
PointVector: A Vector Representation In Point Cloud Analysis

Xin Deng** WenYu Zhang* Qing Ding†† XinMing Zhang†

University of Science and Technology of China
{xin deng,wenyuz}@mail.ustc.edu.cn, {dingqing,xinming}@ustc.edu.cn

Abstract

In point cloud analysis, point-based methods have
rapidly developed in recent years. These methods have re-
cently focused on concise MLP structures, such as Point-
NeXt, which have demonstrated competitiveness with Con-
volutional and Transformer structures. However, standard
MLPs are limited in their ability to extract local features
effectively. To address this limitation, we propose a Vector-
oriented Point Set Abstraction that can aggregate neighbor-
ing features through higher-dimensional vectors. To facil-
itate network optimization, we construct a transformation
from scalar to vector using independent angles based on 3D
vector rotations. Finally, we develop a PointVector model
that follows the structure of PointNeXt. Our experimental
results demonstrate that PointVector achieves state-of-the-
art performance 72.3% mIOU on the S3DIS Area 5 and
78.4% mIOU on the S3DIS (6-fold cross-validation) with
only 58% model parameters of PointNeXt. We hope our
work will help the exploration of concise and effective fea-
ture representations. The code will be released soon.

1. Introduction
Point cloud analysis is a cornerstone of various down-

stream tasks. With the introduction of PointNet [25] and
PointNet++ [26], the direct processing of unstructured point
clouds has become a hot topic. Many point-based net-
works introduced novel and sophisticated modules to ex-
tract local features, e.g., attention-based methods [53] ex-
plore attention mechanisms as Fig.1a with lower consump-
tion, convolution-based methods [36] explore the dynamic
convolution kernel as Fig.1c, and graph-based methods [39]
[54] use graph to model relationships of points. The appli-
cation of these methods to the feature extraction module of
PointNet++ brings an improvement in feature quality. How-
ever, they are somewhat complicated to design in terms of
network structure. PointNeXt [28] adapts the SetAbstrac-

*Co-first authors with equal contribution to refining the theory and ex-
perimental design

†Corresponding authors

tion (SA) module of PointNet++ [26] and proposes the In-
verted Residual MLP (InvResMLP) module. The simple
design of MLP network achieves good results. Motivated
by this work, we try to further explore the potential of the
MLP structure.

(a) Attention (b) Templated-based method

(c) Dynamic Conv (d) Vector

Figure 1. Illustrations of the core operations of the different meth-
ods. (a) The features of each point are calculated separately by
applying a fixed/isotropic kernel (black arrow) like Linear layer.
Then, it imparts anisotropy by weights generated from inputs. (b)
The displacement vector is used to filter points that approximate
the kernel pattern for features aggregation. (c) It applies unique
dynamic kernels with anisotropy for each point feature. (d) Dif-
ferently, we generate vector representations based on features, and
the aggregation methods for vectors are anisotropic due to the di-
rection of the vectors.

PointNeXt uses all standard MLPs, which has insuffi-
cient feature extraction capability. In addition to atten-
tion and dynamic convolution mechanisms, template-based
methods as Fig.1b such as 3D-GCN [19] employ relative
displacement vectors to modulate the association between
input points and the convolutional kernel. We introduce a
vector representation of features to extend the range of fea-
ture variation with the intention of more effectively regulat-
ing the connections between local features. Our approach
as Fig.1d differs from template-based methods. Instead of
using displacement vectors as a property of the kernel, we

1

ar
X

iv
:2

20
5.

10
52

8v
3 

 [
cs

.C
V

] 
 2

8 
M

ar
 2

02
3



generate a vector representation for each neighboring point
and aggregate them. Our method introduces less inductive
bias, resulting in improved generalization capabilities. Fur-
thermore, we enhance the generation of 3D vector repre-
sentations by utilizing a vector rotation matrix with two in-
dependent angles in 3D space. This method facilitates the
network to find the better solution.

Influenced by PointNeXt [28] and PointNet++ [26], we
present the VPSA module. This module adheres to the
structure of Point Set Abstraction (SA) module of the Point-
Net series. Vector representations are obtained from input
features and aggregated using a reduction function. The
vector of each channel is then projected into a scalar to de-
rive local features. By combining VPSA and SA modules,
we construct a PointVector model with an architecture akin
to that of PointNeXt.

Our model undergoes comprehensive validation on pub-
lic benchmark datasets. It achieves state-of-the-art per-
formance on the S3DIS [1] semantic segmentation bench-
mark and competitive results on the ScanObjectNN [48]
and ShapeNetPart [49] datasets. By incorporating a pri-
ori knowledge of vectors, our model attains superior results
with fewer parameters on S3DIS. Detailed ablation experi-
ments further demonstrate the efficacy of our methodology.
The contributions are summarized below:

- We propose a novel immediate vector representation
with relative features and positions to better guide local
feature aggregation.

- We explore the method of obtaining vector representa-
tion and propose the generation method of 3D vector
by utilizing the vector rotation matrix in 3D space.

- Our proposed PointVector model achieves 72.3%
mean Intersection over Union (mIOU) on S3DIS area5
and 78.4% mIOU on S3DIS (6-fold cross-validation)
with only 58% model parameters of PointNeXt.

2. Related work
Point-based network. In contrast to the voxelization
[55] [15] [31] and multiview [32] [10] [41] methods, point-
based methods deal directly with point clouds. PointNet
first proposes using MLP to process point clouds directly.
PointNet++ subsequently introduces a hierarchical struc-
ture to improve the feature extraction. Subsequent works
focused on the design of fine-grained local feature extrac-
tors. Graph-based methods [39] [38] rely on a graph neu-
ral network and introduce point features and edge fea-
tures to model local relationships. Conv-based methods
[36] [46] [42] [2] [17] propose several dynamic convolu-
tion kernels to adaptively aggregate neighborhood features.
Many transformer-like networks [11] [51] [50] [9] [14] ex-
tract local features with self-attention. Recently, MLP-like

networks are able to obtain good results with simple net-
works by enhancing the features. PointMLP [24] proposes
a geometric affine module to normalize the feature. Rep-
Surf [30] fits the surface information through the triangular
plane, models umbrella surfaces to provide geometric infor-
mation. PointNeXt [28] integrates training strategies and
model scaling.

MLP-like Architecture. The MLP-like structure has re-
cently shown the ability to rival the Transformer with sim-
ple architecture. In the image field, MLP-Mixer [37] first
use the combination of Spatial MLP and Channel MLP. The
subsequent works [3] [18] reduce computational complex-
ity by selecting objects for the spatial MLP while main-
taining a large perceptual field to preserve accuracy. Since
the point cloud is too large, the MLP-like network deter-
mines the perceptual field generally using K-Nearest neigh-
bor sampling or ball sampling methods. The MLP struc-
ture in point cloud analysis starts with PointNet [25] and
PointNet++ [26], using MLPs to extract features and ag-
gregating them by symmetric functions. Point-Mixer [6]
proposes three point-set operators, PointMLP [24] to mod-
ify the distribution of features by geometric affine module,
and PointNeXt [28] to scale up the PointNet++ model and
improve the performance using by training strategies and
model scaling.

Feature Aggregation. PosPool [21] improves the re-
duction function defined in PointNet++ by providing a
parameter-free position-adaptive pooling operation. AS-
SANet [27] introduces a new anisotropic reduction func-
tion. Also, the introduction of the attention mechanism [47]
provides new dynamic weights for the reduction function.
Vectors have direction, and this property is naturally sat-
isfied for anisotropic aggregation functions. GeoCNN [4]
projects features based on vectors and angles of neigh-
bor points and centroids in six directions and sums them.
WaveMLP [35] represents image patches as waves and de-
scribes feature aggregation using wave phase and ampli-
tude. The Vector Neuron [7] constructs a triad of neurons
to reconstruct standard neural networks and represent fea-
tures through vector transformations. The template-based
methods represented by 3DGCN [19] uses the cosine value
of the relative displacement vectors to filter for aggregation
features from neighbors that more conform to the pattern of
the kernel. Local displacements [40] use local displacement
vectors to update features by combining the weights of fixed
kernels. In our method, an intermediate vector representa-
tion is generated by modifying the point feature extraction
function. The vector direction is determined based on both
features and position to fulfill the anisotropic aggregation
function.

2



3. Method

We propose an intermediate vector representation to en-
hance local feature aggregation in point cloud analysis. This
section includes a review of the Point Set Abstraction(SA)
operator of the PointNet family in Section 3.1, the presenta-
tion of our Vector-oriented Point Set Abstraction module in
Section 3.2, a description of our method of extending vec-
tors from scalars in Section 3.3, and the network structure
of PointVector in Section 3.4.

3.1. Preliminary

The SA module include a grouping layer (K-NN or Ball-
Query) to query each point’s neighbors, shared MLPs, and
a reduction layer to aggregate neighbor features. The SA
module has an subsample layer to downsample the point
cloud in the first layer. We denote f l+1

i as the extracted
feature of point i after stage l+1, Ni as the neighbors of
point i and n is the number of incoming points. The content
of the SA module can be formulated as follows:

f l+1
i = R{H{[f lj , pj − pi]}|j ∈ Ni}, (1)

where R is the reduction function that aggregates features
for point i from its neighbors Ni and H means the shared
MLPs. f lj , pj , pi denote the input features of point j, the
position of point j and the position of point i, respectively.

In the local aggregation operation, the classical method
assigns weights to components of c-dimensional features as
shown in Eq.2 and sums the neighboring features in spa-
tial dimensions. We consider the component fi of the c-
dimensional feature f as a base vector with only one non-
zero value, and define the vector transformation as fol-
lows:

fi ∗ w = wfi, i = 0 · · · c, (2)

[
fi 0 · · · 0

] w 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 =
[
wfi 0 · · · 0

]
, (3)

where w is the scalar weight. In Eq.3, the transformation
changes one value of the vector. The two equations above
are equivalent. Unchanged zeros in the equation do not con-
tribute to subsequent operations and can be disregarded. In
Physics, the degree of freedom of a motion is equal to the
number of state quantities that the motion causes the sys-
tem to change. A greater number of degrees of freedom in
a physical system indicates a larger range of independent
variation in the parameters that define its state. Similarly,
the degrees of freedom of a vector transformation refer to
the number of values in the vector that can change inde-
pendently. So, the 3D vector we mentioned means the
degrees of freedom of the vector transformation is 3.

  

Figure 2. The vector-oriented point set abstraction (VPSA) mod-
ule of PointVector. It illustrates that VPSA module obtains vector
representations from input features, aggregates them, and projects
them back to the original feature style. As shown in the figure,
each channel of the feature can be considered a 3D vector, with
channels being independent of one another.

3.2. Vector-oriented Point Set Abstraction

As discussed in Section 3.1, feature components can be
represented as vectors. A higher degree of freedom in vec-
tor transformations allows for increased variation and im-
proved representation of connections between neighboring
elements. Vectors, with their size and direction properties,
are more expressive than scalars for representing features.
When aggregated, they exhibit anisotropy due to their di-
rectional nature. So, we introduce an intermediate vector
representation as Fig.2.

It should be noted that in our assumptions, the compo-
nent of a c-dimensional feature represents the projection of
the feature vector along the c coordinate axes. After aggre-
gating the vectors to obtain the c×3 centroid feature, where
the number of changing values in the component vectors is
3. To merge them into a c-dimensional feature vector re-
quires aligning the c components and then summing them.
Due to the difficulty in implementing component alignment
with this method, we directly project the c components into
scalars and combine them into centroid features. Similar
to the intermediate features in a convolutional network, the
values on each channel’s feature map represent the response
strength to a specific feature at that location.

The input features in our method are transformed into a
series of vectors and then aggregated by the reduction func-
tion. Note that the element in each channel of the vector
representation is vector. We obtain a vector representation
that is channel independent. We denote fpj as a mixed fea-
ture of relative features fj−fi and relative positions pj−pi.
The content of the vector-guided aggregation module can be
formulated as:
f l+1
i = η(f li ) +Hc{Hp{R{Hv(fpj)|j ∈ Ni}}}, (4)

where Hv is the function that generates the vector repre-
sentation, Hp denotes the projection Linear transform vec-
tor to a scalar, and Hc is the channel mixing Linear that

3



Figure 3. Extension from general feature to vector representation.
For simplicity, we tentatively set c=4 and m=3. The left side rep-
resents the process of generating features by standard MLP, and
the right side adds 2 components to each scalar of the features to
form a vector and then rotates it.

interacts with the information of each channel while trans-
forming dimensions to fit the network. However, the feature
representation we introduce is actually represented using a
triplet form. We denote m as the dimension of the vector,
and c is the channel of the feature. In fact, the set of c m-
dimensional vectors is represented in the same form as the
(m×c)-dimensional feature vectors. The reduction function
is followed by a grouped convolution [13] that transforms
the vectors to scalars for each channel, which distinguishes
the intermediate vector representation from the general fea-
ture vector.

When the reduction function R selects sum, the R and
Hp functions together constitute a special case of Group-
Conv [13]. Let k denote the number of neighbor features.
For one group, the convolution kernel of GroupConv is a
k × m × 1 parameter matrix, while our method can be
viewed as k identical m × 1 parameter matrices. This is
because we treat vectors as wholes and assign equal weight
to each element. We will explain in the supplementary ma-
terial why the original groupconv operation is not suitable
for our vector-guided feature aggregation.

3.3. Extended Vector From Scalar

The simplest idea for the Hv function defined in Eq.4
is to obtain c m-dimensional vectors of point j directly
with MLPs. However, while single-layer MLPs may have
limited expressive capability, multi-layer MLPs can be
resource-intensive. As discussed in Section 3.1, input fea-
tures are considered as vectors and we aim to design a trans-
formation with high degrees of freedom. This transforma-
tion combines rotation and scaling, represented by a rota-
tion matrix and a learnable parameter respectively. This
method achieves better results with lower resource con-
sumption.

As shown in Fig.3, a scalar can be directly converted into
an m-dimensional vector by adding m-1 zero-value com-
ponents. Each channel of the extended vector represen-
tation can then be considered as an m-dimensional vector
along a specific coordinate axis direction. Therefore, we
can obtain the proper vector direction by additionally train-
ing a rotation matrix. Directly predicting the rotation matrix
can cause difficulties for nonlinear optimization because the

Figure 4. The rotation of a 3D vector. The vector ~r can be obtained
by two rotations to obtain another vector ~r′′

matrix elements are interdependent. Instead, we first pre-
dict the rotation angle and then derive the rotation matrix
based on this angle. The rotation of a 3D vector can be de-
composed into rotations around three axes. However, we
have not yet determined how to represent the rotation of a
4D vector around a plane. As shown in Fig.4, since the
extended 3D vector is on the coordinate axis, one rotation
around that axis can be omitted. We keep the default ro-
tation direction as counterclockwise. The vector ~r is first
rotated around the x-axis by an angle π/2− β and then ro-
tated around the z-axis by an angle α to finally obtain the
vector

−→
r′′. The rotation can be formulated as follows:
−→
r′′ = RotzRotx~r

=

[
cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

] [
1 0 0
0 sin(β) −cos(β)
0 cos(β) sin(β)

] [
0
zx
0

]
=

[
cos(α) −sin(α)sin(β) sin(α)cos(β)
sin(α) cos(α)sin(β) −cos(α)cos(β)

0 cos(β) sin(β)

] [
0
zx
0

]
=

[
−zx·sin(α)sin(β)
zx·cos(α)sin(β)

zx·cos(β)

]
,

(5)

whereRotx, Rotz denote the rotation matrix rotated around
the x-axis and the rotation matrix rotated around the z-axis,
respectively, and zx is generated by Linear. The indepen-
dence of α and β facilitates network optimization.

Therefore, we can expand each scalar value of the fea-
tures into a 3D vector according to Fig.4 and Eq.5. The fea-
ture aggregation in a local area is influenced by the relation-
ship between neighboring points and centroids. Methods
such as PointTransformer [53], PAConv [45], and Adapt-
conv [54] model this relationship using relative position and
features. Our approach also extracts rotation angles using
MLP on relative positions and features. The acquisition of
the vector can be formulated as follows:

zxj = Linear(fpj)

[αj , βj ] = Relu(BN(Linear([fpj ]))),
(6)

where fpj denotes a mixed feature of relative features
fj − fi and relative positions pj − pi, and fj means the fea-

4



G
ro

up
 C

on
v

Figure 5. Overall Architecture. We reuse the SA module and Feature Propagation module of PointNet++ and propose the VPSA module
to improve the feature extraction of sampled point clouds.

ture of point j. Therefore, we can obtain the intermediate
vector representation from the input features and positions
by using Eq.5 and Eq.6.

3.4. Architecture

In summary, we propose PointVector, modified from
PointNeXt [28] by replacing its InvResMLP module with
our proposed VPSA module, we defining its vector dimen-
sion m = 3. The architecture is illustrated in Fig.5. Re-
ferring to the classical PointNet++, we use a hierarchical
structure containing an encoder and a decoder. For the seg-
mentation task, we use an encoder and a decoder. For the
classification task, we only use an encoder. For a fair com-
parison with PointNeXt, we set up three sizes of models
with reference to the parameter settings of PointNeXt. We
denote C as the channel of embedding MLP in the begin-
ning, S as the numbers of the SA module, V as the numbers
of the VPSA module. The three sizes of models are shown
as follows:

• PointVector-S: C=32, S=0, V=[1,1,1,1]

• PointVector-L: C=32, S=[1,1,1,1], V=[2,4,2,2]

• PointVector-XL: C=64, S=[1,1,1,1], V=[3,6,3,3]

Since PointNeXt uses only the PointNeXt-S model for clas-
sification, we use our VPSA module instead of the SA mod-
ule in PointVector-S for a fair comparison. The detailed
structure of the classification tasks will appear in the sup-
plementary material. There is a skip connection path in the
VPSA module in Fig.5, which is added to the main path and
then through a ReLU layer. The reason for using this sum-
mation method is that RepSurf [30] indicates how two fea-
tures with different distributions should be combined. For
the segmentation task, finer local information is needed, and

we set reduction function as sum. For the classification task,
which favors aggregating global information, we choose the
original reduction function such as max.

4. Experiments
We evaluate our model on three standard benchmarks:

S3DIS [1] for semantic segmentation and ScanObjectNN
[48] for real-world object classification and ShapeNetPart
[49] for part segmentation. Note that our model is imple-
mented on the basis of PointNeXt. Since we use the train-
ing strategy provided by PointNeXt, we refer to the metrics
reported by PointNeXt for a fair comparison.

Experimental setups. We train PointVector using
CrossEntropy loss with label smoothing [33], AdamW opti-
mizer [23], and initial learning rate lr=0.002, weight decay
10−4, with Cosine Decay, and a batch size of 32. The
above are the base settings for all tasks, and specific
parameters will be changed for specific tasks. We follow
the train, valid, and test divisions for the dataset. The
best model on the validation set will be evaluated on
the test set. For S3DIS segmentation task, point clouds
are downsampled with a voxel size of 0.4 m following
previous methods [36] [27] [53]. The initial learning
rate on this task is set to 0.01. For 100 epochs, we use
a fixed 24000 points as a batch and set batch size to 8.
During training, the input points are selected from the
nearest neighbors of the random points. Similar to Point
Transformer [53], we evaluate our model using the entire
scene as input. For ScanObjectNN [48] classification
task, we set the weight decay to 0.05 for 250 epochs.
Following Point-BERT [51], the number of input points is
1024. The training points are randomly sampled from the
point cloud, and the testing points are uniformly sampled

5



during evaluation. The details of data augmentation are
the same as those in PointNeXt. For ShapeNetPart part
segmentation, we train PointVector-S with a batch size
of 32 for 300 epochs. Following PointNet++ [26], 2, 048
randomly sampled points with normals are used as input
for training and testing.

For voting strategy [20], we keep it the same as Point-
NeXt and use it only on part segmentation task. To ensure a
fair comparison with standard methods, we do not use any
ensemble methods, such as SimpleView [8]. We also pro-
vide the model parameters (Params) and GFLOPs. We addi-
tionally, similar to PointNeXt, provide throughput (instance
per second) as an indicator of inference speed. The input
data for the throughput calculation are kept consistent with
PointNeXt for fair comparison. The throughput of all meth-
ods is measured using 128 × 1024 (batch size 128, number
of points 1024) as input on ScanObjectNN and 64 × 2048
on ShapeNetPart. On S3DIS, 16 × 15,000 points are used
to measure the throughput following [28] [27]. We evaluate
our model using an NVIDIA Tesla V100 32 GB GPU and a
48 core Intel Xeon @ 2.10 Hz CPU.

4.1. 3D Semantic segmentation on S3DIS

S3DIS [1] (Stanford Large-Scale 3D Indoor Spaces) is
a challenging benchmark composed of 6 large-scale indoor
areas, 271 rooms, and 13 semantic categories in total. For
our models in S3DIS, the number of neighbors in SetAb-
straction is 32, and the number of neighbors in the Local
Vector module is 8. PointTransformer [53] also employs
most of the training strategies and data enhancements used
by PointNeXt, so it is fair for us to compare with it. For a
comprehensive comparison, we report the experimental re-
sults of PointVector-L and PointVector-XL on S3DIS with
6-fold cross-validation in Table 1 and S3DIS Area 5 in Table
2, respectively. As shown in table 1&2, we achieve state-
of-the-art performance on both validation options. Table
1 shows that our largest mode PointVector-XL outperforms
PointNeXt-XL by 1.6%, 3.1% and 3.5% in terms of over-
all accuracy (OA), mean accuracy(mAcc) and mIOU,
respectively, while has only 58% Params. At the same
time, the computational consumption of ours is only 69% of
PointNeXt-XL in terms of GFLOPs. The reduction in com-
putational consumption because the number of neighbors is
reduced to 8. The limitation is that we make heavy use of
GroupConv (groups=channel), which is not well optimized
in PyTorch and is slower than standard convolution. There-
fore, our inference speed is 6 instances/second lower than
PointNeXt-XL. Our model shows better results at all sizes.

On S3DIS Area 5, we selected the best results reported
by PointNeXt for comparison and did not repeat the ex-
periment. Our PointVector-XL model outperforms Strati-
fiedFormer [14] and PointNeXt-XL by 0.3% and 1.8% in
mIOU, respectively. StratifiedFormer expands the scope of

Method OA mAcc mIOU Params FLOPs Throughput
% % % M G (ins./sec.)

PointNet [25] 78.5 66.2 47.6 3.6 35.5 162
PointCNN [17] 88.1 75.6 65.4 0.6 - -
DGCNN [39] 84.1 - 56.1 1.3 - 8
DeepGCN [16] 85.9 - 60.0 3.6 - 3
KPConv [36] - 79.1 70.6 15.0 - 30
RandLA-Net [12] 88.0 82.0 70.0 1.3 5.8 159
Point Transformer [53] 90.2 81.9 73.5 7.8 5.6 34
CBL [34] 89.6 79.4 73.1 18.6 - -
RepSurf [30] 90.9 82.6 74.3 0.976 - -
PointNet++ [26] 81.0 67.1 54.5 1.0 7.2 186
PointNeXt-L [28] 89.8 82.2 73.9 7.1 15.2 115
PointNeXt-XL [28] 90.3 83.0 74.9 41.6 84.8 46
PointVector-L 91.4 85.5 77.4 4.2 10.7 98
PointVector-XL(Ours) 91.9 86.1 78.4 24.1 58.5 40

Table 1. Semantic segmentation on S3DIS with 6-fold cross-
validation. Methods are in chronological order. The highest and
second scores are marked in bold.

the query by combining high-resolution and low-resolution
keys while efficiently extracting contextual information.
Even though its receptive field is much wilder than our
model, we still show a competitive performance. Addition-
ally, there are some differences in the experimental setup
between our model and it, in which it has 80k points of in-
put, much larger than our 24k points of input. In addition
it uses KPConv [36] instead of Linear in the first layer. It
seems that these measures have significant effects. How-
ever, the comparison is not fair enough for us due to the
difference of the experimental configurations. We will syn-
chronize its experimental configuration later. Additionally,
our models of the same size on Area 5 show better results
than PointNeXt. PointVector-L and PointVector-XL per-
form better than PointNeXt-L and PointNeXt-XL by 1.7%
and 1.5% in mIOU, respectively, and we performs better on
most of categories.

4.2. 3D Object Classification on ScanObjectNN

ScanObjectNN [48] contains approximately 15,000 real
scanned objects that are categorized into 15 classes with
2,902 unique object instances. The dataset has significant
challenges due to occlusion and noise. As with PointNeXt,
we chose the hardest variant PB T50 RS of ScanObjectNN
and report the mean±std Overall Accuracy and Mean Accu-
racy score. For our model in ScanObjectNN, the number of
neighbors in SetAbstraction is 32. As shown in table.3, our
PointVector-S model achieves a comparable performance
on ScanObjectNN in OA, while outperforms PointNeXt-
S by 0.4% in mAcc. This illustrates that our approach is
not more biased toward certain categories and is relatively
robust. Our approach is at a disadvantage in terms of speed
and scale compared to the SA module. Since we intro-
duce high-dimensional vectors, we generate more compu-
tations before the reduction compared to the standard SA
module. Due to group convolution operations and trigono-
metric functions, there is a speed bottleneck. Although the
inference speed is slower than PointNeXt, we are still faster

6



Method O
A

m
A

cc

m
Io

U

ce
ili

ng

flo
or

w
al

l

be
am

co
lu

m
n

w
in

do
w

do
or

ta
bl

e

ch
ai

r

so
fa

bo
ok

ca
se

bo
ar

d

cl
ut

te
r

% % %
PointNet [25] - 49.0 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
PointCNN [17] 85.9 63.9 57.3 92.3 98.2 79.4 0.0 17.6 22.8 62.1 74.4 80.6 31.7 66.7 62.1 56.7
DGCNN [39] 83.6 - 47.9 - - - - - - - - - - - - -
DeepGCN [16] - - 52.5 - - - - - - - - - - - - -
KPConv [36] - 72.8 67.1 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PVCNN [22] 87.1 - 59.0 - - - - - - - - - - - - -
PAConv [45] - 73.0 66.6 94.6 98.6 82.4 0.0 26.4 58.0 60.0 89.7 80.4 74.3 69.8 73.5 57.7
ASSANet-L [27] - - 66.8 - - - - - - - - - - - - -
Point Transformer [53] 90.8 76.5 70.4 94.0 98.5 86.3 0.0 38.0 63.4 74.3 89.1 82.4 74.3 80.2 76.0 59.3
PatchFormer [52] - - 68.1 - - - - - - - - - - - - -
CBL [34] 90.6 75.2 69.4 93.9 98.4 84.2 0.0 37.0 57.7 71.9 91.7 81.8 77.8 75.6 69.1 62.9
RepSurf-U [30] 90.2 76.0 68.9 - - - - - - - - - - - - -
StratifiedFormer* [14] 91.5 78.1 72.0 96.2 98.7 85.6 0.0 46.1 60.0 76.8 92.6 84.5 77.8 75.2 78.1 64.0
PointNet++ [26] 83.0 - 53.5 - - - - - - - - - - - - -
PointNeXt-L [28] 90.1 76.1 69.5 94.0 98.5 83.5 0.0 30.3 57.3 74.2 82.1 91.2 74.5 75.5 76.7 58.9
PointNeXt-XL [28] 90.7 77.5 70.8 94.2 98.5 84.4 0.0 37.7 59.3 74.0 83.1 91.6 77.4 77.2 78.8 60.6
PointVector-L(Ours) 90.8 77.3 71.2 94.8 98.2 84.1 0.0 31.7 60.0 77.7 83.7 91.9 81.8 78.9 79.9 63.3
PointVector-XL(Ours) 91.0 78.1 72.3 95.1 98.6 85.1 0.0 41.4 60.8 76.7 84.4 92.1 82.0 77.2 85.1 61.4

Table 2. Semantic segmentation on S3DIS Area5. * denotes StratifiedFormer use 80k points as input points. The highest and second
scores are marked in bold.

Method OA mAcc Params. Throughput
% % M ins./sec.

PointNet [25] 68.2 63.4 3.5 4212
PointCNN [17] 78.5 75.1 0.6 44
DGCNN [39] 78.1 73.6 1.8 402
GBNet [29] 80.5 77.8 8.8 194
PRANet [5] 82.1 79.1 2.3 493
PointMLP [24] 85.4± 1.3 83.9± 1.5 13.2 191
RepSurf-U [30] 86.0 83.1 6.8 -
PointNet++ [26] 77.9 75.4 1.5 1872
PointNeXt-S [28] 87.7± 0.4 85.8± 0.6 1.4 2040
PointVector-S(Ours) 87.8± 0.4 86.2± 0.5 1.55 901

Table 3. Object classification on ScanObjectNN. The highest
and second scores are marked in bold.

than other methods [24] [39] [29]. Our method does not
perform well on the classification task, where the downsam-
pling phase of the classification task requires a max reduc-
tion function to retain salient contour information.

4.3. 3D Object Part Segmentation on ShapeNetPart

ShapeNetPart [49] is an object-level dataset for part seg-
mentation. It consists of 16,880 models from 16 differ-
ent shape categories, 2-6 parts for each category, and 50
part labels in total. As shown in Tab.4, our PointVector-S
and PointVector-S C64 models both achieve results that are
comparable to PointNeXt. For the PointNeXt-S model with
C=160, the number of parameters is large, and we do not
give a corresponding version of the model.

4.4. Ablation Study

We perform ablation experiments at S3DIS to verify the
effectiveness of the module, and because PointVector-XL is
too large, we make changes to PointVector-L. To make the
comparison fair, we did not change the training parameters.

Method Ins.mIoU Throughput

PointNet [25] 83.7 1184
DGCNN [39] 85.2 147
KPConv [36] 86.2 44
3D-GCN [19] 85.1 -
CurveNet [44] 86.8 97
ASSANet-L [27] 86.1 640
Point Transformer [53] 86.6 297
PointMLP [24] 86.1 270
Stratifiedformer [14] 86.6 398

PointNet++ [26] 85.1 560
PointNeXt-S* [28] 86.5 776
PointNeXt-S* (C=64) 86.9±0.1 330
PointNeXt-S* (C=160) 87.2 75
PointVector-S(Ours) 86.5 446
PointVector-S(C=64) 86.9 211

Table 4. Object Part Segmentation on ShapeNetPart. *Our
evaluation results on this task alone are not consistent with the
throughput results derived from that paper. Other works we did
not test one by one.

Vector-oriented Point Set Abstraction. We abstract
the module into two key operations: sum and Group-
Conv(groups=Channel), which shows that this part of the
module is channel independent, so we add a FC to mix the
channel information. Considering that the channel informa-
tion is already mixed using non-GroupConv operations, the
channel mixing Linear will be removed. The convolution
and grouped convolution parts have a convolution kernel
size of 1 × k and a stride size of 1. As shown in Tab.5,
the direct use of fixed convolution brings a large number
of parameters and fits very poorly with the irregular struc-
ture of the point cloud. max+FC shows better performance

7



Method OA mAcc mIOU Params
% % M

max+FC* 90.6 76.4 70.6 6.35
Conv 90.4 75.7 69.4 24.56
GroupConv 90.6 76.5 70.8 4.76
sum+FC 90.7 76.6 71.0 6.35
max+GroupConv 90.6 76.2 70.6 4.71
sum+GroupConv 90.8 77.3 71.2 4.71

Table 5. Core operation of VPSA. We abstract the module into
sum and GroupConv operations, and replace this part. FC means
Channel-FC as Linear. * means it acts as a baseline.

because intuitively aggregating features with higher dimen-
sionality retains more information. GroupConv obtains a
lower mIOU because it assigns independent weights to each
element of the group; however, the three elements of a 3D
vector of a channel should be given the same weight when
summing. Furthermore, sum+FC is not very different from
sum+GroupConv because GroupConv and channel mixing
Linear can be combined into a specific layer of FC. In con-
trast, sum+GroupConv has the smallest number of parame-
ters and best performance, so we chose it.

Method OA mAcc mIOU Params
% % % M

MLP 91.0 76.5 70.8 5.55
Linear+direction 90.8 76.6 70.8 5.55
Linear+rotation 90.8 77.3 71.2 4.71

Table 6. Methods for obtaining vector representations.

Extended Vector From Scalar. To verify the effective-
ness of our vector rotation-based method, we compare it
with two other methods. As shown in Tab.6, MLP is rep-
resented by two Linear layers and a ReLU activation and
BatchNorm layers. Linear+direction means that Linear pre-
dicts the vector modulus length, then uses MLP to obtain
the unit vector as direction, and the final modulus length is
multiplied by the unit vector. The rotation-based vector ex-
pansion method proposed in Section 3.3 is ahead of other
methods and has fewer parameters. This shows that the
rotation-based approach can use fewer parameters to obtain
a vector representation more suitable for neighbor features.

Method OA mAcc mIOU Params
% % % M

Scalar 90.4 76.1 69.8 3.87
2D vector 90.4 77.2 70.9 3.9
3D vector 90.8 77.3 71.2 4.7

Table 7. Different dimensional vector.

Vector dimension. We need to explore the connection be-
tween the effect of vector representation and dimension.
Intuitively, higher dimensional vectors will be more ex-
pressive of features than lower dimensional vectors. Tab.7
shows that the 3D vector has a better ability to express the
features and that the increase in the number of parameters
is not very large. The mIOU without our vector represen-
tation is still higher than the results of PointNeXt. We will
discuss the validity of the other parts of our network in the
supplementary material.

Robustness. Table.8 shows that our method is extremely
robust to various perturbations as Stratified Transformer.
The ball query we use cannot get the same neighbors in the
scaled point cloud. If the query radius is scaled together,
then mIOU is invariant. It indicates that our method also
has scale invariance.

Method None π/2 π 3π /2 +0.2 -0.2 ×0.8 ×1.2 jitter
PointNet++ [25] 59.75 58.15 58.18 58.19 22.33 29.85 56.24 59.74 59.05
PointTr [51] 70.36 65.94 67.78 65.72 70.44 70.43 65.73 66.15 59.67
Stratified 71.96 72.59 72.37 71.86 71.99 71.93 70.42 71.21 72.02
Ours 72.29 72.27 72.30 72.32 72.29 72.29 69.34 69.26 72.16

Table 8. Robustness study on S3DIS (mIOU %). We apply z-axis
rotation (π/2, π, 3π/2), shifting (±0.2), scaling (×0.8, ×1.2) and
jitter in testing. PointTr: Point Transformer. Stratified: Stratified
Transformer.

5. Conclusion and Limitation.

We introduce PointVector, which achieves state-of-the-
art results on the S3DIS semantic segmentation task. Our
vector-oriented point set abstraction improves local feature
aggregation with fewer parameters. The rotation-based vec-
tor expansion method bridges the gap between vector rep-
resentation and standard feature forms. By optimizing two
independent perspectives, it achieves better results. Addi-
tionally, our method exhibits robustness to various pertur-
bations. It is noteworthy that further exploration of vec-
tor representation’s meaning may reveal additional applica-
tions, i.e. dominant neighbor selection.

The speed of our approach is constrained by the grouped
convolution implementation. An interesting avenue for
future work includes exploring rotations above three di-
mensions and decomposing four-dimensional rotations into
combinations of plane rotations. Additionally, summing af-
ter component alignment aligns with our assumptions better
than scalar projection.

Acknowledgement

This work was supported in part by the National Key
Research and Development Program of China under Grant
2020YFB2103803.

8



A. Preliminary

A.1. Problem of WaveMLP.

WaveMLP [35] views the patch of each picture as a wave
representation, and considers that the feature of that patch
should have two attributes, phase and amplitude, with am-
plitude representing the actual property of the feature and
phase modulating the amplitude that this wave exhibits at a
moment. It thus considers that the feature extraction of the
patches can be viewed as a superposition of waves. How-
ever, there is an important problem, WaveMLP gets an ab-
solute representation of a patch, i.e. the patch is the same
when participating in aggregation in any local region. The
representation of a patch should be different in different lo-
cal regions, so we focus on modulating the feature aggrega-
tion in local regions. That is, we use a vector representation
to better express the relative relationship between neighbor
points and centroids in the local region.

In addition, WaveMLP use GroupConv [13] to imple-
ment the aggregation and projection process with kernel
sizes of 1 × 7 and 7 × 1. In this paper we take the form
of a combination of the reduction function and GroupConv
for aggregation. We give an example of why the original
GroupConv is not suitable for this representation of vec-
tors. We take two-dimensional vectors (x1, y1) and (x2, y2)
as an example. The vectors are represented in coordinate
form, and then the original vector aggregation method can
be formulated as:

f12 = (w1(x1, y1) + w2(x2, y2)) · (w3, w4)
T

= w3w1x1 + w3w2x2 + w4w1y1 + w4w2y2

= a1x1 + a2x2 + a3y1 + a4y2,

(7)

where f12 denotes the result of aggregating two vectors,
w1 and w2 are the weights of two vectors in summation,
{w3, w4} is the projection matrix, and ai is the weight of
each component. We can obtain the equation that should
be satisfied between the coefficients of each component:
a1 ∗ a4 = a2 ∗ a3. That is, the final trained weights need
to satisfy this equation for the weighted summation formula
of the vectors to hold. However, the network does not im-
pose this restriction on these parameters. So the original
groupconv does not preserve the totality of the vector.

A.2. Methodology Review.

The point-based approach was first introduced by Point-
Net [25]. We denote f l+1

i as the extracted feature of point i
after stage l+1, Ni as the neighbors of point i and n is the
number of incoming points. The simplest point-set operator
can be expressed as follows:

f l+1
i = R{H{[f lj , pj − pi]}|j ∈ Ni}, (8)

where R is the reduction function that aggregates features
for point i from its neighbors Ni and H means the shared
MLPs.

The subsequent dynamic convolution-based network
[36] [45] can be similarly represented as PointNet-like point
set operators:

f l+1
i = Sum{φ{f lj , pj − pi} · f lj |j ∈ Ni}, (9)

where φ() means the dynamic weight generation function
that generates dynamic weights for each point based on the
input feature and location information. Eq.9 shows that the
reduction function of dynamic convolution chooses sum and
uses dynamic weights to generate a new fj .

Similarly, the attention network [53] can be expressed
as a similar point set operator. The core operation can be
formulated as follows:
f l+1
i = Sum{att{f lj , f li , pos}·σ{f lj , pos}|j ∈ Ni}, (10)

where att() means the attention function that generates at-
tention weights for each point, pos denotes the position
information, and σ() means the linear transform function
without anisotropy. Eq.10 shows that it uses the attention
mechanism to update the features of each point j and then
uses sum as the reduction function.

Furthermore, template-based methods such as 3D-GCN
make use of kernels with relative displacement vectors and
weights. These weights are influenced by the cosine simi-
larity between the relative displacement vector of the input
features and the relative displacement vector of the kernel.
The core operation can be formulated as follows:

f l+1
i = fi · kernelc +

k∑
m=1

max{sim{kernelm, fj}|j ∈ Ni},

sim{kernerlm, fj} = cos{dkm, dpj} · kernerlm · fj ,
(11)

where k means the kernel size, Ni means the neighbors
of point i, kernelc means the center element of kernel,
cos{dkm, dpj} means Cosine similarity of m-th kernerl el-
ement and j-th point feature, kernelm means m-th kernel
element, dkm, dpj means displacement vector of m-th ker-
nel element and j-th point feature respectively.

We propose a unique method for generating new features
fj by introducing a vector representation, where the direc-
tion of the vector guides the aggregation method.

B. Architecture

B.1. Vector encoder

Figure 6. The Vector encoder module. Two angles are predicted
by MLP and zx is transformed by linear.

9



We provide detailed definitions in the manuscript, and
we provide illustrations to illustrate the exact process. As
shown in Fig.6, the local information is obtained by a com-
bination of relative features and relative positions. Note that
the sum symbol in the figure means sum and ReLU oper-
ations. We use the simplest method to predict the angles
using MLP, and by default the two angles are independent
of each other. For zx, a simple transformation is performed
with linear, and then a vector representation is obtained by
rotation. The vector representation v ∈ RB,C×3,N , where
B is the batch size, C is the channel of module and N is the
spatial size of the input feature of the module.

B.2. Classification architecture.

Figure 7. The Classification architecture PointVector-S. For
comparison with PointNext [28], we replaced the SetAbstract
module with the LocalVector module, keeping the other param-
eters the same.

As shown in Fig.7, we use the LocalVector module to
replace the 4 SetAbstract modules and keep the downsam-
pling parameters unchanged. The last SetAbstract was orig-
inally used to aggregate all the remaining points, so we
leave it as it is. In the classification task, the max reduc-
tion fuction has a greater advantage by retaining the most
intense part of the variation.

C. Experiments
C.1. Classification on ModelNet40

ModelNet40 [43] is a commonly used dataset for object
classification, which is generated by 3D graphic CAD mod-
els. It has 40 object categories, each of which contains 100
unique CAD models. Recent works [24] [30] [10] show
an increasing interest in the real-world scanned dataset
ScanObejectNN [48] than this synthesized 3D dataset Mod-
elNet40. Therefore, we choose to report the results on
ScanObjectNN in the manuscript. Furthermore, we report
the results of our PointVector-S model on ModelNet40. We
use the same parameters as PointNext: CrossEntropy loss
with label smoothing, AdamW optimizer, a learning rate of
1e-3, a weight decay of 0.05, cosine learning rate decay,
and a batch size of 32 for 600 epochs, while using random
scaling and translation as data augmentations. As shown
in table 9, the relatively poor performance of our model on

Method mAcc OA
% %

PointNet [25] 86.2 89.2
PointCNN [17] 88.1 92.2
PointConv [42] – 92.5
KPConv [36] - 92.9
DGCNN [39] 90.2 92.9
DeepGCN [16] 90.9 93.6
ASSANet-L [27] - 92.9
Point Cloud Transformer [9] - 93.2
Point Transformer [53] 90.6 93.7
CurveNet [44] - 93.8
PointMLP [24] 90.9±0.4 93.7±0.2
PointNet++ - 91.9
PointNet++(PointNext) 89.9± 0.8 92.8± 0.1
PointNext(C=32) 90.8± 0.2 93.2± 0.1
PointNext(C=64) 90.9± 0.5 93.7± 0.3
PointVector-S(C=32) 90.3± 0.2 93.2± 0.2
PointVector-S(C=64) 91.0± 0.5 93.5± 0.2

Table 9. Object Classification on ModelNet40.

the ModelNet40 dataset indicates the limitation of the pro-
posed local vector representation in aggregating global in-
formation. We used hyperparameters consistent with Point-
Next and a training strategy that may not be suitable for
our model, which may also account for the relatively poor
performance. Note that our network structure on the clas-
sification task directly takes vector feature aggregation for
downsampling, but max-pooling is probably the simplest
and most effective method for downsampling.

C.2. Ablation study

There is a slight problem with the experimental setup
in the manuscript, in the 6-fold cross-validation experiment
we report the PointVector-L as the standard setup men-
tioned in the manuscript, but in the S3DIS Area5 and ab-
lation experiments we report the setup of PointVector-L as
V=[2, 2, 4, 2]. But, the max+groupconv in the manuscript
is reported as V=[2,4,2,2].

Method size OA mAcc mIOU
% % %

PointVector-L
(max+groupconv)

V=[2,4,2,2] 90.6 76.2 70.6
V=[2,2,4,2] 90.6 77.1 71.1

PointVector-L
(sum+groupconv)

V=[2,4,2,2] 90.3 77.21 70.8
V=[2,2,4,2] 90.8 77.3 71.2

PointVector-XL
V=[3,5,3,3] 90.8 78.3 72.3
V=[3,3,5,3] 91.0 76.7 71.1

Table 10. Results for models with different number of stagess on
S3DIS Area5.

10



Number of stages. Since the PointVector-L with
max+groupconv is reported by another configuration in the
manuscript, we compare the two configurations here. As
the tab.10 shows, the two reduction functions, max and sum,
obtain very similar results, but sum has a higher mAcc and
OA. This is consistent with our assumption that better re-
sults can be obtained by simply using groupconv to pro-
cess vectors of each channel independently. Small and large
models do not behave consistently in terms of the number
of stages. This is an interesting phenomenon, but not the
main point of our statement, so it will not be discussed for
now.

The following experiments are reported by default as
PointVector-XL [3,5,3,3], PointVector-L [2,2,4,2] if no spe-
cial instructions are given.

Method OA mAcc mIOU Params
% % % M

PointNeXt-XL 90.7 77.5 70.8 41.6
PointVector-base 90.9 77.0 71.4 37.2
PointVector-XL 90.8 78.3 72.3 24.1

Table 11. Baseline. The same experimental configuration was
used for all three models.

Baseline. Our model has some gaps in channel variations
and inputs with PointNeXt. To really evaluate whether our
model has a greater advantage, we reset a baseline. We
take our core operations i.e. Vector encoder and reduc-
tion+groupconv+channel mixing Linear was removed and
replaced with PointNeXt’s MLP+max+MLPs, where the
channel of first MLP was transformed from c to 3c. The
new model is named PointVector-base. The tab.11 shows
that our model has a large improvement in each metric com-
pared to baseline. Also this shows that the other parts of our
model are superior compared to the original PointNeXt.

type Method OA mAcc mIOU
% % %

feature
fj − fi+pos 90.8 77.3 71.2
[fj − fi,pos] 88.8 70.5 64.9
fj+pos 90.9 76.6 70.5

residual
linear 90.8 77.3 71.2
identity 90.3 75.8 69.3

Table 12. Other Components. + means that the two are added to-
gether and then passed through the relu layer. [,] means to directly
concatenate two elements.

Other Components. The manuscript mentions that other
operations of our model have a larger role, so we conducted
ablation experiments on PointVector-L to explore the effect

of both input features and residuals on the S3DIS segmen-
tation task. Tab.12 shows that the two parts of the features
are added together and then relu can better fuse their infor-
mation. In addition relative features are more robust than
absolute features. The key is that residual uses linear com-
pared to identity, which is a huge improvement.

D. Visualization

Figure 8. Qualitative comparisons of PointNext (2nd column),
PointVector++ (3rd column), and Ground Truth (4th column)
on S3DIS semantic segmentation. The input point cloud is visu-
alized with original colors in the 1st column. We have circled the
different places with a paintbrush.

As shown in the Fig.8, it can be found that our model
performs a little better in complex areas. This shows that
we are able to extract more detail in such intensely varied
areas than the max-pooling operation of PointNeXt. But we
are also prone to miscalculation in flat areas, which is our
disadvantage.

E. Code release
Since our model is based on PointNext, we used their

code and added a PointVector model. Since our classifica-
tion and part segmentation and semantic segmentation tasks
use different model compositions, the model code is also
different, and the corresponding PointVector.py needs to be
replaced at runtime. We have not organized the code yet,
where PATM represents the core part of our LocalVector
module. In the classification and part segmentation tasks,
it replaces the convs+max pooling operation in SetAbstrac-
tion. See the official instructions for PointNext for related
running instructions. And on s3dis our gravity dim is set to
1. The code of each task is a little different, on ScanOb-
jectNN classification task we insert leakyrelu in the two

11



linear after the reduction function, and the relative features
of the input after BN, encoder’s activation function all use
leakyrelu can reach 88.4% OA, but this is not the main point
of our statement, so we do not discuss it for now. The code
takes time to organize and we will make it public later.

References
[1] Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioan-

nis Brilakis, Martin Fischer, and Silvio Savarese. 3d seman-
tic parsing of large-scale indoor spaces. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016. 2, 5, 6

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Transactions on Graphics, 37(4), 2018. 2

[3] Shoufa Chen, Enze Xie, Chongjian GE, Runjian Chen, Ding
Liang, and Ping Luo. CycleMLP: A MLP-like architecture
for dense prediction. In International Conference on Learn-
ing Representations, 2022. 2

[4] Yuedong Chen, Guoxian Song, Zhiwen Shao, Jianfei Cai,
Tat-Jen Cham, and Jianmin Zheng. Geoconv: Geodesic
guided convolution for facial action unit recognition. Pat-
tern Recognition, 122, 2022. 2

[5] Silin Cheng, Xiwu Chen, Xinwei He, Zhe Liu, and Xiang
Bai. Pra-net: Point relation-aware network for 3d point cloud
analysis. IEEE Transactions on Image Processing, 30:4436
– 4448, 2021. 7

[6] Jaesung Choe, Chunghyun Park, Francois Rameau, Jaesik
Park, and In So Kweon. Pointmixer: Mlp-mixer for point
cloud understanding. 2021. 2

[7] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,
Andrea Tagliasacchi, and Leonidas J. Guibas. Vector neu-
rons: A general framework for so(3)-equivariant networks.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 12200–12209, October
2021. 2

[8] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia
Deng. Revisiting point cloud shape classification with a sim-
ple and effective baseline. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139, pages 3809–3820. PMLR,
2021. 6

[9] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R. Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187 – 199,
2021. 2, 10

[10] Abdullah Hamdi, Silvio Giancola, and Bernard Ghanem.
Mvtn: Multi-view transformation network for 3d shape
recognition. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1 – 11, Virtual, Online,
Canada, 2021. 2, 10

[11] Qingdong He, Zhengning Wang, Hao Zeng, Yi Zeng, and
Yijun Liu. Svga-net: Sparse voxel-graph attention network
for 3d object detection from point clouds. 2020. 2

[12] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition,
pages 11105 – 11114, Virtual, Online, United states, 2020. 6

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012. 4, 9

[14] Xin Lai, Jianhui Liu, Li Jiang, Liwei Wang, Hengshuang
Zhao, Shu Liu, Xiaojuan Qi, and Jiaya Jia. Stratified trans-
former for 3d point cloud segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8500–8509, June 2022. 2, 6, 7

[15] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 2019-June, pages 12689 –
12697, Long Beach, CA, United states, 2019. 2

[16] Guohao Li, Matthias Mueller, Guocheng Qian, Itzel Carolina
Delgadillo Perez, Abdulellah Abualshour, Ali Kassem Tha-
bet, and Bernard Ghanem. Deepgcns: Making gcns go as
deep as cnns. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. 6, 7, 10

[17] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In Advances in Neural Information Processing Sys-
tems, volume 2018-December, pages 820 – 830, Montreal,
QC, Canada, 2018. 2, 6, 7, 10

[18] Dongze Lian, Zehao Yu, Xing Sun, and Shenghua Gao. As-
mlp: An axial shifted mlp architecture for vision. In Inter-
national Conference on Learning Representations (ICLR),
2022. 2

[19] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.
Convolution in the cloud: Learning deformable kernels in
3d graph convolution networks for point cloud analysis. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1797–1806, 2020. 1, 2, 7

[20] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, volume 2019-June, pages 8887 – 8896, Long Beach,
CA, United states, 2019. 6

[21] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A
closer look at local aggregation operators in point cloud anal-
ysis. In Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XXIII 16, pages 326–342. Springer, 2020. 2

[22] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-
voxel cnn for efficient 3d deep learning. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 7

[23] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In 7th International Conference on Learn-

12



ing Representations, ICLR 2019, New Orleans, LA, United
states, 2019. 5

[24] Xu Ma, Can Qin, Haoxuan You, Haoxi Ran, and Yun Fu. Re-
thinking network design and local geometry in point cloud:
A simple residual mlp framework, 2022. 2, 7, 10

[25] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings - 30th IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2017,
volume 2017-January, pages 77 – 85, Honolulu, HI, United
states, 2017. 1, 2, 6, 7, 9, 10

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. 1, 2, 6, 7

[27] Guocheng Qian, Hasan Hammoud, Guohao Li, Ali Thabet,
and Bernard Ghanem. Assanet: An anisotropic separable
set abstraction for efficient point cloud representation learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 28119–28130.
Curran Associates, Inc., 2021. 2, 5, 6, 7, 10

[28] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai,
Hasan Hammoud, Mohamed Elhoseiny, and Bernard
Ghanem. Pointnext: Revisiting pointnet++ with improved
training and scaling strategies. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2022. 1, 2, 5, 6, 7,
10

[29] Shi Qiu, Saeed Anwar, and Nick Barnes. Geometric back-
projection network for point cloud classification. IEEE
Transactions on Multimedia, 24:1943 – 1955, 2022. 7

[30] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface represen-
tation for point clouds. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 18942–18952, June 2022. 2, 5, 6, 7, 10

[31] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, pages 10526 – 10535,
Virtual, Online, United states, 2020. 2

[32] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik
Learned-Miller. Multi-view convolutional neural networks
for 3d shape recognition. In Proceedings of the IEEE Inter-
national Conference on Computer Vision (ICCV), December
2015. 2

[33] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016. 5

[34] Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, and
Dacheng Tao. Contrastive boundary learning for point cloud
segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8489–8499, June 2022. 6, 7

[35] Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li,
Chao Xu, and Yunhe Wang. An image patch is a wave:
Phase-aware vision mlp. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 10935–10944, June 2022. 2, 9

[36] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, Francois Goulette, and Leonidas
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In Proceedings of the IEEE International Con-
ference on Computer Vision, volume 2019-October, pages
6410 – 6419, Seoul, Korea, Republic of, 2019. 1, 2, 5, 6, 7,
9, 10

[37] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario
Lucic, and Alexey Dosovitskiy. Mlp-mixer: An all-mlp
architecture for vision. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, vol-
ume 34, pages 24261–24272. Curran Associates, Inc., 2021.
2

[38] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and
Jie Shan. Graph attention convolution for point cloud seman-
tic segmentation. In Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recogni-
tion, volume 2019-June, pages 10288 – 10297, Long Beach,
CA, United states, 2019. 2

[39] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5), 2019. 1, 2, 6, 7, 10

[40] Yida Wang, David Joseph Tan, Nassir Navab, and Federico
Tombari. Learning local displacements for point cloud com-
pletion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 2

[41] Yan Wang, Wanxia Zhong, Hang Su, Fujiang Zheng, Yiran
Pang, Hongchuan Wen, and Kun Cai. An improved mvcnn
for 3d shape recognition. In Proceedings of 2021 IEEE In-
ternational Conference on Emergency Science and Informa-
tion Technology, ICESIT 2021, pages 469 – 472, Chongqing,
China, 2021. 2

[42] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep
convolutional networks on 3d point clouds. In Proceed-
ings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, volume 2019-June, pages
9613 – 9622, Long Beach, CA, United states, 2019. 2, 10

[43] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, volume 07-12-
June-2015, pages 1912 – 1920, Boston, MA, United states,
2015. 10

[44] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 895 – 904,
Virtual, Online, Canada, 2021. 7, 10

13



[45] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic ker-
nel assembling on point clouds. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 3172 – 3181, Virtual, Online, United
states, 2021. 4, 7, 9

[46] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 11212 LNCS,
pages 90 – 105, Munich, Germany, 2018. 2

[47] Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li,
Jinxian Liu, Mengdie Zhou, and Qi Tian. Modeling point
clouds with self-attention and gumbel subset sampling. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019. 2

[48] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics, 35(6), 2016. 2, 5, 6, 10

[49] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,
Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-
fer, and Leonidas Guibas. A scalable active framework for
region annotation in 3d shape collections. ACM Transactions
on Graphics, 35(6), 2016. 2, 5, 7

[50] Xumin Yu, Yongming Rao, Ziyi Wang, Zuyan Liu, Jiwen Lu,
and Jie Zhou. Pointr: Diverse point cloud completion with
geometry-aware transformers. In Proceedings of the IEEE
International Conference on Computer Vision, pages 12478
– 12487, Virtual, Online, Canada, 2021. 2

[51] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie
Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud
transformers with masked point modeling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 19313–19322, June 2022. 2, 5

[52] Cheng Zhang, Haocheng Wan, Xinyi Shen, and Zizhao Wu.
Patchformer: An efficient point transformer with patch atten-
tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11799–
11808, June 2022. 7

[53] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H.S. Torr, and
Vladlen Koltun. Point transformer. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 16259–16268, October 2021. 1, 4, 5, 6, 7,
9, 10

[54] Haoran Zhou, Yidan Feng, Mingsheng Fang, Mingqiang
Wei, Jing Qin, and Tong Lu. Adaptive graph convolution for
point cloud analysis. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 4945 – 4954,
Virtual, Online, Canada, 2021. 1, 4

[55] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. In Proceedings of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 4490 – 4499, Salt Lake City,
UT, United states, 2018. 2

14


	1 . Introduction
	2 . Related work
	3 . Method
	3.1 . Preliminary
	3.2 . Vector-oriented Point Set Abstraction
	3.3 . Extended Vector From Scalar
	3.4 . Architecture

	4 . Experiments
	4.1 . 3D Semantic segmentation on S3DIS
	4.2 . 3D Object Classification on ScanObjectNN
	4.3 . 3D Object Part Segmentation on ShapeNetPart
	4.4 . Ablation Study

	5 . Conclusion and Limitation.
	A . Preliminary
	A.1 . Problem of WaveMLP.
	A.2 . Methodology Review.

	B . Architecture
	B.1 . Vector encoder
	B.2 . Classification architecture.

	C . Experiments
	C.1 . Classification on ModelNet40
	C.2 . Ablation study

	D . Visualization
	E . Code release

