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Abstract

Learning inter-image similarity is crucial for 3D medi-
cal images self-supervised pre-training, due to their sharing
of numerous same semantic regions. However, the lack of
the semantic prior in metrics and the semantic-independent
variation in 3D medical images make it challenging to get
a reliable measurement for the inter-image similarity, hin-
dering the learning of consistent representation for same
semantics. We investigate the challenging problem of this
task, i.e., learning a consistent representation between im-
ages for a clustering effect of same semantic features. We
propose a novel visual similarity learning paradigm, Geo-
metric Visual Similarity Learning, which embeds the prior
of topological invariance into the measurement of the inter-
image similarity for consistent representation of semantic
regions. To drive this paradigm, we further construct a
novel geometric matching head, the Z-matching head, to
collaboratively learn the global and local similarity of se-
mantic regions, guiding the efficient representation learn-
ing for different scale-level inter-image semantic features.
Our experiments demonstrate that the pre-training with
our learning of inter-image similarity yields more power-
ful inner-scene, inter-scene, and global-local transferring
ability on four challenging 3D medical image tasks. Our
codes and pre-trained models will be publicly available1.

1. Introduction
Learning inter-image similarity [32, 39, 52, 55] is crucial

for 3D medical image (e.g., CT, MR) self-supervised pre-
training (SSP) [25]. As shown in Fig.1, different from nat-
ural images which are widely researched in SSP, 3D med-
ical images share numerous same semantic regions due to
the consistency of human anatomies [34] and the complete
spatial information in 3D vision [41], bringing a strong
prior for effective SSP. Therefore, it targets on constrain-
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Figure 1. Learning inter-image similarity is crucial for 3D medical
image SSP. a) Natural images have large semantic difference be-
tween images whose inter-image similarity is weak. b) 3D medical
images share numerous same semantic regions between images
due to the consistent human anatomies and the complete spatial
information in 3D vision, having large inter-image similarity.

ing the pre-training network for a consistent representation
of these same semantic regions between images without an-
notations. Once successful, it will bring great clustering
effect for same semantic features, powerful representability
of pre-trained network, and effective transferring for poten-
tial downstream tasks.

Although the existing SSP works have achieved promis-
ing results in their tasks, they are limited in the learning of
inter-image similarity in 3D medical images. 1) Clustering-
based SSP methods [3, 30] measure the features’ similarity
between images for their clustering pattern in an embedding
space, and learn to aggregate same cluster’s features. How-
ever, they simply employ the Mahalanobis or Euclidean dis-
tance as the measurement function which is extremely inter-
fered by images’ semantics-independent variations (Fig.2).
2) Contrastive learning works [4, 5] directly learn to sep-
arate their features for inter-image dissimilarity. This vi-
olates the learning inter-image similarity which is crucial
in 3D images and will make the network represent distinct
features for same semantic regions. Although some other
contrastive learning works [5,10,48] have removed the sep-
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Figure 2. It is challenging to measure a reliable inter-image simi-
larity. a) There is a large similarity between the Myo and the RA
regions between images A and B. b) Due to the variation of the
scanning protocol, RA regions are different in images B and C.

aration learning, they are still unable to learn the consis-
tency of inter-image same semantics. 3) Generation-based
methods [29,31,46,56] construct pretext labels via designed
transformation methods (e.g., rotation [29]) and train net-
works to predict these labels. These methods implicitly im-
pose a bias into SSP via manually designing the transfor-
mation methods. However, the bias extremely relies on the
manual design which makes pre-training networks focus on
the biased features of pretext labels and become sensitive to
the change of scenario [31].

Thinking the limitations in above existing works, the
large-scale mis-measurement for inter-image similarity is
the key challenge in 3D medical SSP, interfering the dis-
covery of semantics’ correspondence and hindering the
learning of consistent representation for same semantic re-
gions. Semantic-independent variations (Fig.2) make the
3D medical images have different appearance. Different
semantic regions have similar appearances and same se-
mantic regions have different appearances between images.
The direct measurement in the embedding space, like the
clustering-based SSP methods [3, 30], is sensitive due to
lack of semantic prior in their metrics. Therefore, in the
non-supervision situation, once the features changed caused
by the variations, these metrics will make mis-measurement
of similarities for large-scale semantics, bringing their mis-
correspondence. It will train network to aggregate the fea-
tures with different semantic but similar appearance, caus-
ing mis-representation.

Topological invariance [22,33] of the visual semantics in
3D medical images provides a motivation to construct a re-
liable measurement for inter-image similarity (Fig.3). Due
to the consistency of human anatomies [34], 3D medical
images have consistent context topology between the visual
semantics in image space (e.g., the four chambers of human
hearts have a fixed space relationship), and the same seman-
tic regions have similar shapes in different images (e.g., the
vessels (AO) have a stable tubular structure), constructing
an invariant topology for the visual semantics. Therefore,
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Figure 3. The topological invariance of the visual semantics be-
tween the 3D medical images provides a motivation to discover
their inter-image correspondence.

according to the semantic prior of topological invariance,
the semantic regions are able to be transformed to align in
the image space via a topology-invariant mapping [14], thus
discovering their reliable inter-image correspondence even
with large variations in appearance. An intuitive strategy is
to use the registration or geometric matching (GM) meth-
ods [15, 17, 19, 20, 38] to discover correspondence indexes
between images, and use these indexes to constrain the con-
sistent representation for corresponding regions. However,
the errors in these indexes will bring mis-correspondence.

In this paper, we propose a novel SSP paradigm, Ge-
ometric Visual Similarity Learning (GVSL), to learn the
inter-image similarity in 3D medical images. It embeds the
prior of topological invariance into the measurement of the
similarities, and train network to estimate semantics’ cor-
respondence from the represented features in GM. Due to
this effective semantic prior, the measurement will consider
the semantic-related topology similarity avoiding the large
interference of semantic-independent variation. Therefore,
when learning to enlarge this similarity between two images
for more accurate estimation of correspondence, the gradi-
ent in backpropagation will constrain the network to clus-
ter the corresponding features in embedding space for more
consistent representation. To drive the GM learning, we fur-
ther propose a Z-Matching head to explore the global and
local collaborative representation learning of inter-image
similarity in our GVSL paradigm. It constructs a collab-
orative learning head with affine (global matching) and de-
formable (local matching) transformations [17], thus em-
bedding the pre-trained model with a powerful transferring
ability for potential downstream tasks.

Our contributions are summarized as follows: 1) Our
work advances the learning of inter-image similarity in 3D
medical image SSP, and pre-trains the network to learn a
consistent representation for same visual semantics between
images without annotation, pushing the representability of
pre-trained models. 2) We propose the Geometric Visual
Similarity Learning (GVSL) that embeds the prior of topo-



logical invariance into the metric for a reliable measure-
ment of inter-image similarity, learning a consistent repre-
sentation for same semantic regions between images. 3) We
present a novel GM head, Z-Matching head, for simultane-
ously powerful global and local representation. It collabora-
tively learns the affine and deformable matching, realizing
an effective optimization for the representation of different
semantic granularity in our GVSL, and finally achieving a
powerful transferring ability.

2. Related work

Learning similarity in self-supervised pre-training:
Learning similarity [32, 51, 54] targets on learning con-
sistent representation for similar visual objects and distin-
guished representation for dissimilarity objects, which is
a fundamental task in visual SSP [25]. As illustrated in
Sec.1, it has three main paradigms. Contrastive learning
[4, 5, 18, 45, 52, 53] which constrains the representation of
same image to be consistent and different images to be sep-
arated. However, they are unable to learn the inter-images
similarity, and the learning of separation will extremely
interfere the representation of the 3D medical images.
Clustering-based methods [3, 30] are able to learn inter-
image similarity, but their large-scale mis-measurement for
similarities interferes the learning for consistent representa-
tion. Generation-based methods [11, 12, 29, 31, 46, 56] gen-
erate pretext labels manually and constrain networks to pre-
dict these labels. However, it implicitly embeds bias from
manual design into the learning which will make network
ignore some potential aspects and limit in the representa-
tion in some specific scenario.

Geometric matching & Registration: Geometric
matching (GM, or named registration) [15,17,20,21,38,42]
aligns images’ semantic regions to a same spatial coor-
dinate system, thus providing correspondence indexes be-
tween two images. It has two level transformations: 1)
Affine matching [17, 49] aligns images in global. It cal-
culates a transformation matrix that consists of the rotation,
scaling, translation, and shearing operations between im-
ages and transforms the images to align in a global view. 2)
Deformable matching [17,19,20,42] aligns images in local.
It calculates a voxel-wise displacement vector field (DVF)
which indicates the correspondence of the voxels between
two images, and aligns the images via a spatial transforma-
tion operation [24]. Recently, due to the development of
deep learning (DL), the DL-based GM [17, 20, 38] learns
the representation driven by learning correspondence pre-
diction, which provides us a potential solution.

3. Methodology

Our framework (Fig.4) learns from scratch on unlabeled
3D medical images, yielding a common visual representa-

tion with inter-image similarity.

3.1. GVSL for inter-image similarity

The proposed GVSL (Fig.4 a)) models the learning of
inter-image similarity as the estimation of inter-image cor-
respondence from represented features which embeds the
prior of topological invariance into the measurement, thus
utilizing the gradient in backpropagation to train the net-
work to represent consistent features on same semantics.

3.1.1 Description of GVSL GVSL’s goal is to learn a
representation that has a powerful clustering effect of the
same semantic features even in different images. As shown
in Fig.4, it uses two shared-weight neural networksNθ with
weights θ to represent the features fA, fB from two images
xA, xB . These features are put into a GM head Gξ (our Z-
matching head in our framework, Sec.3.33.1), to learn the
correspondence of the semantic regions between images,
thus driving the consistent representation in Nθ for these
same semantics.

Given a set of 3D medical images D, two images
xA, xB ∼ D are sampled uniformly from D (A and B re-
fer to different images), and one transformation operation
t ∼ T is sampled from a transformation set T . GVSL pro-
duce a transformed view xtA , t(xA) from xA by apply-
ing the transformation t to improve the diversity of the im-
ages. The network outputs global and local representations
{fgA, f lA} , Nθ(xtA), {fgB , f lB} , Nθ(xB) of xtA and xB .
The head for GM Gξ further outputs a displacement vector
field (DVF) ψAB , Gξ(f lA, f lB , f

g
A, f

g
B) which indicates the

correspondence of the voxels between two images. The spa-
tial coordinate system of the image xA is transformed to the
image xB for a geometric matched image xAB , ψAB(xA)
via spatial transformation [24]. We utilize the in-painting,
local-shuffling, and non-linear as the transformation set T .

We calculate a normalized cross-correlation (NCC) to
evaluate the alignment degree between two images which
indirectly evaluates the accuracy of the predicted correspon-
dence. We train the framework to minimize this lossLNCC ,
thus driving the learning of correspondence,

LNCCθ,ξ , (1)∑
p∈Ω

(
∑
pi

(xB(pi)− x̂B(p))(xAB(pi)− ˆxAB(p)))2

(
∑
pi

(xB(pi)− x̂B(p))2)(
∑
pi

(xAB(pi)− ˆxAB(p))2)
,

where the p is the position of the voxels in the image space
Ω, and the i is the index of p. The x̂B(p) is the local mean
intensity images: x̂B(p) = 1

n3

∑
pi
xB(pi) (the same as

ˆxAB(p)). To keep the topology invariant in GM, we further
calculate a smooth loss Lsmooth on the DVF, constraining
the network to perceive the correspondence of semantic re-
gions under the condition of their topology,

Lsmoothθ,ξ ,
∑
p∈Ω

‖ 5 ψAB(p)‖2. (2)
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Figure 4. The framework of our GVSL: a) Our GVSL learns the GM from the representation of the semantics in images, thus driving the
learning of inter-image similarity via the gradient in backpropagation. b) Our Z-Matching head learns affine and deformable matchings
simultaneously for powerful global and local representations. c) For efficient learning, it also takes a fundamental pretext task, the self-
restoration, for a basic representation of semantics, thus giving a warm-up for GM learning.
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Figure 5. Intuitions on GVSL’s behavior: The prior of topological
invariance in GM embeds a topology manifold into the metric, thus
bringing an efficient measurement for inter-image similarity and
guiding the clustering effect of same semantic features.

At each training step, we perform a stochastic op-
timization step to minimize LGV SLθ,ξ = LNCCθ,ξ +

Lsmoothθ,ξ with the weights of θ and ξ. Therefore, the
framework’s dynamics are summarized as {θ, ξ} ←
optimizer({θ, ξ},∇θ,ξLGV SLθ,ξ , η), where the optimizer is
an optimizer in training and η is a learning rate.

3.1.2 Intuitions on GVSL’s behavior The GM head to-
gether with the loss for similarity (LNCC) and the loss for
topology-preservation (Lsmooth) in our GVSL is an im-
plicit metric [2] with the prior of topological invariance. As
shown in Fig.5 a), metrics determine the similarity between
images. The GM limits the measurement of inter-image vi-
sual similarity under the condition of the invariant topology
in the image space, avoiding mis-measurement caused by
the appearance (Fig.2).

min
θ,ξ
L(Gξ(Nθ(xA),Nθ(xB)); {xA, xB}) (3)

It implicitly embeds a topology manifold inner the images
{xA, xB} into the measurement process, and measure the
similarity (LNCC) on this topology manifold (Fig.5 b),
Equ.3). The xRAA , xRAB and xMyo

A are the potential RA re-
gions on images xA, xB and the potential Myo region on

image xA. In embedding space, due to the similarity in ap-
pearance, the distance between the features of RA in image
BNθ(xRAB ) and the features of Myo in image ANθ(xMyo

A )
is closer than that between the features of RA regions in
image A Nθ(xRAA ) and B Nθ(xRAB ). This will bring mis-
correspondence via some direct metrics, e.g., Euclidean dis-
tance. The GM Gξ in our GVSL maps these represented fea-
tures (Nθ(xRAA ),Nθ(xRAB ),Nθ(xMyo

A )) in the embedding
space to the topology manifold inner the images {xA, xB}
in image space. Therefore, due to the prior of the topolog-
ical invariance, the distance between the RA regions will
be closer than that between the xRAB and xMyo

A and bring
efficient learning of inter-image similarity via the gradient,
thus learning efficient clustering effect.

Throughout the whole training process, the learning of
representation for inter-image similarity in the network Nθ
and the correspondence in the GM head Gξ is a two-player
game [40]. The GM head Gξ learns to estimate the cor-
respondence of semantic regions from the represented fea-
tures fA, fB and measure their voxel displacement in image
space. The network Nθ learns to provide features of visual
semantic regions to the GM head Gξ for their correspon-
dence. To achieve more accurate correspondence, the GM
head has to drive the pre-training network to output more
consistent and representative features in turn for same se-
mantic regions via the gradient in backpropagation. There-
fore, under this interaction, the network Nθ will provide
more representative features for the GM head for better cor-
respondence estimation, and the GM head Gξ will have a
more powerful ability to learn the inter-image similarity.

3.2. Z-Matching for Global-Local Representations

The proposed Z-Matching Gξ (Fig.4 b)) is a novel
GM head that collaboratively learns affine and deformable
matching for simultaneous global and local representation.
It has two sub-head including the affine head Ggξ for global
similarity and the deformable head Glξ for local similarity.



3.2.1 Affine head for global visual similarity It con-
catenates the global features (fgA, f

g
B) of two images from

the encoder part of the network Nθ, and puts these fea-
tures into the affine head Ggξ to predict the affine val-
ues. 15 values (3 for rotation (θx, θy, θz), 3 for transla-
tion (tx, ty, tz), 3 for scaling (sx, sy, sz), and 6 for shear-
ing (shxy, shxz, shyx, shyz, shzx, shzy)) are estimated to
calculate the affine matrix ψgAB , Ggξ (fgA, f

g
B) which in-

dicates the global transformation target in the spatial coor-
dinate system of xA to align the xB in global. Therefore, to
percept the global correspondence, the optimizer will con-
strain the encoder to extract consistent and representative
features for same global semantic regions.

3.2.2 Deformable head for local visual similarity It
takes the affine matrix ψgAB to transform the global spatial
coordinate system of the local features (from the decoder of
the networkNθ) f lA to the f lB for a global matching, thus the
local features are globally aligned. It further concatenates
the local features and puts them into the deformable head
Glξ to predict a deformable map ψlAB , Glξ(ψ

g
AB(f lA), f lB)

that will deform the voxels in the image A to align their
corresponding voxels in image B. Therefore, to achieve
this voxel-wise alignment, the optimizer will constrain the
whole network to extract consistent and representative fea-
tures for same local visual semantic regions. Finally, the
affine matrix ψgAB and the deformable map ψlAB are fused
(�) for the DVF ψAB , ψlAB � ψ

g
AB . (Details of � are in

Supplementary Material.)
Therefore, the correspondence of the visual semantic re-

gions between two images is predicted in ψAB , and the
learning of correspondence will constrain the network Nθ
to extract more consistent and representative features for
same visual semantics, thus driving the head Gξ to have
more powerful ability to discover their correspondence.

3.3. Fundamental pretext task for warm-up

The initial basic representation for visual semantics is
important in our GVSL, so that we utilize self-restoration
[56] as the fundamental pretext task (fundament) in our
framework. During the learning of GM, the learning of cor-
respondence Gξ relies on the represented features of two
images from the network Nθ. The initial network Nθ with
weak representability will limit the discovery of the corre-
spondence between potential visual semantics, making it
challenging to find a reliable optimization target to align
same semantic regions, hindering the inter-image similarity
learning. Therefore we construct a self-restoration [56] task
in the framework for a warm-up of the GVSL.

As shown in Fig.4 c), it randomly transforms the ap-
pearance of an image (xA) via a sampled transforma-
tion operation (t′ ∼ T ) for a transformed image (xt

′

A ,
t′(xA)) and put it into the network Nθ to represent its lo-
cal feature f l

′

A from the decoder. (To save computing re-

sources, we share this operation with GVSL in our ex-
periment, i.e., Nθ(xt

′

A) = Nθ(xtA).) Then, the feature
f l

′

A is put into a restoration head Rι for a restored image
(x′A), and calculates mean sequence error losses LMSE

θ,ι =

‖Rι(Nθ(t′(xA))) − xA‖2 [56] with the original image xA
to learn the restoration of the visual semantics from a trans-
formed context. Therefore, the network will learn a basic
representation of semantics for warm-up in dynamics, i.e.,
{θ, ι} ← optimizer({θ, ι},∇θ,ιLMSE

θ,ι , η), avoiding the
weak optimization in GVSL.

4. Experiments and Results
4.1. Experiment protocol

1) Materials: Five datasets are used in our experiments.
a) Pre-training dataset: Cardiac CT images from 302 pa-
tients are used as the self-supervised pre-training dataset
without annotations. These images were acquired on a SO-
MATOM Definition Flash and the contrast media was in-
jected during the CT image acquisition. The x/y-resolution
of these CT images is between 0.25 to 0.57 mm/voxel and
the slice thickness is between 0.75 to 3 mm/voxel. The
x/y-size of the images is 512 voxels and the z-size is be-
tween 128 to 994 voxels. b) Downstream datasets: Four
public available datasets (MM-WHS-CT [57], ASOCA [8],
CANDI [27], STOIC [37]) are used to demonstrate the su-
periorities of our framework. According to their data kinds,
we use them for inner-scene and inter-scene evaluations.
For inner-scene evaluation, it utilizes the Segmentation of
seven Heart structures on cardiac CT images (SHC) [57],
Segmentation of coronary Artery on cardiac CT images
(SAC) [8], and diagnosis (Classification) of COVID-19 on
chest CT images (CCC) [37] to evaluate the adaptability for
same scenes (Cardiac or chest CT) as the source dataset.
For inter-scene evaluation, it utilizes the Segmentation of
28 Brain tissues on MR images (SBM) [27] to evaluate the
adaptability for different scenes (Brain MR) as the source
dataset. More details are in our Supplementary Material.

2) Comparisons: We take eight works to benchmark
our framework, including the generation-based methods
[29,36,46,56] and contrast-based methods [3–5,10]. There-
fore, the superiority of our GVSL will be demonstrated. We
take 3D U-Net [6] as the backbone network for all methods
(the global prediction methods use the encoder part of the
backbone) for a fair comparison and use both fine-tuning
and linear evaluations for a comprehensive demonstration.

3) Evaluation metrics: We use the mean Dice coef-
ficient (DSC) to evaluate the segmentation tasks, and the
Area Under the Curve (AUC) to evaluate the classification
task following [43].

4) Implementation: All tasks are implemented by Py-
Torch [35] on NVIDIA GeForce RTX 3090 GPUs with 24
GB memory, optimized by Adam [28] whose learning rate



Table 1. The linear (a) and fine-tuning (b) evaluations demonstrate our powerful representation and great transferring ability. The cells with
a pink background are the top value in the columns. The red or blue values are the improvement or reduction compared with the “Scratch”.

Pre-training a) Linear: powerful representation b) Fine-tuning: great transferring
SHCDSC% SACDSC% CCCAUC% SBMDSC% SHCDSC% SACDSC% CCCAUC% SBMDSC%

Inner scene Inter scene Inner scene Inter scene
Scratch 21.9 10.0 52.7 56.4 87.8 80.4 74.4 89.7
Denosing [46] 31.4(+9.5) 9.3(−0.7) 57.9(+5.2) 28.3(−28.1) 90.3(+2.5) 80.5 (+0.1) 75.6(+1.2) 89.7
In-painting [36] 32.3(+10.4) 5.9(−4.1) 57.1(+4.4) 25.0(−31.4) 90.4(+2.6) 80.3 (−0.1) 79.9(+5.5) 89.9(+0.2)

Models Genesis [56] 47.4(+25.5) 22.5(+12.5) 60.4(+7.7) 44.9(−11.5) 90.3(+2.5) 79.9 (−0.5) 80.7(+6.3) 89.4(−0.3)

Rotation [29] 56.1(+34.2) 21.9(+11.9) 62.1(+9.4) 54.1(−2.3) 90.6(+2.8) 81.1(+0.7) 77.1(+2.7) 89.6(−0.1)

DeepCluster [3] 55.9(+34.0) 4.4(−5.6) 57.9(+5.2) 67.5(+11.1) 85.4(−2.4) 80.5(+0.1) 59.9(−14.5) 89.1(−0.6)

SimSiam [5] 56.5(+34.6) 9.7(−0.3) 61.0(+8.3) 66.2(+9.8) 87.5(−0.3) 80.1 (−0.3) 73.6(−0.8) 89.8(+0.1)

BYOL [10] 46.9(+25.0) 8.6(−1.4) 53.7(+1.0) 52.7(−3.7) 88.6(+0.8) 80.7 (+0.3) 76.5(+2.1) 89.5(−0.2)

SimCLR [4] 48.7(+26.8) 15.5(+5.5) 61.3(+8.6) 58.7(+2.3) 86.9 (−0.9) 79.9(−0.5) 74.3(−0.1) 89.3(−0.4)

w/o Z-Matching 49.1(+27.2) 21.1(+11.1) 55.8(+3.4) 45.1(−11.3) 88.3(+0.5) 81.2(+0.8) 81.3(+6.9) 89.7
w/o Fundament 45.3(+23.4) 0.0(−10.0) 58.8(+6.4) 48.5(−7.9) 87.0(−0.8) 79.5 (−0.9) 76.6(+2.2) 89.0(−0.7)

w/o Affine head 57.7(+35.8) 17.9(+7.9) 57.6(+4.9) 53.4(−3.0) 89.4(+1.6) 82.3(+1.9) 79.8(+5.4) 89.8(+0.1)

Our GVSL (Whole) 68.4(+46.5) 28.7(+18.7) 60.8(+8.1) 79.9(+23.5) 91.2(+3.4) 81.3(+0.9) 82.2(+7.8) 90.0(+0.3)

is 10−4. The pretext task is trained with 2× 105 iterations.
The downstream tasks are trained with 4 × 104 iterations
and validated every 200 iterations to save the best models
on their validation sets. For a fair comparison, all methods
in our experiment take the same basic training setting.

4.2. Comparison study shows our superiority

As demonstrated in Tab.1, our linear (a) and fine-tuning
(b) evaluations demonstrate our power representation abil-
ity and great transferring ability.

4.2.1 Powerful inner-scene transferring for both large
and small structures Our powerful inner-scene transfer-
ring ability shows the great application potential of our
GVSL in big-data but low-label scenarios of medical im-
ages. It achieves the highest performance both in large
and small structures in the same scene of the pre-training
dataset. 1) Large structures: In the SHC task which seg-
ments large cardiac structures, our GVSL achieves the
highest DSC (68.4%) in linear evaluation which is 11.9%
higher than the second-highest method [5]. This is be-
cause our learning of inter-image similarity promotes the
representation of consistent features. Especially for the
large anatomies which have clear visual semantics, our GM
brings a much more efficient representation. 2) Small struc-
tures: In the SAC task which segments the small coro-
nary arteries, numerous pre-training methods [4, 5, 10, 36]
mislead the model to ignore such small features, result-
ing in even lower performance than the “Scratch”, espe-
cial for those methods [4, 5, 10] designed for global pre-
diction. Our learning of the deformable transformation and
the self-restoration teaches the pre-trained network consis-
tent and effective representation for small visual semantics,
achieving the highest DSC in linear (28.7%) evaluation. It
is also interesting that when removing the affine head in our

Z-matching head, our GVSL achieves the best fine-tuning
performance (82.3%). This further demonstrates the impor-
tance of learning dense representation for small objects.

4.2.2 Effective inter-scene transferring Our effective
inter-scene transferring ability demonstrates our superior-
ity as the initiation for deep networks. The SBM task uses
brain MR images which have different modality and con-
text (body range) with the pre-training dataset, making a
challenging inter-scene transferring. In linear evaluation, a
lot of compared methods [10,10,29,56] are unable to bring
promotion in this task and achieves even worse performance
than “Scratch” due to the large difference between the
source (brain MR) and target (cardiac CT) tasks. Our frame-
work which is pre-trained on cardiac CT images is able to
efficiently adapt to the segmentation task on brain MR im-
ages. Therefore, it achieves the highest 79.9% DSC (23.5%
improvement). This is because the inter-image similarity
brings the pre-trained network a better clustering effect for
same semantic features even in different images, making the
representation easier to be transferred to the target scene in-
tegrally. It is worth noting that in the fine-tuning evaluation,
all methods only have similar even worse [3, 4, 10, 29, 56]
performance as the “Scratch”. This is because the large
distribution gap between brain MR and cardiac CT im-
ages (different modalities and body ranges) makes the pre-
trained representability unable to achieve valid transferring.
Our GVSL still achieves the highest 0.3% improvement.

4.2.3 Superiority in global and dense prediction tasks
Our superiority in both global and dense prediction tasks
shows its great adaptability to potential downstream tasks.
1) Dense prediction tasks (SHC, SAC, SBM): Our GVSL
has the highest DSC for all three tasks owing to our de-
formable head and self-restoration head which learns repre-
sentative and consistent features extraction ability for de-
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Figure 6. Our GVSL has powerful representability in linear evaluation and faster convergence ability in fine-tuning evaluation. In b), the
thick part of the lines mean the useful training process, and at the end of the thick parts are the saved best models on validation set.

tails. The SimSiam, BYOL, SimCLR, and DeepCluster
only learn global representation in their pretext tasks, hav-
ing very poor performance in the A.CT.S which focuses on
detail features. 2) Global prediction tasks (CCC): The med-
ical images are similar globally and their lesions are on the
local regions. Our GVSL utilizes our Z-Matching head to
simultaneously learn the global and local visual similarity
for global-local representation, achieving the highest AUC
(82.2%) in the fine-tuning evaluation and illustrating our
superiority in the transferring of global prediction tasks.
Although our GVSL has 60.8% AUC in linear evaluation
which is 1.3% lower than the highest method (Rotation), it
is still higher than the Denoising, In-painting, and Model
Genesis which pre-train network via dense prediction tasks.

4.3. Ablation study and model analysis

4.3.1 Ablation study We compare our GVSL with the
only fundamental pretext task (self-restoration), the only
Z-Matching for GM learning, and the fundament + only
deformable matching, three observations can be found in
Tab.1. 1) When only learning the GM (Z-Matching), its ini-
tial weak representability makes the pre-trained model have
inefficient optimization and brings poor representation. Es-
pecially in the linear evaluation of the SAC task, it is un-
able to segment the extremely small structures due to the
single GM’s poor representation. 2) When adding the fun-
damental task, our GVSL has better performance than the
single two sub-pretext tasks on all four downstream tasks,
showing the importance of the basic representation from
self-restoration and the large contribution of our inter-image
similarity from our GM. 3) When removing the Affine head
in the Z-Matching head, it reduces 3.2% and 2.4% AUC in
the linear and fine-tuning evaluations of CCC task due to the
lack of global representation learning. However, it achieves
the highest DSC in the fine-tuning of the SAC task, because
the targeted learning of deformable matching will promote
the representation of thin structures in local features.

4.3.2 Our promotion for the learning efficiency As
shown in Fig.6, we analyze the learning of the models
which are initialized from scratch, by our GVSL, and by

the Model Genesis in the SAC and SBM tasks, demonstrat-
ing our powerful representability and much faster conver-
gence ability. In the linear evaluation, our GVSL improves
more than 20% DSC compared with the ’scratch’ or Model
Genesis, owing to our effective learning for details in local-
wise visual similarity. In the fine-tuning evaluation, our
GVSL also greatly improves the convergence speed which
achieves more than 30% improvement, illustrating its great
convergence ability and great potential for saving comput-
ing resources. Although in the fine-tuning of the SBM task,
the ”scratch” has faster convergence, it quickly falls into
over-fitting, and its performance is extremely limited.

4.3.3 The fundament’s necessity for our GM learning
The self-restoration learns a basic representation for visual
semantic regions, thus driving the learning of inter-image
similarity in our GM. As demonstrated in Fig.8, when only
learning our GM task, the network’s initial weak represen-
tation makes inefficient optimization of the GM task, so the
NCC loss LNCC does not converge and is unable to learn
the correspondence of semantic regions. When adding the
fundamental pretext task, driven by the basic representa-
tion of visual semantic regions from the self-restoration, the
NCC loss is successfully converging to learn the correspon-
dence of semantic regions for a better clustering effect of
same visual semantics inter images.

4.3.4 Our GVSL’s promotion for clustering effect As
shown in Fig.7, the local features f l from the pre-trained
models in the SHC task demonstrate our GVSL’s promotion
for the clustering effect. The random initialization mixes
the different semantics, so it is unable to extract represen-
tative features and distinguish the potential visual seman-
tics. When only learning the self-restoration, it learns ba-
sic representation for visual semantics, but is still limited
by the constraint for inter-image similarity. Therefore, the
local features f l are still mixed. When only learning our
Z-Matching head for the GM task, the features have a sig-
nificantly better clustering effect, showing the importance
of inter-image similarity. However, the features of some
semantics are still mixed. When the above two sub-pretext
tasks are used simultaneously in our GVSL, the basic repre-
sentation from the fundament promotes the learning of GM,



-60

-40

-20

0

20

60

40

-60 -40 0-20 20 40 60

Z-Matching only
Mixed

-60 -40 0-20 20 40 60

-40

-20

0

20

40

60

Fundament: Self-Restoration

-60 -40 0-20 20 40 60

-40

-20

0

20

40

60

Our GVSL

Better clustering effect

-80 -60 -40 -20 0 20 40 60

-40

-20

0

20

40

60

Random initialization

-60

80

-60
-60

Figure 7. Our GVSL’s promotion for clustering effect. We draw the local features f l of seven semantic regions (AO, RA, RV, LV, PA, LA,
and Myo) from the pre-trained network in the SHC task and compress them to 2 values by t-SNE [44]. Our GVSL shows a great clustering
effect for these semantics, while the features from other methods are mixed.

0 25 50 75 150100 125 175 200

X10
3
 Iterations

0

0.2

0.4

0.6

0.8

1.0

Z-Matching only

Our GVSL (Z-Matching+ Self-Restoration)

Z-Matching only

Our GVSL (Z-Matching+ Self-Restoration)

Z-Matching only

Our GVSL (Z-Matching+ Self-Restoration)

V
a

lu
e 

o
f 

N
C

C
 l

o
ss

Inefficient GM (Z-Matching only) learning

Efficient GM learning with self-restoration

Figure 8. The necessity of the fundament in our GM learning. a)
When only training the GM task, the NCC loss LNCC does not
converge and is unable to learn the correspondence of semantic
regions. b) When adding the fundament (self-restoration), warm-
up from the basic representation of semantic regions drives the
GM for efficient optimization.

so the clustering effect is more obvious and the features
of different visual semantics are representative and distin-
guishing. Although the yellow points show three parts in
our GVSL, each part is clustered, also showing that the rep-
resentation of internal semantics of this region is consistent.

5. Conclusion and Discussion

In this paper, we have advanced the inter-image sim-
ilarity learning in 3D medical image SSP, and proposed
the Geometric Visual Similarity Learning (GVSL) for the
representation of inter-image similarity, achieving power-
ful representability for the transfer learning in downstream
application-specific tasks. While its unique properties of
learning consistent representation for same semantics have
bright powerful performance in inner-scene, inter-scene,
and global-local transferring tasks for 3D images (CT, MR),
an important future work is to expand the learning of inter-
image similarity to some images without topological invari-
ance, i.e., whole slide imaging [16]. We believe that our

GVSL in SSP will promote the research of efficient learning
in medical image analysis, and our GVSL is able to serve as
a primary source of transfer learning for downstream tasks.

Discussion for impact The proposed method demon-
strates an effective and reasonable potential in medical
imaging analysis, showing great potential impact. Espe-
cially for the widely used 3D medical images, their spa-
tial completeness of 3D structures [41] avoids the spatial
projection (e.g., X-ray images) and spatial occlusion (e.g.,
natural images) of 2D images. The consistency in human
bodies also brings the topological invariance of the content
in these 3D images. Therefore, the geometric relationship
between these images is able to be effectively used to drive
the measurement of visual similarity. The spatial complete-
ness and topological invariance of 3D structure in images
will further inspire researchers to do more research on SSP.

Discussion for limitation There are still some limita-
tions in our GVSL. 1) The additional calculation in the Z-
Matching head and the fundamental self-restoration learn-
ing makes larger GPU memory requirement and more com-
puting costs. 2) The inter-scene transferring is still a large
challenge for medical image pre-training models due to the
large gap between the source and target scenes. Fortunately,
these limitations are gradually being solved due to the de-
velopment of GPU and enlarging of medical datasets (pro-
vides more possibilities for inner-scene transferring).
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Appendix A. Rethink GVSL and representa-
tion learning

Our GVSL is an unsupervised representation learning
paradigm which constructs a geometric metric to learn the
inter-image similarity, thus achieving a consistent represen-
tation for same semantic regions based on a reliable seman-
tics’ correspondence.

A.1. Representation in supervised learning

Let’s start by rethinking supervised learning from la-
beled dataset D = {xi, yi}Ii=1, yi ∈ y1:K , where xi and
yi are the ith image and label, and I is the number of data,
K is the number of classes. The whole framework can be
divide into two parts, including the learning of representa-
tion Nθ with parameters θ and the learning of specific task
Gξ with parameters ξ [9]. The representation part Nθ maps
images to an embedding space for features, and the specific
task part Gξ maps the features in the embedding space to
the task space. The supervised learning train the network to
learning the representation and specific task via minimizing
the distance d of framework’s outputs and labels following

min
θ,ξ

d(Gξ(Nθ(xi)), yi)). (4)

We assume that there is a centroid fk ∈ f1:K in the em-
bedding space that makes Gξ(fk) = yi, then the Equ.4 is

fk

Nθ (xi)

fk

Nθ (xi)

f ui=Nθ (x
v
i)

Nθ (x
v
i) Nθ (xj)

f ui=Nθ (x
v
i)

Nθ (x
v
i) Nθ (xj)

Nθ (xi)

fCk

Nθ (xi)

fCk

Nθ (xi)

xi

fi

Nθ (xi)

xi

fi

a) Representation learning in 
supervised learning 

b) Representation learning in 
centroid-absolute paradigm

c) Representation learning in 
centroid-hidden paradigm

d) Representation learning in 
centroid-relative paradigm

Separate

Closer

Cluster

Centroids

Figure 9. The view of the embedding space. a) The representa-
tion learning in supervised learning gather features to the centroids
f1:K corresponding to their classes, and separate the centroids. b)
Centroid-absolute paradigm clusters features for centroids fC1:K ,
and learns to gather features to these centroids. c) Centroid-hidden
paradigm generates the pretext labels via manual designed meth-
ods and learns follow the supervised learning. d) Centroid-relative
paradigm train to gather the features of same image’s different
views, and separate the features of different images.

equivalent to
min
θ,ξ

d(Nθ(xi), fk)

s.t. Gξ(fk) = yi.
(5)

Obviously, in this process (Fig.9 a)), the representation part
Nθ is trained to gather features to the centroids f1:K corre-
sponding to their classes via the specific task part Gξ. There-
fore, the learning of Gξ optimizes the centroids f1:K in the
embedding space to distinguish different classes, and the
learning ofNθ optimizes the clustering effect of same class
data.

A.2. Learning representation without annotation

When labels are unavailable D = {xi}Ii=1, this means
the centroids f in the embedding space are unavailable to
guide the clustering effect. Therefore, the self-supervised
representation learning [31] targets building the centroids f
via pretext tasks, thus guiding the network learning poten-
tial clustering effect. According to the difference of f, the
existing methods can be divided into three paradigms:

• Centroid-hidden paradigm (Fig.9 c)) [29, 31]: This
paradigm still follows the Equ.5, and generates the
pretext labels via designed transformation methods T
(e.g., restoration [56], rotation [29]). Therefore, like
the supervised learning, this paradigm impliedly cre-
ates centroids f in the embedding space according to
the pretext labels, learns the Nθ to gather features to
the centroids and learns the Gξ to distinguish the cen-



troids f in embedding space.

min
θ,ξ

d(Nθ(xi), fi)

s.t. Gξ(fi) = T (xi).
(6)

* Observation: The centroids extremely depend on
manual defined transformation methods T , which will
bring large bias in the representation. For example,
the rotation method [29] will make the Nθ biased to
the position features, and some images whose posi-
tions are semantics-independent information will be
mis-represented.

• Centroid-absolute paradigm (Fig.9 b)) [3, 30]: This
paradigm utilizes the clustering methods CK (K is the
number of clustered centroids) to discover the clus-
tering patterns of features, thus building the centroids
fC1:K and gathering the represented features to these
centroids, like DeepCluster [3]

min
θ
d(Nθ(xi), fCk )

s.t. fCk = CK(Nθ(xi);D).
(7)

* Observation: The clustering method CK is the bot-
tleneck in this paradigm. The existing works [3,
30] utilize K-means [13] as the clustering methods
which is extremely interfered by images’ semantic-
independent variations. Therefore, the clustered cen-
troids will bring imprecise information, finally learn-
ing mis-representation.

• Centroid-relative paradigm (Fig.9 d)) [4, 5]: This
paradigm has no explicit centroids f, but train Nθ
to contrast images. A popular method is contrastive
learning [4, 5, 18]. This method constrains the repre-
sentation of same image’s different views (xvi , x

u
i ) to

be consistent and different images (xi, xj) to be sepa-
rated, thus gaining clustering effect under the training
of big data.

min
θ
d(Nθ(xvi ), fui )− d(Nθ(xj), fui )

s.t. fui , Nθ(xui )
(8)

* Observation: This paradigm have to learn inner-
image similarity and inter-image dissimilarity. How-
ever, if the images share numerous same seman-
tics, this paradigm will make the Nθ learn the task-
unconcerned features. Especially in our task, the 3D
medical images share numerous same semantic re-
gions due to the consistency of human anatomies, the
direct learning of separation will mislead the consis-
tent representation of these same semantic regions. Al-
though some works have removed the learning of inter-
image dissimilarity, the single learning of inner-image

Topology manifold {xi, xj}

Nθ (x
s1

i)
Nθ (x

s1
j)

Nθ (x
s2

i)Separate

Closer

Gradient

Cluster

Figure 10. GVSL in the view of embedding space. It projects
features onto a manifold of consistent topology, and gathers the
semantic features (Nθ(x

s1
i ),Nθ(x

s1
j ), s1 means the semantic re-

gions on images) which are closed on this manifold.

similarity will bring the risk of dimensional collapse
[26].

Conclusion: Observing these three paradigms, we can
draw three conclusions:

• A self-discovery method to drive the learning of clus-
tering effect is crucial to avoid the large bias caused by
the manual designed transformation.

• Prior knowledge of semantics is crucial to avoid the
interference caused by images’ semantic-independent
variations during the self-discovery of clustering ef-
fect.

• Learning inter-image similarity is crucial for 3D med-
ical image self-supervised pre-training.

Therefore, our GVSL fuses the prior of topological in-
variance into the learning of inter-image similarity in a self-
discovery process, achieving power self-supervised per-
training.

A.3. Learning GVSL

Our GVSL embeds a geometric mapping into the mea-
surement of different images, bringing three advancement
compared with above three paradigms:

• Compared with the centroid-hidden paradigm, it
brings a self-discovery process which learns a geomet-
ric matching head Gξ to discover the corresponding of
visual objects between images to learn consistent rep-
resentation of same semantics.

• Compared with the centroid-absolute paradigm, it em-
beds the prior of topological invariance into the dis-
covery of correspondence, avoiding the interference
caused by images’ semantic-independent variations.

• Compared with the centroid-relative paradigm, it
avoids the direct learning of inter-image dissimilarity



in global, and utilizes the geometric matching to dis-
cover the correspondence of same semantic regions in-
ner two images and learn consistent representation of
them.

Compared with the Equ.8, GVSL (Equ.9) takes a Gξ to
discover the correspondence of same semantic regions be-
tween two images, avoiding the direct enlarging of feature
distance for two images in Equ.8.

min
θ,ξ

d(Gξ(Nθ(xi), fj ; {xi, xj}))

s.t. fj , Nθ(xj)
(9)

For the Gξ, it is a learnable metric which is embedded the
prior of topological invariance. It embeds the two original
3D medical images xi, xj which have consistent topology
(Introduction section) into the calculation of the distance,
and models the measurement of the distance for two fea-
tures fi , Nθ(xi), fj as the measurement of the alignment
degree for two image xi, xj . Therefore, as shown in FIg.10,
this implicitly projects features onto a manifold of consis-
tent topology (the invariant distribution of semantic regions
in 3D medical images {xi, xj}), and gathers the semantic
features (Nθ(xs1i ),Nθ(xs1j ), s1 means the semantic regions
on images) which are closed on this manifold.

Appendix B. Algorithm
As illustrated in Alg.1, our GVSL framework learns the

GM between two images and the self-restoration as a base-
line for consistent representation of same semantics be-
tween images.

Appendix C. Details of Transformation Oper-
ation T

During self-supervised training, our GVSL uses the con-
sistency of following image transformation operations:

• Random in-painting: This operation randomly selects
3D boxes inner images and the contents of these re-
gions are replaced by the noise from a uniform distri-
bution. Therefore, when learning the self-restoration
and our GVSL, the network Nθ will learn the depen-
dency between the semantics and their context.

• Random local-shuffling: This operation randomly se-
lects 3D boxes inner images and shuffles the voxels
in the box regions. Therefore, when learning the self-
restoration and our GVSL, the network Nθ will learn
the representation of texture features for semantics.

• Random non-linear transformation: This operation
uses Bézier Curve which assigns every voxel a unique
value via transform the distribution function of image.

Therefore, the network Nθ will learn the intensity in-
formation of semantic regions during the learning of
self-restoration and our GVSL.

More specific related introductions can be find in the pa-
per [56] which we follows. The Fig.11 demonstrates the
transformation operations visually.

Transformation operators in self-restoration (local-shuffling, non-linear, in-painting)

Original image Damaged image Restored image
Subtraction 

(Original-Damaged )

Subtraction 

(Original-Restored )

Original image Local-shuffling Non-linear In-painting Total Restored

E
n

c

D
e
c

Figure 11. The visualization of the transformation operations. We
utilize the in-painting, local-shuffling, and non-linear to construct
the transformation distribution T .

Appendix D. Details in our GVSL

D.1. Details in spatial transformation

We utilize the spatial transformation following [24] which
is the function torch.nn.functional.grid sample in PyTorch.
For each voxel p in image x, the DVF ψ displaces the p
to a new (subpixel) voxel location ψ(x(p)) in image space.
Then, the voxel in subpixel position is linearly interpolated
to a near integer location at eight neighboring voxels. This
process is formulated as

ψ(x(p)) = Σq∈ψ(Z(p))x(q)Πd∈{x,y,z}(1−|ψd(x(p))−qd|),
(10)

where ψ(Z(p)) are the voxel neighbors of ψ(x(p)),
{x, y, z} are the x, y, z axes of 3D image.

D.2. Details in the network Nθ

We utilize the 3D U-Net [6] which is widely used in 3D
medical images as the backbone network Nθ in our frame-
work. Owing to the limitation of GPU memory, we only use
the batch size of 1 in our transferring process, and the batch
size of 2 in our pre-training process. To avoid the overfitting
problem caused by the Batch Normalization (BN) [23], we
utilize the Group Normalization [50] to replace the BN in
the original network.



Algorithm 1: GVSL: Geometric Visual Similarity Learning
Input:
D, T dataset and the distribution of transformations;
θ,Nθ initial parameters for backbone network, backbone network;
ξ,Gξ initial parameters for GM, GM head;
ι,Rι initial parameters for self-restoration, restoration head;
optimizer optimizer, updates parameters via gradient;
K,N, η iteration number, batch size, and learning rate.

1 for k = 1...K do
2 B ← {{xiA, xiB} ∼ D}Ni=1; // sample two batches from dataset
3 for i, {xA, xB} ∈ B do
4 t ∼ T ; // sample image transformation
5 xtA ← t(xA); // transform image xA
6 {fgA, f lA} ← Nθ(x

t
A) and {fgB , f lB} ← Nθ(xB); // compute global and local features

from two images

7 x
′

A ← Rι(f lA); // restore image xA in restoration head
8 ψAB ← Gξ(f lA, f

g
B , f

g
A, f

g
B); // estimate a displacement vector field

9 xAB ← ψAB(xA); // align image xA to xB

10 lGV SL,iθ,ξ ← lNCCθ,ξ (xAB , xB) + lsmoothθ,ξ (ψAB); // calculate the NCC loss and smooth loss

for GVSL

11 lMSE,i
θ,ι ← ‖x′

A − xA‖2; // calculate the MSE loss for self-restoration

12 end
13 δθ ← 1

N

∑N
i=1(∂θl

GV SL,i
θ,ξ + lMSE,i

θ,ι );

14 δξ ← 1
N

∑N
i=1 ∂ξl

GV SL,i
θ,ξ ;

15 δι← 1
N

∑N
i=1 ∂ιl

MSE,i
θ,ι ; // compute the loss gradient w.r.t. θ, ξ, and ι

16 θ ← optimizer(θ, δθ, η);
17 ξ ← optimizer(ξ, δξ, η);
18 ι← optimizer(ι, δι, η); // update parameters i.e. θ, ξ, and ι

19 end
Output: Nθ; // the pre-trained backbone networks

D.3. Details in the fusion operation for DVF �

As demonstrated in Equ.11, the affine matrix [1] utilizes
the matrix consists of the rotation matrix, scaling matrix,
shearing matrix, and translation matrix to make a movement
for each voxels, thus achieving a global spatial transforma-
tion. This affine matrix ψgAB multiplies the position index
p = {px, py, pz} of the voxel in image grid for the affine
transformed position index p̂ = {px, py, pz}. The trans-
formed position index p̂ is subtracted to the original position
index p for the affine vector and the affine vector is further
added to the deformation vector in the position index p̂ of
deformation field ψlAB (Equ.12), thus achieving the vector
to move the voxel in position ψAB(p). This operation is
performed for whole positions in the image grid, fusing the
affine matrix and the deformation field for the DVF ψAB .

Appendix E. Details of Datasets and Imple-
mentations in Experiment

As shown in Tab.2, we pre-train the network on the
pre-training dataset and evaluate the models on four down-
stream tasks with different properties, giving a complete
evaluation.

E.1. Details of the pre-training dataset

The pre-training dataset consists of 302 cardiac CT im-
ages with numerous semantic regions. These images were
scanned on a SOMATOM Definition Flash and the con-
trast media was injected during the scanning process. The
x/y-resolution of these CT images is between 0.25 to 0.57
mm/voxel and the slice thickness is between 0.75 to 3
mm/voxel. The x/y-size of the images is 512 voxels and the
z-size is between 128 to 994 voxels. For pre-processing, we
firstly resample the resolution of these images to 1mm ×
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Figure 12. The details in our framework. a) We take the 3D U-Net as our backbone, the features from the bottleneck and the final layer
are the global features fg and the local features f l. b) Affine head utilizes four linear layers to estimate affine parameters of rotation,
shear, scale and translation. These parameters are used to make an affine matrix ψ

′
for affine transformation. c) Deformable head takes

two Conv-groups followed by a convolution to estimate the deformable map φ
′

via the local features. d) The restoration head takes a
Conv-group followed by a convolution to restore the image.
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1mm × 1mm for a unified resolution, then threshold their
grayscale value to [0, 2048] and normalize them to [0, 1]
for unified intensity.

E.2. Details of the downstream datasets

E.2.1. The SHC task targets on segmenting seven large
heart structures on the CT images from MM-WHS 2017
dataset [57] which originally has 20 image-label pairs and
40 unlabeled images. We randomly split 15 of the image-
label pairs as the training set, 5 of them as the validation
set, and the original 40 unlabeled images as the testing
set and test the results on the officially provided software.
For pre-processing, we firstly crop the heart regions of in-
terests (ROIs) to reduce the size due to the limited GPU
memory and resample the resolution of these images to

1mm × 1mm × 1mm for a unified resolution. These im-
ages are further thresholded to [0, 2048] grayscale value,
and normalized to [0, 1] via dividing by 2048 for unified
intensity. This task evaluate the inner-scene transferring
ability of the models on a dense prediction task for large
structures.

E.2.2. The SAC task targets on segmenting the small
coronary arteries on the Coronary CT Angiography (CCTA)
images from ASOCA dataset [8] which originally has 40
image-label pairs. We randomly split 15 of them as the
training set, 5 of them as the validation set, and 20 of them
as the testing set. Following the SHC task, we also crop the
heart ROIs, resample their resolution to 1mm × 1mm ×
1mm, threshold the grayscale to [0, 2048] and normalize



Table 2. The details of the clinical dataset in our pretext task and four public available datasets in our downstream tasks.

a) The details of four public available datasets in downstream tasks
Name Target dataset Train/Val/Test Downstream task Pre-processing

SHC MM-WHS 2017 CTa 15/5/40 Segmentation of 7 heart structures
1.Crop the heart regions
2.Resample the resolution to 1mm3

3.Normailze via max(min(0,x),2048)
2048

SAC ASOCA 2020 CTb 15/5/20 Segmentation of coronary artery
1.Crop heart regions
2.Resample the resolution to 1mm3

3.Normailze via max(min(0,x),2048)
2048

SBM CANDI MRc 40/20/43 Segmentation of 28 brain tissues
1.Crop 1602 × 128 regions around brain
2.Resample the resolution to 1mm3

3.Normailze via x−min(x)
max(x)−min(x)

CCC STOIC CTd 1000/400/600 Diagnosis of COVID-19
1.Extract lung regions via lungmaske

2.Resample the resolution to 1mm3

3.Normailze via max(min(0,x),2048)
2048

b) The details of the clinical dataset in pretext task
Amount Image type Detail information Pre-processing

302 Coronary CT angiography

1.Scanner: SOMATOM Definition Flash
2.x/y-resolution: 0.25∼0.57 mm/voxel
3.Slice thickness: 0.75∼3 mm/voxel
4.x/y-size: 512 voxels, z-size: 128∼994 voxels

1.Resample the resolution to 1mm3

2.Normailze via max(min(0,x),2048)
2048

a MM-WHS 2017: http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
b ASOCA: https://asoca.grand-challenge.org/
c CANDI: https://www.nitrc.org/projects/candi_share/
d STOIC challenge: https://stoic2021.grand-challenge.org/stoic-db/
e Lungmask code: https://github.com/JoHof/lungmask

the intensity to [0, 1] via dividing by 2048. This task eval-
uate the inner-scene transferring ability of the models on a
dense prediction task for small structures.

E.2.3. The SBM task targets on segmenting 28 brain tis-
sues on the brain T1-weighted MR images from CANDI
dataset [27] which has 103 image-label pairs. We randomly
split 40 of them as the training set, 20 of them as the valida-
tion set, and 43 of them as the testing set. Following some
works [7,47] on this dataset, we crop a 160× 160× 128 re-
gion around the center of the brain which contain the whole
brain for computation efficiency. The grayscale value of
these images are further limited bigger than 0, and normal-
ized to [0, 1] via min-max normalization for unified inten-
sity. This task evaluate the inter-scene transferring ability
of the models on a dense prediction task for multiple (28)
structures.

E.2.4. The CCC task targets on classifying (diagnosis)
the COVID-19 or the health on chest CT images from the
STOIC challenge dataset [37] which originally has 2000
public training set. To evaluate the models in our experi-
ment, we further randomly split 1000 of them as the training
set, 400 of them as the validation set, and 600 of them as the
testing set. For pre-processing, we extract the lung regions
via the existing open released code of lungmask to remove

the interruption of the background, crop the lung ROIs to
reduce the size, and resample the resolution of these images
to 1mm × 1mm × 1mm for a unified resolution. Follow-
ing the H.CT.S task, we also threshold the grayscale to [0,
2048] and normalize the intensity to [0, 1] via dividing by
2048. This task evaluate the inner-scene transferring ability
of the models on a global prediction task.

E.3. Implementation details of transfer learning on
downstream tasks

E.3.1. Implementation for linear evaluation We take
linear evaluation to evaluate the clustering effect of the ex-
tracted features thus demonstrating the representability of
the pre-trained network. 1) For segmentation tasks (SHC,
SAC, SBM), we use the whole pre-trained backbone net-
workNθ as a fixed feature extractor for the new downstream
datasets. And then, the local features f l from the decoder of
the network are used to train a convolutional layer followed
with a Softmax activation function. 2) Like the implemen-
tation for segmentation tasks, for classification task (CCC),
we use the encoder part of the backbone network Nθ as a
fixed feature extractor for downstream tasks. And then, the
global features fg from the fixed encoder are used to train
a linear layer followed with a Sigmoid activation function
in CCC task for the evaluation of the representability for
global features. We use a batch size of 1 due to the limita-
tion of GPU memory and a learning rate of 1 × 10−4 with

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
https://asoca.grand-challenge.org/
https://www.nitrc.org/projects/candi_share/
https://stoic2021.grand-challenge.org/stoic-db/
https://github.com/JoHof/lungmask


Adam [28] optimizer to train these tasks, and save the pa-
rameters with the highest DSC or AUC score on validation
sets for segmentation or classification tasks.

E.3.2. Implementation for fine-tuning evaluation We
further take fine-tuning evaluation to evaluate the transfer-
ring ability thus demonstrating the great potential for ini-
tialization of downstream tasks. We most follow Models
Genesis [56] for training fine-tuning models. 1) For seg-
mentation tasks (SHC, SAC, SBM), we connect the whole
backbone network Nθ with a convolutional layer followed
by a Softmax activation function, thus constructing a seg-
mentation framework. The gradient optimizes the all pa-
rameters in this framework during the backpropagation. 2)
For classification task (CCC), we use the encoder part of the
backbone network, and the encoder is connected to a linear
layer followed with a Sigmoid activation function. Like the
segmentation tasks, the gradient optimizes all parameters in
the framework. Like the implementation of linear evalua-
tion, we also use the batch size of 1 and learning rate of
1 × 10−4 with Adam [28] optimizer, and save the parame-
ters with the highest DSC or AUC score on validation sets.
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