
Structured Kernel Estimation for Photon-Limited Deconvolution

Yash Sanghvi, Zhiyuan Mao, Stanley H. Chan
School of Electrical and Computer Engineering, Purdue University

{ysanghvi, mao114, stanchan}@purdue.edu

Abstract

Images taken in a low light condition with the pres-
ence of camera shake suffer from motion blur and photon
shot noise. While state-of-the-art image restoration net-
works show promising results, they are largely limited to
well-illuminated scenes and their performance drops sig-
nificantly when photon shot noise is strong.

In this paper, we propose a new blur estimation tech-
nique customized for photon-limited conditions. The pro-
posed method employs a gradient-based backpropagation
method to estimate the blur kernel. By modeling the blur
kernel using a low-dimensional representation with the
key points on the motion trajectory, we significantly re-
duce the search space and improve the regularity of the
kernel estimation problem. When plugged into an iter-
ative framework, our novel low-dimensional representa-
tion provides improved kernel estimates and hence signifi-
cantly better deconvolution performance when compared to
end-to-end trained neural networks. The source code and
pretrained models are available at https://github.
com/sanghviyashiitb/structured-kernel-
cvpr23

1. Introduction
Photon-Limited Blind Deconvolution: This paper

studies the photon-limited blind deconvolution problem.
Blind deconvolution refers to simultaneously recovering
both the blur kernel and latent clean image from a blurred
image and ”photon-limited” refers to presence of photon-
shot noise in images taken in low-illumination / short expo-
sure. The corresponding forward model is as follows:

y = Poisson(αh~ x). (1)

In this equation, y ∈ RN is the blurred-noisy image, x ∈
RN is the latent clean image, and h ∈ RM is the blur kernel.
We assume that x is normalized to [0, 1] and the entries of h
are non-negative and sum up to 1. The constant α represents
the average number of photons per pixel and is inversely
proportional to the amount of Poisson noise.

Deep Iterative Kernel Estimation: Blind image de-
convolution has been studied for decades with many suc-
cessful algorithms including the latest deep neural networks
[8, 24, 34, 42, 43]. Arguably, the adaptation from the tradi-
tional Gaussian noise model to the photon-limited Poisson
noise model can be done by retraining the existing networks
with appropriate data. However, the restoration is not guar-
anteed to perform well because the end-to-end networks sel-
dom explicitly take the forward image formation model into
account.

Recently, people have started to recognize the impor-
tance of blur kernel estimation for photon-limited condi-
tions. One of these works is by Sanghvi et. al [30], where
they propose an iterative kernel estimation method to back-
propagate the gradient of an unsupervised reblurring func-
tion, hence to update the blur kernel. However, as we can
see in Figure 1, their performance is still limited when the
photon shot noise is strong.

Structured Kernel Estimation: Inspired by [30], we
believe that the iterative kernel estimation process and the
unsupervised reblurring loss are useful. However, instead
of searching for the kernel directly (which can easily lead
to local minima because the search space is too big), we
propose to search in a low-dimensional space by imposing
structure to the motion blur kernel.

To construct such a low-dimensional space, we frame the
blur kernel in terms of trajectory of the camera motion. Mo-
tion trajectory is often a continuous but irregular path in the
two-dimensional plane. To specify the trajectory, we intro-
duce the concept of key point estimation where we identify
a set of anchor points of the kernel. By interpolating the
path along these anchor points, we can then reproduce the
kernel. Since the number of anchor points is significantly
lower than the number of pixels in a kernel, we can reduce
the dimensionality of the kernel estimation problem.

The key contribution of this paper is as follows: We pro-
pose a new kernel estimation method called Kernel Tra-
jectory Network (KTN). KTN models the blur kernel in
a low-dimensional and differentiable space by specifying
key points of the motion trajectory. Plugging this low-
dimensional representation in an iterative framework im-

1

ar
X

iv
:2

30
3.

03
47

2v
1

 [
ee

ss
.I

V
]

 6
 M

ar
 2

02
3

Blurred and Noisy MPR-Net [42] Sanghvi et. al [30] Ours Ground-Truth

Figure 1. The proposed Kernel Trajectory Network (KTN) on real noisy blurred image from Photon-Limited Deblurring Dataset
(PLDD) [29] The result corresponding to MPR-Net was generated by retraining the network with GoPro dataset [24] corrupted by Poisson
noise. The inset images for ”Sanghvi et. al” and ”Ours” represent the estimated kernel and the inset image for ”Ground-Truth” represents
the kernel captured using a point source, as provided in PLDD.

proves the regularity of the kernel estimation problem. This
leads to substantially better blur kernel estimates in photon-
limited regimes where existing methods fail.

2. Related Work

Traditional Blind Deconvolution: Classical approaches
to the (noiseless) blind deconvolution problem [6, 7, 22, 32,
40] use a joint optimization framework in which both the
kernel and image are updated in an alternating fashion in
order to minimize a cost function with kernel and image
priors. For high noise regimes, a combination of `1+TV
prior has been used in [2]. Levin et. al [16] pointed out
that this joint optimization framework for the blind decon-
volution problem favours the no-blur degenerate solution
i.e. (x∗,h∗) = (y, I) where I is the identity operator. Some
methods model the blur kernel in terms of the camera trajec-
tory and then recover both the trajectory and the clean im-
age using optimization [12, 38, 39] and supervised-learning
techniques [11, 33, 46].

For the non-blind case, i.e., when the blur kernel is as-
sumed to be known, the Poisson deconvolution problem
has been studied for decades starting from Richardson-Lucy
algorithm [21, 26]. More contemporary methods include
Plug-and-Play [28, 29], PURE-LET [18], and MAP-based
optimization methods [10, 13].

Deep Learning Methods. Recent years, many deep
learning-based methods [5, 31] have been proposed for the
blind image deblurring task. The most common strategy is
to train a network end-to-end on large-scale datasets, such
as the GoPro [24] and the RealBlur [27] datasets. No-
tably, many recent works [8, 24, 34, 42, 43] improve the
performance of deblurring networks by adopting the multi-
scale strategies, where the training follows a coarse-to-
fine setting that resembles the iterative approach. Gener-
ative Adversarial Network (GAN) based deblurring meth-
ods [3,14,15,44] are also shown to produce visually appeal-
ing images. Zamir et al. [41] and Wang et al. [37] adapt the

popular vision transformers to the image restoration prob-
lems and demonstrate competitive performance on the de-
blurring task.

Neural Networks and Iterative Methods: While neu-
ral networks have shown state-of-the-art performance on the
deblurring task, another class of methods incorporating iter-
ative methods with deep learning have shown promising re-
sults. Algorithm unrolling [23], where an iterative method
is unrolled for fixed iterations and trained end-to-end has
been applied to image deblurring [1,19]. In SelfDeblur [25],
authors use Deep-Image-Prior [35] to represent the image
and blur kernel and obtain state-of-the-art blind deconvolu-
tion performance.

3. Method
3.1. Kernel as Structured Motion Estimation

Camera motion blur can be modeled as a latent clean im-
age x convolved with a blur kernel h. If we assume the blur
kernel lies in a window of size 32 × 32, then h ∈ R1024.
However, in this high dimensional space, only few entries
of the blur kernel h are non-zero. Additionally, the kernel
is generated from a two-dimensional trajectory which sug-
gests that a simple sparsity prior is not sufficient. Given the
difficulty of the photon-limited deconvolution problem, we
need to impose a stronger prior on the kernel. To this end,
we propose a differentiable and low-dimensional represen-
tation of the blur kernel, which we will use as the search
space in our kernel estimation algorithm.

We take the two-dimensional trajectory of the camera
during the exposure time and divide it into K ”key points”.
Each key point represents either the start, the end or a
change in direction of the camera trajectory as seen in Fig-
ure 2. Given the K key points as points mapped out in x-y
space, we can interpolate them using cubic splines to form
a continuous trajectory in 2D. To convert this continuous
trajectory to an equivalent blur kernel, we assume a point
source image and move it through the given trajectory. The

2

Vectorize

Camera Trajectory
Key Points

Blur kernel
corresponding to
camera trajectory

Loss

Training

2

3 1

Kernel Trajectory Network (KTN)

Figure 2. Blur as Structured Motion Estimation: In our formu-
lation, we view the blur kernel as the continuous camera trajec-
tory reduced to K key points, as shown in top half of the figure.
We learn a differentiable representation from the vectorizedK key
points to a blur kernel using a neural network. This lower dimen-
sional and differentiable representation is leveraged to estimate a
better blur kernel and avoiding local minima during inference.

resulting frames are then averaged to give the corresponding
blur kernel as shown in Figure 2.

Given the formulation of blur kernel h in terms ofK key
points, we now need to put this representation to a differen-
tiable form since we intend to use it in an iterative scheme.
To achieve this, we learn the transformations from the key
points to the blur kernels using a neural network, which will
be referred to as Kernel-Trajectory Network (KTN), and rep-
resent it using a differentiable function T (.). Why differen-
tiability is important to us will become clear to the reader in
the next subsection.

To train the Kernel-Trajectory Network, we generate
training data as follows. First, for a fixed K, we get K
key points by starting from (0, 0) and choosing the next
K−1 points by successively adding a random vector with a
uniformly chosen random direction i.e. U [0, 360] and uni-
formly chosen length from from U [0, 100/(K − 1)]. Next,
the set of key points are converted to a continuous smooth
trajectory using bicubic interpolation. Then, we move a
point source image through the given trajectory using the
warpPerspective function in OpenCV, and average the
resulting frames.

Using the process defined above, we generate 60,000
blur kernels and their corresponding key point representa-
tions. For the Kernel-Trajectory Network T (.), we take a

U-Net like network with the first half replaced by 3-fully
connected layers and train it with the generated data using
`2-loss. For further architectural details on the KTN, we
refer the reader to the supplementary document.

3.2. Proposed Iterative Scheme

We described in the previous subsection how to obtain a
low-dimensional and differentiable representation T (.) for
the blur kernel and now we are ready to present the full it-
erative scheme in detail. The proposed iterative scheme can
be divided into three stages which are summarized as fol-
lows. We first generate an initial estimate of the direction
and magnitude of the blur. This is used as initialization for
a gradient-based scheme in Stage I which searches the ap-
propriate kernel representation in the latent space z. This is
followed by Stage II where we fine-tune the kernel obtained
from Stage I using a similar process.

Initialization Before starting the iterative scheme, we
need a light-weight initialization method. This is important
because of multiple local minima in the kernel estimation
process.

We choose to initialize the method with a rectilinear mo-
tion kernel, parameterized by length ρ and orientation θ. To
determine the length and orientation of the kernel, we use
a minor variation of the kernel estimation in PolyBlur [9].
In this variation, the ”blur-only image” G(y) is used as the
input and ρ, θ for the initial kernel are estimated using the
minimum of the directional gradients. We refer the reader to
Section II in the supplementary document for further details
on the initialization. Explanation on the ”blur-only image”
is provided when we describe Stage I of the scheme.

Stage I: Kernel Estimation in Latent Space Given an
initial kernel, we choose initial latent z0 by dividing the rec-
tilinear kernel into K key points. Following the framework
in [30], we run a gradient descent based scheme which op-
timizes the following cost function:

L(z) def
= ‖G(y)− hz ~ F (y,hz))‖22︸ ︷︷ ︸

Reblurring Loss

, (2)

where hz
def
= T (z) represents the kernel output from Kernel-

Trajectory network T (.) given the vectorized key points
representation z. F (.) represents the Poisson non-blind de-
convolution solver which takes both noisy-blurred image
and a blur kernel as the input. G(y) represents a denoiser
which is trained to remove only the noise from noisy-blurred
image. The overall cost function represents reblurring loss
i.e. how well the kernel estimate and corresponding image
estimate hz ~ F (y,hz) match the blur-only image G(y).

To minimize the cost function in (2), we use a simple
gradient descent based iterative update for z as follows:

zk+1 = zk − δ ∇zL(zk)︸ ︷︷ ︸
backpropagation

(3)

3

Kernel-Trajectory
Network Non Blind Solver

Reblurring
Loss

Gradient Descent

Denoiser

Stage I : Kernel
Estimation

Convergence

Backpropagation

Next Iteration

Figure 3. Flowchart describing first stage of the proposed scheme. We estimate the motion kernel of the blurry noisy image in lower
dimensional latent space z where the blur kernel is represented by T (z) and by minimizing the reblurring loss L as defined in equation 2

where δ > 0 is the step size and ∇zL(zk) represents the
gradient of the cost function L with respect to z evalu-
ated zk. It should be noted that the cost function is evalu-
ated using the non-blind solver F (.) and Kernel-Trajectory
Network T (.) - two neural network computations. There-
fore, we can compute the gradient ∇zL(zk) using auto-
differentiation tools provided in PyTorch by backpropa-
gating the gradients through F (.) and then T (.)

Stage II: Kernel Fine-tuning In the second stage, using
the kernel estimate of Stage I, we fine-tune the kernel by
”opening up” the search space to the entire kernel vector
instead of parametrizing by T (.). Specifically, we optimize
the following loss function

L(h) def
= ‖G(y)− h~ F (y,h))‖22 + γ‖h‖1. (4)

Note the presence of the second term which acts as an `1-
norm sparsity prior. Also the kernel vector h is being opti-
mized instead of the latent key point vector z. Using vari-
able splitting as used in Half-Quadratic Splitting (HQS), we
convert the optimization problem in (4) to as follows:

L(h,v) = ‖G(y)− h~ F (y,h))‖22 + γ‖h‖1 +
µ

2
‖h− v‖22

(5)

for some hyperparameter µ > 0. This leads us to the fol-
lowing iterative updates

hk+1 = hk − δ ·
{
∇hL(hk) + µ(hk − vk)

}
, (6)

vk+1 = max
(∣∣hk+1

∣∣− γ/µ, 0
)
· sign(hk+1)

def
= Sγ/µ(hk+1). (7)

Algorithm 1 Iterative Poisson Deconvolution Scheme
1: Input: Noisy-blurry y, Photon-Level α, denoiser G(·),

non-blind solver F (·), Kernel-Trajectory-Network
T (·).

2: Initialize z0 using method described in Algorithm 1
from supplementary

3: for k = 0, 1, 2, · · · do % Stage I begins here
4: hkz ← T (zk)
5: L(z)← ‖G(y)− hkz ~ F (y,hkz)‖22
6: Calculate∇zL(zk) using automatic differentiation
7: zk+1 ← zk − δ∇zL(zk)
8: end for
9: h0,v0 ← T (z∞), µ← 2.0, γ ← 10−4

10: for k = 0, 1, 2, · · · do % Stage II begins here
11: L(h)← ‖G(y)− h~ F (y,h)‖22
12: Calculate∇hL(hk) using automatic differentiation
13: hk+1 ← hk − δ

(
∇hL(hk) + µ(hk − vk)

)

14: vk+1 ← Sγ/µ(hk+1)
15: µ← 1.01µ
16: end for
17: return h(∞) and x(∞) = F (y,h(∞))

4. Experiments

4.1. Training

While our overall method is not end-to-end trained,
it contains pre-trained components, namely the non-blind
solver F (.) and denoiser G(.). The architectures of F (.)
andG(.) are inherited from PhD-Net [29] which takes as in-
put a noisy-blurred image and kernel. For the denoiserG(.),
we fix kernel input to identity operator since it is trained to
remove only the noise from noisy-blurred image y.

4

F (.) and G(.) are trained using synthetic data as fol-
lows. We take clean images from Flickr2K dataset [20]
and the blur kernels from the code in Boracchi and Foi [4].
The blurred images are also corrupted using Poisson shot
noise with photon levels α uniformly sampled from [1, 60].
The non-blind solver F (.) is trained using kernel and noisy
blurred image as input, and clean image as the target. The
denoiser G(.) is trained with similar procedure but with
blurred-noisy image as the only input blur-only images as
the target. The training processes, along with other ex-
periments described in this paper are implemented using
PyTorch on a NVIDIA Titan Xp GPU.

For quantitative comparison of the method presented, we
retrain the following state-of-the-art networks for Poisson
Noise: Scale Recurrent Network (SRN) [34], Deep-Deblur
[24], DHMPN [43], MPR-Net [42], and MIMO-UNet+ [8].
We perform this retraining in the following two different
ways. First, we use synthetic data training as described for
F (.) and G(.). Second, for testing on realistic blur, we re-
train the networks using the GoPro dataset [24] as it is often
used to train neural networks in contemporary deblurring
literature. We add the Poisson noise with the same distribu-
tion as the synthetic datasets to the blurred images. While
retraining the networks, we use the respective loss functions
from the original papers for sake of a fair comparison.

4.2. Quantitative Comparison

We quantitatively evaluate the proposed method on
three different datasets, and compare it with state-of-the-
art deblurring methods. In addition to the end-to-end
trained methods described previously, we also compare
our approach to the following Poisson deblurring methods:
Poisson-Plug-and-Play [28], and PURE-LET [18]. Even
though these methods assume the blur kernel to be known,
we include them in the quantitative comparison since they
are specifically designed for Poisson noise. For all of the
methods described above, we compare the restored image’s
quality using PSNR, SSIM, and Learned Perceptual Image
Patch Similarity (LPIPS-Alex, LPIPS-VGG) [45]. We in-
clude the latter as another metric in our evaluation since
failure of MSE/SSIM to assess image quality has been well
documented in [36, 45]

BSD100: First, we evaluate our method on synthetic
blur as follows. We collect 100 random images from the
BSD-500 dataset, blur them synthetically with motion ker-
nels from the Levin dataset [17] followed by adding Poisson
noise at photon-levels α = 10, 20, and 40. The results of the
quantitative evaluation are provided in Table 1. Since the
blur is synthetic, ground-truth kernel is known and hence,
can be used to simultaneously evaluate Poisson non-blind
deblurring methods i.e, Poisson Plug-and-Play, PURE-LET,
and PhD-Net. The last method is the non-blind solver F (.)
and serves as an upper bound on performance.

Levin Dataset: Next, we evaluate our method on the
Levin dataset [17] which contains 32 real blurred images
along with the ground truth kernels, as measured through a
point source. We evaluate our method on this dataset with
addition of Poisson noise at photon levelsα = 10, 20 and 40
and the results are shown in Table 2. For a fair comparison,
end-to-end trained methods are retrained using synthetically
blurred data (as described in Section IV-A) for evaluation on
BSD100 and Levin dataset.

RealBlur-J [27]: To demonstrate that our method is able
to handle realistic blur, we evaluate our performance on
randomly selected 50 patches of size 256 × 256 from the
Real-Blur-J [27] dataset. Note that we reduce the size of the
tested image because our method is based on a single-blur
convolutional model. Such model may not be applicable for
a large image with spatially varying blur and local motion of
objects. However, for a smaller patch of a larger image, the
single-blur-kernel model of deconvolution is a much more
valid assumption.

To ensure a fair comparison, we evaluate end-to-end net-
works by retraining on both the synthetic and GoPro dat-
set. As shown in Table 3, we find that end-to-end networks
perform consistently better on the RealBlur dataset when
trained using the GoPro dataset instead of synthetic blur.
This can be explained by the fact both GoPro and RealBlur
have realistic blur which is not necessarily captured by a
single blur convolutional model.

4.3. Qualitative Comparison

Color Reconstruction We show reconstructions on ex-
amples from the real-blur dataset in Figure 4. While our
method is grayscale, we perform colour reconstruction by
estimating the kernel from the luminance-channel. Given
the estimated kernel, we deblur each channel of the image
using the non-blind solver and then combine the different
channels into a single RGB-image. Note that all qualita-
tive examples in this paper for end-to-end trained networks
are trained using the GoPro dataset, since they provide the
better visual result.

Photon-Limited Deblurring Dataset We also show
qualitative examples from photon-limited deblurring
dataset [29] which contains 30 images’ raw sensor data,
blurred by camera shake and taken in extremely low-
illumination. For reconstructing these images, we take the
average of the R, G, B channels of the Bayer patter image,
average it and then reconstruct it using the given method.
The qualitative results for this dataset can be found in
Figure 5. We also show the estimated kernels, along with
estimated kernels from [30, 40], in Figure 6.

However, instead of using the reblurring loss directly, we
find the scheme is more numerically stable if we take the
gradients of the image first and then estimate the reblurring
loss. This can be explained by the fact that unlike simulated

5

Method
Photon Level, Metric

SRN
[34]

DHMPN
[43]

Deep-
Deblur [24]

MIMO-
UNet+ [8]

MPRNet
[42] Ours

P4IP
[28]

PURE-LET
[18]

PhD-Net
[29]

α = 10

PSNR ↑ 20.71 20.89 21.17 21.04 21.09 21.57 19.26 22.49 23.00
SSIM ↑ 0.386 0.391 0.401 0.356 0.393 0.471 0.348 0.485 0.500

LPIPS-Alex ↓ 0.681 0.702 0.656 0.733 0.678 0.560 0.733 0.588 0.544
LPIPS-VGG ↓ 0.646 0.652 0.627 0.683 0.641 0.587 0.674 0.607 0.567

α = 20

PSNR ↑ 20.79 21.03 21.30 21.36 21.25 21.93 19.45 22.94 23.63
SSIM ↑ 0.392 0.401 0.410 0.396 0.405 0.483 0.353 0.516 0.540

LPIPS-Alex ↓ 0.683 0.688 0.666 0.660 0.667 0.542 0.726 0.526 0.500
LPIPS-VGG ↓ 0.639 0.640 0.621 0.663 0.631 0.578 0.668 0.584 0.539

α = 40

PSNR ↑ 20.89 21.15 21.43 21.63 21.41 21.62 20.18 23.48 24.38
SSIM ↑ 0.409 0.418 0.425 0.441 0.428 0.527 0.372 0.561 0.593

LPIPS-Alex ↓ 0.677 0.673 0.673 0.586 0.647 0.488 0.706 0.467 0.446
LPIPS-VGG ↓ 0.629 0.626 0.612 0.639 0.613 0.549 0.660 0.557 0.503

Blind? 3 3 3 3 3 3 5 5 5
End-To-End Trained? 3 3 3 3 3 5 5 5 3

Table 1. Performance on BSD100 Dataset with Synthetic Blur. ↑ represents metrics where higher means better and vice versa for ↓.
LPIPS-Alex and LPIPS-VGG represent the perceptual measures from [45]. The best performing blind deconvolution method for each
metric and photon level is shown in bold. The non-blind deconvolution methods are shown for reference in grey columns.

Method
Photon Level, Metric

SRN
[34]

DHMPN
[43]

Deep-
Deblur [24]

MIMO-
UNet+ [8]

MPRNet
[42] Ours

P4IP
[28]

PURE-LET
[18]

PhD-Net
[29]

α = 10

PSNR ↑ 20.26 20.50 20.93 21.25 21.04 22.01 19.92 21.63 22.41
SSIM ↑ 0.510 0.509 0.524 0.516 0.533 0.611 0.463 0.590 0.638

LPIPS-Alex ↓ 0.507 0.521 0.496 0.594 0.479 0.340 0.546 0.371 0.341
LPIPS-VGG ↓ 0.531 0.526 0.518 0.661 0.511 0.477 0.555 0.522 0.466

α = 20

PSNR ↑ 20.49 20.39 21.11 21.64 21.33 22.72 19.53 21.79 22.78
SSIM ↑ 0.523 0.521 0.536 0.554 0.551 0.641 0.442 0.607 0.667

LPIPS-Alex ↓ 0.496 0.502 0.492 0.485 0.459 0.304 0.533 0.339 0.304
LPIPS-VGG ↓ 0.515 0.514 0.501 0.610 0.493 0.448 0.554 0.510 0.447

α = 40

PSNR ↑ 20.59 20.50 21.20 21.88 21.54 22.32 17.32 21.78 22.96
SSIM ↑ 0.535 0.532 0.545 0.583 0.567 0.647 0.362 0.614 0.687

LPIPS-Alex ↓ 0.491 0.494 0.494 0.428 0.447 0.273 0.487 0.324 0.263
LPIPS-VGG ↓ 0.506 0.506 0.493 0.557 0.479 0.444 0.560 0.507 0.432

Table 2. Performance on Levin dataset with realistic camera shake blur [16]. The best performing blind deconvolution method for
each metric and photon level is shown in bold and non-blind deconvolution methods are shown for reference in grey columns.

data, the photon level is not known exactly and is estimated
using the sensor data itself by a simple heuristic. For further
details on how to use the sensor data, we refer the reader
to [29].

4.4. Ablation Study

In Table 4, we provide an ablation study by running the
scheme for different number of key points i.e. K = 4, 6,
and 8 and without KTN (K = 0) on RealBlur dataset.
Through this study, we demonstrate the effect of the Ker-
nel Trajectory Network has on the iterative scheme. As ex-
pected, changing the search space for kernel estimation im-
proves the performance significantly across all metrics. In-

creasing the number of key points used for representing ker-
nels also steadily improves the performance of the scheme,
which can be explained by the fact there are larger degrees
of freedom.

5. Conclusion

In this paper, we use an iterative framework for the
photon-limited blind deconvolution problem. More specif-
ically, we use a non-blind solver which can deconvolve
Poisson corrupted and blurred images given a blur kernel.
To mitigate ill-posedness of the kernel estimation in such
high noise regimes, we propose a novel low-dimensional

6

]

Method→ SRN [34] DHMPN [43] Deep-Deblur [24] MIMO-UNet+ [8] MPRNet [42] Ours

Training→
Photon lvl, Metric Synth. GoPro Synth. GoPro Synth. GoPro Synth. GoPro Synth. GoPro Synth.

α = 10

PSNR ↑ 25.72 27.64 25.72 27.58 25.98 27.57 26.20 26.78 26.26 28.16 26.61
SSIM ↑ 0.612 0.706 0.603 0.696 0.577 0.719 0.531 0.571 0.641 0.729 0.738

LPIPS-Alex ↓ 0.438 0.310 0.454 0.329 0.441 0.297 0.484 0.396 0.401 0.288 0.277
LPIPS-VGG ↓ 0.508 0.454 0.509 0.472 0.496 0.440 0.549 0.508 0.496 0.427 0.416

α = 20

PSNR ↑ 25.37 27.91 25.46 28.02 25.95 27.81 26.69 27.53 26.51 28.29 27.23
SSIM ↑ 0.658 0.775 0.655 0.764 0.636 0.778 0.630 0.678 0.715 0.793 0.793

LPIPS-Alex ↓ 0.426 0.275 0.429 0.288 0.427 0.265 0.401 0.313 0.360 0.256 0.241
LPIPS-VGG ↓ 0.492 0.421 0.496 0.437 0.485 0.410 0.495 0.446 0.466 0.402 0.382

α = 40

PSNR ↑ 25.67 28.34 25.72 28.27 26.22 28.13 27.24 28.14 26.85 28.72 27.11
SSIM ↑ 0.665 0.768 0.653 0.760 0.626 0.771 0.675 0.712 0.716 0.788 0.782

LPIPS-Alex ↓ 0.415 0.268 0.418 0.268 0.418 0.258 0.347 0.267 0.343 0.245 0.221
LPIPS-VGG ↓ 0.482 0.405 0.481 0.413 0.470 0.396 0.457 0.404 0.444 0.386 0.360

Table 3. Performance on RealBlur-J Dataset with realistic blur [27]: Bold and underline refer to overall best performing method and
best synthetic performance method. It should be noted that methods that are not trained end-to-end are usually at disadvantage when
comparing on metrics like PSNR. However, it can be seen that our reconstruction is generally preferred by other perceptual metrics.

Input

SRN DHMPN MPR-Net

MIMO-UNet+ Ours Ground-Truth

Figure 4. Qualitative example on the Real-Blur Dataset: For a more extensive set of results, we refer the reader to the supplementary
document.

representation to represent the motion blur. By using this
novel low-dimensional and differentiable representation as
a search space, we show state-of-the-art deconvolution per-
formance and outperform end-to-end trained image restora-
tion networks by a significant margin.

We believe this is a promising direction of research for
both deblurring and general blind inverse problems i.e.,
inverse problems where the forward operator is not fully
known. Future work could involve a supervised version
of this scheme which does not involve backpropagation

through a network as it would greatly reduce the compu-
tational cost. Another possible line of research could be to
apply this framework to the problem of spatially varying
blur.

Acknowledgement

The work is supported, in part, by the United States Na-
tional Science Foundation under the grants IIS-2133032 and
ECCS-2030570.

7

Input

SRN DHMPN MPR-Net

Ours Non-Blind Ground-Truth

Figure 5. Visual comparisons on Photon-Limited Deblurring Dataset. Qualitative results on realistic blurred and photon-limited images
from the Photon-Limited Deblurring dataset [29].The inset image for ”Ours” and ”Non-Blind” represent the estimated and ground-truth
kernel respectively. For a more extensive set of qualitative results, we refer the reader to the supplementary document.

Two-Phase
[40]

Sanghvi
et. al [30] Ours Ground-

Truth

Figure 6. Estimated Kernels for different methods: We show
the estimated kernels from two examples from the PLDD dataset.
Two-Phase [40] uses blur-only image G(y) as input, and ground-
truth kernel is estimated using a point-source.

References
[1] Chirag Agarwal, Shahin Khobahi, Arindam Bose, Mojtaba

Soltanalian, and Dan Schonfeld. Deep-url: A model-aware
approach to blind deconvolution based on deep unfolded
Richardson-Lucy network. In 2020 IEEE International
Conference on Image Processing (ICIP), pages 3299–3303,
2020. 2

[2] Jérémy Anger, Mauricio Delbracio, and Gabriele Facciolo.
Efficient blind deblurring under high noise levels. In 2019
11th International Symposium on Image and Signal Process-
ing and Analysis (ISPA), pages 123–128. IEEE, 2019. 2

[3] Muhammad Asim, Fahad Shamshad, and Ali Ahmed.

Key Points ↓
Photon Level ↓

Metric→
PSNR SSIM

LPIPS-
Alex

LPIPS-
VGG

α = 10

K = 0 25.44 0.719 0.295 0.434
K = 4 25.90 0.730 0.286 0.423
K = 6 26.38 0.735 0.279 0.422
K = 8 26.73 0.740 0.272 0.414

α = 20

K = 0 25.61 0.767 0.267 0.407
K = 4 26.93 0.785 0.242 0.385
K = 6 26.78 0.784 0.246 0.392
K = 8 27.26 0.795 0.240 0.384

α = 40

K = 0 25.82 0.759 0.248 0.390
K = 4 26.88 0.771 0.228 0.374
K = 6 27.37 0.780 0.216 0.366
K = 8 27.29 0.785 0.214 0.361

Table 4. Ablation Study for effect of Kernel Trajectory Net-
work T (.): Reconstruction metrics for different number of key
points. K = 0 represents the variant of the scheme which does
not use the Kernel-Trajectory Network and estimates the kernel
directly from Stage II.

Blind image deconvolution using deep generative priors.
IEEE Transactions on Computational Imaging, 6:1493–
1506, 2020. 2

[4] Giacomo Boracchi and Alessandro Foi. Modeling the perfor-
mance of image restoration from motion blur. IEEE Trans-
actions on Image Processing, 21(8):3502–3517, 2012. 5

[5] Ayan Chakrabarti. A neural approach to blind motion deblur-
ring. In European Conference on Computer Vision (ECCV),

8

pages 221–235. Springer, 2016. 2
[6] Tony F Chan and Chiu-Kwong Wong. Total variation blind

deconvolution. IEEE Transactions on Image Processing,
7(3):370–375, 1998. 2

[7] Sunghyun Cho and Seungyong Lee. Fast motion deblurring.
ACM Transactions on Graphics, pages 1–8, 2009. 2

[8] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
4641–4650, 2021. 1, 2, 5, 6, 7

[9] Mauricio Delbracio, Ignacio Garcia-Dorado, Sungjoon Choi,
Damien Kelly, and Peyman Milanfar. Polyblur: Removing
mild blur by polynomial reblurring. IEEE Transactions on
Computational Imaging, 7:837–848, 2021. 3

[10] Mario AT Figueiredo and Jose M Bioucas-Dias. Decon-
volution of Poissonian images using variable splitting and
augmented Lagrangian optimization. In Proceedings of the
IEEE/SP Workshop on Statistical Signal Processing, pages
733–736, 2009. 2

[11] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian
Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng
Shi. From motion blur to motion flow: A deep learning so-
lution for removing heterogeneous motion blur. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2319–2328, 2017. 2

[12] Ankit Gupta, Neel Joshi, C Lawrence Zitnick, Michael Co-
hen, and Brian Curless. Single image deblurring using mo-
tion density functions. In European Conference on Computer
Vision (ECCV), pages 171–184. Springer, 2010. 2

[13] Zachary T Harmany, Roummel F Marcia, and Rebecca M
Willett. This is SPIRAL-TAP: Sparse Poisson intensity re-
construction algorithms— theory and practice. IEEE Trans-
actions on Image Processing, 21(3):1084–1096, 2011. 2

[14] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
Dmytro Mishkin, and Jiřı́ Matas. DeblurGAN: Blind motion
deblurring using conditional adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 8183–8192, 2018. 2

[15] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang
Wang. DeblurGAN-v2: Deblurring (orders-of-magnitude)
faster and better. In The IEEE/CVF International Conference
on Computer Vision (ICCV), Oct 2019. 2

[16] Anat Levin. Blind motion deblurring using image statis-
tics. Advances in Neural Information Processing Systems
(NeurIPS), 19, 2006. 2, 6

[17] Anat Levin, Yair Weiss, Fredo Durand, and William T Free-
man. Understanding and evaluating blind deconvolution al-
gorithms. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
1964–1971, 2009. 5

[18] Jizhou Li, Florian Luisier, and Thierry Blu. PURE-LET im-
age deconvolution. IEEE Transactions on Image Processing,
27(1):92–105, 2017. 2, 5, 6

[19] Yuelong Li, Mohammad Tofighi, Vishal Monga, and Yon-
ina C Eldar. An algorithm unrolling approach to deep image
deblurring. In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 7675–7679.
IEEE, 2019. 2

[20] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, July 2017. 5

[21] Leon B Lucy. An iterative technique for the rectification of
observed distributions. The Astronomical Journal, 79:745,
1974. 2

[22] Zhiyuan Mao, Nicholas Chimitt, and Stanley H. Chan. Image
reconstruction of static and dynamic scenes through aniso-
planatic turbulence. IEEE Transactions on Computational
Imaging, 6:1415–1428, 2020. 2

[23] Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm
unrolling: Interpretable, efficient deep learning for signal
and image processing. IEEE Signal Processing Magazine,
38(2):18–44, 2021. 2

[24] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017. 1, 2, 5, 6, 7

[25] Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and
Wangmeng Zuo. Neural blind deconvolution using deep pri-
ors. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3338–3347, 2020. 2

[26] William Hadley Richardson. Bayesian-based iterative
method of image restoration. Journal of the Optical Soci-
ety of America, 62(1):55–59, 1972. 2

[27] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho.
Real-world blur dataset for learning and benchmarking de-
blurring algorithms. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 184–201. Springer,
2020. 2, 5, 7

[28] Arie Rond, Raja Giryes, and Michael Elad. Poisson in-
verse problems by the plug-and-play scheme. Journal of Vi-
sual Communication and Image Representation, 41:96–108,
2016. 2, 5, 6

[29] Yash Sanghvi, Abhiram Gnanasambandam, and Stanley H
Chan. Photon limited non-blind deblurring using algorithm
unrolling. IEEE Transactions on Computational Imaging
(TCI), 8:851–864, 2022. 2, 4, 5, 6, 8

[30] Yash Sanghvi, Abhiram Gnanasambandam, Zhiyuan Mao,
and Stanley H. Chan. Photon-limited blind deconvolution
using unsupervised iterative kernel estimation. IEEE Trans-
actions on Computational Imaging, 8:1051–1062, 2022. 1,
2, 3, 5, 8

[31] Christian J Schuler, Michael Hirsch, Stefan Harmeling, and
Bernhard Schölkopf. Learning to deblur. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38(7):1439–
1451, 2015. 2

[32] Qi Shan, Jiaya Jia, and Aseem Agarwala. High-quality mo-
tion deblurring from a single image. ACM Transactions on
Graphics, 27(3):1–10, 2008. 2

[33] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-
ing a convolutional neural network for non-uniform motion

9

blur removal. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
769–777, 2015. 2

[34] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-
aya Jia. Scale-recurrent network for deep image deblurring.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8174–8182,
2018. 1, 2, 5, 6, 7

[35] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 9446–9454, 2018. 2

[36] Zhou Wang and Alan C Bovik. Mean squared error: Love
it or leave it? a new look at signal fidelity measures. IEEE
Signal Processing Magazine, 26(1):98–117, 2009. 5

[37] Zhendong Wang, Xiaodong Cun, Jianmin Bao, Wengang
Zhou, Jianzhuang Liu, and Houqiang Li. Uformer: A general
U-shaped transformer for image restoration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 17683–17693, June 2022.
2

[38] Oliver Whyte, Josef Sivic, and Andrew Zisserman. Deblur-
ring shaken and partially saturated images. International
Journal of Computer Vision, 110(2):185–201, 2014. 2

[39] Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean
Ponce. Non-uniform deblurring for shaken images. Inter-
national Journal of Computer Vision, 98(2):168–186, 2012.
2

[40] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust
motion deblurring. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), pages 157–170. Springer,
2010. 2, 5, 8

[41] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2

[42] Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar
Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling
Shao. Multi-stage progressive image restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 14821–14831, 2021.
1, 2, 5, 6, 7

[43] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-
niusz. Deep stacked hierarchical multi-patch network for im-
age deblurring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5978–5986, 2019. 1, 2, 5, 6, 7

[44] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn
Stenger, Wei Liu, and Hongdong Li. Deblurring by realis-
tic blurring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2737–2746, 2020. 2

[45] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 586–595, 2018. 5, 6

[46] Youjian Zhang, Chaoyue Wang, Stephen J Maybank, and
Dacheng Tao. Exposure trajectory recovery from motion
blur. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44(11):7490–7504, 2021. 2

10

Structured Kernel Estimation for Photon-Limited Deconvolution -
Supplementary

Yash Sanghvi, Zhiyuan Mao, Stanley H. Chan
School of Electrical and Computer Engineering, Purdue University

{ysanghvi, mao114, stanchan}@purdue.edu

1. Overview of Camera Noise Model
In this section, we present an overview of different cam-

era noise sources followed by a justification of the Pois-
son noise model used for photon-limited settings. Con-
sider the sensor output of ith pixel of camera, denoted as Yi.
From [10], we model Yi as the following random variable:

Yi ∼ Kd

(
Ka(P(Ii) + ηa) + ηd + ηq

)
(1)

Here Ii represents the average number of incident photons
during the exposure. Ka, Kd represent the analog and digi-
tal gain respectively. ηa represents noise sources before the
analog gain (dark current shot noise, flicker noise etc.) and
ηd represents noise sources before the digital gain (thermal
noise, fixed pattern noise). ηq represent the quantization
noise. From Eq. (1), we can see view Yi is a noisy mea-
surement of the parameter Ii.

Eq. (1) can be simplified in the following way:

Ỹi ∼ P(Ii)︸ ︷︷ ︸
signal-dependent

+ ηa +
1

Ka
(ηd + ηq)

︸ ︷︷ ︸
signal-independent

(2)

where Ỹi
def
= Yi/(KaKd) is the normalized the pixel mea-

surement. The noise sources can be easily decoupled
into signal dependent Poisson noise and signal indepen-
dent noise sources. The latter is often approximated as zero
mean Gaussian noise in literature [2,3,6] leading to the fol-
lowing Poisson-Gaussian mixture modelling

Ỹi ∼ P(Ii) + Zi Zi ∼ N (0, σ2) (3)

We can further break down average number of incident pho-
ton Ii as Ii

def
= αxi where α is a function of camera parame-

ters such as exposure time, quantum efficiency, sensor area
etc. and xi is the scene radiance corresponding to the ith

pixel. This helps us decouple the scene and camera charac-
teristics in the signal Ii. Therefore, we arrive at the follow-
ing camera model formulation where Yi is the measurement
of the true signal xi:

Ỹi ∼ P(αxi) +N (0, σ2) (4)

1.1. Poisson Noise SNR

For this subsection, we ignore the Gaussian term in Eq.
(4) i.e. σ = 0 to focus on the nature of Poisson noise. An
interesting property of the Poisson random variable is that
its mean and variance are the same. Thus, the signal-to-
noise ratio for Ỹi, in absence of Gaussian noise, is given as
follows:

SNR(Ỹi)
def
=

E[Ỹi]√
Var[Ỹi]

=
√
αxi (5)

This implies that our measurements get noisier with de-
creasing number of incident photons. If the scene is not
well-illuminated (low xi) or the exposure is short (small α),
the number of incident photons on the sensor is also low
leading to noisier images.

1.2. Photon-Limited Scenes

Scenes where the Poisson noise dominates other sources
of noise in the measurements are defined as photon-limited
[4]. For the random variable Ỹi defined in (4), this occurs
when the variance due to Poisson noise is greater than the
variance due to Gaussian noise, i.e. αxi ≥ σ2.

However, for the purpose of this paper, not all photon-
limited scenes are equally significant. To emphasize this
point, we inspect the SNR for Poisson-Gaussian mixture Ỹi
for different levels of α. The SNR for Ỹi in presence of both
Poisson and Gaussian noise is given as follows:

SNR[Ỹi]
def
=

E[Ỹi]√
Var[Ỹi]

=
αxi√

αxi + σ2
(6)

Consider the case of read noise σ = 1.6e- [7]. We as-
sume xi = 1 and inspect the random variable Yi for differ-
ent α in the photon-limited regime, as shown in Table 1.

From the table we can conclude the following: Images
taken in well-illuminated scenes with good exposure can
be approximated as noiseless for the purpose of deblur-
ring. However, on the other end of photon-limited regime

1

ar
X

iv
:2

30
3.

03
47

2v
1

 [
ee

ss
.I

V
]

 6
 M

ar
 2

02
3

Photon level ↓ SNR (in dB)
α = 1000 29.98 dB
α = 40 15.75 dB
α = 20 12.48 dB
α = σ2 1.07 dB

Table 1. Signal-to-noise ratio (SNR) for different photon levels in
photon-limited regime.

i.e. α = σ2, there is too much noise in the image for
any meaningful recovery from a single frame. Therefore,
for this paper, we explore photon-limited deconvolution for
α ∈ [10, 40] where shot noise dominates read noise but
there is still a possibility of extracting the clean image.

2. Initialization Algorithm
In Algorithm 1, we describe the kernel initialization

method for the proposed method. This scheme is a minor
variation of the kernel estimation method from [1] and used
to estimate a rectilinear kernel with parameters {ρ, θ} from
the blur-only image G(y). We would like to reiterate to
the reader that the scheme in Algorithm 1 is not the kernel
estimation process in its entirety and only represents the ini-
tialization process. The kernel estimated at the end of this
algorithm is further refined in Stage I and II of the main
iterative scheme.

Algorithm 1 Initialization for Kernel Estimation
1: Input: Blur-only Image G(y), Number of Key Points
K

2: Estimate gradient images Dx,Dy from G(y)
3: for θ = 1, 2, · · ·, 180 do
4: Dθ ← Dx cos(θ)−Dx sin(θ)
5: fθ ← max(|Dθ|)
6: end for
7: fθ̂, θ̂ ← min fθ

8: ρ← C1

√
C2

0

f2
θ̂

− σ2
b

9: (x0, y0)← (0, 0)
10: for k = 1, 2, · · ·,K − 1 do
11: (xk, yk)← kρ

K−1 cos(θ̂),
kρ
K−1 sin(θ̂)

12: end for
13: z0 ← [x0, y0, x1, y1, ..., xK−1, yK−1]

T

14: return z0

3. Qualitative Comparison
Extended qualitative results comparing end-to-end

trained methods to our approach are provided in the sup-
plementary document. Figure 1 and 2 provide qualitative
examples from the RealBlur dataset which contains realistic

blur. Figure 3 contains examples from the PLDD dataset [9]
cotnains real-shot noise corrupted and blurred image sensor
data along with the ground-truth kernel, as measured using
a point source. Finally, Figure 4 provides reconstruction re-
sults on synthetically blurred images using motion kernels
from Levin dataset [5].

4. KTN Architecture and Training
The KTN architecture can be summarized as follows:

the vectorized control points of dimension 2 × (K − 1)
are passed through 3 fully-connected layers followed by re-
shaping into an image. The reshaped image is then passed
through the decoding half of a UNet to give the kernel out-
put. The final output, when used in the iterative scheme, is
clipped to zero and then normalized to one. Architecture
details of KTN are provide in Figure 5.

5. Implementation Details
Boundary Conditions: While blurring the image syn-

thetically, the boundary conditions are important to take
into account. Circular boundary conditions allow the blur
operator to be written in terms of FFTs and making it com-
putationally inexpensive, it is not a realistic assumption for
natural blur. A more appropriate boundary condition to as-
sume is symmetric boundary condition.

This has major implications for our inverse problem
scheme. Since PhD-Net assumes circular boundary condi-
tions, we need to pad the image symmetrically, pass through
PhD-Net and crop out the relevant portion to deblur the im-
age without any artifacts. Second, when calculating the re-
blurring loss, hz ~ F (y,hz) needs to be calculated using
symmetric boundary conditions.

Step Size and Backtracking: For Stage I, we set the ini-
tial step size as δ = 105 and for Stage II, we set δ = 2.0.
For every iteration, we check whether the current choice of
step-size decreases the cost-function or not. If it doesn’t,
then the step-size is reduced by half for rest of the itera-
tive scheme until the next time the cost function increases
instead of decreasing. Note that δ is set very large in the
first stage compared to the second. This is because the gra-
dients are backpropagated through two networks i.e., F (.)
and T (.) instead of one, leading to the vanishing gradient
problem and hence justifying the larger step size.

Computational Time: For each stage of the iterative
scheme, we limit the number of iterations to 150. The ex-
periments in the main document are performed on a Nvidia
TitanX GPU, and take approximately 0.35 seconds per iter-
ation.

References
[1] Mauricio Delbracio, Ignacio Garcia-Dorado, Sungjoon Choi,

Damien Kelly, and Peyman Milanfar. Polyblur: Removing

2

Input

SRN DHMPN MIMO-UNet+

MPR-Net Ours Ground Truth

Input

SRN DHMPN MIMO-UNet+

MPR-Net Ours Ground Truth

Figure 1. Qualitative examples on the Real-Blur Dataset

mild blur by polynomial reblurring. IEEE Transactions on
Computational Imaging, 7:837–848, 2021. 2

[2] Alessandro Foi. Clipped noisy images: Heteroskedas-
tic modeling and practical denoising. Signal Processing,
89(12):2609–2629, 2009. 1

[3] Alessandro Foi, Mejdi Trimeche, Vladimir Katkovnik, and
Karen Egiazarian. Practical Poissonian-Gaussian noise mod-
eling and fitting for single-image raw-data. IEEE Transac-
tions on Image Processing, 17(10):1737–1754, 2008. 1

[4] Samuel W Hasinoff. Photon, poisson noise. Computer Vi-
sion, A Reference Guide, 4:16, 2014. 1

[5] Anat Levin. Blind motion deblurring using image statis-
tics. Advances in Neural Information Processing Systems
(NeurIPS), 19, 2006. 2

[6] Florian Luisier, Thierry Blu, and Michael Unser. Image de-

noising in mixed Poisson–Gaussian noise. IEEE Transac-
tions on Image Processing, 20(3):696–708, 2010. 1

[7] Jiaju Ma, Dexue Zhang, Dakota Robledo, Leo Anzagira, and
Saleh Masoodian. Ultra-high-resolution quanta image sen-
sor with reliable photon-number-resolving and high dynamic
range capabilities. Scientific Reports, 12(1):1–9, 2022. 1

[8] Yash Sanghvi, Abhiram Gnanasambandam, and Stanley H
Chan. Photon limited non-blind deblurring using algorithm
unrolling. IEEE Transactions on Computational Imaging
(TCI), 8:851–864, 2022. 5

[9] Yash Sanghvi, Abhiram Gnanasambandam, Zhiyuan Mao,
and Stanley H. Chan. Photon-limited blind deconvolution
using unsupervised iterative kernel estimation. IEEE Trans-
actions on Computational Imaging, 8:1051–1062, 2022. 2

[10] Yi Zhang, Hongwei Qin, Xiaogang Wang, and Hongsheng

3

Input

SRN DHMPN MIMO-UNet+

MPR-Net Ours Ground Truth

Input

SRN DHMPN MIMO-UNet+

MPR-Net Ours Ground Truth

Figure 2. More Qualitative examples on the Real-Blur Dataset

Li. Rethinking noise synthesis and modeling in raw denois-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 4593–4601, 2021.
1

4

Input

SRN DHMPN MPR

Ours Non-Blind Ground-Truth

Input

SRN DHMPN MPR

Ours Non-Blind Ground-Truth

Figure 3. More comparisons on Photon-Limited Deblurring Dataset [8].

5

Input

SRN MIMO-UNet++ MPR-Net

Ours Non-Blind Ground-Truth

Input

SRN MIMO-UNet++ MPR-Net

Ours Non-Blind Ground-Truth

Figure 4. Qualitative Examples on Synthetic Blur: ”Non-Blind” is provided for reference and serves as an upper bound on the decon-
volution performance. It is obtained through PhD-Net with noisy-blurred image and ground truth kernel as inputs. The kernels in inset of
”Ours” and ”Non-Blind” represent the estimated and true blur kernel respectively.

6

Affine-Transform + ReLU,
 = Input Dimension
 = Output Dimension

U
-N

et D
ecoder

R
eshape Input Size Output Size

U
-N

et D
ecoder

= ...

Upsampling Block:
 Transposed Convolution ,

Residual Block

Convolutional Block:
Conv. Layer 1

(Output channel = input channel)
Conv. Layer 2

(Output channel = 1)

Key Point Vector
Figure 5. Kernel Trajectory Network Architecture 3 fully connected layers followed by a U-Net decoder

7

