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Abstract

Layout is essential for graphic design and poster gen-
eration. Recently, applying deep learning models to gen-
erate layouts has attracted increasing attention. This pa-
per focuses on using the GAN-based model conditioned on
image contents to generate advertising poster graphic lay-
outs, which requires an advertising poster layout dataset
with paired product images and graphic layouts. How-
ever, the paired images and layouts in the existing dataset
are collected by inpainting and annotating posters, respec-
tively. There exists a domain gap between inpainted posters
(source domain data) and clean product images (target do-
main data). Therefore, this paper combines unsupervised
domain adaption techniques to design a GAN with a novel
pixel-level discriminator (PD), called PDA-GAN, to gen-
erate graphic layouts according to image contents. The
PD is connected to the shallow level feature map and com-
putes the GAN loss for each input-image pixel. Both quan-
titative and qualitative evaluations demonstrate that PDA-
GAN can achieve state-of-the-art performances and gener-
ate high-quality image-aware graphic layouts for advertis-
ing posters.

1. Introduction

Graphic layout is essential to the design of posters, mag-
azines, comics, and webpages. Recently, generative ad-
versarial network (GAN) has been applied to synthesize
graphic layouts through modeling the geometric relation-
ships of different types of 2D elements, for instance, text
and logo bounding boxes [10, 19]. Fine-grained controls
over the layout generation process can be realized using
Conditional GANs, and the conditions might include image
contents and the attributes of graphic elements, e.g. cat-
egory, area, and aspect ratio [20, 35]. Especially, image
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Figure 1. Examples of image-conditioned advertising posters
graphic layouts generation. Our model generates graphic lay-
outs (middle) with multiple elements conditioned on product im-
ages (left). The designer or even automatic rendering programs
can utilize graphic layouts to render advertising posters (right).

contents play an important role in generating image-aware
graphic layouts of posters and magazines [34,35].



This paper focuses on studying the deep-model based
image-aware graphic layout method for advertising poster
design, where the graphic layout is defined to be a set of el-
ements with their classes and bounding boxes as in [35]. As
shown in Fig. 1, the graphic layout for advertising poster de-
sign in our work refers to arranging four classes of elements,
such as logos, texts, underlays, and other elements for em-
bellishment, at the appropriate position according to prod-
uct images. Therefore, its kernel is to model the relationship
between the image contents and layout elements [4,35] such
that the neural network can learn how to produce the aes-
thetic arrangement of elements around the product image.
It can be defined as the direct set prediction problem in [5].

Constructing a high-quality layout dataset for the train-
ing of image-ware graphic layout methods is labor inten-
sive, since it requires professional stylists to design the ar-
rangement of elements to form the paired product image
and layout data items. For the purpose of reducing work-
load, zhou et.al. [35] propose to collect designed poster im-
ages to construct a dataset with required paired data. Hence,
the graphic elements imposed on the poster image are re-
moved through image inpainting [28], and annotated with
their geometric arrangements in the posters, which results in
state-of-the-art CGL-Dataset with 54,546 paired data items.
While CGL-Dataset is substantially beneficial to the train-
ing of image-ware networks, there exists a domain gap be-
tween product image and its inpainted version. The CGL-
GAN in [35] tries to narrow this domain gap by utilizing
Gaussian blur such that the network can take a clean prod-
uct image as input for synthesizing a high-quality graphic
layout. However, it is possible that the blurred images lose
the delicate color and texture details of products, leading to
unpleasing occlusion or placement of graphic elements.

This paper proposes to leverage unsupervised domain
adaption technique to bridge the domain gap between clean
product images and inpainted images in CGL-Dataset to
significantly improve the quality of generated graphic lay-
outs. Treating the inpainted poster images without graphic
elements as the source domain, our method aims to seek
for the alignment of the feature space of source domain and
the feature space of clean product images in the target do-
main. To this end, we design a GAN with a pixel-level do-
main adaption discriminator, abbreviated as PDA-GAN, to
achieve more fine-grained control over feature space align-
ment. It is inspired by PatchGAN [13], but non-trivially
adapts to pixel-level in our task. First, the pixel-level dis-
criminator (PD) designed for domain adaption can avoid the
Gaussian blurring step in [35], which is helpful for the net-
work to model the details of the product image. Second, the
pixel-level discriminator is connected to the shallow level
feature map, since the inpainted area is usually small rel-
ative to the whole image and will be difficult to discern at
deep levels with large receptive field. Finally, the PD is con-

structed by three convolutional layers only, and its number
of network parameters is less than 2% of the discriminator
parameters in CGL-GAN. This design reduces the memory
and computational cost of the PD.

We collect 120,000 target domain images during the
training of PDA-GAN. Experimental results show that
PDA-GAN achieves state-of-the-art (SOTA) performance
according to composition-relevant metrics. It outperforms
CGL-GAN on CGL-dataset and achieves relative improve-
ment over background complexity, occlusion subject de-
gree, and occlusion product degree metrics by 6.21%,
17.5%, and 14.5% relatively, leading to significantly im-
proved visual quality of synthesized graphic layouts in
many cases. In summary, this paper comprises the follow-
ing contributions:

* We design a GAN with a novel pixel-level discrimina-
tor working on shallow level features to bridge the do-
main gap that exists between training images in CGL-
Dataset and clean product images.

* Both quantitative and qualitative evaluations demon-
strate that PDA-GAN can achieve SOTA performance
and is able to generate high-quality image-aware
graphic layouts for advertising posters.

2. Related Work

Image-agnostic layout generation. FEarly works [3, 14,

, 24] often utilize templates and heuristic rules to gen-
erate layouts. LayoutGAN [19] is the first method to apply
generative networks (in particular GAN) to synthesize lay-
outs and use self-attention to build the element relationship.
LayoutVAE [15] and LayoutVTN [ 1] follow and apply VAE
and autoregressive methods. Meanwhile, some conditional
methods have been proposed to guide the layout generation
process [11, 16, 18,20,31]. The constraints are in various
forms, such as scene graphs, element attributes, and partial
layouts. However, in a nutshell, these methods mainly focus
on modeling the internal relationship between graphic ele-
ments, and rarely consider the relationship between layouts
and images.

Image-aware layout generation. In layout generation for
magazine pages, ContentGAN [34] first proposes to model
the relationship not only between layout elements but also
between layouts and images. However, the high-quality
training data is relatively rare, since it requires professional
stylists to design layouts for obtaining paired clean images
and layouts. ContentGAN uses white patches to mask the
graphic elements on magazine pages, and replaces the clean
images with the processed pages for training. For the same
problem, in poster layout generation, CGL-GAN [35] lever-
ages inpainting to erase the graphic elements on posters, and
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Figure 2. The architecture of our network. Annotated posters (source domain data) must be inpainted before input to the model. The
model has both reconstruction and GAN loss when training with source domain data, while only has a GAN loss is used when training
with target domain data. Please refer to Sec. 3 for the definition of each loss term: Lpp, LS, and Lyc.. During the discriminator or
generator pass, both inpainted and clean images are fed into the discriminator.

subsequently applies Gaussian blur on the whole poster to
eliminate the inpainting artifacts. The blur strategy effec-
tively narrows the domain gap between inpainted images
and clean images, but it may damage the delicate color
and texture details of images and leads to unpleasing oc-
clusion or element placement. In this paper, we find that a
pixel-level discriminator for domain adaption can achieve
the same goal and avoid the negative effects of blur.

Unsupervised domain adaptation. Unsupervised do-
main adaptation [7] aims at aligning the disparity between
domains such that a model trained on the source domain
with labels can be generalized into the target domain, which
lacks labels. Many related methods [2,7,22,23,25,27,32,
33] have been applied for object recognition and detection.
Among these methods, [2, 7, 25, 27] leverage adversarial
domain adaptation approach [8]. A domain discriminator
is employed and outputs a probability value indicating the
domain of input data. In this way, the generator can ex-
tract domain-invariant features and eliminate the semantic
or stylistic gap between the two domains. However, it does
not work well when applied directly to our problem, since
the inpainted area is small compared to the whole image and
is difficult to discern at deep levels. Therefore, we design a
pixel-level discriminator to effectively solve this.

3. Our Model

Our model is a generative adversarial network to learn
domain-invariant features with the pixel-level discriminator

to minimize the cross-domain discrepancy. As shown in
Fig. 2, our network mainly has two sub-networks: the lay-
out generator network that takes the image and its saliency
map as the input to generate graphic layout and the convo-
lutional neural network for pixel-level discriminator.

In this section, we will describe the details of our net-
work architecture and the training loss functions for the
pixel-level discriminator and the layout generator network
respectively.

3.1. Network Architecture

The architecture of the layout generator network is the
same with the generator network in [35], but the user-
constraints are ignored. Its design follows the principle of
DETR [5], which has three modules: a multi-scale convo-
lutional neural network (CNN) used to extract image fea-
tures [12,21], a transformer encoder-decoder that accepts
layout element queries as input to model the relationship
among layout elements and the product image [30], and two
fully connected layers to predict the element class and its
bounding box using the element feature output by the trans-
former decoder.

Our pixel-level discriminator network consists of three
transposed convolutional layers with filter size 3 x 3 and
stride 2. Its input is the feature map from the first resid-
ual block in multi-scale CNN. The transposed convolutional
layers can up-sample the feature map, and we also allow to
resize the final result to exactly match the dimension of the
input image to facilitate the computation of discriminator
training loss, which will be elaborated in the next section.



Model Rcom \L Rshm ~L Rsub »J/ ‘ Rove \L Rund T Rali \L Rocc T
ContentGAN [34]  45.59 17.08 1.143 | 0.0397 0.8626 0.0071 93.4
CGL-GAN [35] 35.77 15.47 0.805 | 0.0233 0.9359 0.0098 99.6
PDA-GAN(Ours) 33.55 12.77 0.688 | 0.0290 0.9481 0.0105 99.7

Table 1. Comparison with content-aware methods. Bold and underlined numbers denote the best and second best respectively.

3.2. Pixel-level Discriminator Training

The design of pixel-level discriminator is based on the
observation that the domain gap between inpainted images
and clean product images mainly exists at pixels synthe-
sized by inpainting process. Therefore, during the discrim-
inator or generator pass in Fig. 2, both inpainted and clean
images are fed into the discriminator. When updating the
discriminator, we encourage the discriminator to detect the
inpainted pixels for inpainted images in the source domain.
In contrast, when updating the generator, we leverage the
pixel-level discriminator to encourage the generator to out-
put shallow feature maps that can fool the discriminator,
which means that, even for the feature map computed for
the inpainted images, the discriminator’s ability to detect in-
painted pixels should be weakened fast. In this way, when
the training converges, the feature space of source and target
domain images should be aligned.

To calculate the loss Lpp for each input-image pixel,
we utilized the white-patch map to distinguish whether the
input-image pixel is inpainted, where the pixel in white
patch map is set to 1 if the corresponding pixel in the in-
put image is processed by the inpainting, otherwise 0. Cor-
respondingly, the pixel values of white-patch map for the
clean images in target domain are all 0.

When updating discriminator in the GAN training, the
pixel-level discriminator takes shallow level feature maps as
input and outputs a map with one channel whose dimension
is consistent with the input image. The loss Lpp used to
train the discriminator is a mean absolute error (MAE) loss
or L1 norm between the white-patch map of input images
and the output map. We can get as:

Z

1
Lpp = —
PD N, -

(A T
- (1)

+|Py =Py % B),

~

where the IV, means the number of white-patch map pix-
els, and P; indicates the predicted or ground-truth map for
iy, image. The superscript of P; indicates it is from source
by s or target by ¢, from prediction by o or ground truth by
w. The two coefficients, « and 3, are used to balance be-
tween the source and target domain white-patch map. Since
the area of the inpainted pixels in the white-patch map are
usually small, we set the value of o to 2 and 3 to 1.

We utilize one-side label smoothing [9, 29] to improve
the generalization ability of the trained model. Since the
inpainted areas occupy a small proportion of the input im-
age, we only do label smoothing for pixels not in the in-
painted area (those pixels with value O in the white patch
map), denoted as one-target label smoothing in our exper-
iments. Precisely, we only set 0 to 0.2 in the ground truth
white patch map.

3.3. Layout Generator Network Training

When updating the generator network in the GAN train-
ing, we expect to fool the updated discriminator in the de-
tection of inpainted pixels. Therefore, the loss L pp is mod-
ified to penalize the generator network if the discriminator
outputs pixels with value 1. Thus, we have:
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where the values of pixels in f’f are all set to 0.2. The
training loss for the layout generator network is as follows:

Lg = Lrec + v+ LEp, 3)

where the value of the weight coefficient ~ is set to 6, and
the L,.. is the reconstruction loss to penalize the deviation
between the graphic layout generated by the network and
the annotated ground-truth layout for the inpainted images
in the source domain. We calculate the reconstruction loss
L. as the direct set prediction loss in [5].

4. Experiments

In this section, we mainly compare our model with
SOTA layout generation methods and its ablation studies.
More additional experimental analyses and designed adver-
tising posters using generated layouts can be found in the
supplementary materials.

4.1. Implementation Details

We implement our PDA-GAN in PyTorch and use Adam
optimizer for training the model. The initial learning rates
are 107° for the generator backbone and 10~* for the re-
maining part of this model. The model is trained for 300
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Figure 3. Qualitative evaluation for different models. Layouts in a column are conditioned with the same image. And those in a row
are from the same model. This figure qualitatively compares and analyzes different models from three aspects: text element background
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Model Rcom ~L Rshm \L Rgup \LlRove ~l/ Rynd T Raii ~l/

LT 40.92 21.08 1.310(0.0156 0.9516 0.0049
VIN 41.77 2221 1.323 {0.0130 0.9698 0.0047
Ours 33.55 12.77 0.688 [0.0290 0.9481 0.0105

Table 2. Comparison with content-agnostic methods. L7 and
VTN represent LayoutTransformer and LayoutVTN, repectively.

epochs with a batch size of 128, and all learning rates are
reduced by a factor of 10 after 200 epochs. To make the fair
experimental comparisons, we follow CGL-GAN [35] to re-
size the inpainted posters and product images to 240 x 350
as inputs of our PDA-GAN. The total training time is about
8 hours using 16 NVIDIA V100 GPUs.

We observe that, during training, the network is prone to

bias towards source domain data. It might be due to the ad-
ditional reconstruction loss for the source domain to super-
vise the generator of the model. Therefore, to balance the
influence of the two domains, 8000 samples are randomly
selected from CGL-Dataset as the source domain data. In
each epoch, the 8000 source domain samples are processed,
and another 8000 samples of the target domain images are
randomly selected. We refer to this choice of training data
as Data 1. If all the CGL-Dataset training images are used
for a comparison, we refer to it as Data II. In the following,
if not clearly mentioned, our model is trained with Data I.

4.2. Metrics

For quantitative evaluations, we follow [35] to divide
layout metrics into the composition-relevant metrics and the
graphic metrics. The composition-relevant metrics include
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Figure 4. More qualitative comparisons with CGL-GAN.

Model Datal Datall Gaussian Blur ‘ Reom 4 Rswm{d Rsub ‘ Roved RunaT Raid Roce T
CGL-GAN v 33.85 13.88 0.766 | 0.0299 0.9351 0.0139 99.7
CGL-GAN v v - - 2.5826 - - -
CGL-GAN v v 35.77 15.47 0.805 | 0.0233 0.9359 0.0098 99.6
PDA-GAN (Ours) v 33.55 12.77 0.688 | 0.0290 0.9481 0.0105  99.7

Table 3. Comprehensive comparison between CGL-GAN and PDA-GAN (Ours). Data I and Data II contain 8,000 and 54,546 source
domain samples, respectively. v'indicates the experiment configuration. The symbol ”-” indicates that the model cannot complete the
layout generation task since the generated element bounding boxes overlap with each other severely.

Reom, and Rgppm, Rsup, which measure background com-
plexity, occlusion subject degree, and occlusion product de-
gree respectively; while the graphic metrics include R, .,
Ryna, and Rg;;, which measure layout overlap, underlay
overlap, and layout alignment degree respectively. When
the R,y value of a model exceeds 0.05, the generated el-
ement bounding boxes will overlap each other severely, re-
sulting in useless layouts. This means that the high value of
R,y indicates a failure in the layout generation for most
images. Moreover, we use metric R,.. to represent the
ratio of non-empty layouts predicted by models. We will
use all the above metrics to compare each group’s experi-
ments to verify the effectiveness of our model. The formal

definitions of these metrics and corresponding examples of
graphic layouts are shown in the supplementary material.

4.3. Comparison with State-of-the-art Methods

Layout generation with image contents. We first con-
duct experiments to compare our method with Content-
GAN and CGL-GAN that can generate image-aware lay-
outs. The quantitative results can be seen from Tab. 1. Our
model achieves the best results in most metrics, especially
in the composition-relevant metrics since PDA-GAN pre-
serves the image color and texture details. For instance,
our PDA-GAN outperforms contentGAN and CGL-GAN
by 26.4% and 6.21% respectively, with regard to back-



ground complexity R.om. As shown in the first column
in Fig. 3, compared with these by contentGAN and CGL-
GAN, bounding boxes of text element generated by PDA-
GAN are more likely to appear in simple background ar-
eas, which improves the readability of the text informa-
tion. As shown in the second and third columns, when the
background of the text element is complex, PDA-GAN will
generate an underlay bounding box to replace the complex
background to enhance the readability of text information.

Comparing contentGAN and CGL-GAN, our PDA-
GAN reduces the occlusion subject degree Rgp.m by 25.2%
and 17.5% respectively. From the middle three columns of
Fig. 3, for contentGAN or CGL-GAN, the presentation of
the subject content information are largely affected since
the generated layout bounding boxes would inevitably oc-
clude subjects. In particular, it should be noted that when
the layout bounding box occludes the critical regions of the
subject, such as the human head or face, the visual effect
of the poster will be unpleasing, taking the image in row-3-
column-6 as an example. In contrast, layout bounding boxes
generated by PDA-GAN avoid subject regions nicely, thus
the generated posters better express the information of sub-
jects and layout elements.

Meanwhile, the occlusion product degree R;,; of PDA-
GAN performance surpass contentGAN and CGL-GAN
by 39.8% and 14.5% respectively. The three rightmost
columns in Fig. 3 are the heat maps of the attention of
each pixel to the product in the image. We get attention
maps of product images (queried by their category tags ex-
tracted on product pages) by CLIP [6,26]. Compared with
contentGAN and CGL-GAN, PDA-GAN generates layout
bounding boxes on the region with lower thermal values to
avoid occluding products. For example, in the seventh col-
umn, the layout bounding box generated by PDA-GAN ef-
fectively avoids the region with high thermal values of the
product, which makes the hoodie information of the prod-
uct can be fully displayed. The above quantitative and qual-
itative comparisons of models demonstrate that PDA-GAN
improves the relationship modeling between image contents
and graphic layouts.

Layout generation without image contents. We also
compare with image-agnostic methods of LayoutTrans-
former [| 1] and LayoutVTN [1]. As shown in Tab. 2, these
image-agnostic methods perform pretty well on graphic
metrics. However, in term of composition-relevant metrics,
our model is much better. In detail, our PDA-GAN be-
yonds LayoutTransformer and LayoutVIN by 18.0% and
19.7% respectively with regard to Rcop,. That is because
these image-agnostic methods only care about the relation-
ship between elements while do not account for image con-
tents. These image-agnostic methods are prone to generate
bounding boxes of text elements in the area with complex
backgrounds(as shown in the first two rows and the left-

most three columns of Fig. 3), which will reduce the read-
ability of the text information. Furthermore, compared with
LayoutTransformer and LayoutVTN, Rgp,, of PDA-GAN
is reduced by 39.4% and 42.5%, and R,y is reduced by
47.5% and 48.0%. The rightmost six columns in Fig. 3
show image-agnostic methods generate layout bounding
boxes that randomly occlusion on the subject and product
areas. These bounding boxes of layout elements will dimin-
ish the content and information presentation of the subject
and product.

More comparisons with CGL-GAN. As shown in the first
and the last row of Tab. 3, PDA-GAN outperforms CGL-
GAN in all metrics with the same configuration. PDA-
GAN differs from CGL-GAN that it uses PD to replace
the discriminator in CGL-GAN. The number of the PD
parameters is 332,545, less than 2% of the discriminator
(22,575,841) in CGL-GAN, which significantly reduces the
memory and computation cost of PDA-GAN. The second
row of Tab. 3 shows that the model training on Data I with
Gaussian blur performs poorly on R,,., which causes most
bounding boxes to overlap each other. Intuitively, Gaus-
sian blur can narrow the domain gap, but it will also cause
the image color and texture details lost. From the last two
rows of Tab. 3, PDA-GAN without Gaussian blur is far
better than CGL-GAN with Gaussian blur on composition-
relevant metrics. As illustrated in the the sixth and eighth
columns of the first two rows in Fig. 4, compared with CGL-
GAN, PDA-GAN generates text bounding boxes with the
simpler background. It is interesting to observe from the
first two rows of Fig. 4 that when PDA-GAN generates box
among complexity background, it tends to additionally gen-
erate an underlay bounding box which covers the complex
background to ensure the readability of the text information.
The last two rows show that layouts generated by PDA-
GAN can effectively avoid the subject area, and then can
generate posters better express the information of subjects
and layout elements.

Both above quantitative and qualitative evaluations
demonstrate that PDA-GAN can capture the subtle inter-
action between image contents and graphic layouts and
achieve the SOTA performance. Refer to the supplemen-
tary for more details.

4.4. Ablations

Effects of pixel-level Discriminator. We first compare our
PD with a global discriminator that only predicts one real or
fake probability as in classical GAN. The abbreviation DA
in Tab. 4 indicates the global discriminator strategy. When
the weight of DA loss (7 in Eq. (3)) is more than 0.01, the
model cannot complete the layout generation task, indicated
by the symbol —, since the R,,. value is too high. From the
statistics in Tab. 4, our PD outperforms DA on all metrics.
Second, we compare the PD with the strategy in Patch-



Model-W ‘Rcz)'m \L Rshm \L Rsub \L‘Rove J/ Rund T Rali \L

Feature map Rcom ~L Rshm \L Rsub \L‘ije \I/ Rund T Rali ~L

DA-6.0 - - - 19.0000 - -
DA-1.0 - - - 189995 - -
DA-0.01 4.7764

DA-0.001 | 34.41 13.78 0.749 [0.0327 0.9299 0.0110
DA-0.0001| 34.77 14.62 0.777 [0.0345 0.9234 0.0122
DA-0.0 34.07 15.13 0.800 |{0.0350 0.9259 0.0108
PDA-6.0 | 33.55 12.77 0.688 |0.0290 0.9481 0.0105

Table 4. Ablation study with discriminator level. DA indicates
the global discriminator strategy in classical GAN-based methods,
which outputs one probability value for real or fake for an image.
The PDA output is a pixel-level map, and its dimension is same
with the input image. W refers to the weight of DA (or PDA)
module loss in the training process. Please refer to Tab. 3 for the
explanation of the symbol ”-”.

Patch Size‘Rcom \L Rshm »J« Rsub HRove \L Rund T Rali Jf

12*8 - - - 109288 - -

24*16 33.67 16.00 0.844 |0.0438 0.9407 0.0075
44%30 34.03 13.02 0.752 (0.0284 0.9377 0.0119
88%60 32.65 13.35 0.735]0.0325 0.9173 0.0094
350%240 | 33.55 12.77 0.688 |0.0290 0.9481 0.0105

Table 5. Quantitative ablation study PatchGAN-based meth-
ods. Patch size means the size of the map output by the discrimi-
nator. The input image height and width are 320 and 240 respec-
tively. We train these models with ~ in Eq. (3) equal to 6. Please
refer to Tab. 3 for the explanation of the symbol ”-”.

GAN [13]. The scores of quantitative metrics listed in
Tab. 5 also verify the advantage of PD. The patch size in this
table means the dimension of the output map, which will be
compared with correspondingly resized ground-truth white
patch map during training. These experiments show that,
since the discrepancy by inpainting exists between pixels,
the model might be required to eliminate the domain gap
at the pixel level. Moreover, the pixel-level strategy can be
considered as the most fine-grained patch level strategy.

Effects of PD with different level feature maps. In our
model, PD is connected to the shallow level feature maps
of the first residual block. We now investigate how the
PD works if the deep level feature, i.e. the feature from
fourth residual block, and the fused feature in multi-scale
CNN [35], i.e. the fusion of first to fourth residual block
feature map, are used in the PD. As shown in Tab. 6, dis-
criminating with shallow feature map in PDA-GAN can
achieve better results in both composition-relevant and
graphic metrics on average. Again, this experiment verifies
the advantage of our design of PD. Intuitively, bridging the
domain gap at early stage of the network might be beneficial
to the subsequent model processing.

deep level 3422 13.97 0.770|0.0396 0.9366 0.0118
fusion 35.36  14.54 0.817 |0.0310 0.9513 0.0117
shallow level 33.55 12.77 0.688 0.0290 0.9481 0.0105

Table 6. Quantitative ablation study on different level feature
maps for pixel-level discriminator.

SmOOthing Rcom ~lr Rshm \L Rsub ir‘Rove \L Rund T Rali ~lr

Without 33.61 14.04 0.718 |0.0346 0.9188 0.0106
two-side  33.66 14.67 0.794 {0.0334 0.9297 0.0098
one-source 32.20 15.23 0.799 [0.0431 0.9234 0.0085
one-target 33.55 12.77 0.688 (0.0290 0.9481 0.0105

Table 7. Ablation study on different label smoothing choice.
The first row is the model without label smoothing. Two-side: set
0to 0.2 and 1 to 0.8; one-source: set 1 to 0.8; and One-target: set
0t00.2.

Effects of label smoothing. Tab. 7 shows that the model
with one-target label smoothing performs better in all met-
rics than without label smoothing. In addition, the effects of
two-side or one-source label smoothing are not as good as
one-target label smoothing on average. For the ground truth
map input to the discriminator, the two-side label smooth-
ing means we set 0 to 0.2 and 1 to 0.8, and one-source label
smoothing means we only set 1 to 0.8.

5. Conclusion

In this paper, we study the domain gap problem be-
tween clean product images and inpainted images in CGL-
Dataset for generating poster layouts. To solve this prob-
lem, we propose to leverage the unsupervised domain adap-
tation technique and design a pixel-level discriminator. This
design of discriminator can not only finely align image
features of these two domains, but also avoid the Gaus-
sian blurring step in the previous work (CGL-GAN), which
brings benefits to modeling the relationship between image
details and layouts. Both quantitative and qualitative evalu-
ations demonstrate that our method can achieve SOTA per-
formance and generate high-quality image-aware graphic
layouts for posters. In the future, we may investigate how
to better interact with user constraints, e.g. categories and
coordinates of elements, and enhance the layout generation
diversity.
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