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Abstract

In this paper, we present a new method for the multi-
view registration of point cloud. Previous multiview regis-
tration methods rely on exhaustive pairwise registration to
construct a densely-connected pose graph and apply Itera-
tively Reweighted Least Square (IRLS) on the pose graph to
compute the scan poses. However, constructing a densely-
connected graph is time-consuming and contains lots of
outlier edges, which makes the subsequent IRLS struggle to
find correct poses. To address the above problems, we first
propose to use a neural network to estimate the overlap be-
tween scan pairs, which enables us to construct a sparse
but reliable pose graph. Then, we design a novel history
reweighting function in the IRLS scheme, which has strong
robustness to outlier edges on the graph. In comparison
with existing multiview registration methods, our method
achieves 11% higher registration recall on the 3DMatch
dataset and ∼ 13% lower registration errors on the Scan-
Net dataset while reducing ∼ 70% required pairwise regis-
trations. Comprehensive ablation studies are conducted to
demonstrate the effectiveness of our designs. The source
code is available at https://github.com/WHU-
USI3DV/SGHR.

1. Introduction
Point cloud registration is a prerequisite for many tasks

such as 3D reconstruction [17, 25, 32] and 3D segmenta-
tion [27, 35]. Most recent registration methods [1, 7, 22, 28,
39, 46, 49, 57] mainly focus on pairwise registration of two
partial point clouds (scans), which can only reconstruct a
part of the scene. In order to get a completed scene recon-
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Figure 1. Overview. (1) Given N unaligned partial scans, our tar-
get is to register all these scans into (4) a completed point cloud.
Our method has two contributions. (2) We learn a global feature
vector to initialize a sparse pose graph which contains much less
outliers and reduces the required number of pairwise registrations.
(3) We propose a novel IRLS scheme. In our IRLS scheme, we
initialize weights from both global features and pairwise registra-
tions. Then, we design a history reweighting function to iteratively
refine poses, which improves the robustness to outliers.

struction, all partial point clouds should be simultaneously
aligned, which is called multiview registration. Due to its
complexity, multiview point cloud registration receives less
attention recently and only few recent studies propose mul-
tiview registration methods [18, 21, 30, 54, 55].

Given N unaligned partial point clouds, multiview reg-
istration aims to find a globally-consistent pose for every
partial point cloud. A commonly-adopted pipeline of mul-
tiview registration consists of two phases [55]. First, a
pairwise registration algorithm [28, 46, 49] is applied to ex-
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haustively estimate the relative poses of all
(
N
2

)
scan pairs,

which forms a fully-connected pose graph. The edges of the
graph stand for the relative poses of scan pairs while nodes
represent scans. Since the dense pose graph may include in-
accurate or even incorrect relative poses (outliers) between
two irrelevant scans, in the second phase, these pairwise
poses are jointly optimized by enforcing the cycle consis-
tency [30] to reject outlier edges and improve accuracy. For
the second phase, most recent methods, including hand-
crafted methods [5, 13, 29] or learning-based [21, 30, 55]
methods, follow a scheme of Iterative Reweighting Least
Square (IRLS). In the IRLS, initial weights are assigned
to edges to indicate these edges are reliable or not. Then,
based on the weights, a synchronization algorithm is ap-
plied to compute a new relative pose on every edge. After
that, the weights on edges are updated according to the dif-
ference between the old relative poses and the new ones.
IRLS iteratively synchronize poses from edge weights and
update weights with synchronized poses.

In an ideal case, an IRLS scheme will gradually lower
the weights of the outlier edges and only consider the in-
lier edges for pose synchronization. However, the initial
densely-connected graph contains lots of outliers, which of-
ten prevents the iterative reweighting mechanism of IRLS
from finding correct edges. To improve the robustness to
outliers, many researches focus on applying advanced hand-
crafted reweighting functions [11, 29] or designing graph
network to learn reweighting functions [30, 55]. How-
ever, the handcrafted reweighting functions usually require
a good initialization to converge to the correct poses while
learning-based reweighting methods may not generalize to
unseen settings. Designing a robust IRLS algorithm still
remains an open problem.

In this paper, we show that multiview registration can be
improved from two aspects, as shown in Fig. 1. First, we
learn a good initialization of the input pose graph which
avoids exhaustive pairwise registrations and reduces the
outlier ratio. Second, we propose a novel history reweight-
ing function which enables a stable convergence to correct
poses in the IRLS scheme.

In the pose graph construction, we learn a global feature
on each point cloud and the correlation of two global feature
indicates the overlap ratio between two point clouds. Such
global features enable us to generate a sparse pose graph
with fewer but more reliable edges instead of a densely-
connected graph. After that, we only need to apply the
pairwise registration algorithm and IRLS on these sparse
edges, which greatly reduce the computation complexity
of pairwise registration from O(N2) to O(N). Mean-
while, these reliable edges contain much less outliers than
the fully-connected graph, which provides the possibility to
find more accurate and consistent global poses in IRLS.

Though the initial graph contains much less outliers, ex-

Figure 2. An example on the 3DMatch dataset. (a) The input
scans under the ground truth poses. (b) The constructed sparse
pose graph with two incorrect relative poses (#0-#2 and #0-#4),
where #0 and #4 looks very similar to each other so that the pose
graph incorrectly include this scan pair. (c) and (d) show the nor-
malized weights on the graph edges on different iterations of the
vanilla IRLS and our method respectively. Our method is able
to find the outlier edges and gradually reduce their weights while
vanilla IRLS is biased towards the outlier edge (#0-#4) after few
iterations. (e) and (f) are the multiview registration results of the
vanilla IRLS and our method respectively.

isting IRLS algorithms are still sensitive to these outliers
and can be totally biased towards these outliers in the first
few iterations. An example is shown in Fig. 2: the initial
graph only contains two outlier edges. However, the outlier
scan pair “#0-#4” looks very similar and thus is initialized
with a large weight. Such an incorrect large weight inter-
feres the subsequent pose synchronization and brings sys-
tematic errors to the synchronized poses. The vanilla IRLS
trusts all synchronized poses and is easily dominated by
these erroneous poses, which leads to incorrect convergence
as shown in Fig. 1(c). To address this problem, we propose
a simple yet effective reweighting function called the his-
tory reweighting function. In history reweighting function,
edge weights at a specific iteration not only depends on the
synchronized poses at the current iterations but also consid-
ers the historical synchronized poses in previous iterations,
which acts like a regularizer to prevent the IRLS from be-
ing dominated by outliers at the early unstable iterations as
shown in the Fig. 2 (d). Then, the edge weights in our graph
gradually stabilize in the subsequent iterative refinements,
leading to the convergence to correct poses.
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We evaluate our method on three widely-used bench-
marks: the 3DMatch/3DLoMatch dataset [28,59], the Scan-
Net dataset [16], and the ETH dataset [44]. With the help
of the proposed sparse graph construction and IRLS with
history reweighting, our method surpasses the current mul-
tiview registration baselines by 11.0% and 6.2% in reg-
istration recall on 3DMatch and 3DLoMatch, reduces the
mean rotation and translation errors on ScanNet by 12.8%
and 13.8%. Meanwhile, our method shows strong gener-
alization ability. Only trained on the indoor dataset, our
method achieves a 99.8% registration recall on the outdoor
ETH dataset. Moreover, all the above state-of-the-art per-
formances of our method only require 20% ∼ 40% pairwise
registrations of existing multiview point cloud registration
methods, which demonstrates our computation efficiency.

2. Related work
2.1. Pairwise registration

There are mainly two kinds of pairwise point cloud reg-
istrations. Feature-based methods extract a set of local de-
scriptors [1, 7, 15, 22, 49, 50] on detected keypoints [7, 28].
Then, local descriptors are matched to build correspon-
dences [39, 46, 56, 57]. Finally, correspondences are fil-
tered [6, 12, 14, 36, 43] and used in transformation esti-
mation [46, 49, 56] to find rigid transformations. Other
works, known as direct registration methods, either directly
regress the transformations [2, 31, 38, 58] or refine corre-
spondences [20, 40, 51, 52] by considering the information
from both point clouds with attention layers. Our multi-
view registration method is based on the pairwise registra-
tion, which is compatible with all above methods.

2.2. Multiview registration

Most multiview point cloud registration methods [5, 10,
13,19,21,23,29,30,55] aim at recovering the absolute scan
poses from exhaustive pairwise registrations. However, ex-
haustive pairwise registration is time-consuming [18] and
may contain lots of outliers [55]. To reduce the computa-
tional burden, some traditional works [18, 24, 33, 42, 53] re-
sort to growing-based strategy to merge selected scans iter-
atively, which requires fewer pairwise registrations but may
fail due to the accumulated errors in the growing process.
In contrast, we avoid complex growing strategies to find in-
lier pairs but incorporate learning-based techniques to se-
lect reliable scan pairs, which enables more accurate sub-
sequent synchronization. Other works [5, 9, 13, 21, 30, 33,
47, 48, 55, 60] focus on pruning outliers on the constructed
graph. IRLS-based scheme is one of the most prevalent
technique [5, 8, 21, 26, 29, 30, 55]. However, the iterative
refinement of IRLS can easily trapped in a local minima
and fails to prune out outlier edges [5, 55]. The reweight-
ing function is proved to be the most important design in a

reliable IRLS [5, 26, 30]. Thus, recent learning-based ad-
vances [21, 30, 55] adopt data-driven strategy to learn ro-
bust reweighting functions, which achieve impressive per-
formances but cannot generalize well to unfamiliar graphs.
We design a history reweighting function with strong gen-
eralization ability and robustness to outliers.

3. Method
3.1. Overview

Consider a set of unaligned scans P = {Pi|i = 1, ..., N}
in the same 3D scene. The target of multiview registra-
tion is to recover the underlying global scan poses {Ti =
(Ri, ti) ∈ SE(3)|i = 1, ..., N}. In the following, we first
introduce how to initialize a pose graph with reliable edges
in Sec. 3.2. Then, we propose a novel history reweighting
function within a IRLS scheme in Sec. 3.3 to solve for the
poses of every scan. The pipeline is illustrated in Fig. 3.

3.2. Learn to construct a sparse graph

In this section, we aim to construct a pose graph for the
multiview registration. Specifically, the graph is denoted by
G(V, E), where each vertex vi ∈ V represents each scan Pi

while edge (i, j) ∈ E encodes the relative poses between
scan Pj and scan Pi. We will first estimate an overlap score
sij for each scan pair (Pi, Pj). Then, given the overlap
scores, we construct a sparse graph by selecting a set of
scan pairs with large estimated overlaps and apply pairwise
transformations on them only.

Global feature extraction. To extract the global feature
F for a point cloud P , we first downsample P by voxels and
extract a local feature fp ∈ Rd on every sampled point p ∈
P from its local 3D patch Np = {p′|∥p−p′∥2 < r, p′ ∈ P}
within a radius of r by

fp = φ(Np), (1)

where φ is a neural network for extracting local descriptors,
such as PointNet [45], FCGF [15], and YOHO [49]. By
default, we adopt YOHO as the local descriptor [49] due to
its superior performance. Then, we apply a NetVLAD [3]
layer on the local features to extract a global feature F

F = NetV LAD({fp}). (2)

Note F ∈ Rn is normalized such that ∥F∥2 = 1.
Sparse graph construction. For a scan pair (Pi, Pj),

we estimate their overlap score by

sij = (FT
i Fj + 1)/2, (3)

where sij ∈ [0, 1] indicates the overlap between Pi and Pj .
We train the NetV LAD with a L1 loss between the pre-
dicted overlap score and the ground-truth overlap ratio.
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Figure 3. The pipeline of the proposed method.

For each scan, we select other k scan pairs with the
largest overlap scores to connect with the scan. This leads
to a sparse graph with edges

E = {(i, j : arg-topk
Pj∈P,j ̸=i

sij),∀Pi ∈ P}. (4)

On each edge (i, j) ∈ E of the constructed graph, we
estimate a relative pose Tij on the scan pair from their ex-
tracted local descriptors. By default, we follow [49] to ap-
ply nearest neighborhood matcher on the local descriptors
and estimate the relative pose from the RANSAC variant.

Discussion. Recent multiview registration methods [21,
30, 55, 60] usually exhaustively estimate all

(
N
2

)
relative

poses and many of these scan pairs have no overlap at all.
In our method, we extract global features to determine the
overlap scores to select N ×k scan pairs. Actually, we only
need to conduct pairwise registration less than N × k be-
cause the graph is an indirection graph and we only need
to count each edge once. Our global feature extraction
is much more efficient than matching descriptors and run-
ning RANSAC in the pairwise registration. The subsequent
pose synchronization only needs to operate on these sparse
edges, which also improves the efficiency. Moreover, the re-
tained pose graph contains much less fewer outliers, which
thus improves the accuracy of the subsequent synchroniza-
tion.

3.3. IRLS with history reweighting

In this section, we apply the Iteratively Reweighted Least
Squares (IRLS) scheme to estimate the consistent global
poses on all scans. The key idea of IRLS is to associate a
weight on each edge to indicate the reliability of each scan
pair. These weights are iteratively refined such that outlier
edges will have small weights so these outlier relative poses
will not affect the final global poses. In the following, we
first initialize edge weights, and iteratively estimate poses
based on edge weights and update edge weights with the
proposed history reweighting function.

3.3.1 Weight initialization

The weight w(0)
ij is initialized from both the estimated over-

lap score sij and the quality of the pairwise registration by

w
(0)
ij = sij ∗ rij , (5)

where rij reveals the quality of pairwise registration. In
the pairwise registration, a set of correspondences C =
{(p, q)|p ∈ Pi, q ∈ Pj} are established by matching lo-
cal descriptors. Thus, rij is defined as the number of inlier
correspondences in C conforming with Tij = (Rij , tij),
which is

rij =
∑

(p,q)∈C

[[∥p−Rijq − tij∥2 < τ ]], (6)

where [[·]] is the Iverson bracket, τ is a pre-defined inlier
threshold.

3.3.2 Pose synchronization

Given the edge weights and input relative poses {wij , Tij =
(Rij , tij)|(i, j) ∈ E}, we solve for the global scan poses
{Ti = (Ri, ti)}. We adopt the closed-form synchronization
algorithm proposed in [4,30]. We first compute the rotations
by rotation synchronization [4, 21], and then compute the
translations by translation synchronization [30].

Rotation synchronization. The goal of rotation syn-
chronization is to solve

{R1, ...RN} = argmin
R1,...RN∈SO(3)

∑
(i,j)∈E

wij∥Rij −RT
i Rj∥2F ,

(7)
where ∥ · ∥F means the Frobenius norm of the matrix. The
problem has a closed-form solution, which can be derived
from the eigenvectors of a symmetric matrix L ∈ R3N∗3N

L =



∑
(1,j)∈E

w1jI3 −w12R12 · · · −w1NR1N

−w21R21

∑
(2,j)∈E

w2jI3 · · · −w2NR2N

...
...

. . .
...

−wN1RN1 −wN2RN2 · · ·
∑

(N,j)∈E
wNjI3


(8)

L is a sparse matrix since the constructed graph is sparse.
Given three eigenvectors τ1, τ2, τ3 ∈ R3N corresponding
to the three smallest eigenvalues λ1 < λ2 < λ3 of L, we
stack these three eigenvectors to construct a matrix V =
[τ1, τ2, τ3] ∈ R3N∗3. Then, Ri can be derived by projecting
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vi = V [3i − 3 : 3i] ∈ R3∗3 to SO(3). More details can be
found in the supplementary material.

Translation synchronization. Similarly, translation
synchronization retrieves the translation vectors {ti} that
minimize the problem:

{t1, ..., tN} = argmin
t1,...,tN∈R3

∑
(i,j)∈E

wij∥Ritij+ti−tj∥2 (9)

We solve it by the standard least square method [30].

3.3.3 History reweighting function

Given the synchronized poses, we re-compute weights on
edges such that outlier edges will have smaller weights than
the inlier edges. Assume the synchronized poses at the n-th
iteration are {T (n)

i = (R
(n)
i , t

(n)
i )}. We first compute the

rotation residual δ(n)ij by

δ
(n)
ij = ∆(Rij , R

(n)T
i R

(n)
j ), (10)

where ∆(R1, R2) means the angular difference between the
rotation R1 and R2. ∆(R1, R2) is implemented by trans-
forming RT

1 R2 into an axis-angle form and outputing the
rotation angle. Then, the updated weights are computed
from rotation residuals of all previous iterations by

w
(n)
ij = w

(0)
ij exp

(
−

n∑
m=1

g(m)δ
(m)
i,j

)
, (11)

where g(m) is a predefined coefficient function of the iter-
ation number with g(m) > 0. We will elaborate the design
of g(m) later. Instead, we first discuss the intuition behind
the Eq. (11).

Intuition of Eq. (11). Similar to previous reweighting
functions [5, 21, 55], a larger rotation residual δ will lead
to a smaller weight because large residuals are often caused
by outliers. Meanwhile, there are two differences from pre-
vious reweighting functions. First, we multiply the initial
weights w(0)

ij so that the recomputed weights always retain
information from the warm-start initialization in Sec. 3.3.1
and these initialized weights will be adjusted by the resid-
uals in the iterative refinement. Second, the weight at a
specific iteration n considers the residuals of all previous
iterations m ≤ n. This design is inspired from the momen-
tum optimization method RMSProp or Adam [34], which
utilizes the gradients in the history to stabilize the optimiza-
tion process. Here, we adopt similar strategy to consider all
residuals in the history to determine a robust weight for the
current iteration, which is less sensitive to outliers.

Design of coefficient function g(m). g(m) can be re-
garded as a weight function. A small value of g(m) means
that we do not trust the residual at the iteration m and

this residual may not correctly identify inliers and out-
liers. In our observation, the residuals estimated by the first
few iterations are not very stable so we want g(m) is in-
creasing with the iteration number m. Meanwhile, if we
want to conduct M IRLS iterations in total, we want the
sum of coefficients at the final iteration M will be 1, i.e.∑M

m=1 g(m) = 1. Thus, in our design, we have

g(m) =
2m

M(M + 1)
. (12)

After computing the updated weights, we iteratively syn-
chronize the poses with these updated weights as stated in
Sec. 3.3.2 and compute new weights from these new poses
as stated in Sec. 3.3.3. The IRLS run M iterations in total
and the synchronized poses at the final iteration are regarded
as the output poses for all scans.

4. Experiments
4.1. Experimental protocol

4.1.1 Datasets

We evaluate the proposed method on three widely used
datasets: 3D(Lo)Match [28, 59], ScanNet [16], and
ETH [44] as follows.

3DMatch contains scans collected from 62 indoor
scenes among which 46 are split for training, 8 for vali-
dation, and 8 for testing. Each test scene contains 54 scans
on average. We follow previous works [21, 28] to use 1623
scan pairs with > 30% overlap ratio and 1781 scan pairs
with 10% ∼ 30% overlap as two test sets, denoted as
3DMatch and 3DLoMatch, respectively.

ScanNet contains RGBD sequences of 1513 indoor
scenes. We follow [21] to use the same 32 test scenes and
convert 30 RGBD images that are 20 frames apart to 30
scans on each scene. There are 960 scans in total and we
exhaustively select all 13920 scan pairs for evaluation.

ETH has 4 outdoor scenes with large domain gaps to the
3DMatch dataset and each scene contains 33 scans on aver-
age. 713 scan pairs are officially selected for evaluation.

Our model is only trained on the training split of
3DMatch and evaluated on 3D(Lo)Match, ScanNet, and
ETH. More training details can be found in supplementary
material. For evaluation, we first perform multiview reg-
istration to recover the global scan poses. Then, we fol-
low [21] to evaluate the multiview registration quality on
pairwise relative poses computed from the recovered global
poses. By default, we set k in sparse graph construction to
10 for two indoor datasets and 6 for the ETH dataset.

4.1.2 Metrics

We follow [1, 15, 46, 49] to adopt Registration Recall (RR)
for evaluation on 3D(Lo)Match and ETH. RR reports the
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Figure 4. Qualitative results on the 3DMatch, ScanNet, and ETH datasets.

ratio of correctly aligned scan pairs. A scan pair is regarded
correctly-aligned if the average distance between the points
under the estimated transformation (Rpre, tpre) and these
points under the ground truth transformation (Rgt, tgt) is
less than 0.2m for the 3D(Lo)Match dataset and 0.5m for
the ETH dataset. RR of all methods is calculated on the
same official evaluation scan pairs mentioned in Sec. 4.1.1.

For the evaluation on ScanNet, we follow [21, 30,
55] to report Empirical Cumulative Distribution Functions
(ECDF) of the rotation error re and translation error te:

re = arccos

(
tr(RT

preRgt)− 1

2

)
te = ∥tpre − tgt∥2.

(13)
We also report the number of required pairwise registra-

tions to initialize the pose graphs, denoted as “#Pair”.

4.1.3 Baselines

We compare the proposed method against several multi-
view registration baselines: EIGSE3 [5], L1-IRLS [11],
RotAvg [11], LMVR [21], LITS [55], and HARA [37].
Specifically, LMVR is an end-to-end method, which per-
forms pairwise registration and transformation synchroniza-
tion in a single deep neural network. EIGSE3 proposes
a spectral approach to solve transformation synchroniza-
tion and further applies IRLS with Cauchy [26] reweight-
ing function to improve robustness. L1-IRLS and RotAvg
are two robust algorithms, which perform IRLS-based ro-
tation synchronization using l1 and l1/2 reweighting func-
tions to resist outliers. HARA is a state-of-the-art hand-
crafted synchronization method, which conducts growing-
based edge pruning by checking cycle consistency and per-
forms IRLS-based synchronization using l1/2 reweighting
functions on the retained edges. LITS is a state-of-the-art
learning-based transformation synchronization method. All
baseline methods except LMVR are compatible with any
pairwise registration methods [1,15,46,49]. Thus, we com-

Pose
Method #Pair

SpinNet [1] YOHO [49] GeoTrans [46]
Graph 3D / 3DL-RR (%) 3D / 3DL-RR (%) 3D / 3DL-RR (%)

Full

EIGSE3 [5] 11905 20.8 / 13.6 23.2 / 6.6 17.0 / 9.1
L1-IRLS [11] 11905 49.8 / 29.4 52.2 / 32.2 55.7 / 37.3
RotAvg [11] 11905 59.3 / 38.9 61.8 / 44.1 68.6 / 56.5
LITS [55] 11905 68.1 / 47.9 77.0 / 59.0 84.2 / 73.0
HARA [37] 11905 82.7 / 63.6 83.1 / 68.7 83.4 / 68.5
Ours 11905 93.3 / 77.2 93.2 / 76.8 91.5 / 82.4

Pruned
[21]

EIGSE3 [5] 11905 42.7 / 34.6 40.1 / 26.5 39.4 / 28.7
L1-IRLS [11] 11905 66.9 / 46.2 68.6 / 49.0 77.4 / 58.3
RotAvg [11] 11905 72.8 / 55.3 77.2 / 60.3 81.6 / 68.5
LITS [55] 11905 73.1 / 55.5 80.8 / 65.2 84.6 / 76.8
HARA [37] 11905 84.0 / 62.5 83.8 / 71.9 84.9 / 73.7
Ours 11905 94.8 / 80.6 95.2 / 82.3 95.2 / 82.8

Ours Ours 2798 94.9 / 80.0 96.2 / 81.6 95.9 / 83.0

Table 1. Registration recall on the 3DMatch (“3D”) and 3DLo-
Match (“3DL”) datasets. We report results with different pairwise
registration algorithms (SpinNet [1], YOHO [49], GeoTrans [46]).

pare our method with these baselines using different pair-
wise registration algorithms, including FCGF [15], Spin-
Net [1], YOHO [49], GeoTransformer [46].

4.1.4 Pose graph construction

For a fair comparison with baseline multiview registration
methods, we report the performances produced on three dif-
ferent types of input pose graphs. The first type “Full” does
not prune any edge so the pose graph is fully-connected.
The second type “Pruned” prunes edges according to the
quality of pairwise registration, which is adopted by pre-
vious methods LITS [55] and LMVR [21] (called “Good”
in their papers). “Pruned” first applies pairwise registration
algorithms (FCGF [15], YOHO [49], SpinNet [1] or Geo-
Transformer [46]) to exhaustively register all scan pairs and
then only retain scan pairs whose median point distance in
the registered overlapping region is less than 0.05m [21,55]
(0.15m for ETH). The final type “Ours” applies the pro-
posed global feature for the overlap score estimation and
constructs a sparse graph according to scores.

4.2. Results on three benchmarks

Qualitative results are shown in Fig. 4. Quantitative re-
sults on the 3DMatch, the ScanNet and the ETH datasets
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Pose Graph Method #Pair Rotation Error Translation Error (m)
3° 5° 10° 30° 45° Mean/Med 0.05 0.1 0.25 0.5 0.75 Mean/Med

Full

LMVR [21] 13920 48.3 53.6 58.9 63.2 64.0 48.1°/33.7° 34.5 49.1 58.5 61.6 63.9 0.83/0.55
LITS [55] 13920 47.4 58.4 70.5 78.3 79.7 27.6°/- 29.6 47.5 66.7 73.3 77.6 0.56/-
EIGSE3 [5]* 13920 19.7 24.4 32.3 49.3 56.9 53.6°/48.0° 11.2 19.7 30.5 45.7 56.7 1.03/0.94
L1-IRLS [11]* 13920 38.1 44.2 48.8 55.7 56.5 53.9°/47.1° 18.5 30.4 40.7 47.8 54.4 1.14/1.07
RotAvg [11]* 13920 44.1 49.8 52.8 56.5 57.3 53.1°/44.0° 28.2 40.8 48.6 51.9 56.1 1.13/1.05
LITS [55]* 13920 52.8 67.1 74.9 77.9 79.5 26.8°/27.9° 29.4 51.1 68.9 75.0 77.0 0.68/0.66
HARA [37]* 13920 54.9 64.3 71.3 74.1 74.2 32.1°/29.2° 35.8 54.4 66.3 69.7 72.9 0.87/0.75
Ours 13920 57.2 68.5 75.1 78.1 78.8 26.4°/19.5° 39.4 61.5 72.0 75.2 77.6 0.70/0.59

Pruned [21]

EIGSE3 [5]* 13920 40.8 46.3 51.9 61.2 65.7 40.6°/37.1° 23.9 38.5 51.0 59.3 66.1 0.88/0.84
L1-IRLS [11]* 13920 46.3 54.2 61.6 64.3 66.8 41.8°/34.0° 24.1 38.5 48.3 55.6 60.9 1.05/1.01
RotAvg [11]* 13920 50.2 60.1 65.3 66.8 68.8 38.5°/31.6° 31.8 49.0 58.8 63.3 65.6 0.96/0.83
LITS [55]* 13920 54.3 69.4 75.6 78.5 80.3 24.9°/19.9° 31.4 54.4 72.3 76.7 79.6 0.65/0.56
HARA [37]* 13920 55.7 63.7 69.0 70.8 72.1 34.7°/31.3° 35.2 53.6 65.4 68.6 71.7 0.86/0.71
Ours 13920 59.4 71.9 80.0 82.1 82.6 21.7°/19.1° 39.9 63.0 74.3 77.6 80.2 0.64/0.47

Ours Ours 6004 59.1 73.1 80.8 82.5 83.0 21.7°/19.0° 39.9 64.1 76.7 79.0 81.9 0.56/0.49
* means using the same selected frames and pairwise transformations as ours.

Table 2. Registration performance on the ScanNet dataset. The pairwise registration algorithm for all methods is YOHO [49] except for
LMVR [21] which includes pairwise registration in its pipeline.

Pose Graph Method #Pair
FCGF [15] SpinNet [1] YOHO [49]

RR (%) RR (%) RR (%)

Full

EIGSE3 [5] 2123 44.8 56.3 60.9
L1-IRLS [11] 2123 60.5 73.2 77.2
RotAvg [11] 2123 67.3 82.1 85.4
LITS [55] 2123 26.3 36.4 34.8
HARA [37] 2123 72.2 79.3 85.4
Ours 2123 85.7 86.3 98.8

Pruned [21]

EIGSE3 [5] 2123 89.4 93.6 96.3
L1-IRLS [11] 2123 86.1 87.9 90.2
RotAvg [11] 2123 95.6 95.5 96.6
LITS [55] 2123 41.2 47.3 48.4
HARA [37] 2123 90.3 97.8 96.0
Ours 2123 96.8 99.8 97.2

Ours Ours 516 97.4 99.8 99.1

Table 3. Registration recall on the ETH dataset. We report re-
sults using different pairwise registration algorithms (FCGF [15],
SpinNet [1], YOHO [49]).

are shown in Table 1, Table 2 and Table 3, respectively.
First, the results show that our method achieves signif-

icant better performances than all baseline methods with
∼5%-10% improvements on the 3DMatch and 3DLoMatch
dataset, which demonstrates that our method is able to ac-
curately align low-overlapped scan pairs via pose synchro-
nization. Meanwhile, our method only requires ∼ 30%
pairwise registrations with the help of our sparse graph con-
struction, which greatly improves the efficiency.

Second, when using the same pose graphs as previ-
ous method, our method already achieves better perfor-
mances on all datasets, which is benefited from our history
reweighting function in the IRLS. Meanwhile, applying our
global features for the graph construction further improves
the results, which demonstrates the predicted overlap score
is more robust than simply pruning edges according to the
pairwise registration.

Finally, the results on the outdoor ETH dataset demon-

Figure 5. Ground truth overlap ratios and correct ratios of pairwise
registration with Top-k overlap scores.

strate the generalization ability of the proposed method.
Both our method and the learning-based method LITS [55]
is trained on the indoor 3DMatch dataset, However, LITS
does not generalize well to outdoor dataset (only ∼45%
recall) even though it shows strong performances on both
indoor datasets. In comparison, our method still achieves
strong performances (almost 100% registration recall) on
the outdoor dataset.

4.3. Analysis

We thoroughly conduct analyses on the proposed designs
about the pose graph construction and history reweighting
IRLS modules in this section. By default, all analyses are
conducted on the 3D(Lo)Match dataset with YOHO [49] as
the pairwise registration method.

4.3.1 Sparse Graph Construction

Are predicted overlap scores well-calibrated? Well-
calibrated overlap scores should assign higher scores to scan
pairs with more overlap regions. Meanwhile, we want the
scan pairs with higher overlap scores can be easily aligned
by the pairwise registration algorithms. In Fig. 5, we report
the averaged ground truth overlap ratios and correct ratio
of pairwise registration of scan pairs with top-30 predicted
overlap scores. It can be seen that the estimated overlap
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Pose Graph Method #Pair 3D-RR (%) 3DL-RR (%)

Full EIGSE3 [5] 11905 23.2 6.6
Pruned [21] EIGSE3 [5] 11905 40.1 26.5
Ours EIGSE3 [5] 2798 60.4 44.6
Full RotAvg [11] 11905 61.8 44.1
Pruned [21] RotAvg [11] 11905 77.2 60.3
Ours RotAvg [11] 2798 81.7 63.9
Full LITS [55] 11905 77.0 59.0
Pruned [21] LITS [55] 11905 80.8 65.2
Ours LITS [55] 2798 84.6 68.6

Table 4. Performances of applying different multiview registration
methods on different input pose graphs.

Figure 6. An example of retrieving scans using the global feature.
The predicted top-3 scans with largest overlap scores indeed have
large overlaps with the query scan while the 3 scans with smallest
overlap scores are far away from the query.

scores are able to identify the reliable scan pairs with high
overlap ratios. A visualization of retrieved scans using the
global feature is given in Fig. 6.

Can our sparse graphs improve other multiview reg-
istration methods? We compare the performance of
EIGSE3 [5], RotAvg [11], and LITS [55] using the fully-
connected pose graph (“Full”), outliers pruned by pairwise
registration results [21,30,55] (“Pruned”) and the proposed
sparse graph (“Ours”) in Table 4. It can be seen that our
sparse graph construction boosts the performance of base-
line methods by a larger margin than “Pruned” graphs. Note
“Pruned” requires exhaustive pairwise registration while we
only need to conduct pairwise registration on the retained
edges. Thus, our method is more efficient. Detailed run-
ning times are provided in the supplementary material.

4.3.2 Ablation studies on history reweighting

We conduct ablation studies on our designs in the proposed
IRLS algorithm. The results are shown in Table. 5 and
the convergence curves are shown in Fig. 7. We consider
the following three designs. 1) Weight initialization (WI).
We initialize the weight to be the product of both the inlier
correspondence number rij and the predicted overlap score
sij . Alternatively, we may just initialize the weight with rij
or sij only. Results show that the proposed initialization

Initialization Reweighting
Full

w/o sij w/o rij w/o HR w/o INC
3D-RR(%) 95.5 (-0.7) 76.9 (-19.3) 83.1 (-13.1) 94.1 (-2.1) 96.2

3DL-RR(%) 79.9 (-1.7) 63.4 (-18.2) 68.9 (-12.7) 79.8 (-1.8) 81.6

Table 5. Ablation studies on the proposed IRLS scheme.

Figure 7. Curves of rotation error w.r.t. iteration number with abla-
tion on specific components of our IRLS scheme on the 3DMatch
(left) and the ScanNet (right). “\” means “without”.

is better. 2) History reweighting (HR). In our reweighting
function, the recomputed weight is determined by rotation
residuals of all previous iterations. Alternatively, we may
just compute the weight from the rotation residual of cur-
rent iteration. History reweighting stabilizes the iterative
refinement and makes IRLS more robust to outliers. 3) De-
signing g(m) to be increasing with m (INC). In our design,
we set g(m) to be increasing with m so that the residuals
at early iterations will have smaller impacts on results. Al-
ternatively, we may set g(m) = 1/M so that all residuals
contribute equally to the weights. However, rotations esti-
mated in the early stage are not very stable so that reducing
their impacts will improve the results.

5. Conclusion
In this paper, we propose a novel multiview point cloud

registration method. The key of the proposed method is
a learning-based sparse pose graph construction which can
estimate a overlap ratio between two scans, enabling us to
select high-overlap scan pairs to construct a sparse but re-
liable graph. Then, we propose a novel history reweight-
ing function in IRLS scheme, which improves robustness to
outliers and has better convergence to correct poses. The
proposed method demonstrates the state-of-the-arts perfor-
mances on both indoor and outdoor datasets with much
fewer pairwise registrations.
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7. Appendix
In this supplementary material, we provide the detailed

solution of pose synchronization in Sec. A.1, the implemen-
tation details in Sec. A.2, additional analysis in Sec. A.3,
the running time analysis in Sec. A.4, and more qualitative
results in Sec. A.6.

A.1. Pose synchronization

In this section, we provide the detailed solution of pose
synchronization in Sec. 3.3.2 of the main paper. Given the
edge weights and input relative poses {wij , Tij |(i, j) ∈ E},
we solve the transformation synchronization by dividing it
into rotation synchronization [4, 30] and translation syn-
chronization [29]. In the following, our pairwise trans-
formation Tij = (Rij , tij) on edge (i, j) ∈ E aligns the
source scan Pj to the target scan Pi. The scan poses are
assumed to be camera-to-world matrices. Thus scans under
the correctly recovered poses {(Ri, ti)} should reconstruct
the whole scenario.

Rotation synchronization. Following [4, 21, 41], we
treat the synchronization of rotations {Ri} as an over-
constrained optimization problem:

argmin
R1,...RN∈SO(3)

∑
(i,j)∈E

wij∥Rij −RT
i Rj∥2F , (A.1)

where ∥·∥F means the Frobenius norm of the matrix. Under
the spectral relaxation, a closed-from solution of Eq. A.1
can be computed as follows [4, 21]. Consider a symmetric
matrix L ∈ R3N∗3N containing N2 3× 3 blocks:

L =



∑
(1,j)∈E

w1jI3 −w12R12 · · · −w1NR1N

−w21R21

∑
(2,j)∈E

w2jI3 · · · −w2NR2N

...
...

. . .
...

−wN1RN1 −wN2RN2 · · ·
∑

(N,j)∈E
wNjI3


,

(A.2)
where I3 ∈ R3∗3 denotes the identity matrix. For each edge
(i, j) ∈ E , we fill −wijRij and −wijR

T
ij to the (i, j) and

(j, i) block. For unconnected edges, we set the correspond-
ing blocks to zeros.

We first calculate three eigenvectors τ1, τ2, τ3 ∈ R3N

corresponding to the three smallest eigenvalues λ1 < λ2 <
λ3 of L and stack them to form γ = [τ1, τ2, τ3] ∈ R3N∗3.
Then, vi = γ[3i − 3 : 3i] ∈ R3∗3 is an approxima-
tion of the absolute rotation Ri for point cloud Pi but may
not satisfy the constraint vivTi = I3. Therefore, we rec-
tify this by applying singular value decomposition on vi by
vi = Ui

∑
i V

T
i and deriving Ri = ViU

T
i [4]. Then, we

further check det(Ri) and exchange the first two rows of
Ri if det(Ri) = −1.

Translation synchronization. Translation synchroniza-
tion retrieves the translation vectors {ti} that minimize the

Figure A.1. Network architecture for global feature extraction.
“G-Conv” means group convolution defined on Icosahedral group
same as [49]. “VLAD core” is the same as [3]. For FCGF [15],
“3DConv” and “3DConvTr” denotes a sparse convolution layer
and the transpose convolution layer for upsampling, respectively.

problem:

argmin
t1,...,tN∈R3

∑
(i,j)∈E

wij∥Ritij − tj + ti∥2. (A.3)

We solve it by the standard least square method [29].
Assuming E edges are connected in G, we thus construct

three matrices A, B, and H as follows. A ∈ R3E∗3E is
initialized as an identity matrix. B ∈ R3E∗3N contains E ∗
N 3 × 3 blocks and is initialized as a zero matrix. H ∈
R3E∗1 is a vector containing E 3 × 1 blocks. For the e-th
edge (i, j) ∈ E , we multiply A[3e − 3 : 3e] with wij , fill
I3 and -I3 to the (e, j) and (e, i) block of B respectively,
and fill Ritij to the e-th block of H . We thus solve t =
(BTAB)−1BTAH and obtain the translation vector ti of
each scan Pi as t[3i− 3 : 3i].

A.2. Implementation details

A.2.1 Architecture

The architecture of our global feature extraction network is
shown in Fig. A.1. We adopt YOHO with the same archi-
tecture as [49] for 32-dim local feature extraction. More
local feature extraction details can be found in [49]. The
extracted local features are aggregated to a global feature
by a NetVLAD layer [3]. We set the number of clusters in
NetVLAD to 64 and the dimension of the global feature is
thus 2048. Please refer to [3] for more global feature aggre-
gation details.
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Overlap Estimation 3D-RR(%) 3DLo-RR(%)
Predator [28] 95.2 78.4
Ours 96.2 81.6

Table A.1. Registration recall on 3D(Lo)Match using estimated
overlap scores from Predator [28] and ours.

A.2.2 Training details

We use the pretrained YOHO [49] for local feature extrac-
tion and train the NetV LAD layer using the 46 scenes in
the training split of 3DMatch [59]. We adopt the follow-
ing data augmentations. For each scene in the train set of
3DMatch, we first randomly sample α ∈ [8, 60] scans as
the graph node. Then, on each scan, we randomly sample
β ∈ [1024, 5000] keypoints to extract YOHO features. The
local features of α scans are fed to NetVLAD to extract α
scan global features. Then, we compute the

(
α
2

)
overlap

scores by exhaustively correlating every two global features
and compute the L1 distance between the ground-truth over-
lap ratios and the predicted overlap scores as the loss for
training. We set the batch size to 1 and use the Adam op-
timizer with a learning rate of 1e-3. The learning rate is
exponentially decayed by a factor of 0.7 every 50 epoch. In
total, we train the NetV LAD for 300 epochs.

A.3. More analysis

A.3.1 Use Predator [28] for overlap estimation

In Table. A.1, we use the overlap scores predicted by Preda-
tor [28] in the sparse graph construction, which yields
slightly worse results. Moreover, Predator [28] applies
cross-attention layers between local features of a scan pair
to estimate overlap while we only need to compute a global
feature for every scan and efficiently correlate the global
features to estimate overlap. In our test, the proposed
method is 10× more efficient than Predator.

A.3.2 Concurrent multiview registration works

After our submission to CVPR 2023, two concurrent
mulitview registration works are available online, namely,
SynMatch [19] and HL-MRF [53]. SyncMatch and HL-
MRF are specifically designed for registering raw RGB-
D sequences and TLS point clouds, respectively, while the
proposed method offering a more general approach. In our
test, the proposed method notably outperforms SynMatch
by 27% on the 3DMatch dataset. HL-MRF indeed performs
well on the TLS-based ETH dataset but fails on the indoor
datasets.

Figure A.2. Estimated overlap ratio versus the ground truth over-
lap ratio on scan pairs of the Kitchen scene of 3DMatch. “All
pairs” means all

(
N
2

)
scan pairs. “Selected pairs” means the scan

pairs selected to construct the sparse pose graph. “Final pairs”
means the scan pairs with an edge weight greater than 10−2 after
transformation synchronization.

Top- 4 6 8 10 12 15 Full
# Pair 1167 1707 2250 2798 3349 4129 11905
Sync-time (s) 20.2 30.4 37.4 54.8 66.6 90.3 405.4
3D-RR (%) 91.3 91.6 95.5 96.2 96.6 96.0 93.2
3DL-RR (%) 71.0 74.7 80.9 81.6 81.2 80.3 76.8

Table A.2. Ablation study on k in sparse graph construction.
“Full” means using fully-connected graphs. “Sync-time” means
the time for transformation synchronization.

A.3.3 Estimated overlap versus ground truth overlap

In Fig. A.2, each point (ogt, oest) represents a scan pair with
the ground truth overlap ratio ogt and estimated overlap ra-
tio oest. The plot reveals several observations: (1) scan pairs
with larger ground truth overlaps indeed have larger over-
lap scores; (2) the constructed sparse graph mainly contains
scan pairs with higher overlap ratios, as evidenced by the
green and red points; (3) the proposed transformation syn-
chronization algorithm further eliminates unreliable scan
pairs effectively to achieve accurate scan poses, as shown
by the red points.

A.3.4 Use different top-k in sparse graph construction

In Table. A.2, we show the results with different k in the
sparse graph construction. Retaining too many scan pairs
with larger k may include more outliers while using too
small k could split the whole graph into several discon-
nected subgraphs. Results show that using k = 10 or 12
brings the best results.
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Figure A.3. Results of the proposed history reweighting IRLS with
different iterations.

Method Graph Cons (s) Trans Sync (s) Total (s)
RotAvg [11] + Full 86.3 49.4 135.7
LITS [55] + Full 86.3 0.7 87.0
HARA [37] + Full 87.3 8.5 95.8
RotAvg [11] + Pruned [21] 164.1 22.6 186.7
LITS [55] + Pruned [21] 164.1 0.7 164.8
HARA [37] + Pruned [21] 164.8 7.5 172.4
Ours 20.0 6.9 26.8

Table A.3. Detailed time consumption for registering a scene on
3DMatch. “Graph Cons” means the time for constructing the input
pose graph. “Trans Sync” means the time for IRLS-based trans-
formation synchronization.

A.3.5 Performances using different IRLS iterations

In Fig. A.3, we show the registration performance on
3D(Lo)Match with different iteration numbers. It can be
seen that the results will be better with more iterations.
However, using more iterations also costs more time. We
thus select 50 iterations for its stable performance and effi-
ciency by default.

A.4. Runtime analysis

In Table. A.3, we provide the runtime for the graph
construction and the IRLS-based transformation synchro-
nization averaged on the 8 scenes of the 3DMatch dataset.
We evaluate the runtimes on a computer with Intel(R)
Core(TM) i7-10700 CPU@ 2.90GHz with GeForce GTX
2080Ti and 64 GB RAM. Our sparse pose graph con-
struction is nearly 67s faster than baselines for conducting
much fewer pairwise registrations. In total, our method is
61s ∼ 160s faster than baselines for registering a scene in
3DMatch.

A.5. Limitations

When the overlap ratios of two scans are too small and
there are no other scans which forms a cycle with these two
scans, our method may fail in this case. A typical example
is shown in Fig. A.4, where overlap region in the red rectan-
gle is very small and mainly consists of feature-less planar
points. In this case, our method fails to register the whole

Figure A.4. A failure case in ScanNet. (a) The ground truth mul-
tiview registration (30 scans). (b) The multiview registration from
the proposed method.

scene but separately recover poses on two subgraphs. This
also shows that our method may have the potential to auto-
matically separate scans from two different scenes, which is
beyond the discussion of this paper.

A.6. More qualitative results

We provide additional qualitative results including suc-
cess cases (Fig. A.5 and Fig. A.6) and failure cases
(Fig. A.7). We also compare our results with the registration
results of RotAvg [11], HARA [37], and LITS [55]. The
failure of our method occurs when some overlap regions
mainly contain the repetitive structures (top of Fig. A.7) or
feature-less regions (bottom of Fig. A.7).
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Figure A.5. Registration results of our method, RotAvg [11], HARA [37], and LITS [55] on the 3DMatch dataset and the ETH dataset.
Top: the Home1 scene of 3DMatch. Bottom: the Wood Summer scene of ETH.
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Figure A.6. Registration results of our method, RotAvg [11], HARA [37], and LITS [55] on scenes of ScanNet dataset including
Scene0309 00 (top), Scene0286 02 (middle), and Scene0265 02 (bottom).
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Figure A.7. Registration results of our method, RotAvg [11], HARA [37], and LITS [55] on 3DMatch (top: Studyroom) and ScanNet
(bottom: Scene0334 02). Our method fails to register the scans in the red boxes due to repetitive structures and feature-less regions.
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