropout [39] 813 0.0 - 0.0 212 56 0.0 622 118 448 06 768 447 560 163 233 328 222
Perturbation 839 0.0 - 2.4 00 209 00 - 732 126 547 7.0 7177 432 583 59 294 294 169
PolarMix [50] 56.7 4.0 - 9.1 1.5 298 00 - 682 109 502 05 732 472 483 17.8 223 323 14.1
MMD [26] 839 00 - 0.0 89 316 00 - 779 179 602 03 69.6 393 584 141 325 340 300
PCL [56] 842 00 - 0.0 0.1 43 00 - 68.1 109 555 46 747 439 596 58 273 342 388
PointDR (Ours) | 780 0.0 - 00 138 200 0.0 - 721 147 60.0 12 76.1 369 580 183 247 36.1 325
SynLiDAR—SemanticSTF(rain)

Baseline 458 45 - 6.8 04 389 00 - 320 00 243 00 430 80 338 11.3 239 115 177
Dropout [39] 470 76 - 7.7 00 340 00 - 473 69 346 00 398 11.5 375 138 296 21.6 8.6
Perturbation 575 53 - 182 00 363 01 - 371 1.5 269 03 349 104 326 122 205 232 104
PolarMix [50] 596 15 - 6.0 52 246 10 - 314 0.1 304 00 555 122 446 131 250 11.0 47
MMD [26] 495 48 - 200 47 376 00 - 437 00 324 00 421 113 344 123 251 134 8.1
PCL [56] 513 09 - 4.3 21 356 00 - 414 00 320 00 548 97 37.1 114 242 166 6.3
PointDR (Ours) | 422 33 - 219 00 304 17 - 358 32 319 00 540 144 407 125 319 236 118

Table 9. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of rain in Seman-
represents no samples captured in rain in the validation set of SemanticSTF.

ticSTF as the target. *-’
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SemanticKITTI— SemanticSTF(snow)
Baseline 495 00 03 05 116 108 - - 421 149 239 00 715 267 293 240 17.8 30.8 10.1
Dropout [39] 585 00 305 54 132 52 - - 419 180 204 25 764 305 31.8 327 198 282 7.0
Perturbation 736 00 00 55 1.1 198 - - 457 109 344 0.1 806 328 452 128 200 244 95
PolarMix [50] 665 34 93 35 58 324 - - 553 36 301 01 778 36.1 342 126 251 298 10.1
MMD [26] 594 00 47 00 147 305 - - 508 169 328 02 684 244 366 241 241 300 114
PCL [56] 640 00 00 82 0.7 9.2 - - 389 152 316 23 79.6 351 413 112 23.1 30.1 268
PointDR (Ours) | 66.2 0.0 104 00 16.7 213 - - 430 152 330 17 768 303 36.1 27.6 222 300 14.1
SynLiDAR— SemanticSTF(snow)

Baseline 246 2.7 1.5 2.4 0.0 322 - - 129 0.4 183 0.0 333 138 157 149 181 10.1 1.9
Dropout [39] 359 28 37 30 00 219 - - 209 100 228 00 332 148 171 168 165 157 26
Perturbation 271 24 68 68 02 310 - - 154 48 197 00 263 124 140 220 164 190 4.1
PolarMix [50] 534 23 41 60 12 279 - - 117 19 215 03 452 208 21.7 188 165 105 1.7
MMD [26] 208 27 60 48 02 313 - - 201 05 210 01 296 122 150 166 21.8 113 24
PCL [56] 307 1.1 44 62 03 346 - - 191 1.7 220 03 378 126 164 142 199 147 3.0
PointDR (Ours) | 342 40 7. 7. 0. 362 - - 138 120 227 00 488 199 199 189 170 20.7 34

Table 10. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of snow in
SemanticSTF as the target. -’ represents no samples captured in snow in the validation set of SemanticSTFE.

Method | Baseline | drop-out perturbation flipping jittering All | PointDR
mloU | 244 | 257 25.9 252 26.9 26.1 | 28.6

Table 11. Comparison of data augmentation techniques and the proposed PointDR. PointDR performs clearly the best over domain
generalized segmentation task SemanticKITTI— SemanticSTF.

Aet | 00 0.05 0.10 0.15 1.0
mloU | 244 28.2 28.6 273 25.1
Table 12. Performance of PointDR models with different contrastive loss weight A.; in Eq. 2 in the paper.

However, when m is too large (at 0.999), the memory bank updates too slowly to capture the latest and representative feature
embeddings, which fails to serve as the class-wise proxy and ultimately leads to a clear segmentation performance drop.

m | 098 0.99 0.999
mloU | 28.1 28.6 26.1
Table 13. Performance of PointDR models with different momentum updated weight m for the memory bank 1.

B. Domain adaptation
B.1. Implementation details

In Tables 4 and 5 of the submitted paper, we examine state-of-the-art UDA methods over the proposed normal-to-adverse
UDA scenario. Specifically, we selected typical UDA methods from the popular synthetic-to-real UDA benchmark [38,51]
as the baseline methods as described in Section 5.2 of the paper. We adopt MinkowskiNet [7] as the segmentation model as
in synthetic-to-real UDA. When implementing ADDA [46], entropy minimization [47], and self-training [65], we follow the
same implementation and training configurations as the synthetic-to-real UDA [51] and leverage TorchSparse library [42]]
(with version 1.1.0) based on PyTorch [32] library. While for CoSMix [38], we use the officially released codes based on
MinkowskiEngine with default training parameters for the adaptation. We report mloU of the covered classes for individual
adverse weather conditions in Table 5.

B.2. Detailed class-level results

In Tables 14, 15, 16, and 17 below, we present the class-level IoU performance for the UDA methods that are examined
in the setting of adaptation to individual conditions in Table 5 of the paper.
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Source-only S64 - - 101 00 06 154 00 680 06 228 00 636 366 628 294 535 177 195
ADDA [46] 634 - - 143 00 21 80 387 680 01 256 00 60.6 454 648 304 526 204 419
Ent-Min [47] 680 - - 49 00 19 76 00 748 00 394 00 688 505 610 283 633 227 432
Self-training [05] | 682 - - 244 00 54 48 00 709 03 313 00 659 467 592 316 554 225 437
CoSMix [35] 765 - - 270 00 47 00 00 742 05 299 1.8 621 480 626 373 596 234 2838

Table 14. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for dense fog. -’
represents no samples captured in dense fog in the validation set of SemanticSTF.

5 2 o ~ . 2 Rz = z Y -5 I = s

T 2 g & £ © 2 B = & L = S % = g8y
Methods 5 8 E g ° a ) g 2 =4 = ° 3 8 4 E g & g
Source-only 551 00 00 163 43 07 08 00 683 53 332 00 660 441 620 403 482 234 103
ADDA [46] 614 00 00 400 108 14 23 00 694 25 363 00 620 520 604 432 489 227 169
Ent-Min [47] 67.1 00 00 467 120 00 00 00 734 02 388 0.0 671 56.6 567 382 468 250 157
Self-training [65] | 693 0.0 00 475 194 09 0.1 00 732 08 407 00 674 565 585 413 471 266 198
CoSMix [38] 749 04 13 193 1.6 261 00 00 703 100 350 1.1 67.1 547 64.1 464 494 254 287

Table 15. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for light fog.

0 2 = . 2z 2 . z e -5 ) = i)

= 2% £ ¢ T 2 % £ 8 L = 2 & T OE 2 04
Methods § £ E E ¥ & £ &8 & & ¥ ¥ B & ¢ & 8 & E
Source-only 694 00 - 01 0.1 121 00 - 729 97 545 00 737 312 552 162 214 339 188
ADDA [46] 718 00 - 01 07 38 00 - 719 92 515 00 678 356 536 178 257 320 242
Ent-Min [47] 784 00 - 04 29 01 00 - 803 101 579 00 780 47.1 538 130 241 358 338
Self-training [65] | 694 0.0 - 0.1 0.1 121 00 - 729 97 545 0.0 737 312 552 162 214 339 188
CoSMix [38] 86 01 - 21 118 479 00 - 647 109 51.1 25 726 472 598 257 209 272 352

Table 16. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI— SemanticSTF adaptation for rain. ’-’ represents
no samples captured in rain in the validation set of SemanticSTF.

0 2 . . 7 Z . 5w g o 8 2

s %8 £ & T2 % OEOS O£ o= g2 0B E OE 2%
Methods § 3 g g IS 8 & E e g g IS B & 2 g 5 g g
Source-only 70.7 0.0 0.0 154 1.6 5.1 - - 498 89 366 00 67.1 263 30.7 281 22.1 268 9.6
ADDA [46] 69.3 00 0.0 140 0.8 2.9 55.3 1.3 357 00 672 267 375 301 212 254 11.0
Ent-Min [47] 73.8 00 154 19.8 1.4 2.9 - - 536 1.6 329 00 734 285 341 288 217 266 838
Self-training [65] | 73.9 0.0 6.1 169 52 7.7 - - 539 62 343 00 693 277 337 298 195 269 16.0
CoSMix [38] 792 1.3 00 0.6 142 389 - - 70.1 151 541 63 746 441 583 205 204 269 356

Table 17. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for snow. ’-’ represents
no samples captured in snow in the validation set of SemanticSTF.

0o L L S . 7 3 = z N © = o . =

s ° 2 g8 &£ ¢ =% 2 3% £ 5 £ = 2 B 5 E 2% g °C
Methods| 3 &5 & & © & £ 8 & & B % 2 & ¢ g E & & E |mlou
RandLA-Net [19]|75.2 0.0 0.0 25.8 0.0 47.3 0.0 00 73.3 7.8 48.7 57.5 68.2 483 61.5 27.3 49.5 39.7 27.5 56.5| 35.7
SalsaNext [9] | 77.3 31.2 0.0 47.5 30.5 64.2 26.6 5.0 763 18.2 552 64.9 79.2 504 56.8 27.8 55.8 36.8 36.7 62.2| 45.1
MinkowskiNet [7] | 87.4 42.5 0.0 51.2 40.3 73.6 29.1 0.0 79.5 15.0 57.7 63.4 78.6 56.8 64.4 40.4 533 47.6 47.6 67.7| 49.8
SPVCNN [43] | 87.1 45.5 0.0 53.1 427 74.1 21.9 0.0 78.9 163 579 57.0 78.6 56.5 65.6 409 50.3 49.4 459 664 | 494
Cylinder3D [64] | 77.7 31.7 2.7 434 23.8 67.8 184 0.0 78.5 10.0 51.8 48.7 81.2 56.0 63.4 383 52.1 48.0 43.0 63.9]| 45.0

Table 18. Comparison of state-of-the-art 3DSS methods (trained in a supervised manner) over the test set of SemanticSTF.

C. Supervised learning on adverse conditions

We use SemanticSTF to train five state-of-the-art 3DSS models in a supervised manner and report their segmentation
performance in Table 18. Specifically, we use their officially released codes and default training configurations for model
training. We can see that these state-of-the-art models achieve much lower segmentation performance over SemanticSTF
as compared with their performance over SemanticKITTI. The results indicate that SemanticSTF is a more challenging
benchmark for supervised methods due to the diverse data distribution and hard geometric domains. In addition, comparing
Table 18 and Table 6 of the submitted paper, we notice that the rankings of the supervised and the pre-trained 3DSS models
are not well aligned, indicating that the ability of supervised representation learning may not be highly correlated with the
generalization ability. We also notice that the state-of-the-art network Cylinder3D [64] achieves much lower segmentation
performance over SemanticSTF as compared with its performance over SemanticKITTI. This could be due to two major
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factors: 1) The design of Cylinder3D is sensitive to complicated and noisy geometries of point clouds as introduced by
various adverse weather conditions; 2) Cylinder3D is sensitive to training parameters and the default training configurations
for SemanticKITTI does not work well for SemanticSTF. The results further demonstrate the importance of studying universal
3DSS as well as the value of the proposed SemanticSTF dataset in steering the future endeavour along this very meaningful
research direction.

D. Additional Details on SemanticSTF Dataset
D.1. Annotation

In this section, we explain the implementation of our point cloud labeling in more detail. We leveraged a professional
labeling program that has multiple annotating tools such as a brush, a polygon tool, a bounding volume tool, as well as
different filtering methods for hiding labeled points or selected labels. Corresponding 2D images are displayed to assist
labelling. The program also supports cross-checking and correction as illustrated in the main paper. Fig. 5 shows the
interface of our point cloud annotation program.
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Figure 5. The interface of point cloud labeling program for annotating SemanticSTF.

D.2. Semantic class definition

In the process of labeling such challenging data, we had to decide which classes we wanted to annotate at some point in
time. In general, we followed the class definitions of the SemanticKITTI dataset [2] and ACDC [37] dataset, but did some

simplifications and adjustments for the data source used. The annotated classes with their respective definitions are listed in
Table 19 below.
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cat. class definition

road Drivable areas where cars could drive on including main road, bike lanes, and crossed areas on the street. Road curb is excluded.
sidewalk Paths along sides of the road, used for pedestrians and bicycles, but cars are not allowed to drive on. Also include private driveways.
£ parking Areas for parking and are clearly different from sidewalk and road. If unclear then other-ground or sidewalk can be selected. Garages are
labeled as building instead of parking.
other-ground Ground that excludes sidewalk, terrain, road, and parking. It includes (paved/plastered) traffic islands that are not meant for walking.
g building All building parts including walls, doors, windows, stairs, and garages, etc.
ks
£
g fence Separators including wood or metal fences, small walls and crash barriers.
o
car Different types of cars, including cars, jeeps, SUVs, and vans.
» truck Trucks, vans with a body that is separate from the driver cabin, pickup trucks, as well as their attached trailers.
o)
< bicycle Including different types of bicycles, without any riders or pedestrians nearby.
>
motorcycle  Including different types of motorcycles, without any riders or pedestrians nearby.
other-vehicle Other types of vehicles that do not belong to previously defined vehicle classes, such as various trailers, excavators, forklifts, and fallbacks.
» Vegetation Including bushes, shrubs, foliage, treetop except for trunks, and other clearly identifiable vegetation.
-
% trunk The tree trunk is labeled as trunk separately from the treetop.
=
terrain Mainly include grass and soil.
person Humans that are standing, walking, sitting, or in any other pose, but not driving any vehicle. Trolley cases, strollers, and pets nearby are
= excluded.
£
E bicyclist Humans driving a bicycle or standing in close range to a bicycle (within arm reach).
motorcyclist Humans driving a motorcycle or standing in close range to a motorcycle (within arm reach).
g pole Lamp posts, the poles of traffic signs and traffic lights.
2
]

traffic sign  Traffic signs excluding their mounting.

invalid Indiscernible semantic contents caused by adverse weather, such as points of thick snow cover, falling snow or rain droplets, and the splash
from the rear of the moving vehicles when driving on the road of snow or water.

Table 19. Definitions of semantic classes in SemanticSTF.

17



	1 . Introduction
	2 . Related Works
	3 . The SemanticSTF Dataset
	3.1 . Background
	3.2 . Data Selection and Split
	3.3 . Data Annotation
	3.4 . Data Statistics
	3.5 . Data illustration

	4 . Point Cloud Domain Randomization
	4.1 . Problem Definition
	4.2 . Point Cloud Domain Randomization

	5 . Evaluation of Semantic Segmentation
	5.1 . Domain Generalization
	5.2 . Domain Adaptation
	5.3 . Network Models vs All-Weather 3DSS

	6 . Conclusion and Outlook
	A . Domain generalization
	A.1 . Implementation details
	A.2 . Evaluation of individual adverse weather conditions
	A.3 . Ablation study

	B . Domain adaptation
	B.1 . Implementation details
	B.2 . Detailed class-level results

	C . Supervised learning on adverse conditions
	D . Additional Details on SemanticSTF Dataset
	D.1 . Annotation
	D.2 . Semantic class definition


