
Learning Human-to-Robot Handovers from Point Clouds

Sammy Christen1,2∗ Wei Yang2 Claudia Pérez-D’Arpino2

Otmar Hilliges1 Dieter Fox2,3 Yu-Wei Chao2

1ETH Zurich 2NVIDIA 3University of Washington
{sammy.christen, otmar.hilliges}@inf.ethz.ch {weiy, claudiap, dieterf, ychao}@nvidia.com

Train in Simulation (Bullet)

tHuman Hand
Camera

Camera Input

Egocentric PoV Depth + Segmentation Point Cloud Test in Sim (Bullet)

Test

Sim-to-Sim (Isaac Gym) Sim-to-Real

Transfer + Test

Figure 1. We introduce a framework to learn human-to-robot handover policies from point cloud input. Our policies take input from a wrist
mounted camera and directly generate action output for the robot’s end effector. We train our policies in a simulated handover environment,
and evaluate on unseen handover motion and poses. We further transfer the model across physics simulators and to a real robotic platform.

Abstract
We propose the first framework to learn control policies

for vision-based human-to-robot handovers, a critical task
for human-robot interaction. While research in Embodied
AI has made significant progress in training robot agents in
simulated environments, interacting with humans remains
challenging due to the difficulties of simulating humans.
Fortunately, recent research has developed realistic simu-
lated environments for human-to-robot handovers. Lever-
aging this result, we introduce a method that is trained with
a human-in-the-loop via a two-stage teacher-student frame-
work that uses motion and grasp planning, reinforcement
learning, and self-supervision. We show significant per-
formance gains over baselines on a simulation benchmark,
sim-to-sim transfer and sim-to-real transfer. Video and code
are available at https://handover-sim2real.github.io.

1. Introduction
Handing over objects between humans and robots is an

important tasks for human-robot interaction (HRI) [41]. It
*This work was done during an internship at NVIDIA.

allows robots to assist humans in daily collaborative activi-
ties, such as helping to prepare a meal, or to exchange tools
and parts with human collaborators in manufacturing set-
tings. To complete these tasks successfully and safely, in-
tricate coordination between human and robot is required.
This is challenging, because the robot has to react to human
behavior, while only having access to sparse sensory inputs
such as a single camera with limited field of view. There-
fore, a need for methods that solve interactive tasks such as
handovers purely from vision input arises.

Bootstrapping robot training in the real world can be un-
safe and time-consuming. Therefore, recent trends in Em-
bodied AI have focused on training agents to act and interact
in simulated (sim) environments [13, 14, 22, 51, 53, 54, 61].
With advances in rendering and physics simulation, models
have been trained to map raw sensory input to action out-
put, and can even be directly transferred from simulation to
the real world [2, 50]. Many successes have been achieved
particularly around the suite of tasks of robot navigation,
manipulation, or a combination of both. In contrast to these
areas, little progress has been made around tasks pertained
to HRI. This is largely hindered by the challenges in em-
bedding realistic human agents in these environments, since

ar
X

iv
:2

30
3.

17
59

2v
1

 [
cs

.R
O

]
 3

0
M

ar
 2

02
3

https://handover-sim2real.github.io

modeling and simulating realistic humans is challenging.
Despite the challenges, an increasing number of works

have attempted to embed realistic human agents in simu-
lated environments [7, 11, 18, 42–44, 58]. Notably, a recent
work has introduced a simulation environment (“Handover-
Sim”) for human-to-robot handover (H2R) [7]. To ensure
a realistic human handover motion, they use a large motion
capture dataset [8] to drive the movements of a virtual hu-
man in simulation. However, despite the great potential for
training robots, the work of [7] only evaluates off-the-shelf
models from prior work, and has not explored any policy
training with humans in the loop in their environment.

We aim to close this gap by introducing a vision-based
learning framework for H2R handovers that is trained with
a human-in-the-loop (see Fig. 1). In particular, we propose
a novel mixed imitation learning (IL) and reinforcement
learning (RL) based approach, trained by interacting with
the humans in HandoverSim. Our approach draws inspira-
tion from a recent method for learning polices for grasping
static objects from point clouds [60], but proposes several
key changes to address the challenges in H2R handovers.
In contrast to static object grasping, where the policy only
requires object information, we additionally encode human
hand information in the policy’s input. Also, compared to
static grasping without a human, we explicitly take human
collisions into account in the supervision of training. Fi-
nally, the key distinction between static object grasping and
handovers is the dynamic nature of the hand and object dur-
ing handover. To excel on the task, the robot needs to react
to dynamic human behavior. Prior work typically relies on
open-loop motion planners [59] to generate expert demon-
strations, which may result in suboptimal supervision for
dynamic cases. To this end, we propose a two-stage training
framework. In the first stage, we fix the humans to be sta-
tionary and train an RL policy that is partially guided by ex-
pert demonstrations obtained from a motion and grasp plan-
ner. In the second stage, we finetune the RL policy in the
original dynamic setting where the human and robot move
simultaneously. Instead of relying on a planner, we propose
a self-supervision scheme, where the pre-trained RL policy
serves as a teacher to the downstream policy.

We evaluate our method in three “worlds” (see Fig. 1).
First, we evaluate on the “native” test scenes in Handover-
Sim [7], which use the same backend physics simulator
(Bullet [12]) as training but unseen handover motions from
the simulated humans. Next, we perform sim-to-sim evalua-
tion on the test scenes implemented with a different physics
simulator (Isaac Gym [35]). Lastly, we investigate sim-to-
real transfer by evaluating polices on a real robotic system
and demonstrate the benefits of our method.

We contribute: i) the first framework to train human-to-
robot handover tasks from vision input with a human-in-
the-loop, ii) a novel teacher-student method to train in the

setting of a jointly moving human and robot, iii) an em-
pirical evaluation showing that our approach outperforms
baselines on the HandoverSim benchmark, iv) transfer ex-
periments indicating that our method leads to more robust
sim-to-sim and sim-to-real transfer compared to baselines.

2. Related Work

Human-to-Robot Handovers Encouraging progress in
hand and object pose estimation [26, 32, 33] has been
achieved, aided by the introduction of large hand-object in-
teraction datasets [6, 8, 20, 23, 24, 34, 38, 55, 65, 66]. These
developments enable applying model-based grasp plan-
ning [4,5,37], a well-studied approach in which full pose es-
timation and tracking are needed, to H2R handovers [8,49].
However, these methods require the 3D shape models of
the object and cannot handle unseen objects. Alternatively,
some recent works [15, 36, 47, 63, 64] achieve H2R han-
dover by employing learning-based grasp planners to gen-
erate grasps for novel objects from raw vision inputs such
as images or point clouds [39, 40]. While promising results
have been shown, these methods work only on an open-loop
sequential setting in which the human hand has to stay still
once the robot starts to move [47], or need complex hand-
designed cost functions for grasp selection [63] and robot
motion planning [36, 64] for reactive handovers, which re-
quires expertise in robot motion and control. Hence, these
methods are difficult to reproduce and deploy to new en-
vironments. Progress towards dynamic simultaneous mo-
tion has been shown by a learning-based method [58], using
state inputs, leaving an open challenge for training policies
that receive visual input directly. In contrast, we propose
to learn control policies together with grasp prediction for
handovers in an end-to-end manner from segmented point
clouds with a deep neural net. To facilitate easy and fair
comparisons among different handover methods, [7] pro-
pose a physics-simulated environment with diverse objects
and realistic human handover behavior collected by a mo-
cap system [8]. They provide benchmark results of sev-
eral previous handover systems, including a learning-based
grasping policy trained with static objects [60]. However,
learning a safe and efficient handover policy is not trivial
with a human-in-the-loop, which we address in this work.

Policy Learning for Grasping Object grasping is an es-
sential skill for many robot tasks, including handovers.
Prior works usually generate grasp poses given a known
3D object geometry such as object shape or pose [4, 5, 37],
which is nontrivial to obtain from real-world sensory input
such as images or point clouds. To overcome this, recent
works train deep neural networks to predict grasps from
sensor data [30] and compute trajectories to reach the pre-
dicted grasp pose. Though 3D object geometry is no longer
needed, the feasibility is not guaranteed since the grasp

prediction and trajectory planning are computed separately.
Some recent works directly learn grasping policies given
raw sensor data. [28] propose a self-supervised RL frame-
work based on RGB images to learn a deep Q-function
from real-world grasps. To improve data efficiency, [52]
use a low-cost handheld device to collect grasping demon-
strations with a wrist-mounted camera. They train an RL-
based 6-DoF closed-loop grasping policy with these demon-
strations. [60] combines imitation learning from expert data
with RL to learn a control policy for object grasping from
point clouds. Although this method performs well in Han-
doverSim [7] when the human hand is not moving, it has
difficulty coordinating with a dynamic human hand since
the policy is learned with static objects. Instead, our pol-
icy is directly learned from large-scale dynamic hand-object
trajectories obtained from the real world. To facilitate
the training for the dynamic case, we propose a two-stage
teacher-student framework, that is conceptually inspired by
[9], which has been proven critical through experiments.

3. Background

3.1. Reinforcement Learning

MDP We formalize RL as a Markov Decision Process
(MDP), that consists of a 5-tuple M = (S,A,R, T , γ),
where S is the state space, A the action space, R a scalar
reward function, T a transition function that maps state-
action pairs to distributions over states, and γ a discount
factor. The goal is to find a policy that maximizes the
long-term reward: π∗ = argmaxπ E

∑t=T
t=0 γ

tR(st), with
st ∼ T (st−1,at−1) and at−1 ∼ π(st−1).

Learning Algorithm In this work, we use TD3 [21], a
common algorithm for continuous control. It is an actor-
critic method, which consists of a policy πθ(s) (actor) and a
Q-function approximator Qφ(s,a) (critic) that predicts the
expected return from a state-action pair. Both are repre-
sented by neural networks with parameters θ and φ. TD3 is
off-policy, and hence there is a replay buffer in which train-
ing transitions are stored. During training, both the actor
and critic are updated using samples from the buffer. To
update the critic, we minimize the Bellman error:

LBE(φ)=EM
[(
Qφ(st,at)−r(st,at)+γQφ(st+1,at+1)

)2]
(1)

For the actor network, the policy parameters are trained
to maximize the Q-values:

LDDPG(θ) = Eπ [Qφ(st,at)|st,at = πθ(st)] (2)

For more details, we refer the reader to [21].

3.2. HandoverSim Benchmark

HandoverSim [7] is a benchmark for evaluating H2R
handover policies in simulation. The task setting consists of
a tabletop with different objects, a Panda 7DoF robotic arm
with a gripper and a wrist-mounted RGB-D camera, and
a simulated human hand. The task starts with the human
grasping an object and moving it to a handover pose. The
robot should move to the object and grasp it. The task is suc-
cessful if the object has been grasped from the human with-
out collision and brought to a designated position without
dropping. To accurately model the human, trajectories from
the DexYCB dataset [8], which comprises a large amount
of human-object interaction sequences, are replayed in sim-
ulation. Several baselines [59,60,63] are provided for com-
parison. The setup in HandoverSim has only been used for
handover performance evaluation purposes, whereas in this
work we utilize it as a learning environment.

4. Method
The overall pipeline is depicted in Fig. 2 and consists

of three different modules: perception, vision-based con-
trol, and the handover environment. The perception module
receives egocentric visual information from the handover
environment and processes it into segmented point clouds.
The vision-based control module receives the point clouds
and predicts the next action for the robot and whether to ap-
proach or to grasp the object. This information is passed
to the handover environment, which updates the robot state
and sends the new visual information to the perception mod-
ule. Note that the input to our method comes from the wrist-
mounted camera, i.e., there is no explicit information, such
as object or hand pose, provided to the agent. We will now
explain each of the modules of our method in more detail.

4.1. Handover Environment

We split the handover task into two distinct phases (see
Fig. 2). First, during the approaching phase, the robot
moves to a pre-grasp pose that is close to the object by run-
ning the learned control policy π. A learned grasp predictor
σ continuously computes a grasp probability to determine
when the system can proceed to the second phase. Once
the pre-grasp pose is reached and the grasp prediction is
confident to take over the object from the human, the task
will switch to the grasping phase, in which the end-effector
moves forward to the final grasp pose in open-loop fashion
and closes the gripper to grasp the object. Finally, after ob-
ject grasping, the robot follows a predetermined trajectory
to retract to a base position and complete the episode. This
task logic is used in both our simulation environment and
the real robot deployment. Sequencing based on a pre-grasp
pose is widely used in literature for dynamic grasping [1].

We follow the HandoverSim task setup [7], where the hu-

Control Policy

PointNet++

Grasp
Prediction

actions

Handover Environment

Approaching phase Grasping Phase
Phase Selection

Depth
Image

Point Cloud

1. Move gripper
forward

2. Close
gripper

3. Retract

Perception Vision-Based Control

Egocentric Camera View

OR

Segmentation
Image

…

pr(grasp)

Figure 2. Method Overview. The Perception module takes egocentric RGB-D and segmentation images from the environment and
outputs a hand/object segmented point cloud. Next, the segmented point cloud is passed to the the Vision-based Control module and
processed by PointNet++ [45] to obtain a lower-dimensional representation. This embedding is used as input to both the control policy
and the grasp predictor. Each task episode in the Handover Environment follows two phases: during the approaching phase, the robot
moves towards a pre-grasp pose, driven by the control policy π that outputs end-effector actions a. A learned grasp predictor monitors the
motion and determines when the robot should switch into the grasping phase, which follows the steps: 1. moving the gripper forward from
a pre-grasp to a grasping pose 2. closing the gripper 3. retracting the object to a designated location, after which the episode ends.

man hand and objects are simulated by replaying data from
the DexYCB dataset [8] (see Sec. 3.2). First, actions a in
the form of the next 6DoF end-effector pose (translation and
rotation) are received from the policy π(a|s). We then con-
vert the end-effector pose into a target robot configuration
using inverse kinematics. Thereafter, we use PD-controllers
to compute torques, which are applied to the robot. Finally,
the visual information is rendered from the robot’s wrist-
mounted RGB-D camera and sent to the perception module.

4.2. Perception

Our policy network takes a segmented hand and object
point cloud as input. In the handover environment, we first
render an egocentric RGB-D image from the wrist camera.
Then we obtain the object point cloud po and hand point
cloud ph by overlaying the ground-truth segmentation mask
with the RGB-D image. Since the hand and object may not
always be visible from the current egocentric view, we keep
track of the last available point clouds. The latest available
point clouds are then sent to the control module.

4.3. Vision-Based Control

Input Representation Depending on the amount of
points contained in the hand point cloud ph and object point
cloud po, we down- or upsample them into constant size.
Next, we concatenate the two point clouds into a single
point cloud p and add two one-hot-encoded vectors to in-
dicate the locations of object and hand points within p. We
then encode the point cloud into a lower dimensional repre-
sentation ψ(p) by passing it through PointNet++ [45]. Fi-
nally, the lower dimensional encoding ψ(p) is passed on to
the control policy π and the grasp prediction network σ.

Control Policy The policy network π(a|ψ(p)) is a small,
two-layered MLP that takes the PointNet++ embedding as
input state (s = ψ(p)) and predicts actions a that corre-
spond to the change in 6DoF end-effector pose. These are
passed on to the handover environment.

Grasp Prediction We introduce a grasp prediction net-
work σ(ψ(p)) that predicts when the robot should switch
from approaching to executing the grasping motion (cf.
Fig. 2). We model grasp prediction as a binary classification
task. The input corresponds to the PointNet++ embedding
ψ(p), which is fed through a 3-layered MLP. The output
is a probability that indicates the likelihood of a successful
grasp given the current point cloud feature. If the probabil-
ity is above a tunable threshold, we execute an open-loop
grasping motion. The model is trained offline with pre-
grasp poses attained from [17]. We augment the dataset
by adding random noise to pre-grasp poses. To determine
the labels, we initialize the robot with the pre-grasp poses
in the physics simulation and execute the forward grasping
motion. The label is one if the grasp is successful, and zero
otherwise. We use a binary cross-entropy loss for training.

4.4. Two-Stage Teacher-Student Training

We aim at training a handover policy capable of mov-
ing simultaneously with the human. Training this policy
directly in the setting of dynamic motion is challenging
because expert demonstrations with open-loop planners to
guide training can only be obtained when the human is sta-
tionary. A key contribution of our work is a two-stage train-
ing scheme for handovers that incrementally trains the pol-
icy to alleviate this challenge. In the first stage, we pretrain

Pre RL Agent

Perception Control
Replay
Buffer

Planned TrajectoryOMG Planner

Network Training

Pretraining

Perception Control

perception input

Replay
Buffer

Finetuning

Perception Expert Control

perception input

OMG Motion Planner
Replay
Buffer

Pretraining in Sequential Setting

Finetuning in Simultaneous Setting

Replay
Buffer

Hand comes
to a stop.

Expert RL Agent

RL Agent

Robot and hand
move simultaneously.

Robot approaches
stopped hand.

…
…

PointNet++

…

PointNet++ …

Actor Network

… …

…

actions
Batch

behavior cloning

Q-values
actor update

critic update

…

goal prediction loss

goal prediction loss

…

goals

…

goals

Based on Training Phase

Critic NetworkFreeze

Train

Figure 3. Training Procedure. In the pretraining stage (top left box), the human hand is stationary. We alternate between collecting
expert demonstrations via motion planning and exploration data with the RL policy πpre. Transitions d are stored in a replay buffer D.
During training (green box, right), a batch of randomly sampled transitions from the replay buffer is passed through PointNet++ and the
actor and critic networks. In the finetuning stage (bottom left box), the human and robot move concurrently. The expert motion planner is
replaced by the expert policy πexp, which shares the weights of the pretrained policy πpre. This policy network will be kept frozen for the
rest of training and serves as a regularizer for the RL agent. The RL agent’s actor network π∗ and critic network Q∗ are also initialized
with the weights of pretrained agent’s networks, but the model will be updated during finetuning. In this stage, transitions are stored in a
new replay buffer D∗. Data is sampled solely from this buffer during finetuning.

in a setting where the robot only starts moving once the hu-
man has stopped (sequential). This pretrained policy is fur-
ther finetuned in the second stage in which the human and
robot move simultaneously (simultaneous).

Pretraining in Sequential Setting In the sequential set-
ting, the robot starts moving once the human has come
to a stop (see Fig. 3, top left). To grasp the object from
the stationary human hand, we leverage motion planning
to provide expert demonstrations. During data collection,
we alternate between motion planning and RL-based ex-
ploration. In both cases, we store the transitions dt =
{pt,at,gt, rt,pt+1, et} in a replay buffer D, from which
we sample during network training. The term pt and pt+1

indicate the point cloud and the next point cloud, at the ac-
tion, gt the pre-grasp goal pose, rt the reward, and et an
indicator of whether the transition is from the expert.

Inspired by [60], we collect expert trajectories with the
OMG planner [59] that leverages ground-truth states. Note
that some expert trajectories generated by the planner result
in collision with the hand, which is why we introduce an
offline pre-filtering scheme. We first parse the ACRONYM
dataset [16] for potential grasps. We then run collision
checking to filter out grasps where the robot and human
hand collide. For the set of remaining collision-free grasps,
we plan trajectories to grasp the object and execute them in
open-loop fashion. On the other hand, the RL policy πpre
explores the environment and receives a sparse reward, i.e.,
the reward is one if the task is completed successfully, oth-

erwise zero. Hence, collisions with the human will get im-
plicitly penalized by not receiving any positive reward.

Finetuning in Simultaneous Setting In this setting, the
human and robot move at the same time. Hence, we can-
not rely on motion and grasp planning to guide the policy.
On the other hand, simply taking the pre-trained policy πpre
from the sequential setting and continue training it with-
out an expert leads to an immediate drop in performance.
Hence, we introduce a self-supervision scheme for stabil-
ity reasons, i.e., we want to keep the finetuning policy close
to the pre-trained policy. To this end, we replace the ex-
pert planner from the sequential setting by an expert policy
πexp, which is initialized with the weights of the pre-trained
policy πpre that already provides a reasonable prior policy
(see Fig. 3 bottom left). Therefore, we have two policies:
i) the expert policy πexp as proxy for the motion and grasp-
ing planner. We freeze the network weights of this policy,
ii) the finetuning policy π∗ and critic Q∗, which are ini-
tialized with the weights of the pre-trained policy πpre and
critic Qpre, respectively. We proceed to train these two net-
works using the loss functions which we describe next.

Network Training During training, we sample a batch of
random transitions from the replay buffer D. The policy
network is trained using a combination of behavior cloning,
RL-based losses and an auxiliary objective. In particular,
the policy is updated using the following loss function:

L(θ) = λLBC + (1− λ)LDDPG + LAUX, (3)

success (%)
mean accum time (s) failure (%)

exec plan total contact drop timeout total
Se

qu
en

tia
l OMG Planner [59] † 62.50 8.309 1.414 9.722 27.78 8.33 1.39 37.50

Yang et al. [63] † 64.58 4.864 0.036 4.900 17.36 11.81 6.25 35.42
GA-DDPG [60] 50.00 7.139 0.142 7.281 4.86 19.44 25.69 50.00
GA-DDPG [60] finetuned 57.18 6.324 0.086 6.411 6.48 27.08 9.26 42.82
Ours 75.23 7.743 0.177 7.922 9.26 13.43 2.08 24.77

Si
m

ul
t. GA-DDPG [60] 36.81 4.664 0.132 4.796 9.03 25.00 29.17 63.19

GA-DDPG [60] finetuned 54.86 4.832 0.082 4.914 6.71 26.39 12.04 45.14
Ours 68.75 6.232 0.178 6.411 8.80 17.82 4.63 31.25

Table 1. HandoverSim Benchmark Evaluation. Comparison of our method against various baselines from the HandoverSim benchmark
[7]. In the sequential setting, we find that our baseline achieves better overall success rates than the baselines. In the simultaneous
setting, we outperform the applicable baselines by large margins. The results for our method are averaged across 3 random seeds. †: both
methods [59, 63] are evaluated with ground-truth states in [7] and thus are not directly comparable with ours.

where LBC is a behavior cloning loss that keeps the policy
close to the expert policy, LDDPG is the standard actor-critic
loss described in Eq. 2, and LAUX is an auxiliary objective
that predicts the grasping goal pose of the end-effector. The
coefficient λ balances the behavior cloning and the RL ob-
jective. The critic loss is defined as:

L(φ) = LBE + LAUX, (4)

where LBE indicates the Bellman error from Eq. 1 and LAUX
is the same auxiliary loss used in Eq. 3. We refer the reader
to supplementary material or [60] for more details.

5. Experiments
We first evaluate our approach in simulation using the

HandoverSim benchmark (Sec. 5.1). Next, we investigate
the performance of sim-to-sim transfer by evaluating the
trained models on the test environments powered by a dif-
ferent physics engine (Sec. 5.2). Finally, we apply the
trained model to a real-world robotic system and analyze
the performance of sim-to-real transfer (Sec. 5.3).

5.1. Simulation Evaluation

Setup HandoverSim [7] contains 1,000 unique H2R han-
dover scenes divided into train, val, and test splits. Each
scene contains a unique human handover motion. We eval-
uate on the “s0” setup which contains 720 training and 144
testing scenes. See the supp. material for evaluations on un-
seen objects, subjects, and handedness. Following the eval-
uation of GA-DDPG [60] in [7], we consider two settings:
(1) the “sequential” setting where the robot is allowed to
move only after the human hand reaches the handover loca-
tion and remains static there (i.e., “hold” in [7]), and (2) the
“simulataneous” setting where the robot is allowed to move
from the beginning of the episode (i.e., “w/o hold” in [7]).

Metrics We follow the evaluation protocol in Handover-
Sim [7]. A handover is considered successful if the robot
grasps the object from the human hand and moves it to a
designated location. A failure is claimed and the episode

is terminated if any of the following three conditions oc-
cur: (1) the robot collides with the hand (contact), (2) the
robot drops the object (drop), or (3) a maximum time limit
is reached (timeout). Besides efficacy, the benchmark also
reports efficiency in time. The time metric is further bro-
ken down into (1) the execution time (exec), i.e., the time to
physically move the robot, and (2) the planning time (plan),
i.e., the time spent on running the policy. All reported met-
rics are averaged over the rollouts on the test scenes.

Baselines Our primary baseline is GA-DDPG [60]. Be-
sides comparing with the original model (i.e., trained in [60]
for table-top grasping and evaluated in [7]), we additionally
compare with a variant finetuned on HandoverSim (“GA-
DDPG [60] finetuned”). For completeness, we also include
two other baselines from [7]: “OMG Planner [59]” and
“Yang et al. [63]”. However, both of them are evaluated
with ground-truth state input in [7] and thus are not directly
comparable with our method.

Results Tab. 1 reports the evaluation results on the test
scenes. In the sequential setting, our method significantly
outperforms all the baselines in terms of success rate, even
compared to methods that use state-based input. Our
method is slightly slower on average than GA-DDPG in
terms of total time needed for handovers. In the simulta-
neous setting, our method clearly outperforms GA-DDPG,
which has low success rates. Qualitatively, we observe that
GA-DDPG directly tries to grasp the object from the user
while it is still moving, while our method follows the hand
and finds a feasible grasp once the hand has come to a stop,
resulting in a trade-off on the overall execution time. We
provide a qualitative example of this behavior in Fig. 4
(a) and in the supplementary video. We also refer to the
supp. material for a discussion of limitations and a robust-
ness analysis of our pipeline under noisy observations.

Ablations We evaluate our design choices in an ablation
study and report the results in Tab. 2. We analyze the vision
backbone by replacing PointNet++ with a ResNet18 [27]

t t + n

Ours

GA-DDPG

1. human hand moves an object, simultaneously
the robot reaches for the object.

2. Robot arm reaches
pre-grasp pose.

3. Ours finds a pre-grasp pose,
the baseline grasps directly.

 4. Ours grasps the object,
while the baselines collides

a) Simultaneous -
Unseen Motions

Ours

GA-DDPG

1. Human hand reaches for an object, simultaneously
the robot arm moves to grab it from the human.

2. Robot arm tries to
reach pre-grasp pose.

3. Ours finds a pre-grasp
pose. The baseline misses.

 4. The object is successfully
grasped in ours.

b) Sim to Sim

Ours

GA - DDPG

1. User Grabs box 2. Handover 3. Our method has a better grasp. 4. Therefore, unlike the baseline, it
successfully holds the object.

c) Sim to Real

Figure 4. Qualitative results. We provide a comparison to show our methods’ advantages over GA-DDPG [60]. (a) Our method reacts to
the moving human, while the baseline tries to go for a grasp directly, which leads to collision. (b) In the sim-to-sim transfer, we often find
that the baseline does not find a grasp on the object. (c) In the sim-to-real experiment, GA-DDPG usually tries to get to a grasp directly,
while our method adjusts the gripper into a stable grasping pose first. See the video in supp. material for more qualitative examples.

Ablation Study

success (%)
failure (%)

contact drop timeout
w/ RGBDM + ResNet18 34.10 6.20 45.80 13.90
w/ third person view 60.42 9,95 25.69 3.94
w/o hand point cloud 59.03 24.07 11.58 5.32
w/o aux prediction 70.60 10.65 16.20 2.54
w/o standoff 52.55 7.87 36.80 2.78
w/o finetuning 73.38 9.03 13.89 3.70
Ours 75.23 9.26 13.43 2.08
w/o finetuning simult. 62.27 11.81 20.37 5.56
Ours simult. 68.75 8.8 17.82 4.63

Table 2. Ablation. We ablate the vision backbone, hand percep-
tion, and egocentric view. We also study the effect of finetuning,
the auxiliary prediction, and splitting the task into two phases. All
design choices are crucial aspects of our method with regards to
overall performance. Results are averaged over 3 random seeds.

that processes the RGB and depth/segmentation (DM) im-
ages. Similar to the findings in GA-DDPG, the PointNet++
backbone performs better. Next, we train our method from
third person view instead of egocentric view and without ac-
tive hand segmentation (w/o hand point cloud), i.e., the pol-
icy only perceives the object point cloud but not the hand
point cloud. We also ablate the auxiliary prediction (w/o
aux prediction) and evaluate a variant that directly learns to
approach and grasp the object instead of using the two task
phases of approaching and grasping (w/o standoff). Lastly,
we compare against our pretrained model, which was only
trained in the sequential setting without finetuning (w/o fine-
tuning). We find that the ablated components comprise im-
portant elements of our method. The results indicate an in-

Sim-to-Sim

success (%)
failure (%)

contact drop timeout

Se
qu

en
tia

l GA-DDPG [60] 19.44 4.86 47.22 28.47
GA-DDPG [60] finetuned 11.81 6.25 68.75 13.19
Ours 44.21 9.49 40.51 5.79
Ours w/o grasp 54.40 7.87 33.34 4.40

Si
m

ul
t.

GA-DDPG [60] 11.11 15.97 48.61 24.31
GA-DDPG [60] finetuned 16.67 9.72 63.89 9.72
Ours 39.58 9.03 43.75 7.64
Ours w/o grasp pred. 47.92 10.65 35.88 5.56

Table 3. Sim-to-Sim Experiment. We evaluate sim-to-sim trans-
fer of the learning-based method to Isaac Gym [35], Our method
shows better transfer capabilities than GA-DDPG [60].

creased amount of hand collision or object drop in all abla-
tions. A closer analysis in the simultaneous setting shows
that our finetuned model outperforms the pretrained model.

5.2. Sim-to-Sim Transfer

Instead of directly transferring to the real world, we first
evaluate the robustness of the models by transferring them
to a different physics simulator. We re-implement the Han-
doverSim environment following the mechanism presented
in [7] except for replacing the backend physics engine from
Bullet [12] to Isaac Gym [35]. We then evaluate the models
trained on the original Bullet-based environment on the test
scenes powered by Isaac Gym. The results are presented in
Tab. 3. We observe a significant drop for GA-DDPG on the
success rates (i.e., to below 20%) in both settings. Qualita-
tively, we see that grasps are often either missed completely
or only partially grasped (see Fig. 4 (b)). On the other hand,
our method is able to retain higher success rates. Expect-
edly, it also suffers from a loss in performance. We analyze
the influence of our grasp predictor on transfer performance
and compare against a variant where we execute the grasp-
ing motion after a fixed amount of time (Ours w/o grasp
pred.), which will leave the robot enough time to find a pre-
grasp pose. Part of the performance drop is caused by the
grasp predictor initiating the grasping phase at the wrong
time, which can be improved upon in future work.

5.3. Sim-to-Real Transfer

Finally, we deploy the models trained in Handover-
Sim on a real robotic platform. We follow the perception
pipeline used in [60,63] to generate segmented hand and ob-
ject point clouds for the policy, and use the output to update
the end effector’s target position. We compare our method
against GA-DDPG [60] with two sets of experiments: (1)
a pilot study with controlled handover poses and (2) a user
evaluation with free-form handovers. For experimental de-
tails and the full results, please see the supp. material.

Pilot Study We first conduct a pilot study with two sub-
jects. The subjects are instructed to handover 10 objects
from HandoverSim by grasping and presenting the objects
in controlled poses. For each object, we test with 6 poses

Subject 1 Subject 2
GA-DDPG Ours GA-DDPG Ours[60] [60]

011 banana 3 / 6 6 / 6 6 / 6 5 / 6
037 scissors 2 / 6 5 / 6 3 / 6 5 / 6
006 mustard bottle 1 / 6 3 / 6 2 / 6 4 / 6
024 bowl 3 / 6 4 / 6 3 / 6 3 / 6
040 large marker 0 / 6 4 / 6 4 / 6 5 / 6
003 cracker box 3 / 6 2 / 6 0 / 6 2 / 6
052 extra large clamp 1 / 6 4 / 6 5 / 6 5 / 6
008 pudding box 3 / 6 6 / 6 4 / 6 4 / 6
010 potted meat can 2 / 6 2 / 6 3 / 6 4 / 6
021 bleach cleanser 3 / 6 5 / 6 3 / 6 4 / 6
total 21 / 60 41 / 60 33 / 60 41 / 60

Table 4. Sim-to-Real Experiment. Success rates of the pilot
study. Our method outperforms GA-DDPG [60] for both subjects.

(3 poses for each hand) with varying object orientation and
varying amount of hand occlusion, resulting in 60 poses per
subject. The same set of poses are used in testing both our
model and GA-DDPG [60]. The success rates are shown
Tab. 4. Results indicate that our method outperforms GA-
DDPG [60] for both subjects on the overall success rate
(i.e., 41/60 versus 21/60 for Subject 1). Qualitatively, we
observe that GA-DDPG [60] tends to fail more from unsta-
ble grasping as well as hand collision. Fig. 4 (c) shows two
examples of the real world handover trials.

User Evaluation We further recruited 6 users to compare
the two methods and collected feedback from a question-
naire with Likert-scale and open-ended questions. In con-
trast to the pilot study, we asked the users to handover the 10
objects in ways that are most comfortable to them. We re-
peated the same experimental process for both methods, and
counterbalanced the order to avoid bias. From participants’
feedback, the majority agreed that the timing of our method
is more appropriate and our method can adjust between dif-
ferent object poses better. The interpretability of the robot’s
motion was also acknowledged by their comments. Please
see the supp. material for more details.

6. Conclusion

In this work, we have presented a learning-based frame-
work for human-to-robot handovers from vision input with
a simulated human-in-the-loop. We have introduced a two-
stage teacher-student training procedure. In our experi-
ments we have shown that our method outperforms base-
lines by a significant margin on the HandoverSim bench-
mark [7]. Furthermore, we have demonstrated that our
approach is more robust when transferring to a different
physics simulator and a real robotic system.

Acknowledgements We thank Tao Chen and Adithyavaira-
van Murali for laying the groundwork, Lirui Wang for the help
with GA-DDPG, and Mert Albaba, Christoph Gebhardt, Thomas
Langerak and Juan Zarate for their feedback on the manuscript.

References
[1] Iretiayo Akinola, Jingxi Xu, Shuran Song, and Peter K Allen.

Dynamic grasping with reachability and motion awareness.
In IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2021. 3

[2] Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun
Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee. Sim-
to-real transfer for vision-and-language navigation. In Con-
ference on Robot Learning (CoRL), 2021. 1

[3] Marco Bagatella, Sammy Christen, and Otmar Hilliges. SFP:
State-free priors for exploration in off-policy reinforcement
learning. Transactions on Machine Learning Research,
2022. 22

[4] Antonio Bicchi and Vijay Kumar. Robotic grasping and
contact: A review. In IEEE International Conference on
Robotics and Automation (ICRA), 2000. 2

[5] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Dan-
ica Kragic. Data-driven grasp synthesis—a survey. IEEE
Transactions on Robotics (T-RO), 2013. 2

[6] Samarth Brahmbhatt, Chengcheng Tang, Christopher D.
Twigg, Charles C. Kemp, and James Hays. ContactPose: A
dataset of grasps with object contact and hand pose. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), August 2020. 2

[7] Yu-Wei Chao, Chris Paxton, Yu Xiang, Wei Yang, Bal-
akumar Sundaralingam, Tao Chen, Adithyavairavan Murali,
Maya Cakmak, and Dieter Fox. HandoverSim: A simulation
framework and benchmark for human-to-robot object han-
dovers. In IEEE International Conference on Robotics and
Automation (ICRA), 2022. 2, 3, 6, 8, 12, 13, 14, 15

[8] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov,
Ankur Handa, Jonathan Tremblay, Yashraj S. Narang, Karl
Van Wyk, Umar Iqbal, Stan Birchfield, Jan Kautz, and Dieter
Fox. DexYCB: A benchmark for capturing hand grasping
of objects. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 2,
3, 4, 13

[9] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for gen-
eral in-hand object re-orientation. In Conference on Robot
Learning (CoRL), 2021. 3

[10] Sammy Christen, Muhammed Kocabas, Emre Aksan, Jemin
Hwangbo, Jie Song, and Otmar Hilliges. D-grasp: Physi-
cally plausible dynamic grasp synthesis for hand-object in-
teractions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 16

[11] Sammy Christen, Stefan Stevsic, and Otmar Hilliges.
Demonstration-guided deep reinforcement learning of con-
trol policies for dexterous human-robot interaction. In
IEEE International Conference on Robotics and Automation
(ICRA), 2019. 2

[12] Erwin Coumans and Yunfei Bai. PyBullet: a Python mod-
ule for physics simulation for games, robotics and machine
learning. https://pybullet.org, 2016–2021. 2, 8

[13] Matt Deitke, Dhruv Batra, Yonatan Bisk, Tommaso Campari,
Angel X Chang, Devendra Singh Chaplot, Changan Chen,
Claudia Pérez-D’Arpino, Kiana Ehsani, Ali Farhadi, et al.

Retrospectives on the embodied ai workshop. arXiv preprint
arXiv:2210.06849, 2022. 1

[14] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha
Kembhavi, Eric Kolve, Roozbeh Mottaghi, Jordi Salvador,
Dustin Schwenk, Eli VanderBilt, Matthew Wallingford, Luca
Weihs, Mark Yatskar, and Ali Farhadi. RoboTHOR: An open
simulation-to-real embodied AI platform. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1

[15] Haonan Duan, Peng Wang, Yiming Li, Daheng Li, and Wei
Wei. Learning human-to-robot dexterous handovers for an-
thropomorphic hand. IEEE Transactions on Cognitive and
Developmental Systems (TCDS), 2022. 2

[16] Clemens Eppner, Arsalan Mousavian, and Dieter Fox.
ACRONYM: A large-scale grasp dataset based on simula-
tion. In IEEE International Conference on Robotics and Au-
tomation (ICRA), 2021. 5, 13

[17] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. A bil-
lion ways to grasp: An evaluation of grasp sampling schemes
on a dense, physics-based grasp data set. In Robotics Re-
search: The 19th International Symposium (ISRR). Springer,
2022. 4

[18] Zackory Erickson, Vamsee Gangaram, Ariel Kapusta,
C. Karen Liu, and Charles C. Kemp. Assistive Gym: A
physics simulation framework for assistive robotics. In
IEEE International Conference on Robotics and Automation
(ICRA), 2020. 2

[19] Zicong Fan, Adrian Spurr, Muhammed Kocabas, Siyu Tang,
Michael Black, and Otmar Hilliges. Learning to disam-
biguate strongly interacting hands via probabilistic per-pixel
part segmentation. In International Conference on 3D Vision
(3DV), 2021. 22

[20] Zicong Fan, Omid Taheri, Dimitrios Tzionas, Muhammed
Kocabas, Manuel Kaufmann, Michael J. Black, and Otmar
Hilliges. ARCTIC: A dataset for dexterous bimanual hand-
object manipulation. In Proceedings IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 2

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing
function approximation error in actor-critic methods. In In-
ternational Conference on Machine Learning (ICML), 2018.
3, 14

[22] Chuang Gan, Jeremy Schwartz, Seth Alter, Damian Mrowca,
Martin Schrimpf, James Traer, Julian De Freitas, Jonas Ku-
bilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano,
Kuno Kim, Elias Wang, Michael Lingelbach, Aidan Curtis,
Kevin Feigelis, Daniel Bear, Dan Gutfreund, David Cox, An-
tonio Torralba, James J. DiCarlo, Josh Tenenbaum, Josh Mc-
Dermott, and Dan Yamins. ThreeDWorld: A platform for in-
teractive multi-modal physical simulation. In NeurIPS Track
on Datasets and Benchmarks. 2021. 1

[23] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul
Baek, and Tae-Kyun Kim. First-person hand action bench-
mark with RGB-D videos and 3D hand pose annotations. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2018. 2

[24] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-
cent Lepetit. HOnnotate: A method for 3D annotation of

https://pybullet.org

hand and object poses. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2

[25] Ankur Handa, Thomas Whelan, John McDonald, and An-
drew J Davison. A benchmark for rgb-d visual odometry, 3d
reconstruction and slam. In IEEE International Conference
on Robotics and Automation (ICRA), 2014. 14

[26] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-
vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.
Learning joint reconstruction of hands and manipulated ob-
jects. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016. 6

[28] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz,
Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan
Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey
Levine. QT-Opt: Scalable deep reinforcement learning for
vision-based robotic manipulation. In Conference on Robot
Learning (CoRL), 2018. 3

[29] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, International Conference on Learning Representa-
tions (ICLR), 2015. 14

[30] Kilian Kleeberger, Richard Bormann, Werner Kraus, and
Marco F. Huber. A survey on learning-based robotic grasp-
ing. Current Robotics Reports, 2020. 2

[31] Thomas Langerak, Sammy Christen, Mert Albaba,
Christoph Gebhardt, and Otmar Hilliges. Marlui: Multi-
agent reinforcement learning for goal-agnostic adaptive uis.
arXiv preprint arXiv:2209.12660, 2022. 22

[32] Kailin Li, Lixin Yang, Xinyu Zhan, Jun Lv, Wenqiang Xu,
Jiefeng Li, and Cewu Lu. ArtiBoost: Boosting articulated
3D hand-object pose estimation via online exploration and
synthesis. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[33] Shaowei Liu, Hanwen Jiang, Jiarui Xu, Sifei Liu, and Xi-
aolong Wang. Semi-supervised 3D hand-object poses es-
timation with interactions in time. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2

[34] Yunze Liu, Yun Liu, Che Jiang, Kangbo Lyu, Weikang Wan,
Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, and Li Yi.
HOI4D: A 4D egocentric dataset for category-level human-
object interaction. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 2

[35] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac Gym: High performance gpu-based physics sim-
ulation for robot learning. In NeurIPS Track on Datasets and
Benchmarks. 2021. 2, 8

[36] Naresh Marturi, Marek Kopicki, Alireza Rastegarpanah, Vi-
jaykumar Rajasekaran, Maxime Adjigble, Rustam Stolkin,

Aleš Leonardis, and Yasemin Bekiroglu. Dynamic grasp and
trajectory planning for moving objects. Autonomous Robots,
2019. 2

[37] Andrew T Miller and Peter K Allen. Graspit! a versatile
simulator for robotic grasping. IEEE Robotics & Automation
Magazine (RAM), 2004. 2

[38] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,
and Kyoung Mu Lee. InterHand2.6M: A dataset and base-
line for 3D interacting hand pose estimation from a single
RGB image. In Proceedings of the European Conference on
Computer Vision (ECCV), 2020. 2

[39] Douglas Morrison, Peter Corke, and Jürgen Leitner. Closing
the loop for robotic grasping: A real-time, generative grasp
synthesis approach. In Proceedings of Robotics: Science and
Systems (RSS), 2018. 2

[40] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-
DOF GraspNet: Variational grasp generation for object ma-
nipulation. In IEEE/CVF International Conference on Com-
puter Vision (ICCV), 2019. 2, 13

[41] Valerio Ortenzi, Akansel Cosgun, Tommaso Pardi, Wesley P.
Chan, Elizabeth Croft, and Dana Kulić. Object handovers: A
review for robotics. IEEE Transactions on Robotics (T-RO),
2021. 1

[42] Yik Lung Pang, Alessio Xompero, Changjae Oh, and An-
drea Cavallaro. Towards safe human-to-robot handovers
of unknown containers. In IEEE International Conference
on Robot & Human Interactive Communication (RO-MAN),
2021. 2

[43] Claudia Pérez-D’Arpino, Can Liu, Patrick Goebel, Roberto
Martı́n-Martı́n, and Silvio Savarese. Robot navigation in
constrained pedestrian environments using reinforcement
learning. In IEEE International Conference on Robotics and
Automation (ICRA), 2021. 2

[44] Xavier Puig, Tianmin Shu, Shuang Li, Zilin Wang, Yuan-
Hong Liao, Joshua B. Tenenbaum, Sanja Fidler, and Antonio
Torralba. Watch-And-Help: A challenge for social percep-
tion and human-AI collaboration. In International Confer-
ence on Learning Representations (ICLR), 2021. 2

[45] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. PointNet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2017. 4, 14

[46] Nathan D. Ratliff, Jan Issac, Daniel Kappler, Stan Birchfield,
and Dieter Fox. Riemannian motion policies. arXiv preprint
arXiv:1801.02854, 2018. 16

[47] Patrick Rosenberger, Akansel Cosgun, Rhys Newbury, Jun
Kwan, Valerio Ortenzi, Peter Corke, and Manfred Grafin-
ger. Object-independent human-to-robot handovers using
real time robotic vision. IEEE Robotics and Automation Let-
ters (RA-L), 2021. 2

[48] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction to
no-regret online learning. In Proceedings of the Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS), 2011. 13

[49] Ricardo Sanchez-Matilla, Konstantinos Chatzilygeroudis,
Apostolos Modas, Nuno Ferreira Duarte, Alessio Xom-
pero, Pascal Frossard, Aude Billard, and Andrea Cavallaro.

Benchmark for human-to-robot handovers of unseen con-
tainers with unknown filling. IEEE Robotics and Automation
Letters (RA-L), 2020. 2

[50] Bokui Shen, Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n,
Linxi Fan, Guanzhi Wang, Claudia Pérez-D’Arpino, Shya-
mal Buch, Sanjana Srivastava, Lyne Tchapmi, Micael
Tchapmi, Kent Vainio, Josiah Wong, Li Fei-Fei, and Silvio
Savarese. iGibson 1.0: A simulation environment for interac-
tive tasks in large realistic scenes. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2021.
1

[51] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. ALFRED: A benchmark for interpreting
grounded instructions for everyday tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 1

[52] Shuran Song, Andy Zeng, Johnny Lee, and Thomas
Funkhouser. Grasping in the wild: Learning 6DoF closed-
loop grasping from low-cost demonstrations. IEEE Robotics
and Automation Letters (RA-L), 2020. 3

[53] Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martı́n-Martı́n, Fei Xia, Kent Vainio, Zheng
Lian, Cem Gokmen, Shyamal Buch, C. Karen Liu, Silvio
Savarese, Hyowon Gweon, Jiajun Wu, and Li Fei-Fei. BE-
HAVIOR: Benchmark for everyday household activities in
virtual, interactive, and ecological environments. In Confer-
ence on Robot Learning (CoRL), 2021. 1

[54] Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wi-
jmans, Yili Zhao, John Turner, Noah Maestre, Mustafa
Mukadam, Devendra Singh Chaplot, Oleksandr Maksymets,
Aaron Gokaslan, Vladimı́r Vondruš, Sameer Dharur,
Franziska Meier, Wojciech Galuba, Angel Chang, Zsolt
Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, and
Dhruv Batra. Habitat 2.0: Training home assistants to rear-
range their habitat. In Advances in Neural Information Pro-
cessing Systems (NeurIPS). 2021. 1

[55] Omid Taheri, Nima Ghorbani, Michael J. Black, and Dim-
itrios Tzionas. GRAB: A dataset of whole-body human
grasping of objects. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2020. 2

[56] Tze Ho Elden Tse, Kwang In Kim, Ales Leonardis, and
Hyung Jin Chang. Collaborative learning for hand and ob-
ject reconstruction with attention-guided graph convolution.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1664–1674, 2022. 22

[57] Nikola Vulin, Sammy Christen, Stefan Stevšić, and Otmar
Hilliges. Improved learning of robot manipulation tasks via
tactile intrinsic motivation. IEEE Robotics and Automation
Letters (RA-L), 2021. 22

[58] Chen Wang, Claudia Pérez-D’Arpino, Danfei Xu, Li Fei-Fei,
C. Karen Liu, and Silvio Savarese. Learning diverse strate-
gies for human-robot collaboration. In Conference on Robot
Learning (CoRL), 2021. 2

[59] Lirui Wang, Yu Xiang, and Dieter Fox. Manipulation tra-
jectory optimization with online grasp synthesis and selec-
tion. In Proceedings of Robotics: Science and Systems (RSS),
2020. 2, 3, 5, 6, 13, 15

[60] Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and
Dieter Fox. Goal-auxiliary actor-critic for 6D robotic grasp-
ing with point clouds. In Conference on Robot Learning
(CoRL), 2021. 2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 17, 20,
21, 23

[61] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,
He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and
Hao Su. SAPIEN: A SimulAted Part-based Interactive EN-
vironment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2020. 1

[62] Yu Xiang, Tanner Schmidt, Venkatraman Nafurayanan, and
Dieter Fox. PoseCNN: A convolutional neural network for
6D object pose estimation in cluttered scenes. In Proceed-
ings of Robotics: Science and Systems (RSS), 2018. 17, 18,
19

[63] Wei Yang, Chris Paxton, Arsalan Mousavian, Yu-Wei Chao,
Maya Cakmak, and Dieter Fox. Reactive human-to-robot
handovers of arbitrary objects. In IEEE International Con-
ference on Robotics and Automation (ICRA), 2021. 2, 3, 6,
8, 15, 16

[64] Wei Yang, Balakumar Sundaralingam, Chris Paxton, Ire-
tiayo Akinola, Yu-Wei Chao, Maya Cakmak, and Dieter
Fox. Model predictive control for fluid human-to-robot han-
dovers. In IEEE International Conference on Robotics and
Automation (ICRA), 2022. 2

[65] Ruolin Ye, Wenqiang Xu, Zhendong Xue, Tutian Tang, Yan-
feng Wang, and Cewu Lu. H2O: A benchmark for visual
human-human object handover analysis. In IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), 2021.
2

[66] R. Ye, W. Xu, Z. Xue, T. Tang, Y. Wang, and C. Lu. H2o: A
benchmark for visual human-human object handover anal-
ysis. In IEEE/CVF International Conference on Computer
Vision (ICCV), 2021. 2

[67] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Tsung-
Yi Lin, Alberto Rodriguez, and Phillip Isola. NeRF-
Supervision: Learning dense object descriptors from neural
radiance fields. In IEEE Conference on Robotics and Au-
tomation (ICRA), 2022. 22

[68] Andrea Ziani, Zicong Fan, Muhammed Kocabas, Sammy
Christen, and Otmar Hilliges. Tempclr: Reconstructing
hands via time-coherent contrastive learning. In Interna-
tional Conference on 3D Vision (3DV), 2022. 22

Appendix - Supplementary Material
The supplementary material of this work contains a video and

this document. See the table of contents below for an overview.
The video and code are available at https://handover-

sim2real.github.io/.

Contents

A. Method Details 12
A.1. Task and Method 12
A.2. Loss Functions 12
A.3. Training Details 13

B. Implementation Details 14
B.1. Network architecture 14
B.2. Training Information 14

C. Additional Simulation Evaluation 14

D. Sim-to-Real Transfer 16
D.1. System Setup . 16
D.2. Pilot Study . 17
D.3. User Evaluation 17

E. Limitations and Future Work 22

A. Method Details
A.1. Task and Method

Action Space Actions are defined as transformations of the
end-effector pose. In particular, an action contains the relative
transformation of the 3D translation and 3D rotation of the end-
effector. More formally, given the current gripper pose Tt ∈
SE(3) at time t, the policy π predicts an action at = Tπ that indi-
cates the relative transformation of the end-effector. The next end-
effector pose it then computed by transforming the current pose
Tt+1 = TtTπ . We then use inverse kinematics to compute the
next robot pose that is sent to the PD-controllers of the physics
engine.

Goal Space Goals are defined in a similar way. They corre-
spond to the relative transformation between the current 6DoF
end-effector pose Tt and the pre-grasp pose Tpre, i.e., gt =
TpreT −1

t . Note that in contrast to related work [60], we define the
goal as the pre-grasp pose from where the object can be grasped
via a forward grasping motion (see main paper Sec. 4.1) instead
of the actual grasp pose.

Reward Function We use a sparse reward function. The re-
ward is 1 if a task has been successfully completed, i.e., the robot
has successfully taken over the object from the human and moved
it to a predefined goal region (see red sphere in Fig. 5) without
dropping or collision with the human hand. The reward is 0 in all
other cases. If the robot collides with the human hand or the object
is dropped, the episode terminates early and the reward stays 0.

Figure 5. The simulation environment from HandoverSim. The
red sphere indicates the goal region. Image source: Chao et al. [7].

Grasping Phase The grasping phase comprises the forward
motion from the pre-grasp pose to the grasp pose, the closing of
the gripper, and the retraction of the object (see Fig. 6). The for-
ward motion moves the end-effector 8 cm into the z-direction of
the gripper. Then, the gripper is closed to grasp the object. Finally,
a retraction trajectory is executed in open-loop fashion to bring
the object into a goal location. We compute the trajectory by lin-
early interpolating the path between the end-effector and the end-
effector goal location, and then transform the trajectory into robot
poses using inverse kinematics. Note that the grasping phase is
non-learning based and purely based on heuristics and open-loop
control.

Perception Module To transform the segmented object point
cloud po and hand point cloud ph into a single point cloud p of
constant size, we down- or up-sample both point clouds. Since
there are usually more points contained in the segmented object
point cloud (e.g., due to the hand being occluded), we use a ra-
tio of 87.5% to 12.5% for the object and hand point clouds when
sampling the single point cloud p. We add two one-hot encoded
vectors to the point cloud p to indicate which points are from the
object or hand point clouds, respectively. We keep track of the lat-
est available point cloud pt−1. If there is no point cloud available
at time t, we use the latest available point cloud pt = pt−1.

A.2. Loss Functions
We provide a more detailed description of the loss functions

used to train our method. We mostly follow the description of [60].

Policy Loss As stated in the main paper (Eq. 3), our loss func-
tion for the policy is defined as:

L(θ) = λLBC + (1− λ)LDDPG + LAUX. (5)

We first introduce the point matching loss function [?]:

LPOSE(T1, T2) =
1

|Xg|
∑
x∈Xg

||T1(x)− T2(x)||1, (6)

where Xg is a set of pre-defined points on the end effector. The
loss computes the L1 norm between of these points after applying

https://handover-sim2real.github.io/
https://handover-sim2real.github.io/

2. Move gripper
forward

3. Reach grasp
pose

4. Close gripper1. Pre-grasp pose 5. Retract

Figure 6. The grasping phase starts with a forward grasping motion that moves the end-effector from a pre-grasp pose to a grasp pose, then
grasps the object, and finally moves it to a pre-defined goal region.

pose transformations T1 and T2 to the end-effector. The behavior
cloning loss is defined as :

LBC(a∗,a) = LPOSE(a∗,a). (7)

The loss computes the L1 norm between these points after apply-
ing the relative transformation a predicted by the policy and the
relative transformation a∗ of the expert to the end effector. The
auxiliary loss is defined similarly:

LAUX(g∗,g) = LPOSE(g∗,g), (8)

where g is an additional output of the policy that predicts the pre-
grasp pose and g∗ indicates the pre-grasp pose of the expert.

Critic Loss The critic loss is defined as:

L(φ) = LBE + LAUX, (9)

where LAUX is identical to Eq. 8 and LBE is the Bellman equation
defined in Eq. 1 of the main paper.

Grasp Prediction Loss The loss for the grasp prediction net-
work is defined as:

L(ζ) = LCE(σζ(ψ(p)),y), (10)

where LCE is a binary cross-entropy loss between the output pre-
dictions of the model σζ(ψ(p)) and the binary labels y. The la-
bels indicate whether a pre-grasp pose will lead to a successful
grasp or not.

A.3. Training Details

Training Techniques We apply a variety of different tech-
niques to make the policies more robust. To this end, during the
sequential phase, we alternate between initializing the robot in a
home position and random poses (that have the object and hand in
its view). As proposed in [60], we occasionally compute optimal
actions using DAGGER [48] during RL exploration and use them
to supervise the policy’s actions. Additionally, we start episodes of
the RL agent with a random amount of initial actions proposed by
the expert to further guide the training process. In the finetuning
phase, we drop most of these techniques and start all the episodes
from home position. We do not use DAGGER anymore and roll-
outs from the RL agent are not started with actions proposed by
the expert.

Expert Demonstrations In the pretraining stage, we use mo-
tion and grasp planning [59]. We plan trajectories until the pre-
grasp pose and then use the forward grasping motion (cf. main
paper Sec. 4.1) to grasp the object. The ACRONYM dataset [16]
is a large dataset for robot grasp planning based on physics simu-
lation. It is used for grasp selection of the expert planner. How-
ever, because it does not consider the human hand, we first pre-
filter suitable grasps offline. To this end, we parse grasps from
ACRONYM and combine them with the handover poses extracted
from DexYCB [8], i.e., the pose at the last frame of the sequences
where the hand and object are not moving. We check for colli-
sions between the hand and the gripper using a mesh collider. We
then filter out sequences where the robot and hand collide. During
rollouts of expert trajectories, we frequently add random perturba-
tions to the robot end-effector and replan the trajectory from the
current pose.

Hindsight goals In the pretraining stage, the expert planner
[59] provides goal labels for both expert demonstrations and RL
rollouts. In the finetuning stage, we cannot rely on the goal selec-
tion from the planner anymore. We therefore employ the hindsight
scheme from [60], which was used for training with novel objects,
and utilize it for labeling sequences where the human and robot
move simultaneously. In particular, if an episode is successful, we
can use the pre-grasp pose from this episode as a label for super-
vision of the goal-prediction task.

Grasp Prediction Data Collection To collect samples for
training the grasp prediction network, we utilize pre-grasps gen-
erated from ACRONYM [16]. We initialize the hand and ob-
ject in the final pose of the handover trajectories from Handover-
Sim [7]. We then use inverse kinematics to compute a robot pose
that matches the end-effector pre-grasp pose. We then rollout the
forward grasping motion (cf. main paper Sec. 4.1) and check for
grasp stability. The label is 1 if the grasp is successful, and 0 oth-
erwise (e.g., hand collision or object drop). For each pre-grasp
pose, we collect two more samples by adding small random noise
(translation and rotation) to the end-effector pose. This is done to
balance the positive and negative labels in the dataset [40], since
the pre-grasp poses from ACRONYM will have a higher chance
of leading to a stable grasp.

Training Parameters Value

Num. iterations pretraining 10000
Num. iterations finetuning 5000
Buffer size pretraining 1e6
Buffer size finetuning 4e5
Parallel workers 3
Simulation timestep 1e-3s
Simulation steps per action 150
Network layers 3
Hidden size 256
Activation functions ReLU
Optimizer Adam [29]

Table 5. Overview of the most important parameters.

B. Implementation Details

B.1. Network architecture

We use PointNet++ [45] as backbone for the grasp prediction
network, the actor network and the critic network. We use separate
backbones for each network. The networks are fully-connected
MLPs with three-layers and 256 neurons per layer. The critic net-
work has two heads as output, one for predicting the Q-value and
one for the auxiliary goal prediction. Similarly, the actor has one
head for the goal prediction and one for the action prediction. The
critic network takes as input the concatenation of a point cloud
and an action (see Fig. 3 in the main paper) . During critic train-
ing, transitions from the replay buffer are used as actions and point
clouds. On the other hand, during actor training, the actor’s action
predictions are used together with the point cloud from the replay
buffer. The output of the grasp prediction network is a scalar that
indicates a probability. We use Adam [29] as optimizer and ReLU
activation functions during training of all networks. The learning
rate is decreased over the course of training.

B.2. Training Information

We use TD3 [21] as our learning algorithm. To ensure a fair
comparison with GA-DDPG, we use their implementation of TD3
and only make minimal changes to learning parameters. We there-
fore refer the reader to [60] for an exact description of all the pa-
rameters used and report only crucial or changed parameters in
Tab. 5. In every iteration, we use three parallel workers to rollout
episodes. Thereafter, we update our networks using 20 optimiza-
tion steps. We run the pretraining for 10k iterations and the fine-
tuning for 5k iterations. The grasp prediction network is trained
for 1k iterations.

We train our method on a single Nvidia V100 32GB. Training
the full method takes around 72-96 hours, about 36-48 hours for
pretraining and 36-48 hours for finetuning. The grasp prediction
network is trained offline and training takes roughly 1 hour.

success (%)
failure (%)

contact drop timeout
w/ Kinect noise 59.49 13.19 19.68 7.64
Ours 75.23 9.26 13.43 2.08

Table 6. We analyze the effect of simulated Kinect noise [25] on
our model. Results are averaged over 3 random seeds.

0 1/6 2/6 3/6 4/6 5/6 6/6
40

50

60

70

80

10

20

30

mislabeling ratio

su
cc

es
s

ra
te

 [%
]

ha
nd

 c
ol

lis
io

n
ra

te
 [%

]

Figure 7. Segmentation Mislabeling. Our method’s success
(blue) and hand collision rate (red) under increasing degree of mis-
labeling hand as object segments.

C. Additional Simulation Evaluation
HandoverSim Benchmark For completeness, we report the
results of the remaining settings from HandoverSim [7]. Namely,
we add the settings “S1 - Unseen Subjects” in Tab. 7, “S2 - Un-
seen Handedness” in Tab. 8, and “S3 - Unseen Objects” in Tab. 9.
Overall, we observe that the results are consistent with the main
paper. In general, the main baseline GA-DDPG [60] struggles
in the simultaneous setting. Our method has significantly better
performance in terms of overall success rates, while retaining a
slightly slower mean accumulated time for successful handovers.
This is because GA-DDPG often goes for a grasp in the most di-
rect path, whereas our approach searches for a safe pre-grasp pose,
from where the object can be grasped. For a qualitative demon-
stration of this behavior, we refer to the supplementary video. We
also compare our final model with the pretrained versions (Ours
w/o ft.). The results further indicate that finetuning helps improve
the model, especially in the simultaneous setting, e.g., the success
rate in Tab. 7 improves from 62.78% to 73.33% with the finetuned
model.

Notably, results on S2 and S3 suggest that our method can gen-
eralize well to unseen subjects and unseen objects. This result is
important because in unstructured real world environments, nei-
ther objects nor subjects have been encountered during training.

Robustness Analysis We evaluate in simulation how noisy
observations affect our pipeline by (1) adding simulated Kinect
noise to depth images [25] and (2) testing with imperfect hand
segmentation. For (2), we divide the hand into 6 different parts
(fingers and palm) and re-label a subset of parts as object in the
segmentation mask. We vary the mislabeling ratio (“0/6” no parts
and “6/6” all parts) and sample randomly which parts will be mis-
labeled for a given episode. As expected, performance degrades
with increasing noise in depth (e.g., a 59.49% success rate in
Tab. 6) and increasing mislabeling ratio (e.g., decreasing success
rate and increasing hand collisions in Fig. 7).

S1: Unseen Subjects

success (%) mean accum time (s) failure (%)
exec plan total contact drop timeout total

Se
qu

en
tia

l OMG Planner [59] † 62.78 8.012 1.355 9.366 33.33 2.22 1.67 37.22
Yang et al. [63] † 62.78 4.719 0.039 4.758 14.44 7.78 15.00 37.22
GA-DDPG [60] 55.00 6.791 0.136 6.927 8.89 15.00 21.11 45.00
Ours w/o ft. 68.15 7.151 0.164 7.314 6.85 12.96 12.04 31.85
Ours 75.00 7.108 0.159 7.267 5.00 12.59 7.41 25.00

Si
m

ul
t. GA-DDPG [60] 33.33 4.261 0.132 4.393 15.56 21.67 29.44 66.67

Ours w/o ft. 62.78 5.695 0.164 5.859 5.93 17.59 13.70 37.22
Ours 73.33 5.633 0.158 5.791 5.56 15.37 5.74 26.67

Table 7. Unseen Subjects Comparison of our method against various baselines from the HandoverSim benchmark [7] in the setting “S1:
Unseen Subjects”. The results of our method are averaged over 3 random seeds. †: both methods [59, 63] are evaluated with ground-truth
states in [7] and thus are not directly comparable with ours.

S2: Unseen Handedness

success (%) mean accum time (s) failure (%)
exec plan total contact drop timeout total

Se
qu

en
tia

l OMG Planner [59] † 62.78 8.275 1.481 9.755 30.56 3.89 2.78 37.22
Yang et al. [63] † 62.50 4.808 0.034 4.843 16.11 10.56 10.83 37.50
GA-DDPG [60] 55.00 7.145 0.129 7.274 8.61 17.78 18.61 45.00
Ours w/o ft. 71.76 7.045 0.140 7.185 8.80 14.72 4.72 28.24
Ours 72.96 7.101 0.144 7.245 11.29 12.69 3.05 27.04

Si
m

ul
t. GA-DDPG [60] 28.33 4.747 0.133 4.881 9.17 34.44 28.06 71.67

Ours w/o ft. 64.81 5.638 0.144 5.783 8.24 21.02 5.93 35.19
Ours 71.11 5.771 0.150 5.921 10.00 15.37 3.61 28.89

Table 8. Unseen Handedness. Comparison of our method against various baselines from the HandoverSim benchmark [7] in the setting
“S2: Unseen Handedness”. The results of our method are averaged over 3 random seeds. †: both methods [59, 63] are evaluated with
ground-truth states in [7] and are not directly comparable with ours.

S3: Unseen Objects

success (%) mean accum time (s) failure (%)
exec plan total contact drop timeout total

Se
qu

en
tia

l OMG Planner [59] † 69.00 8.478 1.588 10.066 23.00 4.00 4.00 31.00
Yang et al. [63] † 62.00 4.805 0.031 4.837 18.00 9.00 11.00 38.00
GA-DDPG [60] 50.00 7.305 0.135 7.440 5.00 23.00 22.00 50.00
Ours w/o ft. 76.33 7.410 0.151 7.565 9.33 10.67 3.67 23.67
Ours 79.67 7.499 0.156 7.656 6.33 10.33 3.67 20.33

Si
m

ul
t. GA-DDPG [60] 33.00 4.948 0.123 5.071 10.00 33.00 24.00 67.00

Ours w/o ft. 72.00 6.242 0.168 6.410 7.33 13.67 7.00 28.00
Ours 75.67 6.153 0.160 6.314 5.00 13.33 6.00 24.33

Table 9. Unseen Object Evaluation. Comparison of our method against baselines from the HandoverSim benchmark [7] in the setting “S3:
Unseen Objects”. The results of our method are averaged over 3 random seeds. †: both methods [59, 63] are evaluated with ground-truth
states in [7] and are not directly comparable with ours.

Azure Kinect cameraFranka Emika Panda

Human standing area

Object drop area

Figure 8. The setup of our real-world handover system. A Franka Emika Panda robot and an Azure Kinect camera are rigidly mounted
on a table. The human participant will stand across the table (in the green area), pick up objects, and attempt handovers to the robot. The
robot will drop the object in a designated area (blue) after retrieving it from the handover.

D. Sim-to-Real Transfer
D.1. System Setup

Fig. 8 shows the setup of our real-world handover system. The
setup consists of a Franka Emika Panda robot and a Azure Kinect
camera, both rigidly mounted to a table. The Azure Kinect is
mounted externally to the robot with the extrinsics calibrated, and
is perceiving the scenes from a third-person view with an RGB-D
stream. The objects for handover are initially placed on the table.
During handovers, the human participant will stand on the oppo-
site side of the table (in the green area), pick up the objects, and
attempt handovers to the robot. If the robot successfully retrieves
the object, it will move the end effector to a drop-off area (blue)
and drop the object into a box.

Since our policy expects a segmented point cloud at the input,
we follow the perception pipeline used in [60,63] to generate seg-
mented point clouds for the hand and object. The Azure Kinect is
launched to provide a continuous stream of RGB images and point
clouds. We first use Azure Kinect’s Body Tracking SDK to track
the 3D location of the wrist joint of the handover hand. At each
time frame, we crop a sub-point cloud around the tracked joint lo-
cation which includes points on both the hand and the held object.
We additionally run a 2D hand segmentation model on the RGB
image and use it to label the hand points in the cropped point cloud.
We treat all the points not labeled as hand as the object. Since our
policies are trained for wrist camera views and we use an external
camera in the real-world system, we need to additionally compen-

sate for the view point change. We transform the segmented point
cloud from the external camera’s frame to the wrist camera’s frame
using the calibrated robot-camera extrinsics and forward kinemat-
ics. This way we can simulate the segmented point cloud input
which the policy observes during the training in simulation. Note
that this perception pipeline can induce sim-to-real gaps from sev-
eral sources: (1) noises in the point clouds from real cameras, (2)
noises from body tracking and hand segmentation errors, (3) the
change in view points (i.e., from the wrist to external camera),
and (4) unseen human behavior. To make our transfer policy more
robust to diversity in human behvaior, we include human-object
trajectories generated with D-Grasp [10] during training.

Compared to GA-DDPG [60], we adapt the control flow of the
policy to explicitly incorporate the pre-grasp mechanism in our
method. To control the motion of Franka, we follow the pipeline
used in [60, 63]. Given a target end effector pose at a new time
step, we use Riemannian Motion Policies (RMPs) [46] to generate
a smooth trajectory for the robot arm. We use libfranka to control
the Franka arm to follow the trajectory. The robot will start moving
only when a segmented point cloud is perceived. Once it decides to
grasp, we will execute a predefined motion where the robot closes
the gripper, lifts the end effector, moves to the drop-off area, and
opens the gripper. The robot will return to a standby pose and
remain in that state if no segmented point cloud is perceived or
after it drops off the object.

Figure 9. We conducted a pilot study by controlling the handover
poses from the human subject.

D.2. Pilot Study
The goal of the pilot study is to provide a standardized bench-

marking of the sim-to-real transfer. We instruct the participated
subjects to follow a set of pre-determined handover poses when
performing the handovers. We keep the instructed handover poses
fixed for different methods to ensure a fair comparison.

Evaluation Protocol First, we select the following 10 objects
from the YCB-Video dataset [62]:

• 011 banana
• 037 scissors
• 006 mustard bottle
• 024 bowl
• 040 large marker

• 003 cracker box
• 052 extra large clamp
• 008 pudding box
• 010 potted meat can
• 021 bleach cleanser

For each object, we select 3 handover poses separately for the right
and left hand, totaling 60 handover poses for both hands. The
set of handover poses is selected to represent the handover task at
different levels of difficulty: for each hand-object combination, we
select one common handover pose (“pose 1”), one handover pose
with the object held horizontally (“pose 2”), and one handover
pose with severe hand occlusion by holding the object from the top
(“pose 3”). Fig. 9 illustrates the setting where a subject holds an
object in a controlled handover pose in front of the robot. Figs. 10
and 11 show the selected handover poses for the right and left hand
respectively.

For each subject, we iterate through the 60 handover poses and
evaluate each pose once. A handover is considered failed if (1) the
robot pinches (or is about to pinch) the subject’s hand (in which
case the subject may evade the grasp), (2) the robot drops the ob-
ject during the handover, or (3) the robot has reached an irrecov-
erable state (e.g., a locked arm due to joint limits). A handover is
successful if the robot retrieves the object from the subject’s hand
and successfully move it to the drop-off area without incurring any
failures. We evaluate the same handover poses on two methods:

GA-DDPG [60] and ours. Therefore, each subject will perform
120 handover trials in total.

Results We conduct our pilot study with two subjects. Tabs. 10
and 11 present the results of subject 1 and 2 respectively. For each
pose, we report whether the handover is successful (“succ.”), and
if so, the completion time of the handover (“time”), defined as the
time span from the robot starts moving to the moment where the
gripper lifts the object. For each object, we also report the mean
success rate and mean completion time (see the “mean” column).
For each subject, we present the results separately for the right
hand (top), left hand (middle), and overall (bottom).

We observe a gap in the performance between the three se-
lected handover poses. Both methods have a lower performance
on “pose 2” and “pose 3” compared to “pose 1”. For example,
for subject 1, the overall success rate is 2/20 for “pose 2” ver-
sus 16/20 for “pose 1” for GA-DDPG [60], and 9/20 for “pose 2”
versus 19/20 for “pose 1” for ours. This demonstrates the increase
in challenges when the handover is conducted in uncommon poses
(“pose 2”), where the robot needs to rotate the end effector, or
when the human hand is blocking the robot’s closest grasp point
(“pose 3”), where the robot needs to diverge to avoid hand col-
lision. However, our method is able to handle these cases better
since the model is trained with diverse handover poses and super-
vision on hand collision avoidance (e.g., for “pose 3” on subject
1, an overall success rate of 13/20 for ours versus 3/20 for GA-
DDPG [60]). In addition, our method achieves a higher overall
success rate on both subjects (i.e., 41/60 versus 21/60 on subject
1 and 41/60 versus 33/60 on subject 2), demonstrating its efficacy
over GA-DDPG [60]. However, our method still fails for 19 trials
on each subject. This can be attributed to either the sim-to-real
gaps discussed in Appendix D.1, an inherent failure of the policy
on handling these cases, or an interplay of both.

D.3. User Evaluation
In contrast to the standardized evaluation in the pilot study, the

goal of our user evaluation is to collect feedback from lay users
with their own handover preferences. Therefore, we do not con-
strain the users on how they hand over objects. Instead, we let
them carry out in ways which they feel most comfortable (Fig. 12).
Rather than objective metrics, we collect subjective feedback from
the users via a questionnaire.

Evaluation Protocol We adopt the same 10 objects from
the pilot study, and ask each user to hand over each object once
with their right hand. We instruct the users to hand over objects
“in any way they like”. We compare the two methods (i.e., GA-
DDPG [60] and ours) by repeating the same process, i.e., we in-
struct the user to hand over the 10 objects to one system first, fol-
lowed by to the other system. We counterbalance the order of the
two systems throughout the user evaluation to avoid bias. During
their experiments, the users are asked to fill out a questionnaire
with Likert-scale and open-ended questions to provide feedback
after they interact with each system.

Results We conduct our user evaluation with 6 users (Fig. 12).
The evaluation results are presented in Fig. 13 for GA-DDPG [60]
and Fig. 14 for our method. Each figure shows the user’s ranking
with the statements queried in the questionnaire. For each state-
ment, a user can rank their agreement level with one of the five op-

011 banana

pose 1 pose 2 pose 3

037 scissors

pose 1 pose 2 pose 3

006 mustard bottle

pose 1 pose 2 pose 3

024 bowl

pose 1 pose 2 pose 3

040 large marker

pose 1 pose 2 pose 3

003 cracker box

pose 1 pose 2 pose 3

052 extra large clamp

pose 1 pose 2 pose 3

008 pudding box

pose 1 pose 2 pose 3

010 potted meat can

pose 1 pose 2 pose 3

021 bleach cleanser

pose 1 pose 2 pose 3

Figure 10. The instructed handover poses for the right hand in the pilot study. We adopt 10 objects from the YCB-Video dataset [62] and
pre-select 3 handover poses per object with varying handover difficulties, totaling 30 handover poses for the right hand.

011 banana

pose 1 pose 2 pose 3

037 scissors

pose 1 pose 2 pose 3

006 mustard bottle

pose 1 pose 2 pose 3

024 bowl

pose 1 pose 2 pose 3

040 large marker

pose 1 pose 2 pose 3

003 cracker box

pose 1 pose 2 pose 3

052 extra large clamp

pose 1 pose 2 pose 3

008 pudding box

pose 1 pose 2 pose 3

010 potted meat can

pose 1 pose 2 pose 3

021 bleach cleanser

pose 1 pose 2 pose 3

Figure 11. The instructed handover poses for the left hand in the pilot study. Similar to the right hand poses in Fig. 10, we adopt the same
10 objects from the YCB-Video dataset [62] and pre-select 3 handover poses per object, totaling 30 handover poses for the left hand.

subject 1: right hand
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana X 11.313 X 10.790 × – 2 / 3 11.051 X 8.889 X 18.535 X 9.292 3 / 3 12.239
037 scissors X 9.571 × – × – 1 / 3 9.571 X 8.863 × – X 10.216 2 / 3 9.539
006 mustard bottle × – × – × – 0 / 3 – X 9.310 × – X 10.792 2 / 3 10.051
024 bowl X 9.719 × – X 10.760 2 / 3 10.239 X 10.634 × – X 13.333 2 / 3 11.983
040 large marker × – × – × – 0 / 3 – X 9.605 × – × – 1 / 3 9.605
003 cracker box X 9.284 × – X 10.440 2 / 3 9.862 X 16.782 × – × – 1 / 3 16.782
052 extra large clamp × – × – × – 0 / 3 – X 10.228 X 19.855 X 10.796 3 / 3 13.626
008 pudding box X 9.565 × – X 9.095 2 / 3 9.330 X 10.583 X 11.833 X 11.387 3 / 3 11.267
010 potted meat can X 9.770 × – × – 1 / 3 9.770 X 13.500 × – X 10.908 2 / 3 12.204
021 bleach cleanser X 9.709 X 12.367 × – 2 / 3 11.038 X 11.016 X 11.572 X 11.539 3 / 3 11.376
total 7 / 10 9.847 2 / 10 11.579 3 / 10 10.098 12 / 30 10.199 10 / 10 10.941 4 / 10 15.449 8 / 10 11.033 22 / 30 11.794

subject 1: left hand
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana X 9.790 × – × – 1 / 3 9.790 X 9.180 X 9.192 X 8.931 3 / 3 9.101
037 scissors X 9.549 × – × – 1 / 3 9.549 X 8.973 X 9.485 X 10.254 3 / 3 9.571
006 mustard bottle X 10.135 × – × – 1 / 3 10.135 X 8.499 × – × – 1 / 3 8.499
024 bowl X 10.062 × – × – 1 / 3 10.062 X 14.572 × – X 10.016 2 / 3 12.294
040 large marker × – × – × – 0 / 3 – X 15.736 X 14.601 X 10.626 3 / 3 13.654
003 cracker box X 10.231 × – × – 1 / 3 10.231 X 14.836 × – × – 1 / 3 14.836
052 extra large clamp X 8.513 × – × – 1 / 3 8.513 X 10.186 × – × – 1 / 3 10.186
008 pudding box X 10.851 × – × – 1 / 3 10.851 X 17.965 X 13.015 X 20.966 3 / 3 17.315
010 potted meat can X 9.810 × – × – 1 / 3 9.810 × – × – × – 0 / 3 –
021 bleach cleanser X 24.872 × – × – 1 / 3 24.872 X 15.028 X 9.378 × – 2 / 3 12.203
total 9 / 10 11.535 0 / 10 – 0 / 10 – 9 / 30 11.535 9 / 10 12.775 5 / 10 11.134 5 / 10 12.159 19 / 30 12.181

subject 1: overall
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana 2 / 2 10.551 1 / 2 10.282 0 / 2 – 3 / 6 10.631 2 / 2 9.034 2 / 2 13.864 2 / 2 9.111 6 / 6 10.670
037 scissors 2 / 2 9.560 0 / 2 – 0 / 2 – 2 / 6 9.560 2 / 2 8.918 1 / 2 10.292 2 / 2 10.235 5 / 6 9.558
006 mustard bottle 1 / 2 10.064 0 / 2 – 0 / 2 – 1 / 6 10.135 2 / 2 8.904 0 / 2 – 1 / 2 10.038 3 / 6 9.534
024 bowl 2 / 2 9.890 0 / 2 – 1 / 2 10.076 3 / 6 10.180 2 / 2 12.603 0 / 2 – 2 / 2 11.675 4 / 6 12.139
040 large marker 0 / 2 – 0 / 2 – 0 / 2 – 0 / 6 – 2 / 2 12.670 1 / 2 14.268 1 / 2 10.481 4 / 6 12.642
003 cracker box 2 / 2 9.757 0 / 2 – 1 / 2 10.021 3 / 6 9.985 2 / 2 15.809 0 / 2 – 0 / 2 – 3 / 6 15.809
052 extra large clamp 1 / 2 8.874 0 / 2 – 0 / 2 – 1 / 6 8.513 2 / 2 10.207 1 / 2 15.824 1 / 2 16.119 4 / 6 12.766
008 pudding box 2 / 2 10.208 0 / 2 – 1 / 2 9.579 3 / 6 9.837 2 / 2 14.274 2 / 2 12.424 2 / 2 16.176 6 / 6 14.291
010 potted meat can 2 / 2 9.790 0 / 2 – 0 / 2 – 2 / 6 9.790 1 / 2 14.458 0 / 2 – 1 / 2 12.596 2 / 6 12.204
021 bleach cleanser 2 / 2 17.291 1 / 2 11.867 0 / 2 – 3 / 6 15.650 2 / 2 13.022 2 / 2 10.475 1 / 2 16.574 5 / 6 11.707
total 16 / 20 10.797 2 / 20 11.579 3 / 20 10.098 21 / 60 10.771 19 / 20 11.810 9 / 20 13.052 13 / 20 11.466 41 / 60 11.973

Table 10. The pilot study results of subject 1. We present the results separately for the right-hand handovers (top), the left-hand handovers
(middle), and overall (bottom). We report both the success rate (“succ.”) and the completion time (“time”). Our method outperforms
GA-DDPG [60] in the success rate.

tions: “Strongly disagree” (1), “Disagree” (2), “Neither agree or
disagree” (3), “Agree” (4), and “Strongly agree” (5) (see the color
codes in Figs. 13 and 14). The length of each color bar denotes
the count of the users. For each method, the statements are fur-
ther grouped into two subfigures, where a higher agreement score
indicates a better performance (top), and a lower agreement score
indicates a better performance (bottom).

Overall, our method receives higher agreement scores over
GA-DDPG [60] for the statements “The robot could hold the ob-
ject stably once taking it over from my hand.” (i.e., (5,4,4,4,4,3)
versus (5,4,3,3,3,2)) and “The robot was able to adapt its behav-

ior to different ways of how I held the object for handover.” (i.e.,
(5,5,5,4,4,3) versus (5,4,3,3,3,2)). This is congruent with our sim-
ulation evaluation results that our method can grasp objects more
robustly by finding good pre-grasp poses around the object. This
was also reflected in participants’ comments. One said our method
“tends to explore more diverse grasp”, “was much better at align-
ing the grasp” and “adjusts behavior for different objects in differ-
ent poses” when compared with GA-DDPG. One pointed out that
sometimes GA-DDPG “grasped from the tip of the object”. The
interpretability of the robot’s motion was also acknowledged by
their comments, e.g., it “[was] safe and interpretable at all times”

subject 2: right hand
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana X 13.599 X 15.559 X 9.333 3 / 3 12.830 X 11.995 × – X 8.046 2 / 3 10.021
037 scissors X 10.609 × – X 9.769 2 / 3 10.189 X 8.343 × – X 8.583 2 / 3 8.463
006 mustard bottle X 9.070 × – × – 1 / 3 9.070 X 8.787 × – X 9.186 2 / 3 8.987
024 bowl × – × – X 9.085 1 / 3 9.085 × – × – X 9.506 1 / 3 9.506
040 large marker X 10.762 × – X 8.748 2 / 3 9.755 X 9.035 × – X 17.609 2 / 3 13.322
003 cracker box × – × – × – 0 / 3 – X 11.629 × – X 11.563 2 / 3 11.596
052 extra large clamp X 9.319 × – X 9.156 2 / 3 9.237 X 9.788 X 17.289 × – 2 / 3 13.539
008 pudding box X 10.402 × – X 8.838 2 / 3 9.620 X 8.803 × – X 11.061 2 / 3 9.932
010 potted meat can × – × – X 12.886 1 / 3 12.886 X 8.540 × – X 8.610 2 / 3 8.575
021 bleach cleanser X 10.571 X 10.223 × – 2 / 3 10.397 X 8.241 × – X 11.706 2 / 3 9.974
total 7 / 10 10.619 2 / 10 12.891 7 / 10 9.688 16 / 30 10.495 9 / 10 9.462 1 / 10 17.289 9 / 10 10.652 19 / 30 10.438

subject 2: left hand
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana X 8.709 X 9.186 X 8.570 3 / 3 8.821 X 9.096 X 10.447 X 7.965 3 / 3 9.169
037 scissors X 9.849 × – × – 1 / 3 9.849 X 8.587 X 10.570 X 8.370 3 / 3 9.176
006 mustard bottle × – × – X 11.332 1 / 3 11.332 X 8.078 × – X 9.703 2 / 3 8.891
024 bowl X 9.183 × – X 9.214 2 / 3 9.199 × – X 9.958 X 17.879 2 / 3 13.918
040 large marker X 10.651 × – X 9.881 2 / 3 10.266 X 9.804 X 14.292 X 9.466 3 / 3 11.187
003 cracker box × – × – × – 0 / 3 – × – × – × – 0 / 3 –
052 extra large clamp X 19.748 X 9.566 X 10.204 3 / 3 13.173 X 19.253 X 9.632 X 9.552 3 / 3 12.813
008 pudding box X 9.794 × – X 9.236 2 / 3 9.515 X 8.532 × – X 8.590 2 / 3 8.561
010 potted meat can X 9.353 × – X 9.240 2 / 3 9.296 X 8.344 × – X 9.277 2 / 3 8.810
021 bleach cleanser X 10.140 × – × – 1 / 3 10.140 X 9.301 × – X 10.288 2 / 3 9.795
total 8 / 10 10.928 2 / 10 9.376 7 / 10 9.668 17 / 30 10.227 8 / 10 10.125 5 / 10 10.980 9 / 10 10.121 22 / 30 10.318

subject 2: overall
GA-DDPG [60] Ours

pose 1 pose 2 pose 3 mean pose 1 pose 2 pose 3 mean
succ. time succ. time succ. time succ. time succ. time succ. time succ. time succ. time

011 banana 2 / 2 11.154 2 / 2 12.372 2 / 2 8.951 6 / 6 10.826 2 / 2 10.546 1 / 2 10.408 2 / 2 8.006 5 / 6 9.510
037 scissors 2 / 2 10.229 0 / 2 – 1 / 2 9.243 3 / 6 10.076 2 / 2 8.465 1 / 2 9.638 2 / 2 8.477 5 / 6 8.891
006 mustard bottle 1 / 2 9.476 0 / 2 – 1 / 2 10.479 2 / 6 10.201 2 / 2 8.433 0 / 2 – 2 / 2 9.445 4 / 6 8.939
024 bowl 1 / 2 11.101 0 / 2 – 2 / 2 9.149 3 / 6 9.161 0 / 2 – 1 / 2 9.720 2 / 2 13.692 3 / 6 12.447
040 large marker 2 / 2 10.707 0 / 2 – 2 / 2 9.314 4 / 6 10.010 2 / 2 9.419 1 / 2 15.882 2 / 2 13.537 5 / 6 12.041
003 cracker box 0 / 2 – 0 / 2 – 0 / 2 – 0 / 6 – 1 / 2 11.925 0 / 2 – 1 / 2 12.989 2 / 6 11.596
052 extra large clamp 2 / 2 14.533 1 / 2 9.562 2 / 2 9.680 5 / 6 11.599 2 / 2 14.521 2 / 2 13.460 1 / 2 36.778 5 / 6 13.103
008 pudding box 2 / 2 10.098 0 / 2 – 2 / 2 9.037 4 / 6 9.567 2 / 2 8.668 0 / 2 – 2 / 2 9.825 4 / 6 9.247
010 potted meat can 1 / 2 9.919 0 / 2 – 2 / 2 11.063 3 / 6 10.493 2 / 2 8.442 0 / 2 – 2 / 2 8.943 4 / 6 8.693
021 bleach cleanser 2 / 2 10.355 1 / 2 12.233 0 / 2 – 3 / 6 10.311 2 / 2 8.771 0 / 2 – 2 / 2 10.997 4 / 6 9.884
total 15 / 20 10.784 4 / 20 11.134 14 / 20 9.678 33 / 60 10.357 17 / 20 9.774 6 / 20 12.031 18 / 20 10.387 41 / 60 10.373

Table 11. The pilot study results of subject 2. We present the results separately for the right-hand handovers (top), the left-hand handovers
(middle), and overall (bottom). We report both the success rate (“succ.”) and the completion time (“time”). Our method outperforms
GA-DDPG [60] in the success rate.

and “felt like we understood each other”. Surprisingly, the users
favor GA-DDPG [60] more when it comes to safety related met-
rics, e.g., for the statement “I felt safe while the robot was moving.”
((5,4,3,3,2,2) for ours versus (5,5,4,4,3,3) for GA-DDPG [60]) and
“The robot was likely to pinch my hand.” ((1,2,2,3,4,4) for ours
versus (1,2,2,2,2,3) for GA-DDPG [60]). This can be attributed
to GA-DDPG’s tendency to grasp from the grasp points closest to
the robot, and hence it often keeps a safe distance from the human
hand. For our method, several users felt the robot hand pushing too
much during grasping. One said it was “flexible in grasp selection,
but may be too close to my finger”. Another said “the forward

movement ... put the gripper fairly close to me”. This can poten-
tially be addressed by incorporating force feedback in the grasping
motion as well as taking gripper hand distance into account during
training. The majority of participants agreed that the timing of our
method is more appropriate, commenting the “handover time was
pretty seamless” and “didn’t have to wait too long”.

Although the main objective in the user study was to let users
interact freely with the system in a non-standardized manner, we
additionally evaluate the user study quantitatively. We report the
success rate and approach time (i.e., from the robot starting to
move to grasp completion). Our method still compares favorably

Figure 12. We conduct a user evaluation with 6 users by allowing the users to perform handovers freely. The images depict sequences
(from left to right) of different users handing over a variety of objects to the robot.

to GA-DDPG with a higher success rate (88.9% vs. 80.0%) and a
shorter approach time (6.40± 2.27s vs. 7.48± 2.64s). The better
timing was noted by the majority of participants, who commented
that the “handover time was pretty seamless” and “didn’t have to
wait too long”. Interestingly, we observed in our user study that
natural H2R handovers are less susceptible to grasping failures,
since the human partner would often help by agilely adjusting the
object pose in the last mile to ensure a successful grasp.

E. Limitations and Future Work
We will now discuss failure cases of our method and exciting

directions for future work. Some failures occur with smaller ob-
jects, where the human hand often encloses large parts of the ob-
ject. For the robot to find grasps where the gripper does not touch
the hand at all in such cases is extremely difficult, especially when
only having access to point cloud input. The grasp prediction task
that decides when to switch from approaching to grasping is quite
challenging, because a small change in end-effector pose can al-
ready cause a handover to fail. We sometimes find that the grasp
prediction triggers the grasp too early or in an instance where the
object will eventually drop. Since the grasp prediction network is
trained offline, it may be improved by finetuning in online fashion

with experiences from policy rollouts. Furthermore, we investi-
gate sensor-challenging objects in real world transfers. Our depth
sensor is vulnerable to transparent or dark objects, which may lead
to failures of the policy (Fig. 15). Improving the vision pipeline to
detect such objects reliably [67] could be a viable direction.

We find that most human trajectories in HandoverSim have
roughly the same length. A future direction can therefore include
exploring a wider variety of human behaviors. For example, in
a realistic, interactive setting the human may be constantly mov-
ing, and the robot should only take objects from the human once
it wants to hand them over. Anticipating the intent and future
states of the human could provide a more natural system. We
also noticed that humans start adapting to the robot once they
learn how it behaves. Therefore, introducing a multi-agent training
scheme where both the simulated human and the robot are trained
jointly [31] is interesting. Another direction could include mak-
ing the RL exploration more efficient, as it currently still requires
long training times, e.g., by leveraging state-agnostic priors [3] or
using an intrinsic reward to incentivize contacts [57]. Lastly, our
framework can potentially serve as a real world application frame-
work to evaluate vision pipelines, e.g., for testing hand and ob-
ject pose estimation estimation pipelines [56, 68] or segmentation
models [19].

I felt safe while the robot was moving.

The robot could take over the object with appropriate timing.

The robot could hold the object stably once taking it over from my hand.

The robot was able to adapt its behavior to different ways of how I held the object for handover.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Strongly disagree Disagree Neigher agree or disagree Agree Strongly agree

The robot was likely to pinch my hand.

There were times when I felt that I was very close to being hurt by the robot.

There were times when I did not understand what the robot was doing.

There were times when I felt the robot was moving too aggressively.

Strongly disagree Disagree Neigher agree or disagree Agree

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 13. User’s ranking with each statement for GA-DDPG [60] in the user evaluation. Each color denotes a different a degree of
agreement. The length of the bar denotes the count of the users. For each bar, the center count of “Neither agree or disagree” is aligned
with 0 in the horizontal axis. In the top figure, a higher agreement score (orange) indicates a better performance, while in the bottom figure,
a lower agreement score (green) indicates a better performance.

I felt safe while the robot was moving.

The robot could take over the object with appropriate timing.

The robot could hold the object stably once taking it over from my hand.

The robot was able to adapt its behavior to different ways of how I held the object for handover.

Strongly disagree Disagree Neigher agree or disagree Agree Strongly agree

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

The robot was likely to pinch my hand.

There were times when I felt that I was very close to being hurt by the robot.

There were times when I did not understand what the robot was doing.

There were times when I felt the robot was moving too aggressively.

Strongly disagree Disagree Neigher agree or disagree Agree

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Figure 14. User’s ranking with each statement for our method in the user evaluation. Each color denotes a different a degree of agreement.
The length of the bar denotes the count of the users. For each bar, the center count of “Neither agree or disagree” is aligned with 0 in the
horizontal axis. In the top figure, a higher agreement score (orange) indicates a better performance, while in the bottom figure, a lower
agreement score (green) indicates a better performance.

Figure 15. Real World Failures. Left: Missing/sparse point cloud of transparent/dark objects in real world perception. Right: Handover
policy behavior.

	1 . Introduction
	2 . Related Work
	3 . Background
	3.1 . Reinforcement Learning
	3.2 . HandoverSim Benchmark

	4 . Method
	4.1 . Handover Environment
	4.2 . Perception
	4.3 . Vision-Based Control
	4.4 . Two-Stage Teacher-Student Training

	5 . Experiments
	5.1 . Simulation Evaluation
	5.2 . Sim-to-Sim Transfer
	5.3 . Sim-to-Real Transfer

	6 . Conclusion
	Appendix
	A . Method Details
	A.1 . Task and Method
	A.2 . Loss Functions
	A.3 . Training Details

	B . Implementation Details
	B.1 . Network architecture
	B.2 . Training Information

	C . Additional Simulation Evaluation
	D . Sim-to-Real Transfer
	D.1 . System Setup
	D.2 . Pilot Study
	D.3 . User Evaluation

	E . Limitations and Future Work

