
Are We Ready for Vision-Centric Driving Streaming Perception?
The ASAP Benchmark

Xiaofeng Wang1,2 Zheng Zhu3 Yunpeng Zhang3 Guan Huang3

Yun Ye3 Wenbo Xu3 Ziwei Chen4 Xingang Wang1

1CASIA 2UCAS 3PhiGent Robotics 4SEU
{wangxiaofeng2020,xingang.wang}@ia.ac.cn zhengzhu@ieee.org

{yunpeng.zhang,guan.huang,yun.ye,wenbo.xu}@phigent.ai richard chen@seu.edu.cn

Abstract
In recent years, vision-centric perception has flourished

in various autonomous driving tasks, including 3D detec-
tion, semantic map construction, motion forecasting, and
depth estimation. Nevertheless, the latency of vision-centric
approaches is too high for practical deployment (e.g., most
camera-based 3D detectors have a runtime greater than
300ms). To bridge the gap between ideal researches and
real-world applications, it is necessary to quantify the
trade-off between performance and efficiency. Tradition-
ally, autonomous-driving perception benchmarks perform
the offline evaluation, neglecting the inference time de-
lay. To mitigate the problem, we propose the Autonomous-
driving StreAming Perception (ASAP) benchmark, which
is the first benchmark to evaluate the online performance
of vision-centric perception in autonomous driving. On
the basis of the 2Hz annotated nuScenes dataset, we first
propose an annotation-extending pipeline to generate high-
frame-rate labels for the 12Hz raw images. Referring to
the practical deployment, the Streaming Perception Under
constRained-computation (SPUR) evaluation protocol is
further constructed, where the 12Hz inputs are utilized
for streaming evaluation under the constraints of differ-
ent computational resources. In the ASAP benchmark,
comprehensive experiment results reveal that the model
rank alters under different constraints, suggesting that the
model latency and computation budget should be consid-
ered as design choices to optimize the practical deployment.
To facilitate further research, we establish baselines for
camera-based streaming 3D detection, which consistently
enhance the streaming performance across various hard-
ware. ASAP project page: https://github.com/
JeffWang987/ASAP.

1. Introduction

Vision-centric perception in autonomous driving has
drawn extensive attention recently, as it can obtain richer

inf TFLOPS
@Offline

35.6TFLOPS
@RTX3090

9.1TFLOPS
@RTX2070S

4.4TFLOPS
@GTX1060

Computation platform

0.1

0.2

0.3

0.4

m
AP

-S

FCOS3D
PGD
BEVDet
BEVDet4D
BEVFormer
PETR
BEVDepth
BEVDepth-Sv (Ours)

Figure 1. Comparison of streaming performances on the ASAP
benchmark, where the model rank changes under different com-
putational resources. Note that our baseline BEVDepth-Sv (built
upon [37]) consistently improves the streaming performance on
different platforms.

semantic information from images with a desirable budget,
compared to LiDAR-based perception. Notably, the past
years have witnessed the blooming of vision-centric per-
ception in various autonomous driving tasks (e.g., 3D de-
tection [28,29,36–38,40,41,48,64,69], semantic map con-
struction [35, 47, 50, 52, 72, 80], motion forecasting [1, 27],
and depth estimation [23, 24, 63, 65, 66, 68]).

Despite the growing research interest in vision-centric
approaches, the high latency of these methods still prevents
the practical deployment. Specifically, in the fundamen-
tal task of autonomous-driving perception (e.g., 3D detec-
tion), the inference time of most camera-based 3D detec-
tors [28,36–38,41,69,78] is longer than 300ms (on the pow-
erful NVIDIA RTX3090), which is∼6× longer (see Tab. 1)
than the LiDAR-based counterparts [32, 70, 74]. To enable
practical vision-centric perception in autonomous driving, a
quantitative metric is in an urgent need to balance the ac-
curacy and latency. However, previous autonomous-driving

1

ar
X

iv
:2

21
2.

08
91

4v
1

 [
cs

.C
V

]
 1

7
D

ec
 2

02
2

https://github.com/JeffWang987/ASAP
https://github.com/JeffWang987/ASAP

Table 1. Comparison between autonomous-driving perception
dataset, where L&C represents LiDAR and camera, #sensors de-
notes number of sensors, Ann. frequency is the annotation fre-
quency, and Model speed denotes the typical inference speed of
the model on RTX3090. For 2D detectors [2, 18, 22, 51, 58], they
achieve ∼45mAP@30FPS on COCO [39]. For LiDAR-based 3D
detectors [32, 70, 74], they achieve ∼70mAP@20FPS on Waymo
[57]. For camera-based 3D detectors [28, 37, 38, 78], they achieve
∼40mAP@3FPS on nuScenes [4], which is 6×∼10× slower than
the above two tasks.

Dataset Stream. Modality #sensors Task Ann. Model
frequency speed

KITTI [19] % L&C - Multi-task - -
Argoverse [67] % L&C - Multi-task - -
Waymo [57] % L&C - Multi-task - -
nuScenes [4] % L&C - Multi-task - -
Argoverse-HD [34] ! C 1 2D det. 30Hz ∼30FPS
Waymo [25] ! L 1 L-3D det. 10Hz ∼20FPS
nuScenes-H ! C 6 C-3D det. 12Hz ∼3FPS

benchmarks [3,4,14,19,20,30,45,53,57,67,75] mainly fo-
cus on the offline performance metrics (e.g., Average Pre-
cision (AP), Truth Positive (TP)), and the model latency
has not been particularly studied. Although [25, 34] lever-
age the streaming perception paradigm [34] to measure the
accuracy-latency trade-off, these benchmarks are designed
for 2D detection or LiDAR-based 3D detection.

To address the aforementioned problem, this paper
proposes the Autonomous-driving StreAming Perception
(ASAP) benchmark. To the best of our knowledge, this
is the first benchmark to evaluate the online performance
of vision-centric perception in autonomous driving. The
ASAP benchmark is instantiated on the camera-based 3D
detection, which is the core task of vision-centric percep-
tion in autonomous driving. To enable the streaming evalua-
tion of 3D detectors, an annotation-extending pipeline is de-
vised to increase the annotation frame rate of the nuScenes
dataset [4] from 2Hz to 12Hz. The extended dataset,
termed nuScenes-H (High-frame-rate annotation), is uti-
lized to evaluate 3D detectors with 12Hz streaming inputs.
Referring to the practical deployment, we delve into the
problem of ASAP under different computational resources.
Specifically, the Streaming Perception Under constRained-
computation (SPUR) evaluation protocol is constructed: (1)
To compare the model performance on varying platforms,
multiple GPUs with different computation performances
are assigned for the streaming evaluation. (2) To analyze the
performance fluctuation caused by the sharing of computa-
tional resources [16, 69, 73, 78], the streaming evaluation
is performed while the GPU is simultaneously processing
other perception tasks. As depicted in Fig. 1, the streaming
performances of different methods drop steadily as the com-
putation power is increasingly constrained. Besides, the
model rank alters under various hardware constraints, sug-
gesting that the offline performance cannot serve as the de-

terministic criterion for different approaches. Therefore, it
is necessary to introduce our streaming paradigm to vision-
centric driving perception. Based on the ASAP bench-
mark, we further establish simple baselines for camera-
based streaming 3D detection, and experiment results show
that forecasting the future state of the object can compen-
sate for the delay in inference time. Notably, the proposed
BEVDepth-Sv improves the streaming performance (mAP-
S) by ∼2%, ∼3%, and ∼16% on three GPUs (RTX3090,
RTX2070S, GTX1060).

The main contributions are summarized as follows: (1)
We propose the ASAP benchmark to quantitatively eval-
uate the accuracy-latency trade-off of camera-based per-
ception methods, which takes a step towards the practical
vision-centric perception in autonomous driving. (2) An
annotation-extending pipeline is proposed to annotate the
12Hz raw images of the popular nuScenes dataset, which
facilitates the streaming evaluation on camera-based 3D de-
tection. (3) Simple baselines are established in the ASAP
benchmark, which alleviates the influence of inference de-
lay and consistently improves the streaming performances
across different hardware. (4) The SPUR evaluation proto-
col is constructed to facilitate the evaluation of practical de-
ployment, where we investigate the streaming performance
of the proposed baselines and seven modern camera-based
3D detectors under various computational constraints.

2. Related Work
2.1. Autonomous-Driving Benchmark

Thanks to the release of various benchmarks [3, 4, 14,
19, 20, 30, 45, 53, 57, 67, 75, 76], the last decade has wit-
nessed immense progress on autonomous-driving percep-
tion. Among these benchmarks, CamVid [3], Cityscapes
[14], Mapillary Vistas [45], Apolloscape [30], BDD100K
[75] and CityPerson [76] focus on the 2D annotation (seg-
mentation masks or detection boxes). To facilitate 3D per-
ception in autonomous driving, several benchmarks [4,5,19,
20, 49, 53, 57] collect multi-modal data (RGB images, Li-
DAR, RADAR, GPS/IMU) with comprehensive 3D anno-
tations. Among these 3D annotated dataset, nuScenes [4],
Waymo [57], Argoverse [5], A2D2 [20], Lyft L5 [53] pro-
vide surround-view image data, which boosts camera-based
3D perception. Especially in the nuScenes dataset [4], a
vision-centric 3D perception trend [28,29,36–38,40,41,48,
64, 69] demonstrates that camera-based 3D detectors can
achieve promising accuracy. Nevertheless, these bench-
marks evaluate perception methods in an offline manner,
neglecting the inference time delay.

2.2. Vision-Centric Driving Perception

Compared with the costly LiDAR, cameras can be de-
ployed with much lower budgets. Besides, cameras-based

2

methods own the desirable merits to extract rich semantic
information from dense color and texture information [33,
44], which facilitates versatile vision-centric perception in
autonomous driving. e.g., 3D detection [15, 42, 60–62, 77],
semantic map construction [43,47,55], and depth estimation
[23,24,63,65,66,68]. Recently, the Bird’s Eye View (BEV)
representation further promotes the development of vision-
centric perception [1,27–29,35–38,40,41,48,50,52,64,69,
72,80]. Particularly, in the fundamental task of autonomous
driving (e.g., 3D detection), BEVDet4D [28], BEVFormer
[38], PETRv2 [41], BEVDepth [37], BEVStereo [36], STS
[64], SOLOFusion [48] have achieved promising detec-
tion accuracy, approaching that of LiDAR-based counter-
parts [32, 59, 70, 74, 79]. However, even on the powerful
RTX3090, the runtime of most methods exceeds 300ms,
which is far from practical deployment.

2.3. Streaming Perception

The concept of streaming perception is first proposed
in [34], where a benchmark is introduced to evaluate the
accuracy-latency trade-off of 2D detectors. Faced with
model latency, Kalman filter [31], dynamic scheduling [34],
and reinforcement learning [21] are utilized to alleviate
the problems caused by inference time delay. To fur-
ther enhance the streaming performance, [71] simplifies the
streaming perception to the task of predicting the next frame
by an efficient detector [18]. To investigate the streaming
perception in LiDAR-based 3D detection, [25] proposes to
split the full-scan LiDAR points into multiple slices and
process the streaming LiDAR slices with a recurrent neu-
ral network. Following the same setting, [17] preserves
past slice features and concatenates them with current slice
data. [6] regards that LiDAR slices can be naturally rep-
resented in polar coordinates and the polar-pillar represen-
tation is utilized in the streaming perception. The afore-
mentioned streaming benchmarks [25, 34] are designed for
2D detection or LiDAR-based 3D detection, but the stream-
ing paradigm of vision-centric perception in autonomous-
driving (e.g., camera-based 3D detection) is still under in-
vestigation.

3. The ASAP benchmark

In this section, the concept of ASAP is first introduced.
Then we analyze the difficulty to evaluate streaming algo-
rithms on the original nuScenes dataset [4], and introduce
the high frame-rate nuScenes-H dataset. Subsequently, the
SPUR evaluation protocol is presented to assess the stream-
ing performance under different computational resources.
Finally, we propose simple baselines to alleviate the infer-
ence time delay in streaming detection.

Frame BFrame A Frame C

Prediction of APrevious prediction

Input
time

Output
time

Processing A... Processing A...

Figure 2. Illustration of the streaming evaluation in the ASAP
benchmark. For every input timestamp, the ASAP benchmark
evaluates the most recent prediction if the processing of current
frame is not finished.

3.1. Autonomous-Driving Streaming Perception

Referring to the streaming paradigm [34], the ASAP
benchmark conducts the evaluation in an online manner,
and the key insight is to perform the evaluation at every
input timestamp even if the processing of the current sam-
ple is not complete. Specifically, given streaming inputs
{Xi}Ti=1, where Xi is the surround-view images at times-
tamp ti and T is the total number of input timestamps. The
perception algorithms are required to make an online re-
sponse to the input instance, and the entire online predic-
tions are {Ŷj}Mj=1, where Ŷj is the prediction at timestamp
tj , and M represents the total number of predictions. No-
tably, the prediction timestamps are not synchronized with
the input timestamps, and the model inference speed is typ-
ically slower than the input frame rate (i.e., M < T). To
evaluate the predictions at input timestamp ti, the ground
truth Yi is desired to match with the most recent prediction,
yielding the pair (Yi, Ŷθ(i)), where θ(i) = argmax

j
tj < ti.

Based on the matching strategy, the ASAP benchmark eval-
uates the online performance at every input timestamp:

LASAP = L({(Yi, Ŷθ(i))}Ti=1), (1)

where L(·) is the streaming evaluation metric, which will
be elaborated in Sec. 3.3. The streaming evaluation is illus-
trated in Fig. 2, where the prediction of frame A is leveraged
for evaluation at the timestamp of frame C. For frame A and
frame B, the previous predictions are evaluated. Notably,
ASAP instantiates the streaming paradigm on camera-based
3D detection, and the key insights also generalize to other
vision-centric perceptions in autonomous driving.

3.2. nuScenes-H

The nuScenes dataset [4] is a popular autonomous-
driving perception benchmark, which significantly facili-
tates the vision-centric perception trend [28, 29, 36–38, 40,
41, 48, 64, 69]. Consequently, it is natural to leverage the

3

Pretrained
CenterPoint

Object
interpolation

Temporal database

Time-query Auto-clean

Annotation at time t

Timestamp: t

t1 t2 tn

2Hz key-frame annotations

t3 tn-1t4

Unmatched

Interpolation results

Appended

20Hz LiDAR inputs

Figure 3. Overall architecture of the annotation-extending pipeline, where the 12Hz annotations are calculated by object interpolation of
2Hz key-frames, and the temporal database is established to append annotations that are missed by interpolation.

Frame A Frame B Frame C Frame D Frame E Frame F Frame G

Key-frame Key-frameNon-key-frame Non-key-frame Non-key-frame Non-key-frame Non-key-frame

Figure 4. Visualization of the 12Hz annotated nuScenes-H dataset, where frame A and frame G are key-frames with the original 2Hz
annotations, and B ∼ F are non-key-frames with 12Hz annotations.

nuScenes dataset to investigate the streaming performance
of various camera-based 3D detectors. However, the anno-
tation frame rate of the original nuScenes dataset is 2Hz,
which is slower than the inference speed of the majority of
camera-based 3D detectors. Therefore, it can hardly distin-
guish across models with different latencies. To mitigate the
problem, we take advantage of the 12Hz raw images of the
nuScenes dataset as the streaming input. Specifically, an
annotation-extending pipeline is proposed to annotate the
12Hz raw images. The overall architecture is illustrated
in Fig 3. Given 2Hz key-frame annotations at time ts and
te, we can calculate the intermediate annotation at time t
(ts < t < te) using the object interpolation:

Tr(t) =
te − t
te − ts

Tr(ts) +
t− ts
te − ts

Tr(te),

R(t) = Fs(R(ts), R(te),
te − t
te − ts

),
(2)

where Tr(t) and R(t) represent the object translation and
rotation at time t, respectively. Notably, to avoid Gimbal
Lock, we employ the quaternion representation for rota-
tion R(t), and Fs denotes the Spherical Linear Interpola-
tion [56]. Thanks to the instance token in the nuScenes-
devkit [46], we can match the corresponding objects in the
sequential key-frames, which facilitates object interpola-
tion. However, the interpolation is ignored when the object
is not co-visible in sequential key-frames, thus the interme-
diate annotations are missed. To mitigate the problem, the
temporal database {(ti, Y L

i)}ni=1 is established, where the

predicted bounding boxes1 {Y L
i }ni=1 at 20Hz input times-

tamps {ti}ni=1 are stored. Then we can query the prediction
Yquery at time t from the temporal database:

Yquery = Y L
j (j = argmin

i
|ti − t|). (3)

Subsequently, the auto-clean is performed by an Intersec-
tion over Union (IoU) matching between the interpolated
annotation and Yquery, which filters the redundant predic-
tions in Yquery. And the left predictions are appended to the
final annotations at time t. The visualization of 12Hz an-
notations is shown in Fig 4, where the vehicle is visible in
the key-frame A, but not in the key-frame G. Hence, the
intermediate annotations are ignored under the interpola-
tion. However, such issue can be remedied by the temporal
database, from which the accurate annotations are appended
to the intermediate frames. Equipped with the annotation-
extending pipeline, 1M training images and 0.2M valida-
tion images are annotated in the nuScenes-H dataset. No-
tably, we benchmark seven 3D detectors [28, 29, 37, 38, 40,
61, 62] on the original nuScenes dataset and the extended
nuScenes-H dataset, and the Pearson correlation coefficient
of the two offline scores is 0.962, which validates the ef-
fectiveness of our annotation-extending method. The com-
parison between nuScenes-H and other autonomous-driving
perception datasets [4, 19, 25, 34, 57, 67] is shown in Tab. 1.
To the best of our knowledge, nuScenes-H is the first dataset
that facilitates the streaming evaluation on camera-based 3D

1We firstly train the CenterPoint [74] on 2Hz LiDAR key-frames of the
nuScenes trainval set, then the 3D bounding boxes of 20Hz LiDAR
inputs are predicted using the CenterPoint.

4

detection.

3.3. SPUR Evaluation Protocol

Considering that the offline evaluation protocol in
nuScenes [4] cannot be directly adapted to the stream-
ing system, we design the Streaming Perception Under
constRained-computation (SPUR) evaluation protocol to
comprehensively investigate the streaming performance of
various 3D detectors. In the next, the streaming metrics are
first introduced, then the computation-constrained evalua-
tion is elaborated.
Streaming metrics. Average Translation Error (ATE), Av-
erage Scale Error (ASE), Average Orientation Error (AOE),
Average Velocity Error (AVE), Average Attribute Error
(AAE), NuScenes Detection Score (NDS) and mean Aver-
age Precision (mAP) are the official metrics in the original
nuScenes dataset. These metrics can be naturally extended
to the streaming metric (Eq. 1) except for the AVE. In the
streaming evaluation, the predicted bounding boxes are dis-
placed from the ground-truth locations due to inference time
delay, especially for fast-moving objects. Consequently, the
majority of the anticipated true positives are slow-moving
or static objects, and the AVE metric only measures the
velocity error of true positive objects, which makes the
streaming velocity error even lower than the offline veloc-
ity error. To address the issue, we calculate AVE as the
original offline metric, and other metrics are measured with
the streaming evaluation, which are termed mAP-S, ATE-S,
ASE-S, AOE-S, and AAE-S. For the NDS-S, following [4],
we calculate it as:

NDS-S =
1

10
[5mAP-S+

∑
mTP∈TP

(1−min(1,mTP))], (4)

where TP = {AVE,ATE-S,ASE-S,AOE-S,AAE-S} is the
set of true positive metrics.
Computation-constrained evaluation. Notably, in the
ASAP benchmark, the model inference time is associated
with computational resources, which influences streaming
performances. Specifically, two computation-constrained
evaluation protocols are investigated:

• To compare the streaming performance on varying
platforms, multiple GPUs with different performances
(e.g., NVIDIA RTX3090, NVIDIA RTX 2070S, and
NVIDIA GTX 1060) are assigned to evaluate 3D de-
tectors.

• To analyze the performance fluctuation caused by
computational resources sharing [16, 69, 73, 78], we
evaluate 3D detectors while the GPU is simultaneously
processing other perception tasks (e.g., conducting N
classification tasks using ResNet18 [26]).

3.4. ASAP Baselines

As mentioned in Sec. 3.1, the ASAP benchmark evalu-
ates the most recent predictions if the current computation is
not finished, resulting in a mismatch between the previously
processed observation and the current one. In this subsec-
tion, we discuss how to mitigate the mismatch problem in-
duced by the inference time delay. Naturally, forecasting
the future state emerges as a simple solution to compensate
for the delay. To make future state estimations, we establish
the velocity-based baseline that updates future states by the
predicted object motion. Besides, we investigate a learning-
based baseline that directly estimates the future locations of
objects (illustrated in Fig. 5).

3D
detector

Previous results

Time:T-1

Time:T

Velocity
3D

detector

Current results

Kalman
filter

Future state
Constant
velocity
motion

Velocity

(a) Velocity-based updating baseline, where the Kalman filter is utilized
to associate and refine multi-frame detection results, and the future state
is predicted by the constant velocity motion model.

Time:T

3D-future
detector

Future state

Time:T-1

(b) Learning-based forecasting baseline, where the future state is di-
rectly estimated by the 3D-future detector.

Figure 5. Illustration of the proposed ASAP baselines.

Velocity-based updating baseline. Object velocity estima-
tion is an essential task in the original nuScenes benchmark,
and various 3D detectors [28, 36–38, 41, 48, 64] have been
investigated to produce accurate velocity estimations. We
empirically find that simply using the constant velocity mo-
tion model can benefit streaming 3D detection:

Tr(ti+1) = Tr(ti) + (ti+1 − ti)V (ti), (5)

where Tr(·) and V (·) represent the predicted object trans-
lation and velocity, and ti, ti+1 denote the previous in-
put timestamp and the current evaluation timestamp. Such
a velocity-based updating strategy is straightforward, but
the velocity estimations are independent in each frame, ne-
glecting that the predicted velocity should be consistent and
change smoothly. To alleviate the problem, we associate
predictions in consecutive frames and refine the predictions
using the first-order Kalman filter [31]. Specifically, IoU-
based greedy matching is applied to associate 3D bound-
ing boxes across frames. And state representation in the

5

Table 2. Comparison of different camera-based 3D detectors on the nuScenes-H val set, where the BEVDepth-Sv is the velocity-based
updating baseline built upon [37], and BEVDepth-Sf is the learning-based forecasting baseline built upon [37]. For Streaming=%, we
report the 2Hz offline metrics. For Streaming=!, we report the streaming performance on the 12Hz ASAP benchmark.

Methods GPU FPS #params. GFLOPs Streaming mAP(-S)↑ NDS(-S)↑ ATE(-S)↓ ASE(-S)↓ AOE(-S)↓ AVE↓ AAE(-S)↓
FCOS3D - - 52.5M 2008.2 % 0.295 0.372 0.806 0.268 0.511 1.315 0.170
FCOS3D RTX3090 1.7 52.5M 2008.2 ! 0.208 0.326 0.828 0.269 0.512 1.315 0.175
FCOS3D RTX2070s 0.8 52.5M 2008.2 ! 0.151 0.294 0.836 0.270 0.522 1.315 0.187
FCOS3D GTX1060 0.3 52.5M 2008.2 ! 0.051 0.234 0.858 0.271 0.585 1.315 0.200
PGD - - 51.3M 2223.0 % 0.335 0.409 0.732 0.263 0.423 1.285 0.172
PGD RTX3090 1.6 51.3M 2223.0 ! 0.206 0.327 0.817 0.273 0.488 1.285 0.185
PGD RTX2070s 0.7 51.3M 2223.0 ! 0.139 0.289 0.818 0.276 0.512 1.285 0.195
PGD GTX1060 0.2 51.3M 2223.0 ! 0.016 0.199 0.909 0.342 0.536 1.285 0.300
BEVDet - - 52.6M 215.3 % 0.308 0.411 0.729 0.265 0.445 1.051 0.175
BEVDet RTX3090 12.6 52.6M 215.3 ! 0.289 0.370 0.730 0.273 0.533 1.051 0.209
BEVDet RTX2070s 8.5 52.6M 215.3 ! 0.284 0.367 0.734 0.273 0.536 1.051 0.209
BEVDet GTX1060 3.3 52.6M 215.3 ! 0.254 0.348 0.751 0.275 0.547 1.051 0.218
BEVDet4D - - 53.6M 222.0 % 0.338 0.476 0.672 0.274 0.460 0.337 0.185
BEVDet4D RTX3090 11.9 53.6M 222.0 ! 0.309 0.450 0.755 0.275 0.480 0.337 0.200
BEVDet4D RTX2070s 6.9 53.6M 222.0 ! 0.286 0.438 0.757 0.275 0.481 0.337 0.201
BEVDet4D GTX1060 3.2 53.6M 222.0 ! 0.257 0.419 0.775 0.276 0.492 0.337 0.211
BEVFormer - - 68.7M 1322.2 % 0.415 0.517 0.672 0.274 0.369 0.397 0.198
BEVFormer RTX3090 2.4 68.7M 1322.2 ! 0.310 0.452 0.760 0.276 0.385 0.397 0.216
BEVFormer RTX2070s 1.1 68.7M 1322.2 ! 0.233 0.408 0.774 0.278 0.410 0.397 0.228
BEVFormer GTX1060 0.3 68.7M 1322.2 ! 0.074 0.311 0.819 0.280 0.516 0.397 0.246
PETR - - 36.7M 297.2 % 0.317 0.367 0.839 0.280 0.614 0.936 0.232
PETR RTX3090 6.7 36.7M 297.2 ! 0.282 0.341 0.883 0.288 0.639 0.936 0.249
PETR RTX2070s 3.2 36.7M 297.2 ! 0.254 0.323 0.897 0.289 0.658 0.936 0.258
PETR GTX1060 1.3 36.7M 297.2 ! 0.195 0.291 0.918 0.291 0.659 0.936 0.266
BEVDepth - - 76.6M 662.6 % 0.348 0.481 0.616 0.272 0.415 0.440 0.196
BEVDepth RTX3090 8.6 76.6M 662.6 ! 0.323 0.464 0.654 0.272 0.414 0.440 0.198
BEVDepth RTX2070s 4.4 76.6M 662.6 ! 0.306 0.453 0.664 0.273 0.420 0.440 0.205
BEVDepth GTX1060 1.4 76.6M 662.6 ! 0.226 0.404 0.686 0.275 0.449 0.440 0.235
BEVDepth-Sv RTX3090 8.6 76.6M 662.6 ! 0.328 0.466 0.654 0.272 0.416 0.440 0.198
BEVDepth-Sv RTX2070s 4.4 76.6M 662.6 ! 0.316 0.459 0.662 0.272 0.419 0.440 0.198
BEVDepth-Sv GTX1060 1.4 76.6M 662.6 ! 0.263 0.428 0.683 0.273 0.436 0.440 0.199
BEVDepth-Sf RTX3090 8.6 76.6M 662.6 ! 0.329 0.467 0.653 0.272 0.415 0.440 0.197
BEVDepth-Sf RTX2070s 4.4 76.6M 662.6 ! 0.313 0.457 0.663 0.272 0.420 0.440 0.198
BEVDepth-Sf GTX1060 1.4 76.6M 662.6 ! 0.235 0.413 0.685 0.274 0.442 0.440 0.205

Kalman filter is {x, y, z, ẋ, ẏ}, where (x, y, z) denotes the
center location of the bounding box, and ẋ, ẏ is the esti-
mated velocity in the BEV plane. The updated state rep-
resentations are leveraged to refine per-frame predictions.
For objects that do not have correspondence in sequential
frames, we simply use the constant velocity motion model
to update the locations. Notably, the velocity-based updat-
ing strategy can be applied to any modern 3D detector (e.g.,
in the experiment, BEVDepth-Sv is built upon BEVDepth
[37]). Besides, the updating pipeline is lightweight (∼10ms
on CPU), which has a negligible impact on streaming de-
lays.
Learning-based forecasting baseline. The above baseline
exploits velocity as the intermediate surrogate to predict fu-
ture states. From another perspective, the streaming 3D de-
tector should be inherently predictive of the future. There-
fore, we craft a simple framework for directly forecasting
the future locations of objects. Specifically, a 3D-future

detector is built upon BEVDepth [37] (termed BEVDepth-
Sf), where the algorithm leverages history frames as input
and forecasts the detection results of the next frame. The
model architecture and training strategy are similar to those
of [37], except that the loss is calculated using annotations
from the subsequent frame. For samples that do not have
annotations for future frames, we discard them in the train-
ing phase.

4. Streaming Evaluation on ASAP Benchmark

In this section, the experiment setup is first given. Sub-
sequently, we delve into the computation-constrained as-
sessment, including streaming evaluation with platforms
altering and resource sharing. Finally, we analyze the
association between streaming performance and input
size/backbone selection.

6

4.1. Experiment Setup

In the ASAP benchmark, vision-centric perception is in-
stantiated on camera-based 3D detection, which is the fun-
damental task in autonomous driving perception. The ex-
tended nuScenes-H dataset is leveraged to evaluate 3D de-
tectors. Following [34], the streaming evaluation is con-
ducted with a hardware-dependent simulator. For camera-
based 3D detectors [28, 29, 37, 38, 40, 61, 62] evaluated in
the ASAP benchmark, the model inference times are mea-
sured with their open-sourced code on a specific GPU with
batch size 1. For measuring the inference time of monocu-
lar paradigms [61,62], we set the batch size as 6, as [61,62]
process the surround-view images independently. More im-
plementation details are in the supplement.

4.2. Computation-Constrained Assessment

Equipped with the ASAP benchmark, we analyze the
streaming performance of seven modern 3D detectors
(FCOS3D [61], PGD [62], BEVDet [29], BEVDet4D [28],
BEVFormer [38], PETR [40], BEVDepth [37]) and the pro-
posed baselines (BEVDepth-Sv, BEVDepth-Sf) under three
platforms (RTX3090, RTX2070S, and GTX1060). From
the results in Tab. 2, it can be observed that:
(1) Compared with the offline evaluation, all these 3D
detectors suffer from performance drops on the ASAP
benchmark. Even equipped with the powerful computation
platform (RTX3090), the mAP-S of BEVFormer, FCOS3D
and PGD relatively drop by 25.3%, 29.5% and 38.5% than
the offline counterparts. For efficient models (frame rate ≈
10FPS) BEVDet, BEVDet4D, BEVDepth, the mAP-S still
relatively drop by 6.1%, 8.6%, 7.2%, as any detection re-
sults miss at least one frame in the streaming evaluation.
(2) The streaming performance degrades continu-
ally as the computation power is increasingly con-
strained. As the Tera Floating Point Operations Per Sec-
ond (TFLOPS) alters from 35.6TFLOPS@RTX3090 to
9.1TFLOPS@RTX2070S, the mAP-S of FCOS3D, PGD,
BEVDet, BEVDet4D, BEVFormer, PETR, BEVDepth rel-
atively drop by 27.4%, 32.5%, 1.7%, 7.4%, 24.8%, 9.9%,
5.3%, respectively. Besides, when the computation perfor-
mance is further constrained on 4.4TFLOPS@GTX1060,
the mAP-S further decreases by a large margin. Notably, for
models (FCOS3D, PGD, BEVFormer) with higher model
latency, the inference frame rates are lower than 0.5FPS
on GTX1060, and the corresponding mAP-S of FCOS3D,
PGD, and BEVFormer are 0.051, 0.016 and 0.074, which
are far from practical deployment.
(3) The model rank alters under different computation
performances. An illustrative comparison is in Fig. 1,
where BEVFormer ranks 1st in the offline evaluation and
relatively outperforms the 2nd-best competitor BEVDepth
by 19.3%. However, BEVDepth suppresses BEVFormer

Table 3. Streaming performance (mAP-S) of FCOS3D [61], PGD
[62], BEVFormer [38] and the corresponding velocity-based up-
dating baselines. The experiment are conducted on RTX3090, and
we report AP-S on high-speed category (e.g., car, bus), and slow-
motion category (e.g., pedestrian).

Method mAP-S↑ AVE↓ Car Bus Ped.
FCOS3D 0.208 1.315 0.244 0.111 0.300
FCOS3D-Sv 0.218 (+4.8%) 1.315 0.273 0.133 0.310
PGD 0.206 1.285 0.240 0.092 0.293
PGD-Sv 0.217 (+5.3%) 1.285 0.266 0.124 0.302
BEVFormer 0.310 0.397 0.373 0.236 0.402
BEVFormer-Sv 0.344 (+10.9%) 0.397 0.477 0.324 0.424

during the streaming evaluation on RTX3090. Moreover,
on the RTX2070S, the mAP-S of efficient 3D detectors
(BEVDet, BEVDet4D, PETR) exceed that of BEVFormer,
and the performance gap between BEVFormer and [28, 29,
37, 40] is further enlarged on GTX1060.
(4) Future state estimation can compensate for the in-
ference time delay, which improves the streaming per-
formance. For the velocity-based updating baseline built
upon BEVDepth, BEVDepth-Sv relatively improves mAP-
S by 1.5%, 3.3%, and 16.4% on RTX3090, RTX2070S,
and GTX1060. More baseline results are in Tab. 3, where
FCOS3D, PGD and BEVFormer relatively enhance mAP-
S by 4.8%, 5.3% and 10.9% on RTX3090. Note that
BEVFormer-Sv obtains higher improvement due to the ac-
curate velocity estimation (i.e., AVE@BEVFormer is 0.397,
which is significantly lower than that of FCOS3D (1.315)
and PGD (1.285)). Besides, we empirically find that high-
speed objects particularly benefit from the velocity-based
updating strategy. e.g., for BEVFormer@RTX3090, the
AP-S of car and bus are relatively improved by 27.9%
and 37.3%, while the relative improvement of slow-motion
objects (pedestrian) is within 5%, which inspires future
streaming algorithms to consider the discrepancy in per-
category velocity. For the learning-based forecasting base-
line built upon BEVDepth, BEVDepth-Sf relatively im-
proves mAP-S by 1.9%, 3.0%, and 4.0% on RTX3090,
RTX2070S, and GTX1060. However, the improvements on
RTX2070S and GTX1060 (3.0%, 4.0%) are inferior to that
of BEVDepth-Sv (3.3%, 16.4%), as the model frame rates
on RTX2070S (4.4FPS) and GTX1060 (1.4FPS) are greatly
slower than the streaming input speed (12FPS), and simply
predicting the next frame is not sufficient to compensate
for the inference time delay. This issue may be alleviated
by forecasting future states of the next N(N ≥ 2) frames,
while the multi-forecasting architecture may increase the in-
ference time and hamper the streaming perception. There-
fore, end-to-end streaming 3D detection remains a promis-
ing open problem for future research. More experiment re-
sults are in the supplement.

To analyze the performance fluctuation caused by com-

7

putational resources sharing [16, 69, 73, 78], we evalu-
ate 3D detectors (BEVFormer [38] and BEVDepth [37])
while the GPU (RTX3090) is simultaneously processing
N ResNet18-based [26] classification tasks. As illustrated
in Fig. 6, BEVFormer and BEVDepth suffer performance
drops when the number of classification tasks increases, as
fewer computational resources are allocated to the 3D de-
tection task. Specifically, the mAP-S of BEVFormer and
BEVDepth relatively drop by 37.7% and 25.1% as the num-
ber of classification tasks increases from 0 to 10. No-
tably, the proposed velocity-based updating baselines con-
sistently improve the streaming performance under com-
putation sharing, and BEVDepth-Sv, BEVFormer-Sv rel-
atively improve the mAP-S by 11.6% and 8.3% when 10
classification tasks are executing.

0 1 2 3 4 5 6 7 8 9 10
Number of classification tasks

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

m
AP

-S

BEVDepth
BEVDepth-Sv
BEVFormer
BEVFormer-Sv

Figure 6. Comparison of streaming performance of BEVFormer
[38], BEVFormer-Sv, BEVDepth [37] and BEVDepth-Sv under
computational resources sharing, where the x-axis denotes the
number of ResNet18-based [26] classification tasks.

The above experiment results reveal that the computa-
tional resources significantly influence streaming perfor-
mance. While the high-performance detector [38] generates
accurate predictions with powerful computation, its stream-
ing performance suffers drops with constrained computa-
tion. In contrast, the streaming performance of efficient de-
tectors [28,29,37] are more consistent across different con-
straints, indicating that the model latency and computation
budget should be regarded as design choices to optimize the
practical deployment.

4.3. Analysis on Input Size and Backbone Selection

In this subsection, experiments are conducted to inves-
tigate the association between streaming performance and
input size/backbone selection. Specifically, we evaluate
BEVDepth [37] and BEVDepth-Sv with different image
sizes (704 × 256, 1408 × 512) and backbones (ResNet50,
ResNet101 [26]). The results are shown in Tab. 4. For the
offline evaluation, BEVDepth@ResNet101 relatively im-
proves BEVDepth@ResNet50 by 3.4%. Besides, the im-

Table 4. Evaluation with different input sizes and backbones. For
Streaming=!, we conduct the streaming evaluation on RTX3090.
For Streaming=%, the offline evaluation is performed.

Method Backbone Input Size Streaming mAP(-S) ↑
BEVDepth R-50 704× 256 % 0.348
BEVDepth R-101 704× 256 % 0.360 (+3.4%)
BEVDepth R-101 1408× 512 % 0.412 (+18.4%)
BEVDepth R-50 704× 256 ! 0.323
BEVDepth R-101 704× 256 ! 0.331 (+2.5%)
BEVDepth R-101 1408× 512 ! 0.311 (-3.7%)
BEVDepth-Sv R-50 704× 256 ! 0.328
BEVDepth-Sv R-101 704× 256 ! 0.340 (+3.7%)
BEVDepth-Sv R-101 1408× 512 ! 0.341 (+4.0%)

provement is 18.4% as the image resolution is further ex-
panded (704×256→ 1408×512). For the streaming eval-
uation on BEVDepth, replacing ResNet50 with ResNet101
relatively enhances mAP-S by 2.5%. However, the mAP-
S relatively drops by 3.7% when the input size is further
expanded. Notably, our baseline BEVDepth-Sv obtains
mAP-S improvement with large input size (1408 × 512)
and ResNet101 backbone, but the improvement (4%) is
significantly lower than that of the offline metric (18.4%).
The above results inspire that high-resolution inputs and
stronger backbones may hinder streaming performance due
to high latency. Therefore, the input size/backbone selec-
tion should be meticulously designed in the practical de-
ployment.

5. Conclusion
In this paper, the ASAP benchmark is proposed to evalu-

ate the online performance of vision-centric driving percep-
tion approaches. Specifically, we extend 12Hz raw images
of nuScenes dataset, and introduce the nuScenes-H dataset
for camera-based streaming 3D detection. Besides, the
SPUR protocol is established for computation-constrained
evaluation. Additionally, we propose ASAP baselines to
compensate for the inference time delay, which consis-
tently enhance the streaming performance on three hard-
ware. Equipped with the ASAP benchmark, we investi-
gate the streaming performance of seven modern camera-
based 3D detectors and two proposed baselines under vari-
ous computation constraints. The experiment results reveal
that the model latency and computation budget should be
regarded as design choices for practical deployment.

6. Limitation and Future Work
The proposed ASAP benchmark takes a step to prac-

tical vision-centric perception in autonomous driving.
Currently, the ASAP benchmark utilizes modern GPUs
(e.g., NVIDIA RTX3090, NVIDIA RTX2070S, NVIDIA
GTX1060) to conduct the streaming evaluation. A more
practical strategy is to evaluate with the computation of

8

system-on-a-chip (e.g., NVIDIA Thor, Mobileye EyeQ5,
Horizon Journey5), and deploy algorithms with 8-bit
int/floating point (INT8, FP8) precision acceleration. Fur-
thermore, in future work, more autonomous-driving tasks
(e.g., semantic map construction, depth estimation, motion
forecasting) should be considered in the SPUR evaluation
protocol, towards multi-task and end-to-end autonomy.

References
[1] Adil Kaan Akan and Fatma Güney. Stretchbev: Stretching

future instance prediction spatially and temporally. arXiv
preprint arXiv:2203.13641, 2022. 1, 3

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 2

[3] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and
Roberto Cipolla. Segmentation and recognition using struc-
ture from motion point clouds. ECCV, 2008. 2

[4] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. CVPR, 2019. 2, 3,
4, 5, 12, 13

[5] Ming-Fang Chang, Deva Ramanan, James Hays, John Lam-
bert, Patsorn Sangkloy, Jasvinder A. Singh, Slawomir Bak,
Andrew Hartnett, De Wang, Peter W. Carr, and Simon Lucey.
Argoverse: 3d tracking and forecasting with rich maps.
CVPR, 2019. 2

[6] Qi Chen, Sourabh Vora, and Oscar Beijbom. Polarstream:
Streaming object detection and segmentation with polar pil-
lars. NeurIPS, 2021. 3

[7] BEVDet Contributors. Release code for bevdet. https://
github.com/HuangJunJie2017/BEVDet/blob/
master/configs/bevdet/bevdet-sttiny.py,
2021. 12

[8] BEVDepth Contributors. Release code for bevdepth.
https://github.com/Megvii-BaseDetection/
BEVDepth/blob/main/exps/mv/bev_depth_
lss_r50_256x704_128x128_20e_cbgs_2key_
da.py, 2022. 12

[9] BEVDet4D Contributors. Release code for bevdet4d.
https : / / github . com / HuangJunJie2017 /
BEVDet / blob / master / configs / bevdet4d /
bevdet4d-sttiny.py, 2022. 12

[10] BEVFormer Contributors. Release code for bevformer.
https : / / github . com / fundamentalvision /
BEVFormer/blob/master/projects/configs/
bevformer/bevformer_base.py, 2022. 12

[11] MMDetection3D Contributors. Release code for
fcos3d. https : / / github . com / open -
mmlab/mmdetection3d/blob/master/configs/
fcos3d / fcos3d _ r101 _ caffe _ fpn _ gn -
head_dcn_2x8_1x_nus-mono3d.py, 2022. 12

[12] MMDetection3D Contributors. Release code for
pgd. https : / / github . com / open - mmlab /
mmdetection3d/blob/master/configs/pgd/

pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-
mono3d.py, 2022. 12

[13] PETR Contributors. Release code for petr. https:
//github.com/megvii-research/PETR/blob/
main/projects/configs/petr/petr_r50dcn_
gridmask_p4.py, 2022. 12

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. CVPR,
2016. 2

[15] Anton Konushin Danila Rukhovich, Anna Vorontsova.
Imvoxelnet: Image to voxels projection for monocular and
multi-view general-purpose 3d object detection. In WACV,
2022. 3

[16] José Duato, Francisco D Igual, Rafael Mayo, Antonio J Pena,
Enrique S Quintana-Ortı́, and Federico Silla. An efficient im-
plementation of gpu virtualization in high performance clus-
ters. In ECPP, 2009. 2, 5, 8

[17] Davi Frossard, Shun Da Suo, Sergio Casas, James Tu, and
Raquel Urtasun. Strobe: Streaming object detection from
lidar packets. CoRL, 2020. 3

[18] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian
Sun. Yolox: Exceeding yolo series in 2021. arXiv preprint
arXiv: 2107.08430, 2021. 2, 3

[19] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for autonomous driving? the kitti vision benchmark
suite. In CVPR, 2012. 2, 4

[20] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,
Xavier Ricou, Rupesh Durgesh, Andrew S. Chung, Lorenz
Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-
tian Dorn, Tiffany Fernandez, Martin Jänicke, Sudesh Gana-
pati Mirashi, Chiragkumar Savani, Martin Sturm, Oleksandr
Vorobiov, Martin Oelker, Sebastian Garreis, and Peter Schu-
berth. A2d2: Audi autonomous driving dataset. arXiv
preprint arXiv: 2004.06320, 2020. 2

[21] Anurag Ghosh, Akshay Uttama Nambi, Aditya Singh, Har-
ish Yvs, and Tanuja Ganu. Adaptive streaming perception
using deep reinforcement learning. arXiv preprint arXiv:
2106.05665, 2021. 3

[22] glenn jocher et al. yolov5. https://github.com/
ultralytics/yolov5, 2021. 2

[23] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J. Brostow. Digging into self-supervised monocular
depth estimation. In ICCV, 2018. 1, 3

[24] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, 2019. 1, 3

[25] Wei Han, Zhengdong Zhang, Benjamin Caine, Brandon
Yang, Christoph Sprunk, Ouais Alsharif, Jiquan Ngiam,
Vijay K. Vasudevan, Jonathon Shlens, and Zhifeng Chen.
Streaming object detection for 3-d point clouds. ECCV,
2020. 2, 3, 4

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5, 8, 12

9

https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet/bevdet-sttiny.py
https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet/bevdet-sttiny.py
https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet/bevdet-sttiny.py
https://github.com/Megvii-BaseDetection/BEVDepth/blob/main/exps/mv/bev_depth_lss_r50_256x704_128x128_20e_cbgs_2key_da.py
https://github.com/Megvii-BaseDetection/BEVDepth/blob/main/exps/mv/bev_depth_lss_r50_256x704_128x128_20e_cbgs_2key_da.py
https://github.com/Megvii-BaseDetection/BEVDepth/blob/main/exps/mv/bev_depth_lss_r50_256x704_128x128_20e_cbgs_2key_da.py
https://github.com/Megvii-BaseDetection/BEVDepth/blob/main/exps/mv/bev_depth_lss_r50_256x704_128x128_20e_cbgs_2key_da.py
https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet4d/bevdet4d-sttiny.py
https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet4d/bevdet4d-sttiny.py
https://github.com/HuangJunJie2017/BEVDet/blob/master/configs/bevdet4d/bevdet4d-sttiny.py
https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/bevformer/bevformer_base.py
https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/bevformer/bevformer_base.py
https://github.com/fundamentalvision/BEVFormer/blob/master/projects/configs/bevformer/bevformer_base.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/fcos3d/fcos3d_r101_caffe_fpn_gn-head_dcn_2x8_1x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py
https://github.com/open-mmlab/mmdetection3d/blob/master/configs/pgd/pgd_r101_caffe_fpn_gn-head_2x16_2x_nus-mono3d.py
https://github.com/megvii-research/PETR/blob/main/projects/configs/petr/petr_r50dcn_gridmask_p4.py
https://github.com/megvii-research/PETR/blob/main/projects/configs/petr/petr_r50dcn_gridmask_p4.py
https://github.com/megvii-research/PETR/blob/main/projects/configs/petr/petr_r50dcn_gridmask_p4.py
https://github.com/megvii-research/PETR/blob/main/projects/configs/petr/petr_r50dcn_gridmask_p4.py
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

[27] Anthony Hu, Zak Murez, Nikhil Mohan, Sofia Dudas, Jef-
frey Hawke, Vijay Badrinarayanan, Roberto Cipolla, and
Alex Kendall. Fiery: Future instance prediction in bird’s-
eye view from surround monocular cameras. ICCV, 2021. 1,
3

[28] Junjie Huang and Guan Huang. Bevdet4d: Exploit tempo-
ral cues in multi-camera 3d object detection. arXiv preprint
arXiv: 2203.17054, 2022. 1, 2, 3, 4, 5, 7, 8, 12

[29] Junjie Huang, Guan Huang, Zheng Zhu, Ye Yun, and Dalong
Du. Bevdet: High-performance multi-camera 3d object de-
tection in bird-eye-view. arXiv preprint arXiv: 2112.11790,
2021. 1, 2, 3, 4, 7, 8, 12

[30] Xinyu Huang, Peng Wang, Cheng Xinjing, Dingfu Zhou,
Qichuan Geng, and Ruigang Yang. The apolloscape open
dataset for autonomous driving and its application. TPAMI,
2020. 2

[31] R. E. Kalman. A new approach to linear filtering and pre-
diction problems. Journal of Basic Engineering, 1960. 3,
5

[32] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. CVPR, 2018. 1, 2, 3

[33] Hongyang Li, Chonghao Sima, Jifeng Dai, Wenhai Wang,
Lewei Lu, Huijie Wang, Enze Xie, Zhiqi Li, Hanming Deng,
Hao Tian, Xizhou Zhu, Li Chen, Yulu Gao, Xiangwei Geng,
Jia Zeng, Yang Li, Jiazhi Yang, Xiaosong Jia, Bohan Yu,
Yu Qiao, Dahua Lin, Si Liu, Junchi Yan, Jianping Shi, and
Ping Luo. Delving into the devils of bird’s-eye-view percep-
tion: A review, evaluation and recipe. arXiv preprint arXiv:
abs/2209.05324, 2022. 3

[34] Mengtian Li, Yu-Xiong Wang, and Deva Ramanan. Towards
streaming perception. ECCV, 2020. 2, 3, 4, 7, 12

[35] Qi Li, Yue Wang, Yilun Wang, and Hang Zhao. Hdmapnet:
An online hd map construction and evaluation framework. In
ICRA, 2022. 1, 3

[36] Yinhao Li, Han Bao, Zheng Ge, Jinrong Yang, Jianjian Sun,
and Zeming Li. Bevstereo: Enhancing depth estimation
in multi-view 3d object detection with dynamic temporal
stereo. arXiv preprint arXiv: 2209.10248, 2022. 1, 2, 3,
5

[37] Yinhao Li, Zheng Ge, Guanyi Yu, Jinrong Yang, Zengran
Wang, Yukang Shi, Jianjian Sun, and Zeming Li. Bevdepth:
Acquisition of reliable depth for multi-view 3d object detec-
tion. arXiv preprint arXiv: 2206.10092, 2022. 1, 2, 3, 4, 5,
6, 7, 8, 12

[38] Zhiqi Li, Wenhai Wang, Hongyang Li, Enze Xie, Chong-
hao Sima, Tong Lu, Yu Qiao, and Jifeng Dai. Bevformer:
Learning bird’s-eye-view representation from multi-camera
images via spatiotemporal transformers. ECCV, 2022. 1, 2,
3, 4, 5, 7, 8, 12, 13

[39] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 2

[40] Yingfei Liu, Tiancai Wang, Xiangyu Zhang, and Jian Sun.
Petr: Position embedding transformation for multi-view 3d
object detection. ECCV, 2022. 1, 2, 3, 4, 7, 12

[41] Yingfei Liu, Junjie Yan, Fan Jia, Shuailin Li, Qi Gao, Tian-
cai Wang, Xiangyu Zhang, and Jian Sun. Petrv2: A uni-
fied framework for 3d perception from multi-camera images.
arXiv preprint arXiv: 2206.01256, 2022. 1, 2, 3, 5

[42] Zechen Liu, Zizhang Wu, and Roland Tóth. Smoke: Single-
stage monocular 3d object detection via keypoint estimation.
In CVPR Workshops, 2020. 3

[43] Chenyang Lu, Marinus Jacobus Gerardus van de Molengraft,
and Gijs Dubbelman. Monocular semantic occupancy grid
mapping with convolutional variational encoder-decoder net-
works. RAL, 2019. 3

[44] Yuexin Ma, Tai Wang, Xuyang Bai, Huitong Yang, Yue-
nan Hou, Yaming Wang, Yu Qiao, Ruigang Yang, Dinesh
Manocha, and Xinge Zhu. Vision-centric BEV perception:
A survey. arXiv preprint arXiv: abs/2208.02797, 2022. 3

[45] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulò, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. ICCV, 2017. 2

[46] nuScenes Contributors. The devkit of the nuscenes dataset.
https://github.com/nutonomy/nuscenes-
devkit, 2019. 4

[47] Bowen Pan, Jiankai Sun, Ho Yin Tiga Leung, Alex Ando-
nian, and Bolei Zhou. Cross-view semantic segmentation
for sensing surroundings. RAL, 2020. 1, 3

[48] Jinhyung Park, Chenfeng Xu, Shijia Yang, Kurt Keutzer,
Kris Kitani, Masayoshi Tomizuka, and Wei Zhan. Time will
tell: New outlooks and A baseline for temporal multi-view
3d object detection. arXiv preprint arXiv: 2210.02443, 2022.
1, 2, 3, 5

[49] Abhishek Patil, Srikanth Malla, Haiming Gang, and Yi-Ting
Chen. The h3d dataset for full-surround 3d multi-object de-
tection and tracking in crowded urban scenes. ICCV, 2019.
2

[50] Lang Peng, Zhirong Chen, Zhangjie Fu, Pengpeng Liang,
and Erkang Cheng. Bevsegformer: Bird’s eye view seman-
tic segmentation from arbitrary camera rigs. arXiv preprint
arXiv:2203.04050, 2022. 1, 3

[51] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[52] Thomas Roddick and Roberto Cipolla. Predicting seman-
tic map representations from images using pyramid occu-
pancy networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
11138–11147, 2020. 1, 3

[53] O. Scheel, L. Bergamini, M. Woczyk, B Osiński, and P. On-
druska. Urban driver: Learning to drive from real-world
demonstrations using policy gradients. CoRL, 2021. 2

[54] Johannes L. Schonberger, Enliang Zheng, Jan-Michael
Frahm, and Marc Pollefeys. Pixelwise view selection for
unstructured multi-view stereo. In ECCV, 2016. 12

[55] Samuel Schulter, Menghua Zhai, Nathan Jacobs, and Man-
mohan Chandraker. Learning to look around objects for top-
view representations of outdoor scenes. In ECCV, 2018. 3

[56] Ken Shoemake. Animating rotation with quaternion curves.
In SIGGRAPH, 1985. 4

[57] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien
Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

10

https://github.com/nutonomy/nuscenes-devkit
https://github.com/nutonomy/nuscenes-devkit

Yuning Chai, Benjamin Caine, Vijay K. Vasudevan, Wei
Han, Jiquan Ngiam, Hang Zhao, Aleksei Timofeev, Scott Et-
tinger, Maxim Krivokon, Amy Gao, Aditya Joshi, Yu Zhang,
Jonathon Shlens, Zhifeng Chen, and Dragomir Anguelov.
Scalability in perception for autonomous driving: Waymo
open dataset. CVPR, 2020. 2, 4

[58] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet:
Scalable and efficient object detection. In CVPR, 2020. 2

[59] Sourabh Vora, Alex H. Lang, Bassam Helou, and Oscar Bei-
jbom. Pointpainting: Sequential fusion for 3d object detec-
tion. CVPR, 2019. 3

[60] Tai Wang, Jiangmiao Pang, and Dahua Lin. Monocular 3d
object detection with depth from motion. In ECCV, 2022. 3

[61] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
FCOS3D: Fully convolutional one-stage monocular 3d ob-
ject detection. In ICCV Workshops, 2021. 3, 4, 7, 12, 13

[62] Tai Wang, Xinge Zhu, Jiangmiao Pang, and Dahua Lin.
Probabilistic and Geometric Depth: Detecting objects in per-
spective. In CoRL, 2021. 3, 4, 7, 12

[63] Xiaofeng Wang, Zheng Zhu, Guan Huang, Xu Chi, Yun Ye,
Ziwei Chen, and Xingang Wang. Crafting monocular cues
and velocity guidance for self-supervised multi-frame depth
learning. arXiv preprint arXiv:2208.09170, 2022. 1, 3

[64] Zengran Wang, Chen Min, Zheng Ge, Yinhao Li, Zeming Li,
Hongyu Yang, and Di Huang. STS: surround-view tempo-
ral stereo for multi-view 3d detection. arXiv preprint arXiv:
2208.10145, 2022. 1, 2, 3, 5

[65] Jamie Watson, Oisin Mac Aodha, Victor Adrian Prisacariu,
Gabriel J. Brostow, and Michael Firman. The temporal op-
portunist: Self-supervised multi-frame monocular depth. In
CVPR, 2021. 1, 3

[66] Yi Wei, Linqing Zhao, Wenzhao Zheng, Zheng Zhu, Yong-
ming Rao, Guan Huang, Jiwen Lu, and Jie Zhou. Surround-
depth: Entangling surrounding views for self-supervised
multi-camera depth estimation. CoRL, 2022. 1, 3

[67] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In NeurIPS, 2021. 2, 4

[68] Felix Wimbauer, Nan Yang, Lukas von Stumberg, Niclas
Zeller, and Daniel Cremers. Monorec: Semi-supervised
dense reconstruction in dynamic environments from a single
moving camera. In CVPR, 2020. 1, 3

[69] Enze Xie, Zhiding Yu, Daquan Zhou, Jonah Philion, Anima
Anandkumar, Sanja Fidler, Ping Luo, and Jose M. Alvarez.
M2bev: Multi-camera joint 3d detection and segmentation
with unified birds-eye view representation. arXiv preprint
arXiv: 2204.05088, 2022. 1, 2, 3, 5, 8

[70] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-
ded convolutional detection. Sensors, 2018. 1, 2, 3

[71] Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, and
Jian Sun. Real-time object detection for streaming percep-
tion. In CVPR, 2022. 3

[72] Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Yuexin
Ma, Shengfeng He, and Jia Pan. Projecting your view at-

tentively: Monocular road scene layout estimation via cross-
view transformation. CVPR, 2021. 1, 3

[73] Ting-An Yeh, Hung-Hsin Chen, and Jerry Chou. Kubeshare:
A framework to manage gpus as first-class and shared re-
sources in container cloud. In HPTC, 2020. 2, 5, 8

[74] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-
based 3d object detection and tracking. CVPR, 2021. 1, 2, 3,
4

[75] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020. 2

[76] Shanshan Zhang, Rodrigo Benenson, and Bernt Schiele.
Citypersons: A diverse dataset for pedestrian detection.
CVPR, 2017. 2

[77] Yunpeng Zhang, Jiwen Lu, and Jie Zhou. Objects are differ-
ent: Flexible monocular 3d object detection. In CVPR, 2021.
3

[78] Yunpeng Zhang, Zheng Zhu, Wenzhao Zheng, Junjie Huang,
Guan Huang, Jie Zhou, and Jiwen Lu. Beverse: Unified per-
ception and prediction in birds-eye-view for vision-centric
autonomous driving. arXiv preprint arXiv: 2205.09743,
2022. 1, 2, 5, 8

[79] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. CVPR, 2018. 3

[80] Jiayu Zou, Junrui Xiao, Zheng Zhu, Junjie Huang, Guan
Huang, Dalong Du, and Xingang Wang. Hft: Lifting per-
spective representations via hybrid feature transformation.
arXiv preprint arXiv:2204.05068, 2022. 1, 3

11

7. Additional Implementation Details
7.1. Streaming Simulation

As described in Sec. 3.1 (main text), to evaluate the pre-
dictions Ŷ at input timestamp ti, the ground truth Yi is
desired to match with the most recent prediction, yield-
ing the pair (Yi, Ŷθ(i)), where θ(i) = argmax

j
tj < ti.

The input time {ti}Ti=1 is a 12Hz sequence, but the out-
put time {tj}Mj=1 of each prediction is associated with the
model runtime on specific hardware. To determine the out-
put timestamps, the streaming evaluation is conducted with
a hardware-dependent simulator [34]. Specifically, we run
the algorithm over the entire nuScenes [4], and measure the
inference time of the algorithm on a specific GPU (the run-
time distribution of BEVFormer [38] on NVIDIA RTX3090
is shown in Fig. 7). Then we can randomly sample model
runtime from the time distribution, to calculate the output
timestamps {tj}Mj=1 in the simulation.

420 440 460 480 500 520 540
Inference time (ms)

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

Figure 7. Inference time distribution for BEVFormer [38] (Back-
bone: ResNet101 [26], Input size: 1600 × 900) on NVIDIA
RTX3090.

7.2. Streaming Evaluation Details

In the ASAP benchmark, we analyze the streaming per-
formance of seven modern 3D detectors. We use their open-
sourced code and pretrained model (BEVDet-Tiny [7],
BEVDet4D-Tiny [9], BEVFormer-Base [10], BEVDepth-
R50 [8], PETR-R50 [13], FCOS3D-R101 [11], PGD-R101
[12]) to generate detection results from the 12Hz stream-
ing inputs. Notably, for multi-frame methods (e.g., BEV-
Former [38], BEVDepth [37]) that use sequential frames as
input, we set the input-frame-interval as six (instead of one
in the original 2Hz input configuration). Such a strategy
maintains the input-timestamp-interval as 0.5s, which guar-
antees sufficient Triangulation Priority [54] for 3D percep-
tion. As shown in Tab. 5, for BEVFormer and BEVDepth,
the proposed configuration (input-frame-rate (I.F.I)=6, in-
put frequency (I.F.)=12Hz) significantly outperforms the

original setting (I.F.I=1, I.F.=12), and the corresponding
metrics (mAP, ATE, ASE, AOE, AVE, AAE) are compa-
rable to those of the 2Hz result (I.F.I=1, I.F.=2).

Table 5. Offline performance of BEVFormer [38] and BEVDepth
[37] on the nuScenes (I.F.=2Hz) and nuScenes-H (I.F.=12Hz) ,
where I.F. represents the input frequency, and I.F.I denotes the
input-frame-interval.

Method I.F (Hz) I.F.I mAP↑ ATE↓ ASE↓ AOE↓ AVE↓ AAE↓
BEVFormer 2 1 0.415 0.672 0.274 0.369 0.397 0.198
BEVFormer 12 1 0.341 0.769 0.279 0.400 0.699 0.203
BEVFormer 12 6 0.410 0.691 0.274 0.376 0.401 0.197
BEVDepth 2 1 0.348 0.616 0.272 0.415 0.440 0.196
BEVDepth 12 1 0.311 0.640 0.274 0.470 0.893 0.209
BEVDepth 12 6 0.341 0.622 0.273 0.412 0.453 0.193

Table 6. Streaming performance (mAP-S) of FCOS3D [61], PGD
[62], BEVFormer [38], BEVDet [29], BEVDet4D [28], PETR
[40] and the corresponding velocity-based updating baselines. The
experiments are conducted on RTX3090.

Method mAP-S↑ ATE-S↓ ASE-S↓ AOE-S↓ AAE-S↓
FCOS3D 0.208 0.828 0.268 0.511 0.170
FCOS3D-Sv 0.218 (+4.8%) 0.820 0.267 0.506 0.169
PGD 0.206 0.817 0.273 0.488 0.185
PGD-Sv 0.217 (+5.3%) 0.813 0.273 0.485 0.183
BEVFormer 0.310 0.760 0.276 0.385 0.216
BEVFormer-Sv 0.344 (+10.9%) 0.748 0.274 0.382 0.208
BEVDet 0.289 0.730 0.273 0.533 0.209
BEVDet-Sv 0.291 (+0.7%) 0.728 0.273 0.532 0.207
BEVDet4D 0.309 0.755 0.275 0.480 0.200
BEVDet4D-Sv 0.316 (+2.3%) 0.750 0.274 0.476 0.198
PETR 0.282 0.883 0.288 0.639 0.249
PETR-Sv 0.291 (+3.2%) 0.880 0.287 0.636 0.247

Table 7. Ablation study of the velocity-based updating baseline,
where C.V. represents the constant velocity motion model, and
K.F. denotes the Kalman filter refinement. The streaming eval-
uation is conducted on RTX3090.

Methods C.V. K.F. mAP-S ↑ NDS-S↑ ATE-S ↓ AOE-S ↓
BEVFormer 0.310 0.452 0.760 0.385
BEVFormer X 0.332 0.460 0.756 0.384
BEVFormer X X 0.344 0.465 0.748 0.382
FCOS3D 0.208 0.326 0.828 0.512
FCOS3D X 0.212 0.329 0.823 0.509
FCOS3D X X 0.218 0.332 0.820 0.506

8. Additional Baseline Results
In this section, we provide additional experiment re-

sults of the velocity-based updating baseline. As shown
in Tab. 6, the proposed baselines built upon [28, 29, 38,
40,61,62] consistently enhance the streaming performance,
suggesting that the velocity-based updating baseline can
compensate for the inference delay. Note that BEVDet-
Sv and BEVDet4D-Sv obtain relatively lower improve-
ments than other methods, as they suffer little from the
influence of inference delay. Namely, the model speed

12

Figure 8. Visualization of the streaming perception results, where
the predicted bounding boxes are displaced from the moving ob-
jects (e.g., car, pedestrian).

of BEVDet@RTX3090 and BEVDet4D@RTX3090 are
∼12Hz, which is close to the input frame rate.

Besides, we conduct ablation study to validate the ef-
fectiveness of the Kalman filter refinement. As shown
in Tab. 7, FCOS3D [61] and BEVFormer [38] relatively
improve the mAP-S by 4.8% and 7.1% using the con-
stant velocity motion model. Notably, the Kalman fil-
ter further boosts the mAP-S (11.0%@BEVFormer and
9.1%@FCOS3D), which indicates that multi-frame associ-
ation and state refinement can benefit the streaming percep-
tion.

9. Visualizations
As depicted in Fig. 9, we visualize the 12Hz annotations

of nuScenes-H (more visualization comparison between the
2Hz nuScenes and 12Hz nuScenes-H can be found in the
uploaded video files). Besides, the streaming detection re-
sults are shown in Fig. 8, where the predicted bounding
boxes are displaced from the object locations, especially for
the high-speed vehicles.

Key-frame

Non-key-frame

Non-key-frame

Non-key-frame

Non-key-frame

Non-key-frame

Key-frame

Figure 9. Visualization of the surround-view annotation in
nuScenes-H, where the key-frames are the 2Hz images in the orig-
inal nuScenes dataset [4], and the intermediate non-key-frames are
the annotated 12Hz images.

13

	1 . Introduction
	2 . Related Work
	2.1 . Autonomous-Driving Benchmark
	2.2 . Vision-Centric Driving Perception
	2.3 . Streaming Perception

	3 . The ASAP benchmark
	3.1 . Autonomous-Driving Streaming Perception
	3.2 . nuScenes-H
	3.3 . SPUR Evaluation Protocol
	3.4 . ASAP Baselines

	4 . Streaming Evaluation on ASAP Benchmark
	4.1 . Experiment Setup
	4.2 . Computation-Constrained Assessment
	4.3 . Analysis on Input Size and Backbone Selection

	5 . Conclusion
	6 . Limitation and Future Work
	7 . Additional Implementation Details
	7.1 . Streaming Simulation
	7.2 . Streaming Evaluation Details

	8 . Additional Baseline Results
	9 . Visualizations

