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Figure 1. Generative Diffusion Prior (GDP) is capable of generating high-fidelity restoration across various tasks. GDP gives faithful
image recovery on (a) linear and multi-linear restoration.. In addition, GDP also enables novel applications of (b) blind, non-linear,
multiple-guidance, or any-size image, including low-light enhancement and HDR recovery.

Abstract

Existing image restoration methods mostly leverage the
posterior distribution of natural images. However, they
often assume known degradation and also require super-
vised training, which restricts their adaptation to complex
real applications. In this work, we propose the Generative
Diffusion Prior (GDP) to effectively model the posterior
distributions in an unsupervised sampling manner. GDP
utilizes a pre-train denoising diffusion generative model
(DDPM) for solving linear inverse, non-linear, or blind
problems. Specifically, GDP systematically explores a pro-
tocol of conditional guidance, which is verified more prac-
tical than the commonly used guidance way. Furthermore,
GDP is strength at optimizing the parameters of degrada-
tion model during the denoising process, achieving blind
image restoration. Besides, we devise hierarchical guid-
ance and patch-based methods, enabling the GDP to gen-
erate images of arbitrary resolutions. Experimentally, we
demonstrate GDP ’s versatility on several image datasets
for linear problems, such as super-resolution, deblurring,
inpainting, and colorization, as well as non-linear and blind
issues, such as low-light enhancement and HDR image re-

∗Equal contribution, †Corresponding author.

covery. GDP outperforms the current leading unsupervised
methods on the diverse benchmarks in reconstruction qual-
ity and perceptual quality. Moreover, GDP also general-
izes well for natural images or synthesized images with ar-
bitrary sizes from various tasks out of the distribution of
the ImageNet training set. The project page is available at
https://generativediffusionprior.github.io/

1. Introduction
Image quality often degrades during capture, storage,

transmission, and rendering. Image restoration and en-
hancement [44] aim to inverse the degradation and im-
prove the image quality. Typically, restoration and enhance-
ment tasks can be divided into two main categories: 1)
Linear inverse problems, such as image super-resolution
(SR) [24, 39], deblurring [37, 80], inpainting [93], coloriza-
tion [38,100], where the degradation model is usually linear
and known; 2) Non-linear or blind problems [1], such as
image low-light enhancement [41] and HDR image recov-
ery [10, 84], where the degradation model is non-linear and
unknown. For a specific linear degradation model, image
restoration can be tackled through end-to-end supervised
training of neural networks [16, 100]. Nonetheless, cor-
rupted images in the real world often have multiple complex
degradations [60], where fully supervised approaches suffer
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to generalize.
There is a surge of interest to seek for more general im-

age priors through generative models [1, 21, 74], and tackle
image restoration in an unsupervised setting [8, 19], where
multiple restoration tasks of different degradation models
can be addressed during inference without re-training. For
instance, Generative Adversarial Networks (GANs) [20]
that are trained on a large dataset of clean images learn
rich knowledge of the real-world scenes have succeeded
in various linear inverse problems through GAN inver-
sion [21, 54, 62]. In parallel, Denoising Diffusion Proba-
bilistic Models (DDPMs) [2, 7, 36, 72, 77, 82] have demon-
strated impressive generative capabilities, level of details,
and diversity on top of GAN [27, 66, 67, 76, 78, 81]. As an
early attempt, Kawar et al. [32] explore pre-trained DDPMs
with variational inference, and achieve satisfactory results
on multiple restoration tasks, but their Denoising Diffusion
Restoration Model (DDRM) leverages the singular value
decomposition (SVD) on a known linear degradation ma-
trix, making it still limited to linear inverse problems.

In this study, we take a step further and propose an effi-
cient approach named Generative Diffusion Prior (GDP).
It exploits a well-trained DDPM as effective prior for
general-purpose image restoration and enhancement, using
degraded image as guidance. As a unified framework, GDP
not only works on various linear inverse problems, but also
generalizes to non-linear, and blind image restoration and
enhancement tasks for the first time. However, solving the
blind inverse problem is not trivial, as one would need to
concurrently estimate the degradation model and recover
the clean image with high fidelity. Thanks to the generative
prior in a pre-trained DDPM, denoising within the DDPM
manifold naturally regularizes the realness and fidelity of
the recovered image. Therefore, we adopt a blind degrada-
tion estimation strategy, where the degradation model pa-
rameters of GDP are randomly initialized and optimized
during the denoising process. Moreover, to further improve
the photorealism and image quality, we systematically in-
vestigate an effective way to guide the diffusion models.
Specifically, in the sampling process, the pre-trained DDPM
first predicts a clean image x̃0 from the noisy image xt by
estimating the noise in xt. We can add guidance on this in-
termediate variable x̃0 to control the generation process of
the DDPMs. In addition, with the help of the proposed hier-
archical guidance and patch-based generation strategy, GDP
is able to recover images of arbitrary resolutions, where
low-resolution images and degradation models are first pre-
dicted to guide the generation of high-resolution images.

We demonstrate the empirical effectiveness of GDP by
comparing it with various competitive unsupervised meth-
ods under the linear or multi-linear inverse problem on
ImageNet [14], LSUN [94], and CelebA [31] datasets in
terms of consistency and FID. Over the low-light [41] and

NTIRE [63] datasets, we further show GDP results on non-
linear and blind issues, including low-light enhancement
and HDR recovery, superior to other zero-shot baselines
both qualitatively and quantitively, manifesting that GDP
trained on ImageNet also works on images out of its train-
ing set distribution.

Our contributions are fourfold: (1) To our best knowl-
edge, GDP is the first unified problem solver that can ef-
fectively use a single unconditional DDPM pre-trained
on ImageNet provide by [15] to produce diverse and high-
fidelity outputs for unified image restoration and enhance-
ment in an unsupervised manner. (2) GDP is capable of op-
timizing randomly initiated parameters of degradation that
are unknown, resulting in a powerful framework that can
tackle any blind image restoration. (3) Further, to achieve
arbitrary size image generation, we propose hierarchical
guidance and patch-based methods, greatly promoting GDP
on natural image enhancement. (4) Moreover, the compre-
hensive experiments are carried out, different from the con-
ventional guidance way, where GDP directly predicts the
temporary output given the noisy image in every step, which
will be leveraged to guide the generation of images in the
next step.

2. Related works
Linear Inverse Image Restoration. Most diffusion mod-
els toward linear inverse problems have employed uncondi-
tional models for the conditional tasks [53, 79], where only
one model needs to be trained. However, unconditional
tasks tend to be more difficult than conditional tasks. More-
over, the multi-linear task is also a relatively under-explored
subject in image restoration. For instance, [65, 95] train si-
multaneously on multiple tasks, but they mainly concentrate
on the enhancement tasks like deblurring and so on. Some
works have also handled the multi-scale super-resolution
by simultaneous training over multiple degradations [35].
Here, we propose GDP as a single model for dealing with
single linear inverse or multiple linear inverse tasks.
Non-linear Image Restoration. The non-linear image for-
mation model provides an accurate description of several
imaging systems, including camera response functions in
high-dynamic-range imaging [68]. The non-linear image
restoration model is more accurate but is often more com-
putationally intractable. Recently, great attention has been
paid to non-linear image restoration problems. For exam-
ple, HDR-GAN [59] is proposed for synthesizing HDR im-
ages from multi-exposed LDR images, while Enlighten-
GAN [29] is devised as an unsupervised GAN to generalize
very well on various real-world test images. The diffusion
models are rarely studied for non-linear image restoration.
Blind Image Restoration. Early supervised attempts [5,
25] tend to estimate the unknown point spread function. As
an example, [34] designs a class of structured denoisers, and
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Figure 2. Overview of our GDP for unified image recovery. (a) Given a corrupted image y during inference, GDP systematically studies
the reverse process from xT to x0 guided by the y. The guidance can be added on x̂0 or x̂t, leading to two variants of GDP. And x̂0

and x̂t can be collectively expressed as x̂t. The supervision signal (Sec. 5) is applied between x̂t and y. GDP looks for an intermediate
variable xt and optimizes the degradation model {Diφ | i = 1, 2, . . . , n} that best reconstruct the image corresponding to y via gradient
descent. Note that GDP is a generic image restoration method. We illustrate it with the low light enhancement example. (b) GDP-xt adds
guidance xt in every time step (Algo. 1), while (c) GDP-x0 estimates the x̃0 given xt, then adds guidance on x̃0 to obtain x̂0(Algo. 2).
The number of guidance images {yi | i = 1, 2, . . . , n} and the degradation models {Diφ | i = 1, 2, . . . , n} are dependent on the tasks.
For instance, n = 3 for HDR recovery, while n = 1 for other tasks.

[75] employs a fixed down-sampling operation to generate
synthetic pairs during testing. However, these methods of-
ten are incapable of obtaining the parameters or distribu-
tion of the observed data due to the complicated degrada-
tion types. Another way to solve the blind image restoration
is to utilize unsupervised learning methods [18, 107]. Fol-
lowing the CycleGAN [107], CinCGAN [96] and MCinC-
GAN [103] employ a pre-trained SR model together with
cycle consistency loss to learn a mapping from the input im-
age to high-quality image space. However, it still remains
a challenge to exploit a unified architecture for blind image
restoration. By the merits of the powerful GDP, these blind
problems could also be solved by simultaneously estimating
the recovered image and a specific degradation model.

3. Preliminary
Diffusion models [2, 22, 36, 71, 89] transform complex

data distribution x0 ∼ pdata into simple noise distribution
xT ∼ platent = N (0, I) and recover data from noise,
whereN is the Gaussian distribution. DDPMs mainly com-
prise the diffusion process and the reverse process.
The Diffusion Process is a Markov chain that gradually cor-
rupts data x0 until it approaches Gaussian noise platent at T
diffusion time steps. Corrupted data x1, . . . ,xT are sam-
pled from data pdata, with a diffusion process, which is de-
fined as Gaussian transition:

q (x1, · · · ,xT | x0) =

T∏
t=1

q (xt | xt−1) , (1)

where t denotes as diffusion step, q (xt | xt−1) =
N
(
xt;
√

1− βtxt−1, βtI
)
, and βt are fixed or learned

variance schedule. An important property of the forward
noising process is that any step xt may be sampled directly
from x0 through the following equation:

xt =
√
ᾱtx0 +

√
1− ᾱtε, (2)

where ε ∼ N (0, I), αt = 1 − βt and ᾱt =
∏t
i=1 αi.

Proved by Ho et al. [27], there is a closed form ex-
pression for q (xt | x0). We can obtain q (xt | x0) =
N (xt;

√
ᾱtx0, (1− ᾱt) I). Herein, ᾱt goes to 0 with large

T , and q (xT | x0) is close to the latent distribution platent .
The Reverse Process is a Markov chain that iteratively de-
noises a sampled Gaussian noise to a clean image. Starting
from noise xT ∼ N (0, I), the reverse process from latent
xT to clean data x0 is defined as:

pθ (x0, · · · ,xT−1 | xT ) =

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,ΣθI)

(3)

According to Ho et al. [27], the meanµθ (xt, t) is the target
we want to estimate by a neural network θ. The variance
Σθ can be either time-dependent constants [27] or learnable
parameters [58]. εθ is a function approximator intended to
predict ε from xt as follow:

µθ (xt, t) =
1
√
αt

(
xt −

βt√
1− ᾱt

εθ (xt, t)

)
(4)

In practice, x̃0 is usually predicted from xt, then xt−1 is
sampled using both x̃0 and xt computed as:

x̃0 =
xt√
ᾱt
−
√

1− ᾱtεθ (xt, t)√
ᾱt

(5)

q (xt−1 | xt, x̃0) = N
(
xt−1; µ̃t (xt, x̃0) , β̃tI

)
,

where µ̃t (xt, x̃0) =

√
ᾱt−1βt

1− ᾱt
x̃0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt

and β̃t =
1− ᾱt−1

1− ᾱt
βt

(6)

4. Generative Diffusion Prior
In this study, we aim to exploit a well-trained DDPM

as an effective prior for unified image restoration and en-
hancement, in particular, to handle degraded images of a
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Table 1. Comparison of different generative priors and regu-
larization priors for image restoration and enhancement.

Methods DGP [62] SNIPS [33] RED [69] DDRM [32] GDP (Ours)

Prior GAN
MMSE

Gaussian
denoiser

Laplacian-based
regularization

function
DDPM DDPM

Linear " " " " "

Non-linear % % % % "

Blind % % % % "

wide range of varieties. In detail, assume degraded im-
age y is captured via y = D(x), where x is the original
natural image, and D is a degradation model. We employ
statistics of x stored in some prior and search in the space
of x for an optimal x that best matches y, regarding y as
corrupted observations of x. Due to the limited GAN in-
version performance and the restricted applications of pre-
vious works [32, 33, 62, 69] in Table 1, in this paper, we
focus on studying a more generic image prior, i.e., the dif-
fusion models trained on large-scale natural images for im-
age synthesis. Inspired by the [4, 9, 12, 70, 73], the reverse
denoising process of the DDPM can be conditioned on the
degraded image y. Specifically, the reverse denoising dis-
tribution pθ(xt−1|xt) in Eq. 3 is adopted to a conditional
distribution pθ (xt−1|xt,y). [15, 76] prove that

log pθ (xt−1|xt,y) = log (pθ (xt−1|xt) p (y|xt)) +K1

≈ log p(r) +K2,
(7)

where r ∼ N (r;µθ (xt, t) + Σg,Σ) and g =
∇xt log p (y | xt), where Σ = Σθ (xt) for conciseness. K1

and K2 are constants, pθ (xt−1 | xt) is defined by Eq. 3.
p (y | xt) can be regarded as the probability that xt will be
denoised to a high-quality image consistent to y. We pro-
pose a heuristic approximation of it:

p (y | xt) =
1

Z
exp (− [sL (D(xt),y) + λQ(xt)]) (8)

where L is some image distance metric, Z is a normaliza-
tion factor, and s is a scaling factor controlling the magni-
tude of guidance. Intuitively, this definition encourages xt
to be consistent with the corrupted image y to obtain a high
probability of p (y | xt). Q is the optional quality enhance-
ment loss to enhance the flexibility of GDP, which can be
used to control some properties (such as brightness) or en-
hance the quality of the denoised image. λ is the scale factor
for adjusting the quality of images. The gradients of both
sides are computed as:

log p (y | xt) = − logZ − sL (D(xt),y)− λQ (xt)

∇xt log p (y | xt) = −s∇xtL (D(xt),y)− λ∇xtQ (xt) .
(9)

where the distance metric L and the optional quality lossQ
can be found in Sec. 5.

In this way, the conditional transition pθ (xt−1 | xt,y)
can be approximately obtained through the unconditional
transition pθ (xt−1 | xt) by shifting the mean of the

Algorithm 1: GDP-xt with fixed degradation
model: Conditioner guided diffusion sampling on
xt, given a diffusion model (µθ (xt) ,Σθ (xt)),
corrupted image conditioner y.

Input: Corrupted image y, gradient scale s, degradation model
D, distance measure L, optional quality enhancement
lossQ, quality enhancement scale λ.

Output: Output image x0 conditioned on y
Sample xT fromN (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)
Ltotalxt

= L(y,D (xt)) +Q (xt)

Sample xt−1 byN
(
µ+ s∇xtLtotalxt

,Σ
)

end
return x0

Algorithm 2: GDP-x0: Conditioner guided dif-
fusion sampling on x̃0, given a diffusion model
(µθ (xt) ,Σθ (xt)), corrupted image conditioner y.

Input: Corrupted image y, gradient scale s, degradation model
Dφ with randomly initiated parameters φ, learning rate l
for optimizable degradation model, distance measure L,
optional quality enhancement lossQ, quality
enhancement scale λ.

Output: Output image x0 conditioned on y
Sample xT fromN (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)

x̃0 = xt√
ᾱt
−
√

1−ᾱtεθ(xt,t)√
ᾱt

Ltotalφ,x̃0
= L(y,Dφ (x̃0)) +Q (x̃0)

φ← φ− l∇φLtotalφ,x̃0

Sample xt−1 byN
(
µ+ s∇x̃0

Ltotalφ,x̃0
,Σ
)

end
return x0

unconditional distribution by −(sΣ∇xtL (D(xt),y) +
λΣ∇xtQ(xt)) However, we find that the way of adding
guidance [3] and the variance Σ negatively influence the re-
constructed images.

4.1. Single Image Guidance

The super-resolution, impainting, colorization, deblur-
ring, and enlighting tasks use single-image guidance.
The Influence of Variance Σ on the Guidance. In previ-
ous conditional diffusion models [15, 83], the variance Σ is
applied for the mean shift in the sampling process, which is
theoretically proved in the Appendix. In our work, we find
that the variance Σ might exert a negative influence on the
quality of the generated images in our experiments. There-
fore, we remove the variance during the guided denoising
process to improve our performance. With the absence of Σ
and the fixed guidance scale s, the guided denoising process
can be controlled by the variable scale ŝ.
Guidance on xt. Further, as vividly shown in Fig. 2b,
Algo. 1 and Algo. 3 in Appendix, this class of guided dif-
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fusion models is the commonly used one [15,48,89], where
the guidance is conditioned on xt but with the absence of
Σ, named GDP-xt. However, this variant that applies the
guidance on xt may still yield less satisfactory quality im-
ages. The intuition is xt is a noisy image with a specific
noise magnitude, but y is in general a corrupted image with
no noise or noises of different magnitude. We lack reliable
ways to define the distance between xt and y. A naive MSE
loss or perceptual loss will make xt deviate from its original
noise magnitude and result in low-quality image generation.
Guidance on x̃0. To tackle the problem as mentioned
above, we systematically study the conditional signal ap-
plied on x̃0. Detailly, in the sampling process, the pre-
trained DDPM usually first predicts a clean image x̃0 from
the noisy image xt by estimating the noise in xt, which can
be directly inferred when given xt by the Eq. 6 in every
timestep t. Then the predicted x̃0 together with xt are uti-
lized to sample the next step latent xt−1. We can add guid-
ance on this intermediate variable x̃0 to control the gener-
ation process of the DDPM. The detailed sampling process
can be found in Fig. 2c and Algo. 2, where there is only
one corrupted image.
Known Degradation. Several tasks [24, 37, 38, 93] can
be categorized into the class that the degradation func-
tion is known. In detail, the degradation model for im-
age deblurring and super-resolution can be formulated as
y = (x⊗ k) ↓s. It assumes the low-resolution (LR) image
is obtained by first convolving the high-resolution (HR) im-
age with a Gaussian kernel (or point spread function) k to
get a blurry image x⊗k, followed by a down-sampling op-
eration ↓s with scale factor s. The goal of image inpainting
is to recover the missing pixels of an image. The corre-
sponding degradation transform is to multiply the original
image with a binary mask m: ψ(x) = x � m, where �
is Hadamard’s product. Further, image colorization aims at
restoring a gray-scale image y ∈RH×W to a colorful image
with RGB channels x ∈ R3×H×W . To obtain y from the
colorful image x, the degradation transform ψ is a graying
transform that only preserves the brightness of x.
Unknown Degradation. In the real world, many images
undergo complicated degradations [98], where the degra-
dation models or the parameters of degradation models are
unknown [45, 86]. In this case, the original images and the
parameters of degradation models should be estimated si-
multaneously. For instance, in our work, the low-light im-
age enhancement and the HDR recovery can be regarded as
tasks with unknown degradation models. Here, we devise a
simple but effective degradation model to simulate the com-
plicated degradation, which can be formulated as follows:

y = fx+ M, (10)

where the light factor f is a scalar and the light mask M is
a vector of the same dimension asx. f and M are unknown
parameters of the degradation model. The reason that we

DDRMDGP
Gray
Images

GDP-x0
GDP-xt

Figure 3. Qualitative comparison of colorization results on Im-
ageNet validation images. GDP-x0 generates various samples on
the same input.

can use this simple degradation model is that the transform
between any pair of corrupted images and the correspond-
ing high-quality image can be captured by f and M as long
as they have the same size. If they do not have the same
size, we can first resize x to the same size as y and then
apply this transform. It is worth noting that this degradation
model is non-linear in general, since f and M depend on x
and y. We need to estimate f and M for every individual
corrupted image. We achieve this by randomly initializing
them and synchronously optimizing them in the reverse pro-
cess of DDPMs as shown in Algo. 2.

4.2. Extended version

Multi-images Guidance. Under specific circumstances,
there are several images could be utilized to guide the gen-
eration of a single image [59, 105], which is merely studied
and much more challenging than single-image guidance. To
this end, we propose the HDR-GDP for the HDR image
recovery with multiple images as guidance, consisting of
three input LDR images, i.e. short, medium, and long ex-
posures. Similar to low-light enhancement, the degradation
models are also treated as Eq. 10, where the parameters re-
main unknown that determine the HDR recovery is the blind
problem. However, as shown in Fig. 2c and Algo. 5 in
Appendix, in the reverse process, there are three corrupted
images (n = 3) to guide the generation so that three pairs
of blind parameters for three LDR images are randomly
initiated and optimized.
Restore Any-size Image. Furthermore, the pre-trained dif-
fusion models provide by [15] with the size of 256 are only
able to generate the fixed size of images, while the sizes of
images from various image restoration are diverse. Herein,
we employ the patch-based method as [47] to tackle this
problem. By the merits of this patch-based strategy (Fig.
13 and Algo. 6 in the Appendix), GDP can be extended
to recover the images of arbitrary resolution to promote the
versatility of the GDP.
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Table 2. Quantitative comparison of linear image restoration tasks on ImageNet 1k [62]. GDP outperforms other methods in terms of
FID and Consistency across all tasks.

Method 4× Super-resolution Deblur 25% Inpainting Colorization

PSNR ↑ SSIM ↑ Consistency ↓ FID ↓ PSNR ↑ SSIM ↑ Consistency↓ FID ↓ PSNR ↑ SSIM ↑ Consistency↓ FID ↓ PSNR ↑ SSIM ↑ Consistency ↓ FID ↓

DGP [62] 21.65 0.56 158.74 152.85 26.00 0.54 475.10 136.53 27.59 0.82 414.60 60.65 18.42 0.71 305.59 94.59
SNIPS [33] 22.38 0.66 21.38 154.43 24.73 0.69 60.11 17.11 17.55 0.74 587.90 103.50 - - - -
RED [69] 24.18 0.71 27.57 98.30 21.30 0.58 63.20 69.55 - - - - - - - -
DDRM [32] 26.53 0.78 19.39 40.75 35.64 0.98 50.24 4.78 34.28 0.95 4.08 24.09 22.12 0.91 37.33 47.05
GDP-xt 24.27 0.67 80.32 64.67 25.86 0.75 54.08 5.00 31.06 0.93 8.80 20.24 21.30 0.86 75.24 66.43
GDP-x0 24.42 0.68 6.49 38.24 25.98 0.75 41.27 2.44 34.40 0.96 5.29 16.58 21.41 0.92 36.92 37.60

Table 3. Quantitative comparison of image enlighten task on LOL [88], VE-LOL-L [47], and LoLi-phone [41] benchmarks. Bold
font indicates the best performance in zero-shot learning, and the underlined font denotes the best results in all models.

Learning Methods LOL [88] VE-LOL-L [47] LoLi-Phone [41]

PSNR ↑ SSIM↑ FID↓ LOE↓ PI↓ PSNR↑ SSIM↑ FID ↓ LOE↓ PI↓ LOE↓ PI↓

Supervised learning

LLNet [50] 17.91 0.76 169.20 384.21 4.10 17.38 0.73 124.98 291.59 5.54 343.34 5.36
LightenNet [43] 10.29 0.45 90.91 273.21 7.09 13.26 0.57 82.26 199.45 7.29 500.22 6.63
Retinex-Net [88] 17.24 0.55 129.99 513.28 8.63 16.41 0.64 135.20 421.41 8.62 542.29 8.23
MBLLEN [52] 17.90 0.77 122.69 175.10 8.39 15.95 0.70 105.74 114.91 7.45 137.34 6.46
KinD [104] 17.57 0.82 74.52 377.59 7.41 18.07 0.78 80.12 253.79 7.51 265.47 6.84
KinD++ [102] 17.60 0.80 100.15 712.12 7.96 16.80 0.74 101.23 421.97 7.98 382.51 7.71
TBFEN [51] 17.25 0.83 90.59 367.66 8.29 18.91 0.81 91.30 276.65 8.02 214.30 7.34
DSLR [46] 14.98 0.67 183.92 272.68 7.09 15.70 0.68 124.80 271.63 7.27 281.25 6.99

Unsupervised learning EnlightenGAN [29] 17.44 0.74 82.60 379.23 8.78 17.45 0.75 86.51 311.85 8.27 373.41 7.26

Self-supervised learning DRBN [92] 15.15 0.52 94.96 692.99 5.53 18.47 0.78 88.10 268.70 6.15 285.06 5.31

Zero-shot learning

ExCNet [99] 16.04 0.62 111.18 220.38 8.70 16.20 0.66 115.24 225.15 8.62 359.96 7.95
Zero-DCE [23] 14.91 0.70 81.11 245.54 8.84 17.84 0.73 85.72 194.10 8.12 214.30 7.34
Zero-DCE++ [42] 14.86 0.62 86.22 302.06 7.08 16.12 0.45 86.96 313.50 7.92 308.15 7.18
RRDNet [106] 11.37 0.53 89.09 127.22 8.17 13.99 0.58 83.41 94.23 7.36 92.73 7.20
GDP-xt 7.32 0.57 238.92 364.15 8.26 9.45 0.50 152.68 194.49 7.12 508.73 8.06
GDP-x0 13.93 0.63 75.16 110.39 6.47 13.04 0.55 78.74 79.08 6.47 75.29 6.35
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Figure 4. Qualitative results of (a) 25 % inpainting and (b) 4×
super-resolution on CelebA [31].

5. Loss Function
In GDP, the loss function can be divided into two main

parts: Reconstruction loss and quality enhancement loss,
where the former aims to recover the information contained
in the conditional signal while the latter is integrated to pro-
mote the quality of the final outputs.
Reconstruction Loss. The reconstruction loss can be MSE,
structural similarity index measure (SSIM), perceptual loss,
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Figure 5. Results of image deblurring task on 256 × 256 USC-
SIPI images [87] using an ImageNet model.
or other reconstructive loss. Here, we primarily choose
MSE loss as our reconstruction loss.
Quality Enhancement Loss. 1) Exposure Control Loss:
To enhance the versatility of GDP , an exposure control loss
Lexp [23] is employed to control the exposure level for low-
light image enhancement, which is written as:

Lexp =
1

U

U∑
k=1

|Rk − E| , (11)

where U stands for the number of non-overlapping local
regions of size 8×8, and R represents the average intensity
value of a local region in the reconstructed image. Follow-
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Figure 6. Qualitative results of low-light enhancement on the
LOL [88], VE-LOL [47], and LoLi-Phone [41] datasets.
ing the previous works [55, 56], E is set as the gray level
in the RGB color space. As expected, E can be adjusted to
control the brightness in our experiments.

2) Color Constancy Loss: Following the Gray-World
color constancy hypothesis [6], a color constancy loss Lcol
is exploited to correct the potential color deviations in the
restored image and bridge the relations among the three ad-
justed channels in the colorization task, formulated as:
Lcol =

∑
∀(m,n)∈ε

(Ym − Y n)2 ,ε = {(R,G), (R,B), (G,B)} (12)

where Y m is the average intensity value of m channel in
the recovered image, (m,n) represents a pair of channels.

3) Illumination Smoothness Loss: To maintain the
monotonicity relations between neighboring pixels in the
optimized light mask M, an illumination smoothness
loss [23] is utilized for each light variance M. The illu-
mination smoothness loss LtvM is defined as:

LtvM =
1

N

N∑
n=1

∑
c∈ξ

(|∇hMc
n|+∇vMc

n |)
2 ,ξ = {R,G,B}, (13)

where N is iteration times, ∇h and ∇v are the horizontal
and vertical gradient operations, respectively.

Specifically, the image colorization task uses color con-
stancy loss to obtain more natural colors. The low-light en-
hancement requires color constancy loss for the same rea-
son. In addition, the low-light enhancement task uses illu-
mination smoothness loss to make the estimated light mask
M smoother. Exposure control loss enables us to manually
control the brightness of the restored image. The weights of
the losses can be found in Appendix.

6. Experiments
In this section, we systematically compare GDP , which

uses a single unconditional DDPM pre-trained on Ima-

AHDRNetHDR-GAN Deep-HDR
Deep-high-

dynamic-range Ours GT

Short

Medium

Long

HDR-GDM-x0

Figure 7. Example from the NTIRE dataset [63]. We com-
pare a set of patches cropped from the tone-mapped HDR images
generated by state-of-the-art methods.

geNet provide by [15], with other methods of various image
restoration and enhancement tasks, and ablate the effective-
ness of the proposed design. We furthermore list details on
implementation, datasets, evaluation, and more qualitative
results for all tasks in Appendix.

6.1. Linear and Multi-linear Degradation Tasks

Aiming at quantifying the performance of GDP, we fo-
cus on the ImageNet dataset for its diversity. For each ex-
periment, we report the average peak signal-to-noise ra-
tio (PSNR), SSIM, and Consistency to measure faithful-
ness to the original image and the FID to measure the re-
sulting image quality. GDP is compared with other unsu-
pervised methods that can operate on ImageNet, including
RED [69], DGP [62], SNIPS [33], and DDRM [32]. We
evaluate all methods on the tasks of 4× super-resolution,
deblurring, impainting, and colorization on one validation
set from each of the 1000 ImageNet classes, following [62].
Table 2 shows that GDP-x0 outperforms other methods in
Consistency and FID. The only exception is that DDRM
achieves better PSNR and SSIM than GDP, but it requires
higher Consistency and FID [11, 13, 15, 17, 28, 73]. GDP
produces high-quality reconstructions across all the tested
datasets and problems, which can be seen in Appendix. As
a posterior sampling algorithm, GDP can produce multiple
outputs for the same input, as demonstrated in the coloriza-
tion task in Fig. 3. Moreover, the unconditional ImageNet
DDPMs can be used to solve inverse problems on out-of-
distribution images with general content. In Figs. 4 and
5, and more illustrations in Appendix, we show GDP suc-
cessfully restores 256 × 256 images from USC-SIPI [87],
LSUN [94], and CelebA [31], which do not necessarily be-
long to any ImageNet class. GDP can also restore the im-
ages under multi-degradation (Fig. 1 and Appendix).

7



Table 4. Quantitative comparison on the NTIRE dataset [63].

Methods PSNR↑ SSIM↑ LPIPS ↓ FID↓

AHDRNet [91] 18.72 0.58 0.39 81.98
HDR-GAN [59] 21.67 0.74 0.26 52.71
Deep-HDR [90] 21.66 0.76 0.26 57.52
Deep-high-dyna
mic-range [30] 21.33 0.71 0.26 51.92

GDP-xt 19.36 0.65 0.30 63.89

GDP-x0 24.88 0.86 0.13 50.05

6.2. Exposure Correction Tasks

Encouraged by the excellent performance on the linear
inverse problem, we further evaluate our GDP on the low-
light image enhancement, which is categorized into non-
linear and blind issues. Following the previous works [41],
the three datasets LOL [88], VE-LOL-L [47], and the most
challenging LoLi-phone [41] are leveraged to test the ca-
pability of GDP on low-light enhancement. As shown in
Table 3, our GDP-x0 fulfills the best FID, lightness order
error (LOE) [85], and perceptual index (PI) [57] across all
the zero-shot methods under three datasets. The lower LOE
demonstrates better preservation for the naturalness of light-
ness, while the lower PI indicates better perceptual qual-
ity. In Fig. 6 and Appendix, our GDP-x0 yields the most
reasonable and satisfactory results across all methods. For
more control, by the merits of Exposure Control Loss, the
brightness of the generated images can be adjusted by the
well-exposedness level E (Fig. 1 and Appendix)

6.3. HDR Image Recovery

To evaluate our model on the HDR recovery [41],
we compare HDR-GDP-x0 with the state-of-the-art HDR
methods on the test images in the HDR dataset from the
NTIRE2021 Multi-Frame HDR Challenge [63], from which
we randomly select 100 different scenes as the validation.
Each scene consists of three LDR images with various ex-
posures and corresponding HDR ground truth. The state-
of-the-art methods used for comparison include AHDR-
Net [91], HDR-GAN [59], DeepHDR [90] and deep-high-
dynamic-range [30]. The quantitative results are provided
in Table 4, where HDR-GDP-x0 performs best in PSNR,
SSIM, LPIPS, and FID. As shown in Fig. 7 and Appendix,
HDR-GDP-x0 achieves a better quality of reconstructed im-
ages, where the low-light parts can be enhanced, and the
over-exposure regions are adjusted. Moreover, HDR-GDP-
x0 recovers the HDR images with more clear details.

6.4. Ablation Study

The Effectiveness of the Variance Σ and the Guidance
Protocol. The ablation studies on the variance Σ and two
ways of guidance are performed to unveil their effective-
ness. As shown in Table. 5, the performance of GDP-xt and
GDP-x0 is superior to GDP-xt with Σ and GDP-x0 with Σ,
respectively, verifying the absence of variance Σ can yield

Table 5. The ablation study on the variance Σ and the way of
the guidance.

Task 4× Super resolution Deblur
PSNR SSIM Consistency FID PSNR SSIM Consistency FID

GDP -xt
with Σ

22.86 0.60 88.37 68.04 22.06 0.57 69.46 80.39

GDP -x0

with Σ
22.09 0.58 93.19 41.22 23.49 0.65 68.67 50.29

GDP -xt 24.27 0.67 80.32 64.67 25.86 0.73 54.08 5.00

GDP -x0 24.42 0.68 6.49 38.24 25.98 0.75 41.27 2.44

Task 25% Inpainting Colorization
PSNR SSIM Consistency FID PSNR SSIM Consistency FID

GDP -xt
with Σ

25.28 0.70 171.44 73.32 17.67 0.70 246.26 145.20

GDP -x0

with Σ
24.58 0.75 65.59 22.77 21.28 0.91 66.57 38.39

GDP -xt 31.06 0.93 8.80 20.24 21.30 0.86 75.24 66.43
GDP -x0 34.40 0.96 5.29 16.58 21.41 0.92 36.92 37.60

Table 6. The ablation study on the optimizable degradation
and patch-based tactic.

Methods LOL NTIRE
PSNR SSIM FID LOE PI PSNR SSIM LPIPS FID

Model A 11.05 0.49 156.51 707.57 8.61 24.12 0.67 0.32 86.69
Model B 9.01 0.37 355.99 969.89 9.04 9.83 0.04 1.02 253.11
GDP-xt 7.32 0.57 238.92 364.15 8.26 19.36 0.65 0.30 63.89

GDP-x0 13.93 0.63 75.16 110.39 6.47 24.88 0.86 0.13 50.05

better quality of images. Moreover, the results of GDP-x0

and GDP-x0 with Σ are better than GDP-xt and GDP-xt
with Σ, respectively, demonstrating the superiority of the
guidance on x0 protocol.
The Effectiveness of the Trainable Degradation and the
Patch-based Tactic. Moreover, to validate the influence
of trainable parameters of the degradation model and our
patch-based methods, further experiments are carried out
on the LOL [88] and NTIRE [63] datasets. Model A is de-
vised to naively restore the images from patches and patches
where the parameters are not related. ModelB is designed
with fixed parameters for all patches in the images. As
shown in Table 6, our GDP-x0 ranks first across all mod-
els and obtains the best visualization results (Fig. 7 and Ap-
pendix), revealing the strength of our proposed hierarchical
guidance and patch-based method.

7. Conclusion
In this paper, we propose the Generative Diffusion Prior

for unified image restoration that can be employed to tackle
the linear inverse, non-linear and blind problems. Our GDP
is able to restore any-size images via hierarchical guidance
and patch-based methods. We systematically studied the
way of guidance to exploit the strength of the DDPM. The
GDP is comprehensively utilized on various tasks such as
super-resolution, deblurring, inpainting, colorization, low-
light enhancement, and HDR recovery, demonstrating the
capabilities of GDP on unified image restoration.
Acknowledgement. This project is funded in part by
Shanghai AI Laboratory
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[61] Ozan Özdenizci and Robert Legenstein. Restoring vision
in adverse weather conditions with patch-based denoising
diffusion models. arXiv preprint arXiv:2207.14626, 2022.
18

[62] Xingang Pan, Xiaohang Zhan, Bo Dai, Dahua Lin,
Chen Change Loy, and Ping Luo. Exploiting deep genera-
tive prior for versatile image restoration and manipulation.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 2021. 2, 4, 6, 7, 16, 19
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Figure 8. Illustration of our GDP method for unified image recovery, including linear inverse problems (Deblurring, 4× super-
resolution, inpainting, and colorization), multi-degradation (i.e. Colorization + inpainting), non-linear and blind problems (Low-light
enhancement and HDR recovery). Note that GDP can restore images of arbitrary sizes, and can accept multiple low-quality images as
guidance as in the case of HDR recovery. GDP fulfills all the tasks using a single unconditional DDPM pre-trained on ImageNet.
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cess.

A. Limitations and Future works

Limitations. The main limitation of our work is its infer-
ence time. Since we might add several guidance steps in
every time step t, the sampling time is extended. This lim-
its the applicability of our method to real-time applications
and weak end-user devices such as mobile devices. To ad-
dress this issue, further research into accelerated diffusion
sampling techniques is required.

In addition, the choice of the guidance scale is also ob-
tained through experiments, which means that for samples
with different distributions, it is necessary to manually se-
lect the optimal guidance scale. However, we found that for
the same distribution of data, an approximate degradation
model may lead to close guidance scales. This phenomenon
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Algorithm 3: GDP-xt: Conditioner guided dif-
fusion sampling on xt, given a diffusion model
(µθ (xt) ,Σθ (xt)), corrupted image conditioner y.

Input: Corrupted image y, gradient scale s,
degradation model Dφ with randomly
initiated parameters φ, learning rate l for
optimizable degradation model, distance
measure L.

Output: Output image x0 conditioned on y
Sample xT from N (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)
Ltotalφ,xt

= L(y,Dφ (xt)) +Q (xt)

φ← φ− l∇φLtotalφ,xt

Sample xt−1 by N
(
µ+ s∇xtLtotalφ,xt

,Σ
)

end
return x0

Algorithm 4: GDP-x0: Conditioner guided dif-
fusion sampling on x̃0, given a diffusion model
(µθ (xt) ,Σθ (xt)), corrupted image conditioner y.

Input: Corrupted image y, gradient scale s,
degradation model D, distance measure L.

Output: Output image x0 conditioned on y
Sample xT from N (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)

x̃0 = xt√
ᾱt
−
√

1−ᾱtεθ(xt,t)√
ᾱt

Ltotalx̃0
= L(y,D (x̃0)) +Q (x̃0)

Sample xt−1 by N
(
µ+ s∇x̃0

Ltotalx̃0
,Σ
)

end
return x0

may be proved mathematically in future work.
Future works. In future work, in addition to further op-
timizing the time step and variance schedules, it would be
interesting to investigate the following:

(i) The Guided Diffusion Prior can also theoretically be
applied to 3D data restoration. For instance, point cloud
completion and upsampling can be regarded as linear in-
verse problems in 3D vision. Shapeinversion [97] tackles
the point cloud completion by GAN inversion, where the
GDP can hopefully be integrated.

(ii) Moreover, since LiDAR is affected by various kinds
of weather in the real world and also produces various non-
linear degradations, GDP should also be explored for the
recovery of these point clouds.

(iii) Self-supervised training techniques inspired by our
GDP and techniques used in supervised techniques [72]

Algorithm 5: GDP-x0: Conditioner guided dif-
fusion sampling on x0, given a diffusion model
(µθ (xt) ,Σθ (xt)), corrupted images conditioner
{yi | i = 1, 2, . . . , n}.

Input: Corrupted image {yi | i = 1, 2, . . . , n} (n =
3 for HDR recovery (LDR-long image y1,
LDR-medium image y2, LDR-short image
y3) and n = 1 for other tasks), gradient scale
s, degradation models {Dφi |i = 1, 2, . . . , n}
with randomly initiated parameters
{φi|i = 1, 2, . . . , n}, learning rate l for
optimizable degradation model, distance
measure L.

Output: Output image x0 conditioned on
{yi | i = 1, 2, . . . , n}

Sample xT from N (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)

x̃0 = xt√
ᾱt
−
√

1−ᾱtεθ(xt,t)√
ᾱt

Ltotalφ,x̃0
= 0

for j from 1 to n do
Lφj ,x̃0

= L(yj ,Dφj (x̃0)) +Q (x̃0)
φj = φj − l∇φjLφj ,x̃0

Ltotalφ,x̃0
= Ltotalφ,x̃0

+ Lφj ,x̃0

end
Sample xt−1 by N

(
µ+ s∇x̃0Ltotalφ,x̃0

,Σ
)

end
return x0

that further improve the performance of unsupervised im-
age restoration models.

B. Implementation Details
We apply GDP to a suite of challenging image restora-

tion tasks: (1) Colorization transforms an input gray-scale
image to a plausible color image. (2) Inpainting fills in
user-specified masked regions of an image with realistic
content. (3) Super-resolution extends a low-resolution im-
age into a higher one. (4) Deblurring corrects the blurred
images, restoring plausible image detail. (5) Enlighting en-
ables the dark images turned into normal images. (6) HDR
image recovery aims to obtain HDR images with the aid
of three LDR images. Inputs and outputs of the first four
tasks are represented as 256 × 256 RGB images, while the
last two tasks are various (1900× 1060 for HDR image re-
covery and 600×400 for image enlightening, respectively).
We do so without task-specific hyperparameter tuning and
architecture customization.

Colorization requires the representation of objects, seg-
mentation, and layouts with long-range image dependen-
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Algorithm 6: Restore Any-size Image
Input: Conditioner guided diffusion sampling on x̃0, given a

diffusion model (µθ (xt) ,Σθ (xt)), corrupted image
conditioner y, degradation model Dφ : y = fx+ M
with randomly initiated parameters φ, learning rate l for
optimizable degradation model. Dictionary of K
overlapping patch locations, and a binary patch mask Pk .

Output: Output image x0 conditioned on y
Sample xT fromN (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)
Mean vector Ωt = 0 and variance vector ψt =
0 and weight vector G = 0 and f = 0 and M = 0

for k = 1, . . . ,K do
xkt = Crop

(
Pk ◦ xt

)
yk = Crop

(
Pk ◦ y

)
Mk = Crop

(
Pk ◦M

)
x̃k0 =

xkt√
ᾱt
−
√

1−ᾱtεθ
(
xkt ,t

)
√
ᾱt

Ltotal
φ,x̃k0

= L(yk,Dφ
(
x̃k0
)
) +Q

(
x̃k0
)

fk ← fk − l∇fkLtotalfk,x̃k0

Mk ←Mk − l∇MkLtotalMk,x̃k0

µk = µ+ s∇x̃k0L
total
φ,x̃k0

f = f + fk

Ωt = Ωt + Pk · µk
ψt = ψt + Pk · σk
M = M + Pk ·Mk

G = G + Pk

end
Ωt = Ωt �G //� : element-wise division
ψt = ψt �G
M = M�G
f = f/K
Sample xt−1 byN (Ωt, ψt)

end
return Restored any-size image x0

cies. Inpainting is challenging due to large masks, image
diversity, and cluttered scenes. Super-resolution and deblur-
ring are also not trivial because the degradation might dam-
age the content of the images. While the other tasks are lin-
ear in nature, low-light enhancement and HDR recovery are
non-linear inverse problems; they require a good model of
natural image statistics to detect and correct over-exposed
and under-exposed areas. Although previous works have
studied these problems extensively, it is rare that a model
with no task-specific engineering achieves strong perfor-
mance in all tasks, beating strong task-specific GAN and
regression baselines. Our GDP is devised to achieve this
goal.

B.1. Dataset briefs

ImageNet, LSUN, CelebA, and USC-SIPI Datasets.
To quantitatively evaluate GDP on linear image restora-
tion tasks, we test on 1k images from the ImageNet val-
idation set following [62]. The CelebA-HQ [40] dataset
is a high-quality subset of the Large-Scale CelebFaces At-

tributes (CelebA) dataset [49]. LSUN dataset [94] contains
around one million labeled images for each of 10 scene
categories and 20 object categories. And the USC-SIPI
dataset [87] is a collection of various digitized images. We
utilize the images from CelebA, LSUN, and USC-SIPI pro-
vided by [32].

LOL Dataset. The LOL dataset [88] is composed of 500
low-light and normal-light image pairs and divided into 485
training pairs and 15 testing pairs. The low-light images
contain noise produced during the photo capture process.
Most of the images are indoor scenes. All the images have
a resolution of 400 × 600.

VE-LOL-L Dataset. For underexposure correction
experiments, we use the paired data of the VE-LOL-L
dataset [47], in which each captured well-exposed image
has its underexposed version with different underexposure
levels. Note that the VE-LOL-L dataset, consisting of VE-
LOL-Cap and VE-LOL-Syn, is also carried out. Due to the
different distribution of the two sub-set, we solve them un-
der different guidance scales.

LoLi-Phone Dataset. LoLi-Phone [41] is a large-scale
low-light image and video dataset for low-light image en-
hancement. The images and videos are taken by different
mobile phone cameras under diverse illumination condi-
tions.

NTIRE Dataset [64]. In the NTIRE dataset, there are
1494 LDRs/HDR for training, 60 images for validation, and
201 images for testing. The 1494 frames consist of 26 long
shots. Each scene contains three LDR images, their cor-
responding exposure and alignment information, and HDR
ground truth. The size of an image is 1060 × 1900. Since
the ground truth of the validation and test sets are not avail-
able, we only do experiments on the training set. We select
100 images as the test set.

B.2. Experimental Setup

In each inverse problem, the pixel values are in the range
[0,1], and the resulting degradation measures are as follows:
(i) For super-resolution, a block averaging filter is utilized
to downscale the image on each axis 4 times; (ii) In terms
of deblurring, the image is blurred by a 9×9 unified kernel.
(iii) For colorization, the gray-scale image is the average of
the red, green, and blue channels of the original image; (iv)
For inpainting, we cover parts of the original image with
text overlays or randomly delete 25% pixels.

In the non-linear and blind problem, the images from
the low-light dataset and NTIRE dataset are naturally over-
exposed or under-exposed. Therefore, no additional opera-
tions are required for the images.

C. Evaluation Metrics
Apart from the commonly used PSNR and SSIM, other

metrics are also utilized for evaluation: (i) FID [26] is an
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Figure 12. Illustration of the patch-based method for any-size image restoration.

Figure 13. (a) Illustration of the patch-based image restoration pipeline detailed in Algorithm 6. (b) Illustrating mean estimated noise-
guided sampling updates for overlapping pixels across patches. We demonstrate a simplified example where r = p/2, r is the stride and p
is the patch size of images. And there are only four overlapping patches sharing the grid cell marked with the white border and gratings.
The pixels in this region would be updated at each denoising step t using the mean estimated noise over the four overlapping patches.

objective metric used to assess the quality of synthesized
images. (ii) Consistency [73] measures MSE between the
degraded inputs and the outputs undergoing the same degra-
dation. (iii) Learned perceptual image patch similarity
(LPIPS) [101] is also adopted, a deep feature-based per-
ceptual distance metric to further assess the image quality.
(iv) The non-reference perceptual index (PI) [57] is also
employed to evaluate perceptual quality. The PI metric is
originally utilized to measure perceptual quality in image
super-resolution. It has also been used to assess the perfor-
mance of other image restoration tasks. A lower PI value
indicates better perceptual quality. (v) The lightness order

error (LOE) [85] is employed as our objective metric to
measure the performance. The definition of LOE is as fol-
lows:

LOE =
1

m

m∑
x=1

m∑
y=1

(U(T(x),T(y))⊕ U (Tr(x),Tr(y)))

(14)
where m is the pixel number. The function U(p, q) returns
1 if p >= q, 0 otherwise. ⊕ stands for the exclusive-or
operator. In addition, T(x) and Tr(x) are the maximum
values among R,G and B channels at location x of the en-
hanced and reference images, respectively. The lower the
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LOE is, the better the enhancement preserves the natural-
ness of lightness.

D. Further elaboration of the models

GDP-xt. As shown in Fig. 9, the guidance is conditioned
on xt but with the absence of Σ. The noisy images are
gradually denoised during the reverse process. And the xt
undergoing the degradation model is more similar to the
corrupted image. The gradients ∇ of the loss function are
utilized to control the mean of the conditional distribution.

GDP-x0. To make a clear comparison, we also illustrate
the GDP-x0 in Fig. 10, and Algorithm 2 in the main paper.
Different from the GDP-xt, GDP-x0 will predict the inter-
mediate variance x̃0 from the noisy image xt by estimating
the noise in xt, which can be directly inferred when given
the xt in every time steps t. Then the predicted x̃0 goes
through the same degradation as input to obtain x̂0. Note
that the degradation might be unknown. Then the loss be-
tween the x̂0 and the corrupted image y, the gradients will
be applied to optimize the unknown degradation models and
sample the next step latent xt−1.

HDR-GDP-x0. As depicted in Fig. 11, and Algorithm 5,
there are three images to guide the reverse process. As a
blind problem, we randomly initiate three sets of the pa-
rameters of the degradation models. At every time step,
x̃0 will undergo the three degradation models Di, respec-
tively. Unlike GDP-x0, the gradients of the three losses are
used to optimize the corresponding degradation model and
all leveraged to sample the next step latent xt−1.

Hierarchical Guidance and Patch-based Methods. As
vividly illustrated in Fig. 12 and 13, we resize the corrupted
images y ∈ R3×H×W to y ∈ R3×256×W or 3×H×256, then
apply the patch-based methods [61] on the reshaped im-
ages. Following that, the light masks M are interpolated
to the original image size to obtain the M, which can be
regarded as the global light shift. After, the light factor f
and the light mask M will be fixed and utilized to generate
the image patches of the original images, which will be fi-
nally recombined as the output images. In our experiments,
low-light enhancement and HDR recovery problems can be
tackled by this strategy.

E. Further Ablation Study on the Guidance

To gain insight into the way of guidance, apart from
GDP-xt and GDP-x0, two more variants GDP-xt-v1 and
GDP-x0-v1 are devised for comparison.

The main difference among these four variants is the way
of mean shift. The mean shift of four variants can be written

Algorithm 7: GDP-xt-v1 with fixed degradation
model: Conditioner guided diffusion sampling on
xt, given a diffusion model (µθ (xt) ,Σθ (xt)),
corrupted image conditioner y.

Input: Corrupted image y, gradient scale s,
degradation model D, distance measure L,
optional quality enhancement loss Q, quality
enhancement scale λ.

Output: Output image x0 conditioned on y
Sample xT from N (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)

x̃0 = xt√
ᾱt
−
√

1−ᾱtεθ(xt,t)√
ᾱt

Ltotalxt = L(y,D (xt)) +Q (xt)
xt ← xt − s∇xtL (y,D (xt))
Sample xt−1 by q (xt−1 | xt, x̃0) =

N
(
xt−1; µ̃t (xt, x̃0) , β̃tI

)
,

where
µ̃t (xt, x̃0) =

√
ᾱt−1βt
1−ᾱt x̃0 +

√
αt(1−ᾱt−1)

1−ᾱt xt

and β̃t = 1−ᾱt−1

1−ᾱt βt
end
return x0

as follow:

GDP-x0 : µ̃t (xt, x̃0) =
√
ᾱt−1βt

1− ᾱt
x̃0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt + s∇x̃0

Ltotalx̃0

GDP-xt : µ̃t (xt, x̃0) =
√
ᾱt−1βt

1− ᾱt
x̃0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt + s∇xtLtotalxt

GDP-x0-v1 : µ̃t (xt, x̃0) =
√
ᾱt−1βt

1− ᾱt
(x̃0 + s∇x̃0Ltotalx̃0

) +

√
αt (1− ᾱt−1)

1− ᾱt
xt

GDP-xt-v1 : µ̃t (xt, x̃0) =
√
ᾱt−1βt

1− ᾱt
x̃0 +

√
αt (1− ᾱt−1)

1− ᾱt
(xt + s∇xtLtotalxt ).

(15)

where GDP-x0 directly add the mean shift s∇x0Ltotalx0
into

µ̃t (xt, x̃0) without the coefficient
√
ᾱt−1βt
1−ᾱt , compared with

GDP-x0-v1.

It is experimentally found that GDP-x0 and GDP-xt ful-
fills better performance on four linear tasks than GDP-x0-
v1 and GDP-xt-v1 in Table. 8.
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Table 7. The guidance scales and the number of optimization per time step on the various tasks. Note that these parameters may not
be optimal due to the infinite number of possible combinations.

Tasks Dataset Guidance scale
The number of optimization

per time step

4× Super-resolution ImageNet [62] 2E+03 6
Deblurring ImageNet [62] 6E+03 6
25% Inpainting ImageNet [62] 4E+03 6
Colorization ImageNet [62] 6E+03 6
Low-light enhancement LOL dataset [88] 1E+05 6
HDR recovery NTIRE dataset [64] 1E+05 1

Table 8. The performance of ablation studies on the way of guidance. We compare four ways of guidance in terms of FID.

FID 4x super-resolution Deblur 25% Inpainting Colorization

GDP-xt-v1 108.06 88.52 113.47 102.37
GDP-x0-v1 44.16 10.35 37.32 41.53
GDP-xt 64.67 5.00 20.24 66.43
GDP-x0 38.24 2.44 16.58 37.60

Algorithm 8: GDP-x0-v1: Conditioner guided
diffusion sampling on x̃0, given a diffusion model
(µθ (xt) ,Σθ (xt)), corrupted image conditioner y.

Input: Corrupted image y, gradient scale s,
degradation model D, distance measure L.

Output: Output image x0 conditioned on y
Sample xT from N (0, I)
for t from T to 1 do

µ,Σ = µθ (xt) ,Σθ (xt)

x̃0 = xt√
ᾱt
−
√

1−ᾱtεθ(xt,t)√
ᾱt

Ltotalx̃0
= L(y,D (x̃0)) +Q (x̃0)

x̃0 ← x̃0 − s∇x̃0
Ltotalx̃0

Sample xt−1 by q (xt−1 | xt, x̃0) =

N
(
xt−1; µ̃t (xt, x̃0) , β̃tI

)
,

where
µ̃t (xt, x̃0) =

√
ᾱt−1βt
1−ᾱt x̃0 +

√
αt(1−ᾱt−1)

1−ᾱt xt

and β̃t = 1−ᾱt−1

1−ᾱt βt
end
return x0

F. The ELBO objective of GDP
GDP is a Markov chain conditioned on y, resulting in

the following ELBO objective [77]:

Ex0∼q(x0),y∼q(y|x0) [log pθ (x0 | y)] ≥

− E

[
T−1∑
t=1

KL
(
qt (xt | xt+1,x0,y) ‖ptθ (xt | xt+1,y)

)]
+ E

[
log p0

θ (x0 | x1,y)
]

− E
[
KL
(
qT (xT | x0,y) ‖pTθ (xT | y)

)]
(16)

where q (x0) denotes the data distribution, q (y | x0) in
the main paper, the expectation on the right-hand side is
given by sampling x0 ∼ q (x0) ,y ∼ q (y | x0) ,xT ∼
qT (xT | x0,y), and xt ∼ qt (xt | xt+1,x0,y) for t ∈
[1, T − 1].

G. Sampling with DDIM
To accelerate the sampling strategy, GDP follows [58]

to use DDIM, which skipping steps in the reverse pro-
cess to speed up the DDPM generating process. We ap-
ply this method to the ImageNet dataset on the four tasks.
We set the T=20 in the sampling process, while DDRM
also utilizes the same time steps for a fair comparison.
As shown in Table 9, our GDP-x0-DDIM(20) outperforms
DDRM(20) on consistency and FID across four tasks. Al-
though DDRM(20) obtains better PSNR and SSIM than our
GDP-x0-DDIM(20), the qualitative results of DDRM(20)
are still worse than our GDP-x0-DDIM(20), which can be
seen from Figs. 14 and 15. Previous work [11, 13, 17, 73]
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demonstrated that these conventional automated evaluation
measures (PSNR and SSIM) do not correlate well with hu-
man perception when the input resolution is low, and the
magnification is large. This is not surprising since these
metrics tend to penalize any synthesized high-frequency de-
tail that is not perfectly aligned with the target image.

H. Image Guidance
A conditioner p(y | x) is exploited to improve a dif-

fusion generator. Specifically, we can utilize a condi-
tioner pφ (y | xt, t) on input images, and then use gradients
∇xt log pφ (y | xt, t) to guide the diffusion sampling pro-
cess towards a given the degraded images y.

In this section, we will describe how to use such con-
ditioners to improve the quality of sampled images. The
notation is chosen as pφ (y | xt, t) = pφ (y | xt) and
εθ (xt, t) = εθ (xt) for brevity. Note that they refer to sep-
arate functions for each time step t.

H.1. Conditional Reverse Process

Assume a diffusion model with an unconditional reverse
noising process pθ (xt | xt+1). In image restoration and
enhancement, the corrupted inputs can be regarded as con-
ditions. Therefore, we regard y as the input images, and xt
as the generated images in time step t. Then, the conditioner
is formulated as follows:

pφ (y | xt) =
1

K
exp (−L (y,D (xt))) , (17)

where D represents the degradation function, L stands for
Mean Square Error together with optional Quality Enhance-
ment Loss, and K is an arbitrary constant. In order to con-
dition this on the input corrupted image y, it is sufficient to
sample each transition based on the following:

pθ,φ (xt | xt+1,y) = Cpθ (xt | xt+1) pφ (y | xt) (18)

where C denotes a normalizing constant. It is typically in-
tractable to sample from this distribution exactly, but Sohl-
Dickstein et al. [76] show that it can be approximated as a
perturbed Gaussian distribution. Sampling accurately from
this distribution is often tricky, but Sohl-Dickstein et al. [76]
prove that it could be approximated as a perturbed Gaussian
distribution. It is formulated that the diffusion model sam-
ples the previous time step xt from time step xt+1 via a
Gaussian distribution:

pθ (xt | xt+1) = N (µ,Σ) (19)

log pθ (xt | xt+1) = −1

2
(xt − µ)T Σ−1 (xt − µ) + Z

(20)
We can assume that logφ p (y | xt) owns low curvature
when compared with Σ−1. This assumption is reasonable

under the constraint that the infinite diffusion step, where
‖Σ‖ → 0. Under the circumstances, log pφ (y | xt) can be
approximated via a Taylor expansion around xt = µ as:

log pφ (y | xt) ≈ log pφ (y | xt)|xt=µ
+ (xt − µ)∇xt log pφ (y | xt)|xt=µ
= (xt − µ) g + Z1

(21)
Here, g = ∇xt log pφ (y | xt) ‖xt=µ, and Z1 is a constant.
We can replace the g with Eq. 17 as follows:

log p (y | xt) = −L (y,D (xt))− logK (22)
g = ∇xt log p (y | xt) = −∇xtL (y,D (xt)) (23)

This gives:

log (pθ (xt | xt+1) pφ (y | xt))

≈ −1

2
(xt − µ)T Σ−1 (xt − µ) + (xt − µ) g + Z2

= −1

2
(xt − µ− Σg)T Σ−1 (xt − µ− Σg) +

1

2
gTΣg + Z2

= −1

2
(xt − µ− Σg)T Σ−1 (xt − µ− Σg) + Z3

= log p(z) + Z4, z ∼ N (µ+ Σg,Σ)
(24)

where the constant term C4 could be safely ignored because
it is equivalent to the normalizing coefficient Z in Eq. 18.
Thus, we find that the conditional transition operator can
be approximated by a Gaussian similar to the unconditional
transition operator, but with a mean shifted by Σg. More-
over, an optional scaling factor s is included for gradients,
which will be described in more detail in Sec. H.3. How-
ever, it is experimentally found that this guidance way might
not be effective enough, where our GDP-x0 is systemati-
cally studied.

H.2. Conditional Diffusion Process

Here, we figure out that conditional sampling can
be fulfilled with a transition operator proportional to
pθ (xt | xt+1) pφ (y | xt), where pθ (xt | xt+1) approxi-
mates q (xt | xt+1) and pφ (y | xt) approximates the dis-
tribution of the input for a noised sample xt.

A conditional Markovian noising process q̂ is similar to
q. And q̂ (y | x0) is assumed as a known and readily avail-
able degraded images distribution for each sample.

q̂ (x0) := q (x0) (25)
q̂ (y | x0) := Corrupted input image per sample

(26)

q̂ (xt+1 | xt,y) := q (xt+1 | xt) (27)

q̂ (x1:T | x0,y) :=

T∏
t=1

q̂ (xt | xt−1,y) (28)
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Table 9. The performances of DDRM (20) and GDM-x0-DDIM(20) towards the four tasks on ImageNet 1k. The DDIM sample steps
are all set to 20 to make a fair comparison.

Task 4× super resolution Deblur 25% Impainting Colorization
PSNR SSIM Consistency FID PSNR SSIM Consistency FID PSNR SSIM Consistency FID PSNR SSIM Consistency FID

DDRM(20) [32] 26.53 0.784 19.39 40.75 35.64 0.978 50.24 4.78 34.28 0.958 4.08 24.09 22.12 0.924 38.66 47.05
GDP-x0-DDIM(20) 23.77 0.623 9.24 39.46 24.87 0.683 44.39 3.66 30.82 0.892 7.10 19.70 21.13 0.840 37.33 41.38

Table 10. The time comparison of GDP-x0-DDIM(20) and GDP-x0 on 4x super-resolution. These experiments are compared on Tesla
A100.

Guidance scale Total steps Guidance times per steps Generation time per image

GDP-x0 w.o. DDIM 2e3 1000 6 69.55
GDP-x0-DDIM(20) w. DDIM 22e5 20 20 1.74

Assuming that the noising process q̂ is conditioned on
y, we can reveal that q̂ behaves exactly like q when not
conditioned on y. According to this idea, we first derive the
unconditional noising operator q̂ (xt+1 | xt) :

q̂ (xt+1 | xt) =

∫
y

q̂ (xt+1,y | xt) dy (29)

=

∫
y

q̂ (xt+1 | xt,y) q̂ (y | xt) dy (30)

=

∫
y

q (xt+1 | xt) q̂ (y | xt) dy (31)

= q (xt+1 | xt)
∫
y

q̂ (y | xt) dy (32)

= q (xt+1 | xt) (33)
= q̂ (xt+1 | xt,y) (34)

Similarly, the joint distribution q̂ (x1:T | x0) can be written
as:

q̂ (x1:T | x0) =

∫
y

q̂ (x1:T ,y | x0) dy (35)

=

∫
y

q̂ (y | x0) q̂ (x1:T | x0,y) dy (36)

=

∫
y

q̂ (y | x0)

T∏
t=1

q̂ (xt | xt−1,y) dy

(37)

=

∫
y

q̂ (y | x0)

T∏
t=1

q (xt | xt−1) dy (38)

=

T∏
t=1

q (xt | xt−1)

∫
y

q̂ (y | x0) dy (39)

=

T∏
t=1

q (xt | xt−1) (40)

= q (x1:T | x0) (41)

q̂ (xt) can be derived by using Eq. 41 as follows:

q̂ (xt) =

∫
x0:t−1

q̂ (x0, . . . ,xt) dx0:t−1 (42)

=

∫
x0:t−1

q̂ (x0) q̂ (x1, . . . ,xt | x0) dx0:t−1 (43)

=

∫
x0:t−1

q (x0) q (x1, . . . ,xt | x0) dx0:t−1 (44)

=

∫
x0:t−1

q (x0, . . . ,xt) dx0:t−1 (45)

= q (xt) (46)

It is proved by Bayes rule that the unconditional reverse
process q̂ (xt | xt+1) = q (xt | xt+1) when using the iden-
tities q̂ (xt) = q (xt) and q̂ (xt+1 | xt) = q (xt+1 | xt).

Note that q̂ is able to produce an input function
q̂ (y | xt). It is shown that this distribution of the input does
not depend on xt+1 (the noisy version of xt), we will dis-
cuss this fact later by exploiting:

q̂ (y | xt,xt+1) = q̂ (xt+1 | xt,y)
q̂ (y | xt)

q̂ (xt+1 | xt)
(47)

= q̂ (xt+1 | xt)
q̂ (y | xt)

q̂ (xt+1 | xt)
(48)

= q̂ (y | xt) (49)

In this way, the conditional reverse process can be derived
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Table 11. The quantitative comparison of performance on CelebA.

CelebA 4x SR Deblur 25% Inpainting
PSNR SSIM Consistency FID PSNR SSIM Consistency FID PSNR SSIM Consistency FID

DDRM 29.50 0.863 6.82 87.71 36.51 0.98 35.91 14.30 31.99 0.918 0.47 69.46
GDP-xt 29.19 0.847 14.11 94.98 27.35 0.81 34.87 9.97 36.19 0.963 1.94 22.53
GDP-x0 30.26 0.868 5.33 46.64 28.66 0.83 32.66 4.50 37.70 0.972 0.51 11.62

Table 12. The quantitative comparison of results on LSUN bedroom.

LSUN Bedroom 4x SR Deblur 25% Inpainting Colorization
Consistency FID Consistency FID Consistency FID Consistency FID

DDRM 20.33 40.12 43.78 10.16 5.33 22.49 35.16 45.22
GDP-xt 70.46 58.62 46.90 12.50 9.33 20.63 66.88 57.13
GDP-x0 7.66 36.94 42.28 9.51 6.77 18.34 33.51 34.59

as:

q̂ (xt | xt+1,y) =
q̂ (xt,xt+1,y)

q̂ (xt+1,y)
(50)

=
q̂ (xt,xt+1,y)

q̂ (y | xt+1) q̂ (xt+1)
(51)

=
q̂ (xt | xt+1) q̂ (y | xt,xt+1) q̂ (xt+1)

q̂ (y | xt+1) q̂ (xt+1)
(52)

=
q̂ (xt | xt+1) q̂ (y | xt,xt+1)

q̂ (y | xt+1)
(53)

=
q̂ (xt | xt+1) q̂ (y | xt)

q̂ (y | xt+1)
(54)

=
q (xt | xt+1) q̂ (y | xt)

q̂ (y | xt+1)
(55)

where the q̂ (y | xt+1) can be treated as a constant because
it does not depend on xt+1. Therefore, we want to sam-
ple from the distribution Cq (xt | xt+1) q̂ (y | xt) where
C denotes the normalization constant. We already have
a neural network approximation of q (xt | xt+1) called
pθ (xt | xt+1), so the rest is q̂ (y | xt) that can be obtained
by computing a conditioner pφ (y | xt) on noised images
xt derived by sampling from q (xt).

H.3. Scaling Conditioner Gradients

The conditioner is incorporated into the sampling pro-
cess of the diffusion model using Eq. 24. To unveil
the effect of scaling conditioner gradients, note that s ·
∇x log p(y | x) = ∇x log 1

K p(y | x)s, where K is an
arbitrary constant. Thus, the conditioning process is still
theoretically based on the re-normalized distribution of the
input proportional to p(y | x)s. If s > 1, this distribution
becomes sharper than p(y | x) because larger values are

exponentially magnified. Therefore, using a larger gradient
scale to focus more on the modes of the conditioner may
be beneficial in producing higher fidelity (but less diverse)
samples. In this paper, due to the observation that Σ might
exert a negative influence on the quality of images. There-
fore, with the absence of the Σ, the guidance scale can be
a variable scale ŝ, where s = Σŝ. Thanks to this variable
scale ŝ, the quality of images can be promoted

I. Additional Results on Linear inverse prob-
lems

We provide additional figures below showing GDP’s ver-
satility across different datasets and linear inverse prob-
lems (Figures 16, 17, 18, 19), and 21). We present more
uncurated samples from the ImageNet experiments in Fig-
ures 20, 22, 23, 24, 25, and 26. Moreover, our GDP is also
able to recover the corrupted images that undergo multi-
linear degradations, as shown in Fig. 27

J. Additional Results on Low-light Enhance-
ment

In addition to the linear inverse problems, we further
show more samples on the blind and non-linear task of low-
light enhancement. As shown in 28, 31, and 33, our GDP
performs well under the three datasets, including LOL, VE-
LOL-L, and LoLi-phone, indicating the effectiveness of
GDP under the different distributions of the images. More-
over, we also compare the GDP with other methods on the
three datasets. As seen in 30, and 32, GDP-x0 is able to gen-
erate more satisfactory images than other supervised learn-
ing, unsupervised learning, self-supervised, and zero-shot
learning methods. Note that GDP-xt tends to yield images
lighter than the ones generated by GDP-x0. Furthermore,
GDP can adjust the brightness of generated images by the
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Table 13. The weight of reconstruction loss and quality enhancement loss.

MSE loss Exposure Control Loss Color Constancy Loss Illumination Smoothness Loss

Colorization 1 0 500 0
Low-light Enhancement 1 1/100 1/200 1
HDR recovery 1 1/100 1/200 1

Exposure Control Loss. As shown in 29, users can change
the gray level E in the RGB color space to obtain the target
images with specific brightness.

K. Additional Results on HDR Recovery
As shown in 35, our HDR-GDP-x0 is capable of adjust-

ing the over-exposed and under-exposed areas of the pic-
ture in various scenes. It is noted that since the model used
by GDP is pre-trained on ImageNet, the tone of the gen-
erated picture will be slightly different from ground truth
images. Moreover, we also show more samples compared
with the state-of-the-art methods, including AHDRNet [91],
HDR-GAN [59], DeepHDR [90] and deep-high-dynamic-
range [30]. As seen in Fig. 36, our HDR-GDP-x0 can re-
cover more realistic images with more details.

L. Additional Results on Ablation Study
The visualization comparisons of the ablation study on

the trainable degradation and the patch-based tactic are
shown in Figs. 37 and 38. It is shown that Model A fails
to generate high-quality images due to the interpolation op-
eration, while Model B generates images with more arti-
facts because of the naive restoration. Model C predicts the
outputs in an uncontrollable way thanks to the randomly
initiated and fixed parameters.
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Low-res DDRM (20) GDP-x0
-DDIM (20)

Original

Figure 14. More samples from the 4 × super-resolution task of GDP-x0-DDIM (20) compare with DDRM (20) on 256 × 256
ImageNet 1K. The generated images by the DDRM (20) are still blurred, while our proposed GDP-x0 with 20 steps of DDIM sampling
can restore more details.
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Blurred DDRM (20) GDP-x0
-DDIM (20)

Original

Figure 15. More samples from the deblurring task of GDP-x0-DDIM (20) compare with DDRM (20) on 256 × 256 ImageNet 1K.
Our GDP-x0-DDIM (20) can recover more details than DDRM (20) under the same DDIM steps.
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Figure 16. 4 × super-resolution results of DDRM, GDP-xt, and GDP-x0 on CelebA face images. Compared with GDP-xt and DDRM,
GDP-x0 can restore more realistic faces, such as the wrinkles on the faces, systematically demonstrating the superiority of the guidance on
x0 protocol.
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Figure 17. Deblurring results of DDRM, GDP-xt, and GDP-x0 on LSUN bedroom images.
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Figure 18. Pairs of degraded and recovered 256 × 256 CelebA face images with a GDP-x0. Three tasks including 25% inpainting,
deblurring and 4 × super-resolution are vividly depicted.
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Figure 19. Pairs of degraded and recovered 256 × 256 LSUN bedroom images with a GDP-x0. We show more samples under the
25% inpainting, colorization, deblurring and 4 × super-resolution.
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Low-res GDP-xt GDP-x0 Original Low-res GDP-xt GDP-x0 Original

Figure 20. Uncurated samples from the 4 × super-resolution task on 256 × 256 ImageNet 1K.

29



Low-res DDRM GDP-x0 Original

Figure 21. More samples from the 4 × super-resolution task compare with DDRM on 256 × 256 ImageNet 1K. As we mentioned
above, DDRM adds guidance on the xt, leading to the less satisfactory results than our GDP-x0.
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Blurred GDP-xt GDP-x0 Original Blurred GDP-xt GDP-x0 Original

Figure 22. Uncurated samples from the deblurring task on 256 × 256 ImageNet 1K.
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Occluded GDP-xt GDP-x0 Original Occluded GDP-xt GDP-x0 Original

Figure 23. Uncurated samples from the 10% inpainting task on 256 × 256 ImageNet 1K.
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Occluded GDP-xt GDP-x0 Original Occluded GDP-xt GDP-x0 Original

Figure 24. Uncurated samples from the 25% inpainting task on 256 × 256 ImageNet 1K.
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Figure 25. Uncurated samples from the inpainting task on 256 × 256 ImageNet 1K.
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Figure 26. Uncurated samples from the inpainting task on 256 × 256 ImageNet 1K.
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Figure 27. Samples from the multi-degradation tasks on 256 × 256 ImageNet 1K. It is shown that GDP can recover the corrupted
images undergoing multiple degradations, such as gray + blur, gray + inpainting, and gray + down-sampling. It is noted that multi-linear
degradation should be only one degradation model that will damage the contents of the images. In other words, the restoration will be more
difficult if two content-damaged degradations occur at the same time, such as down-sampling + mask.
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Figure 28. Results of low-light image enhancement on LOL dataset.
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Figure 29. Results of light control on LOL dataset. We can adjust the brightness of the generated images with the help of Exposure
Control Loss. Users can adjust the gray level E in the RGB color space to obtain the images according to their needs.
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Figure 30. The comparison of our GDP and other methods on the LOL datasets towards low-light enhancement.
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Figure 31. Results of low-light image enhancement on VE-LOL-L dataset.
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Figure 32. The comparison of our GDP and other methods on the VE-LOL-L datasets towards low-light enhancement.
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Figure 33. Results of low-light image enhancement on LoLi-Phone dataset.
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Figure 34. The comparison of our GDP and other methods on the LoLi-phone datasets towards low-light enhancement.
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Figure 35. Results of HDR image recovery on NTIRE2021 dataset.
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Figure 36. The comparison of HDR image recovery on NTIRE2021 dataset.
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Figure 37. Qualitative comparison of ablation study on LOL dataset. Model A recovers the images in 256×N or 256×N sizes and is
interpolated by the nearest neighbor to the original size. Model B is devised to naively restore the images from patches and patches where
the parameters are not related. Model C is designed with fixed parameters for all patches in the images.
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Figure 38. Qualitative comparison of ablation study on NTIRE2021 dataset.
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