
BiFormer: Vision Transformer with Bi-Level Routing Attention

Lei Zhu1 Xinjiang Wang2 Zhanghan Ke1 Wayne Zhang2 Rynson Lau1†

1 City University of Hong Kong 2 SenseTime Research
{lzhu68-c,zhanghake2-c}@my.cityu.edu.hk, {wangxinjiang,wayne.zhang}@sensetime.com

Rynson.Lau@cityu.edu.hk

Abstract

As the core building block of vision transformers, atten-
tion is a powerful tool to capture long-range dependency.
However, such power comes at a cost: it incurs a huge
computation burden and heavy memory footprint as pair-
wise token interaction across all spatial locations is com-
puted. A series of works attempt to alleviate this problem
by introducing handcrafted and content-agnostic sparsity
into attention, such as restricting the attention operation to
be inside local windows, axial stripes, or dilated windows.
In contrast to these approaches, we propose a novel dy-
namic sparse attention via bi-level routing to enable a more
flexible allocation of computations with content awareness.
Specifically, for a query, irrelevant key-value pairs are first
filtered out at a coarse region level, and then fine-grained
token-to-token attention is applied in the union of remain-
ing candidate regions (i.e., routed regions). We provide
a simple yet effective implementation of the proposed bi-
level routing attention, which utilizes the sparsity to save
both computation and memory while involving only GPU-
friendly dense matrix multiplications. Built with the pro-
posed bi-level routing attention, a new general vision trans-
former, named BiFormer, is then presented. As BiFormer
attends to a small subset of relevant tokens in a query adap-
tive manner without distraction from other irrelevant ones,
it enjoys both good performance and high computational
efficiency, especially in dense prediction tasks. Empirical
results across several computer vision tasks such as image
classification, object detection, and semantic segmentation
verify the effectiveness of our design. Code is available at
https://github.com/rayleizhu/BiFormer.

1. Introduction
Transformer has many properties that are suitable for

building powerful data-driven models. First, it is able to
capture long-range dependency in the data [29,42]. Second,

† Corresponding author.

it is almost inductive-bias-free and thus makes the model
more flexible to fit tons of data [15]. Last but not least, it
enjoys high parallelism, which benefits training and infer-
ence of large models [13, 33, 36, 42]. Hence, transformer
has not only revolutionized natural language processing but
also shown very promising progress in computer vision.

The computer vision community has witnessed an explo-
sion of vision transformers in the past two years [1, 14, 15,
29, 44, 46]. Among these works, a popular topic is to im-
prove the core building block, i.e., attention. In contrast to
convolution, which is intrinsically a local operator, a cru-
cial property of attention is the global receptive field, which
empowers vision transformers to capture long-range depen-
dency [42]. However, such a property comes at a cost: as
attention computes pairwise token affinity across all spatial
locations, it has a high computational complexity and incurs
heavy memory footprints.

To alleviate the problem, a promising direction is to in-
troduce sparse attention [6] to vision transformers, so that
each query attends to a small portion of key-value pairs
instead of all. In this fashion, several handcrafted sparse
patterns have been explored, such as restricting attention
in local windows [29], dilated windows [41, 46], or axial
stripes [46]. On the other hand, there are also works try-
ing to make the sparsity adaptive to data [5, 48]. However,
while they use different strategies to merge or select key/-
value tokens, these tokens are query-agnostic, i.e., they are
shared by all queries. Nonetheless, according to the visual-
ization of pretrained ViT 1 [15] and DETR 2 [1], queries in
different semantic regions actually attend to quite different
key-value pairs. Hence, forcing all queries to attend to the
same set of tokens may be suboptimal.

In this paper, we seek an attention mechanism with dy-
namic, query-aware sparsity. Basically, we aim for each
query to attend to a small portion of the most semantically
relevant key-value pairs. The first problem comes as how

1https://epfml.github.io/attention-cnn/
2https : / / colab . research . google . com / github /

facebookresearch/detr/blob/colab/notebooks/detr_
attention.ipynb

1

ar
X

iv
:2

30
3.

08
81

0v
1

 [
cs

.C
V

]
 1

5
M

ar
 2

02
3

https://github.com/rayleizhu/BiFormer
https://epfml.github.io/attention-cnn/
https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb
https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb
https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_attention.ipynb

(a) Vanilla Attention (b) Local Attention

query key/value local window

(c) Axial Attention

(d) Dilated Attention (e) Deformable Attention (f) Bi-level Routing Attention

Figure 1. Vanilla attention and its sparse variants. (a) Vanilla attention operates gloabally and incurs high computational complexity
and heavy memory footprint. (b)-(d) Several works attempt to alleviate the complexity by introducing sparse attention with different
handcrafted patterns, such as local window [29, 46], axial stripe [14], dilated window [41, 46]. (e) Deformable attention [48] enables
image-adaptive sparsity via deforming a regular grid. (f) We achieve dynamic, query-aware sparsity with bi-level routing attention, which
first searches top-k (k = 3 in this case) relevant regions, and then attends to the union of them.

to locate these key-value pairs to attend. For example, if we
select key-value pairs in a per-query manner as done in [17],
it still requires evaluation of pairwise affinity between all
queries and keys, and hence has the same complexity of
vanilla attention. Another possibility is to predict attention
offsets based on local context for each query [10, 48], and
hence pairwise affinity computation is avoided. However,
in this way, it is problematic to model long-range depen-
dency [48].

To locate valuable key-value pairs to attend globally with
high efficiency, we propose a region-to-region routing ap-
proach. Our core idea is to filter out the most irrelevant
key-value pairs at a coarse-grained region level, instead of
directly at the fine-grained token level. This is done by first
constructing a region-level affinity graph and then pruning it
to keep only top-k connections for each node. Hence, each
region only needs to attend to the top-k routed regions. With
the attending regions determined, the next step is to apply
token-to-token attention, which is non-trivial as key-value
pairs are now assumed to be spatially scattered. For this
case, while the sparse matrix multiplication is applicable,
it is inefficient in modern GPUs, which rely on coalesced
memory operations, i.e., accessing blocks of dozens of con-
tiguous bytes at once [31]. Instead, we propose a simple so-

lution via gathering key/value tokens, where only hardware-
friendly dense matrix multiplications are involved. We refer
to this approach as Bi-level Routing Attention (BRA), as it
contains a region-level routing step and a token-level atten-
tion step.

By using BRA as the core building block, we propose
BiFormer, a general vision transformer backbone that can
be used for many applications such as classification, object
detection, and semantic segmentation. As BRA enables Bi-
Former to attend to a small subset of the most relevant key/-
value tokens for each query in a content-aware manner, our
model achieves a better computation-performance trade-off.
For example, with 4.6G FLOPs computation, BiFormer-T
achieves 83.8% top-1 accuracy on ImageNet-1K classifi-
cation, which is the best as far as we know under similar
computation budgets without training with external data or
distillation [23,40]. The improvements are also consistently
shown in downstream tasks such as instance segmentation
and semantic segmentation.

To summarize, our contributions are as follows. We in-
troduce a novel bi-level routing mechanism to vanilla at-
tention, which enables content-aware sparse patterns in a
query-adaptive manner. Using the bi-level routing atten-
tion as the basic building block, we propose a general vi-

2

sion transformer named BiFormer. Experimental results on
various computer vision tasks including image classifica-
tion, object detection, and semantic segmentation show that
the proposed BiFormer achieves significantly better perfor-
mances over the baselines under similar model sizes.

2. Related Works
Vision transformers. Transformers are a family of neu-
ral networks that adopt channel-wise MLP blocks for per-
location embedding (channel mixing) and attention [42]
blocks for cross-location relation modeling (spatial mix-
ing). Transformers were originally proposed for natural
language processing [13, 42] and then introduced to com-
puter vision by pioneering works such as DETR [1] and
ViT [15]. In comparison with CNNs, the biggest difference
is that transformers use attention as an alternative to con-
volution to enable global context modeling. However, as
vanilla attention computes pairwise feature affinity across
all spatial locations, it incurs a high computation burden and
heavy memory footprints, especially for high-resolution in-
puts. Hence, an important research direction is to seek more
efficient attention mechanisms.

Efficient attention mechanisms. A large volume of works
have been proposed to reduce the computation and mem-
ory complexity bottlenecks of vanilla attention by utiliz-
ing sparse connection patterns [6], low-rank approxima-
tions [43] or recurrent operations [11]. A thorough survey
of these attention variants can be found at [39]. In the scope
of vision transformers, sparse attention gains its popular-
ity recently due to the tremendous success of Swin trans-
former [29]. In Swin transformer, attention is restricted
to non-overlapping local windows, and the shift window
operation is introduced to enable inter-window communi-
cation between adjacent windows. To enable larger and
even quasi-global receptive fields under a reasonable com-
putation budget, several follow-up works introduce dif-
ferent handcrafted sparse patterns, such as dilated win-
dows [41,46] or cross-shaped windows [14]. There are also
works that try to make the sparse pattern adaptive to data,
such as DAT [48], TCFormer [53] and DPT [5]. While these
works reduce the number of key/value tokens via different
merging or selection strategies, these key/value tokens are
shared by all queries on an image. Instead, we explore
query-aware key/value token selection. The key observa-
tion which motivates our work is that the attentive region
for different queries may differ significantly according to
the visualization of pretrained ViT [15] and DETR [1]. As
we achieve the goal of query-adaptive sparsity in a coarse-
to-fine manner, it shares some similarities with quad-tree
attention [38]. Different from quad-tree attention, the goal
of our bi-level routing attention is to locate a few most rel-
evant key-value pairs, while quad-tree attention builds a to-

ken pyramid and assembles messages from all levels of dif-
ferent granularities. In addition, the quad-tree requires deep
recursion to cover the whole feature map, which hurts par-
allelism, while our bi-level routing attention can be more
efficiently implemented by key/value token gathering, fol-
lowed by dense matrix multiplications. As a result, quad-
tree transformer is much slower than our BiFormer.

3. Our Approach: BiFormer
This section elaborates the proposed approach. We start

by briefly summarizing the attention mechanism in Sec-
tion 3.1. We then introduce our novel bi-level routing atten-
tion (BRA) mechanism, which enables dynamic and query-
adaptive sparsity, in Section 3.2. We further show that BRA
can achieve O((HW)

4
3) complexity with a proper region

partition size in Section 3.3. Finally, using BRA as the core
building block, we present a new hierarchical vision trans-
former, named BiFormer, in Section 3.4.

3.1. Preliminaries: Attention

Taking queries Q ∈ RNq×C , keys K ∈ RNkv×C , and
values V ∈ RNkv×C as input, an attention function trans-
forms each query as a weighted sum of values, where the
weights are computed as normalized dot products between
the query and corresponding keys. It can be formally de-
fined in a compact matrix form, as:

Attention(Q,K,V) = softmax

(
QKT

√
C

)
V. (1)

Here, the scalar factor
√
C is introduced to avoid concen-

trated weights and gradient vanishing [42].
In transformers, the de facto building block used is multi-

head self-attention (MHSA). By “self-attention”, it means
that queries Q, keys K and values V are derived as lin-
ear projections of the same input X ∈ RN×C . (For vision
transformers, X is a spatially flattened feature map, i.e.,
N = H ×W , where H and W are the height and width,
respectively, of the feature map.) As for “multi-head”, it
implies splitting the output into h chunks (i.e., heads) along
the channel dimension with each chunk using an indepen-
dent group of projection weights. Formally,

MHSA(X) = Concat(head0,head1, ...,headh)Wo,

headi = Attention(XWq
i ,XWk

i ,XWv
i),

(2)
where headi ∈ RN×C

h is the output of the ith attention
head. Wq

i ,W
k
i ,W

v
i ∈ RC×C

h are corresponding input
projection weights. An extra linear transformation with
weight matrix Wo ∈ RC×C is used to compose all heads.

MHSA has a complexity of O(N2), as there are N
queries and each query will attend to N key-value pairs.
Such a high complexity causes severe scalability issues
w.r.t. the spatial resolution of the inputs.

3

Algorithm 1 Pseudocode of BRA in a PyTorch-like style.

input: features (H, W, C). Assume H==W.
output: features (H, W, C).
S: square root of number of regions.
k: number of regions to attend.

patchify input (H, W, C) -> (Sˆ2, HW/Sˆ2, C)
x = patchify(input, patch_size=H//S)

linear projection of query, key, value
query, key, value = linear_qkv(x).chunk(3, dim=-1)

regional query and key (Sˆ2, C)
query_r, key_r = query.mean(dim=1), key.mean(dim=1)

adjacency matrix for regional graph (Sˆ2, Sˆ2)
A_r = mm(query_r, key_r.transpose(-1, -2))

compute index matrix of routed regions (Sˆ2, K)
I_r = topk(A_r, k).index

gather key-value pairs
key_g = gather(key, I_r) # (Sˆ2, kHW/Sˆ2, C)
value_g = gather(value, I_r) # (Sˆ2, kHW/Sˆ2, C)

token-to-token attention
A = bmm(query, key_g.transpose(-2, -1))
A = softmax(A, dim=-1)
output = bmm(A, value_g) + dwconv(value)

recover to (H, W, C) shape
output = unpatchify(output, patch_size=H//S)

bmm: batch matrix multiplication; mm: matrix multiplication. dwconv: depthwise
convolution.

3.2. Bi-Level Routing Attention (BRA)

To mitigate the scalability issue of MHSA, several
works [14, 29, 41, 46, 48] propose different sparse attention
mechanisms, in which each query attends to only a small
number of key-value pairs instead of all. However, these ex-
isting works either use handcrafted static patterns or share
the sampled subset of key-value pairs among all queries, as
shown in Figure 1. In this work, we explore a dynamic,
query-aware sparse attention mechanism. Our key idea is to
filter out most irrelevant key-value pairs in a coarse region
level so that only a small portion of routed regions remain.
We then apply fine-grained token-to-token attention in the
union of these routed regions. To simplify the notations, we
discuss the case of single-head self-attention with a single
input, although we use multi-head self-attention [42] with
batched input in practice. The whole algorithm is summa-
rized with Pytorch-like [32] pseudo code in Algorithm 1.
We give a detailed explanation as follows.

Region partition and input projection. Given a 2D input
feature map X ∈ RH×W×C , we start by dividing it into
S×S non-overlapped regions such that each region contains
HW
S2 feature vectors. This step is done by reshaping X as

Xr ∈ RS2×HW
S2 ×C . We then derive the query, key, value

tensor, Q,K,V ∈ RS2×HW
S2 ×C , with linear projections:

Q = XrWq, K = XrWk, V = XrWv, (3)

where Wq,Wk,Wv ∈ RC×C are projection weights for
the query, key, value, respectively.

gather

mm &
softmax mm

Figure 2. By gathering key-value pairs in top k related windows,
we utilize the sparsity to skip computations in the most irrelevant
regions, while only GPU-friendly dense matrix multiplications are
involved.

Region-to-region routing with directed graph. We then
find the attending relationship (i.e., the regions that should
be attended for each given region) by constructing a directed
graph. Specifically, we first derive region-level queries and
keys, Qr,Kr ∈ RS2×C , via applying per-region average
on Q and K, respectively. We then derive the adjacency
matrix, Ar ∈ RS2×S2

, of region-to-region affinity graph
via matrix multiplication between Qr and transposed Kr:

Ar = Qr(Kr)T . (4)

Entries in the adjacency matrix, Ar, measure how much
two regions are semantically related. The core step that we
perform next is to prune the affinity graph by keeping only
top-k connections for each region. Specifically, we derive a
routing index matrix, Ir ∈ NS2×k, with the row-wise topk
operator:

Ir = topkIndex(Ar). (5)

Hence, the ith row of Ir contains k indices of most relevant
regions for the ith region.

Token-to-token attention. With the region-to-region rout-
ing index matrix Ir, we can then apply fine-grained token-
to-token attention. For each query token in region i, it will
attend to all key-value pairs residing in the union of k routed
regions indexed with Ir(i,1), I

r
(i,2), ..., I

r
(i,k). However, it is

non-trivial to implement this step efficiently, as these routed
regions are expected to be scattered over the whole feature
map, while modern GPUs rely on coalesced memory opera-
tions that load blocks of dozens of contiguous bytes at once.
We thus gather key and value tensor first, i.e.,

Kg = gather(K, Ir), Vg = gather(V, Ir), (6)

where Kg,Vg ∈ RS2× kHW
S2 ×C are gathered key and value

tensor. We can then apply attention on the gathered key-
value pairs as:

O = Attention(Q,Kg,Vg) + LCE(V). (7)

4

Here, we introduce a local context enhancement term
LCE((V) as in [37]. Function LCE(·) is parametrized with
a depth-wise convolution, and we set the kernel size to 5.

3.3. Complexity Analysis of BRA

The proposed bi-level routing attention enables direct
long-range dependency modeling similar to vanilla atten-
tion. However, we show here that BRA has a much lower
complexity of O((HW)

4
3) with a proper region partition

factor S compared to vanilla attention, which has a com-
plexity of O((HW)2), and to quasi-global axial atten-
tion [14, 22], which has a complexity of O((HW)

3
2).

The computation of BRA consists of three parts: linear
projection, region-to-region routing, and token-to-token at-
tention. The total amount of computations is therefore:

FLOPs = FLOPsproj + FLOPsrouting + FLOPsattn

= 3HWC2 + 2(S2)2C + 2HWk
HW

S2
C

= 3HWC2 + C(2S4 +
k(HW)2

S2
+

k(HW)2

S2
)

≥ 3HWC2 + 3C(2S4 · k(HW)2

S2
· k(HW)2

S2
)

1
3

= 3HWC2 + 3Ck
2
3 (2HW)

4
3 ,

(8)
where C is the token embedding dimension (i.e., number of
channels of the feature map), and k is the number of regions
to attend (“k” in “top-k”). Here, the inequality of arith-
metic and geometric means has been applied. The equality
in Eq. 8 holds if and only if 2S4 = k(HW)2

S2 . Therefore:

S = (
k

2
(HW)2)

1
6 . (9)

In other words, BRA achieves O((HW)
4
3) complexity if

we scale the region partition factor S w.r.t. the input resolu-
tion according to Eq. 9.

3.4. Architecture Design of BiFormer

Using BRA as a basic building block, we propose a new
general vision transformer, BiFormer. As shown in Fig-
ure 3, we follow the recent state-of-the-art vision transform-
ers [14,29,41] to use a four-stage pyramid structure. Specif-
ically, in stage i, we use an overlapped patch embedding in
the first stage and a patch merging module [25, 37] in the
second to fourth stages to reduce the input spatial resolu-
tion while increasing the number of channels, followed by
Ni consecutive BiFormer blocks to transform the features.
In each BiFormer block, we follow recent works [7, 25, 41]
to use a 3× 3 depthwise convolution at the beginning to en-
code relative position information implicitly. We then apply
a BRA module and 2-layer MLP module with expansion ra-
tio e sequentially for cross-location relation modeling and
per-location embedding, respectively.

We instantiate BiFormer with 3 different model sizes by
scaling the network width (i.e., the number of base channels
C) and depth (i.e., the number of BiFormer blocks used in
each stage, Ni, i = 1, 2, 3, 4), as listed in Table 1. They
share other configurations. We set each attention head to 32
channels, and MLP expansion ratio e=3. For BRA, we use
topk = 1, 4, 16, S23 for the 4 stages, and region partition
factor S = 7/8/16 for classification/semantic segmenta-
tion/object detection task, due to different input resolutions.

Models #Channels. #Blocks Params FLOPs

BiFormer-T 64 [2, 2, 8, 2] 13M 2.2G
BiFormer-S 64 [4, 4, 18, 4] 26M 4.5G
BiFomrer-B 96 [4, 4, 18, 4] 57M 9.8G

Table 1. Network width and depth of different model variants. The
FLOPs are calculated with 224 × 224 input.

Model FLOPs Params Top-1 Acc.
(G) (M) (%)

ResNet-18 [19] 1.8 11.7 69.8
RegNetY-1.6G [34] 1.6 11.2 78.0
PVTv2-b1 [45] 2.1 13.1 78.7
Shunted-T [37] 2.1 11.5 79.8
QuadTree-B-b1 [38] 2.3 13.6 80.0
BiFormer-T 2.2 13.1 81.4

Swin-T [29] 4.5 29 81.3
CSWin-T [14] 4.5 23 82.7
DAT-T [48] 4.6 29 82.0
CrossFormer-S [46] 5.3 31 82.5
RegionViT-S [2] 5.3 31 82.6
QuadTree-B-b2 [38] 4.5 24 82.7
MaxViT-T [41] 5.6 31 83.6
ScalableViT-S [50] 4.2 32 83.1
Uniformer-S* 4.2 24 83.4
Wave-ViT-S* [51] 4.7 23 83.9
BiFormer-S 4.5 26 83.8
BiFormer-S* 4.5 26 84.3

Swin-B [29] 15.4 88 83.5
CSWin-B [14] 15.0 78 84.2
CrossFormer-L [46] 16.1 92 84.0
ScalableViT-B [50] 8.6 81 84.1
Uniformer-B* [25] 8.3 50 85.1
Wave-ViT-B* [51] 7.2 34 84.8
BiFormer-B 9.8 57 84.3
BiFormer-B* 9.8 58 85.4

Table 2. Comparison of different backbones on ImageNet-1K.
All models are trained and evaluated on images of resolution
224 × 224. “*” indicates that the model is trained with token la-
beling [23]. Methods are grouped by the amount of computations.

3In the final stage, topk = S2 means that we use full self-attention.

5

Patch Em
bedding

BiFormer
Block

Patch M
erging

BiFormer
Block

Patch M
erging

BiFormer
Block

Patch M
erging

BiFormer
Block

 Stage 1: Stage 2: Stage 3: Stage 4: Input:

Bi-level Routing
Attention

DWConv 3x3

LN

MLP

LN

+
+

+

Figure 3. Left: The overall architecture of our BiFormer. Refer to Table 1 for configurations. Right: Details of a BiFormer Block.

4. Experiments

We evaluate the effectiveness of our proposed BiFormer
experimentally on a series of mainstream computer vision
tasks including image classification (Sec. 4.1), object de-
tection and instance segmentation (Sec. 4.2), and semantic
segmentation (Sec. 4.3). Specifically, we train from scratch
on ImageNet1K [12] for image classification. We then fine-
tune the pretrained backbones on COCO [28] for object de-
tection and instance segmentation, and on ADE20K [55]
for semantic segmentation. Additionally, we conduct ab-
lation study to verify the effectiveness of the proposed bi-
level routing attention and other architecture design choices
of BiFormer in Sec. 4.4. Finally, to verify query-adaptive,
sparse patterns are achieved by bi-level routing attention,
we visualize the attention map in Sec. 4.5.

4.1. Image Classification on ImageNet-1K

Settings. We conduct image classification experiments on
the ImageNet-1K [12] dataset, following the experimental
settings of DeiT [40] for fair comparison. Specifically, each
model is trained 300 epochs with input size of 224 × 224.
We take AdamW as the optimizer with weight decay of
0.05, and apply cosine decay learning rate schedule with
an initial learning rate of 0.001, while the first 5 epochs
are utilized for linear warm-up [16]. The batch size is
set to 1024. To avoid overfitting, we apply regularization
techniques including RandAugment [9] (rand-m9-mstd0.5-
inc1), MixUp [54] (prob = 0.8), CutMix [52] (prob = 1.0),
Random Erasing (prob = 0.25), and increasing stochas-
tic depth [21] (prob = 0.1/0.15/0.4 for BiFormer-T/S/B,
respectively). To fairly compare the models trained with
token labeling [23], including Uniformer [25] and Wave-
ViT [51], we also provide a version trained with the same
recipe provided by WaveViT.
Results. We compare our method with several closely re-
lated methods and/or recent state-of-the-arts. Quantitative
results are listed in Table 2, where models are grouped by
the amount of computations (FLOPs). In all 3 groups, our
model consistently outperforms other compared ones. For
example, for models in the smallest group (∼2G FLOPs),
our BiFormer-T achieves 81.4% top-1 accuracy, 1.4% bet-

ter than the most competitive QuadTree-b1 [38]. For mod-
els in the second group (∼4G FLOPs), BiFormer-S achieves
83.8% top-1 accuracy. To the best of our knowledge, this is
the best result without extra training data or training tricks.
In addition, using the distillation technique named token
labeling [23], the accuracy of BiFormer-S can be further
boosted to 84.3%, which implies that there is a huge po-
tential for the proposed architecture. For models in the
largest group (∼10G FLOPs), BiFormer-B achieves an even
better performance than those of existing models with the
amount of computations reaching up to∼16G FLOPs, such
as Swin-B [29], CSWin-B [14] and CrossFormer-L [46].

4.2. Object Detection and Instance Segmentation

Settings. We evaluate the models for object detection and
instance segmentation on COCO 2017 [28]. For a fair com-
parison, all experiments are conducted with the MMDetec-
tion [3] toolbox. RetinaNet [27] and Mask R-CNN [18]
frameworks are used for object detection and instance seg-
mentation, respectively. Before training on COCO, we ini-
tialize the backbone with weights pretrained on ImageNet-
1K, while leaving all other layers randomly initialized.
The models are trained with the standard 1× schedule (12
epochs) provided by MMDetection, except that we use the
AdamW optimizer [30], instead of SGD. We use an initial
learning rate of 1e − 4, and a batch size of 16, while the
weight decay is set as 1e− 4 and 5e− 2 for RetinaNet and
Mask R-CNN, respectively. During training, we resize the
input images by fixing the shorter side to 800 pixels while
keeping the longer side not exceeding 1,333 pixels.
Results. We list results in Table 3. For object detection
with RetinaNet, we report mean Average Precision (mAP),
Average Precision (AP) at different IoU thresholds (50%,
75%) and for three object sizes (i.e. small, medium, and
large (S/M/L)). From the results, we can see that while
the overall performance of BiFormer is only comparable to
some most competitive existing methods, such as WaveViT
and QuadTree-B, the performance on small objects (APM)
outperforms these methods significantly. This may be be-
cause the BRA saves computations via sparse sampling in-
stead of downsampling. Hence, it preserves fine-grained de-
tails, which are crucial for small objects. For instance seg-

6

Backbone RetinaNet 1× schedule Mask R-CNN 1× schedule
mAP AP50 AP75 APS APM APL mAP b AP b

50 AP b
75 mAPm APm

50 APm
75

Swin-T [29] 41.5 62.1 44.2 25.1 44.9 55.5 42.2 64.6 46.2 39.1 61.6 42.0
DAT-T [48] 42.8 64.4 45.2 28.0 45.8 57.8 44.4 67.6 48.5 40.4 64.2 43.1
CSWin-T [14] - - - - - - 46.7 68.6 51.3 42.2 65.6 45.4
CrossFormer-S [46] 44.4 55.3 38.6 19.3 40.0 48.8 45.4 68.0 49.7 41.4 64.8 44.6
QuadTree-B2 [38] 46.2 67.2 49.5 29.0 50.1 61.8 - - - - - -
WaveViT-S* [51] 45.8 67.0 49.4 29.2 50.0 60.8 46.6 68.7 51.2 42.4 65.5 45.8
BiFormer-S 45.9 66.9 49.4 30.2 49.6 61.7 47.8 69.8 52.3 43.2 66.8 46.5

Swin-S [29] 44.5 65.7 47.5 27.4 48.0 59.9 44.8 66.6 48.9 40.9 63.4 44.2
DAT-S [48] 45.7 67.7 48.5 30.5 49.3 61.3 47.1 69.9 51.5 42.5 66.7 45.4
CSWin-S [14] - - - - - - 47.9 70.1 52.6 43.2 67.1 46.2
CrossFormer-B [46] 46.2 67.8 49.5 30.1 49.9 61.8 47.2 69.9 51.8 42.7 66.6 46.2
QuadTree-B3 [38] 47.3 68.2 50.6 30.4 51.3 62.9 - - - - - -
Wave-ViT-B* [51] 47.2 68.2 50.9 29.7 51.4 62.3 47.6 69.1 52.4 43.0 66.4 46.0
BiFormer-B 47.1 68.5 50.4 31.3 50.8 62.6 48.6 70.5 53.8 43.7 67.6 47.1

Table 3. Comparison based on the object detection (left group) and instance segmentation (right group) tasks, on the COCO 2017 dataset.

Backbone S-FPN Upernet
mIoU(%) mIoU(%) MS mIOU(%)

Swin-T [29] 41.5 44.5 45.8
DAT-T [48] 42.6 45.5 46.4
CSWin-T [14] 48.2 49.3 50.7
CrossFormer-S [46] 46.0 47.6 48.4
Shunted-S [37] 48.2 48.9 49.9
WaveViT-S* [51] - - 49.6
BiFormer-S 48.9 49.8 50.8

Swin-S [29] - 47.6 49.5
DAT-S [48] 46.1 48.3 49.8
CSWin-S [14] 49.2 50.4 51.5
CrossFormer-B [46] 47.7 49.7 50.6
Uniformer-B [25] 48.0 50.0 50.8
WaveViT-B* [51] - - 51.5
BiFormer-B 49.9 51.0 51.7

Table 4. Comparison based on semantic segmentation with two
segmentation heads (Semantic FPN and UpperNet), on ADE20K.

mentation with Mask R-CNN, we report bounding box and
mask Average Precision (AP b and APm) at different IoU
thresholds (50%, 75%). As shown in Table 3, our method
shows a clear advantage in this task on all metrics.

4.3. Semantic Segmentation on ADE20K

Settings. Following existing works, we conduct our seman-
tic segmentation experiments on the ADE20K [55] dataset
based on MMSegmentation [8]. We do comparisons under
both Semantic FPN [24] and UperNet [49] frameworks. In
both cases, the backbone is initialized with ImageNet-1K
pretrained weights, and other layers use random initializa-
tion. Models are optimized with the AdamW optimizer and
the batch size is set as 32. For a fair comparison, our Se-
mantic FPN experiments use the same setting as PVT [44]
to train the model 80k steps. Our Upernet experiments use

Sparse Attention IN1K ADE20K
Top1(%) mIoU(%)

Sliding window [35] 81.4 -
Shifted window [29] 81.3 41.5
Spatially Sep [7] 81.5 42.9
Sequential Axial [20] 81.5 39.8
Criss-Cross [22] 81.7 43.0
Cross-shaped window [14] 82.2 43.4
Deformable [48] 82.0 42.6
Block-Grid [41] 81.8 42.8
Bi-level Routing 82.7 44.8

Table 5. Ablation study on different attention mechanisms. All
models follow the architecture design of the Swin-T model.

the same setting as Swin Transformer [29] to train the model
160k iterations.
Results. Table 4 shows the results of the two different
frameworks. It shows that with the Semantic FPN frame-
work, our BiFormer-S/B achieves 48.9/49.9 mIoU, respec-
tively, improving CSWin-T/S by 0.7 mIoU. A similar per-
formance gain for the UperNet framework is also observed.

4.4. Ablation Study

The effectiveness of BRA. We compare BRA with several
existing sparse attention mechanisms. Following [14], we
align macro architecture designs with Swin-T [29] for a fair
comparison. Specifically, we use 2, 2, 6, 2 blocks for the
four stages, non-overlapped patch embedding, set the initial
patch embedding dimension C = 96 and MLP expansion
ratio e = 4. The results are reported in Table 5. Our bi-
level routing attention has significantly better performance
than existing sparse attention mechanisms, in terms of both
image classification and semantic segmentation.
Other architecture design choices. Using the Swin-T lay-

7

Figure 4. Visualization of the attention maps for two scenes. For each scene, we visualize two query positions on the input image (left),
corresponding routed regions (middle), and a final attention heatmap (right).

out as the baseline, we present a summary of other mod-
ifications that we have applied, which further boost our
BiFormer-S model to state-of-the-art performances on the
ImageNet-1K dataset. These modifications include: (1) re-
placing non-overlapped patch embedding [29] with over-
lapped one [14,37,45], (2) using deeper layout (i.e. stacking
more blocks in each stage, while reducing the base chan-
nels from 96 to 64 and MLP expansion ratio from 4 to 3 to
keep similar FLOPs.), (3) adding convolution position en-
coding [7, 25] at the beginning of the BiFormer blocks, and
(4) applying token labeling [23, 25, 51] training technique.
As shown in Table 6, simply using a deeper layout can im-
prove the performance significantly. However, this factor is
usually not discussed in existing works.

Architecture design Params FLOPs IN1K Top1
(M) (G) (%)

Baseline (Swin-T layout) 29 4.6 82.7
+Overlapped patch emb. 31 4.9 82.8 (+0.1)
+Deeper layout 25 4.5 83.5 (+0.7)
+Convolution pos. enc. 26 4.5 83.8 (+0.3)
+Token Labling 29 4.9 84.3 (+0.5)

Table 6. Ablation path from Swin-T [29] layout architecture to
BiFormer-S. Note that the modifications are applied sequentially.

4.5. Visualization of Attention Map

To further understand how bi-level routing attention
works, we visualize routed regions and attention response
w.r.t. query positions. For this visualization, we use the
routing indices and attention scores extracted from the final
BiFormer block of the 3rd stage, which is the major stage
consuming most computations. We demonstrate two scenes
in Figure 4. In both cases, we can clearly observe that se-
mantically related regions are successfully located. For ex-
ample, in the first scene, which is a street view, if the query
position is on a building or a tree, the corresponding routed

regions cover the same or similar entities. In the second in-
door scene, when we place the query position on the mouse,
the routed regions contain part of the host, keyboard, and
display, even though these regions are not adjacent to each
other. This implies that our bi-level routing attention can
capture long-range inter-object relationships.

5. Limitation and Future Work
Compared to sparse attention with simple static patterns,

we introduce an extra step to locate the regions to attend,
where we build and prune a region-level graph and gather
key-value pairs from the routed regions. While this step
does not incur much computation as it operates at a coarse
region level, it inevitably incurs extra GPU kernel launch
and memory transactions. Hence, BiFormer has lower
throughput than some existing models with similar FLOPs
on GPU due to overheads of kernel launch and memory bot-
tleneck. Nonetheless, this problem can be mitigated via en-
gineering efforts, such as GPU kernel fusion. We will ex-
plore efficient sparse attention and vision transformer with
hardware awareness in our future works.

6. Conclusion
We propose bi-level routing attention to enable efficient

allocation of computations in a dynamic, query-aware man-
ner. The core idea of BRA is to filter out the most irrelevant
key-value pairs at a coarse region level. It is achieved by
first building and pruning a region-level directed graph, and
then applying fine-grained token-to-token attention in the
union of routed regions. We have analyzed the computa-
tional complexity of BRA and demonstrated that it achieves
O((HW)

4
3) with a proper region partition size. Using BRA

as the core building block, we propose BiFormer, a new vi-
sion transformer that has shown superior performances on
four popular vision tasks, image classification, object detec-
tion, instance segmentation, and semantic segmentation.

8

Appendix
A. Discussion on Regional Representations

In our proposed bi-level routing attention, we derive the
regional representations (Qr and Kr) with average pooling
for region-to-region routing. We justify the choice here.

In fact, as the goal of region-to-region routing is to find
the most related tokens for token-to-token attention in the
next step, it is reasonable to maximize the average token-
to-token affinity scores between the two regions. However,
this is equivalent to maximizing the affinity score between
the average tokens of the two regions, because

1

|Ω| · |Ω′|
∑
i∈Ω

∑
j∈Ω′

QiKj =

∑
i∈Ω Qi

|Ω|
·
∑

j∈Ω′ Kj

|Ω′|
, (10)

where we denote the set of token indices of the two regions
with Ω and Ω′.

B. Throughput Comparison

To demonstrate the computation efficiency of the pro-
posed bi-level routing attention, we compare the through-
puts of models using different attention mechanisms.
Specifically, we replace the shift window attention mod-
ules in Swin-T [29] with quad-tree attention [38] modules
to form QuadTree-STL, and with our bi-level routing at-
tention modules to form BiFormer-STL. We then use the
widely used timm [47] script to benchmark the training and
inference throughput on a 32 GB Tesla V100 GPU with a
batch size of 128 and image resolution of 224× 224.

As shown in Figure 5, Swin-T has the highest through-
put due to its simplicity. Switching to our bi-level rout-
ing attention(BRA), the training and inference throughput
of BiFormer-STL decrease by ∼30% and ∼40% respec-
tively in comparison with Swin-T. This is caused by ex-
tra GPU kernel launch and memory transactions caused by
the routing process (i.e. locating the regions to attend and
gather key-value pairs). Nonetheless, BiFormer-STL is still
3× ∼ 6× faster than QuadTree-STL. This is due to that
on the one hand the recursive nature of quad-tree attention
hurts the parallelism, on the other hand quad-tree attention
relies on sparse matrix multiplications which are inefficient
on GPUs, while our BRA can be efficiently implemented
with key-value token gathering followed by GPU-friendly
dense matrix multiplications.

It is worth noting that, the overheads of both memory
transactions and kernel launch incurred by the routing pro-
cess can be reduced via engineering efforts such as GPU
kernel fusion. We leave this optimization to our future
work.

FP32, train FP32, infer AMP, train AMP, Infer
0

200

400

600

800

1000

Th
ro

up
ut

 (i
m

ag
e/

s)

218.7

733.3

321.4

1079.5

133.2

542.3

184.4

766.7

27.5

165.6

28.8

173.2

Throupt comparison
Swin-T (4.5G FLOPs)
BiFormer-STL (4.6G FLOPs)
QuadTree-STL (4.8G FLOPs)

Figure 5. Throughput comparison on a 32GB Tesla V100 GPU.
The suffix “STL” denotes Swin-T Layout, which means we use
Swin-T [29] backbone with only attention module being replaced.
We report results under both FP32 precision and automatic mixed
precision (AMP) modes.

S k #tokens to attend Acc im/s (FP32)

7 1,4,16,49 64,64,64,49 82.7 522.3

7 1,2,8,32 64,32,32,32 82.4 563.2
7 2,8,32,49 128,128,128,49 82.6 419.9

8,4,2,1 2,2,2,1 98,98,98,49 82.3 606.2

Table 7. Ablation study on top-k and partition factor S.

C. Choices of top-k and partition factor S

In the paper, S and k were chosen more with considera-
tion of engineering issues. (1) S is chosen as a divisor of the
training size to avoid padding, which slows down the train-
ing and may also degrade the performance. For example, in
image classification where the resolution is 224 = 7 × 32,
we use S = 7 so that it is a divisor of the size of fea-
ture maps in every stage. This is similar to SWinTrans-
former [29], which uses a window size of 7. (2) In dense
prediction tasks, we use larger S to balance the complexity
of region-level routing and token-level attention to achieve
overall lower complexity. One can find hints from Eq. 9 of
the paper, though we do not strictly follow the scaling rule
due to the size divisor constraint. (3) We gradually increase
k to keep a reasonable number of tokens to attend as the
region size becomes smaller in later stages.

It is possible to try different combinations of S and k.
We show ablation results on IN-1K in Table 7, based on
BiFormer-STL (as in the paper). A key observation from
these experiments is that increasing the number of tokens to
attend may even hurt the accuracy. This implies the explicit
sparsity constraint may serve as a regularization to avoid
distractions from the background.

9

Figure 6. More attention map visualization results. For each scene, We demonstrate 2-3 query positions on the input image (left), corre-
sponding routed regions (middle) and final attention heat map (right).

10

D. Adapting Pretrained Plain ViT with BRA
Recently, to take advantage of large-scale pretrain-

ing with masked image modeling, a new research direc-
tion emerges to adapt plain ViT [15] for dense predic-
tion tasks [4, 26]. Here we explore adapting pre-trained
plain ViT [15] for semantic segmentation with our proposed
BRA.

Specifically, we replace all or part of full multi-head self-
attention (MHSA) modules in DeiT-B [40] with our BRA
and directly load the weights pre-trained on ImageNet be-
fore training on ADE20K dataset for semantic segmenta-
tion. In this way, the linear projection weights of BRA
modules are initialized with those of the original MHSA.
We compare such an adaptation with those proposed in [26],
i.e. using local window attention (window size w = 14) to-
gether with several global attention or convolution propaga-
tion blocks. We set window size w = 4 (which is equivalent
to region partition size S = 8 since the feature map has a
resolution of 32 × 32) and the number of regions to attend
k = 12, hence each query attends to 42 × 12 = 192 key-
value pairs, which is comparable to the local window atten-
tion where each query attends to 14 × 14 = 196 key-value
pairs.

Table 8 shows the results. Without propagation blocks,
the architecture using BRA significantly surpasses the one
with local window attention by 2.4 mAP. When further
equipped with 4 global propagation blocks, the performance
of both architectures is improved, while the one using BRA
still has an advantage of 0.2 mAP.

attention function mIoU(%)

local window attention (w = 14) 43.55
BRA(w = 4, k = 12) 45.92

local window attention + 4 conv prop. blks. 44.68
local window attention + 4 global prop. blks. 46.64
BRA + 4 global prop. blks. 46.84

Table 8. Adapting pretrained ViT [15] with BRA for semantic seg-
mentation on ADE20K. For decoder, we use the Simple Feature
Pyramid [26] followed by with Upernet [49] head.

E. More Visualization Results
To further show how BRA works, we demonstrate more

visualization results in Figure 6.

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229, 2020. 1, 3

[2] Chun-Fu Chen, Rameswar Panda, and Quanfu Fan. Region-
vit: Regional-to-local attention for vision transformers. In
The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022. Open-
Review.net, 2022. 5

[3] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, et al. Mmdetection: Open mmlab detection tool-
box and benchmark. arXiv:1906.07155, 2019. 6

[4] Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv preprint arXiv:2205.08534, 2022.
11

[5] Zhiyang Chen, Yousong Zhu, Chaoyang Zhao, Guosheng
Hu, Wei Zeng, Jinqiao Wang, and Ming Tang. Dpt: De-
formable patch-based transformer for visual recognition. In
Proceedings of the 29th ACM International Conference on
Multimedia, pages 2899–2907, 2021. 1, 3

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse transform-
ers. arXiv:1904.10509, 2019. 1, 3

[7] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021. 5, 7, 8

[8] MMSegmentation Contributors. Openmmlab semantic seg-
mentation toolbox and benchmark. https://github.
com/open-mmlab/mmsegmentation, 2020. 7

[9] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition workshops, pages 702–703, 2020. 6

[10] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong
Zhang, Han Hu, and Yichen Wei. Deformable convolutional
networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 764–773, 2017. 2

[11] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell,
Quoc Viet Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. In
Anna Korhonen, David R. Traum, and Lluı́s Màrquez, ed-
itors, Proceedings of the Conference of the Association for
Computational Linguistics, ACL 2019, Volume 1: Long Pa-
pers, pages 2978–2988, 2019. 3

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. 6

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 4171–
4186, June 2019. 1, 3

[14] Xiaoyi Dong, Jianmin Bao, Dongdong Chen, Weiming
Zhang, Nenghai Yu, Lu Yuan, Dong Chen, and Baining

11

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation

Guo. Cswin transformer: A general vision transformer
backbone with cross-shaped windows. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12124–12134, 2022. 1, 2, 3, 4, 5, 6, 7, 8

[15] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, ICLR 2021, 2021, 2021. 1, 3, 11

[16] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
sgd: Training imagenet in 1 hour. arXiv:1706.02677, 2017.
6

[17] Ankit Gupta, Guy Dar, Shaya Goodman, David Ciprut, and
Jonathan Berant. Memory-efficient transformers via top-k
attention. In Nafise Sadat Moosavi, Iryna Gurevych, Angela
Fan, Thomas Wolf, Yufang Hou, Ana Marasovic, and Sujith
Ravi, editors, Proceedings of the Workshop on Simple and
Efficient Natural Language Processing, 2021, pages 39–52,
2021. 2

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2961–2969, 2017. 6

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 5

[20] Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim
Salimans. Axial attention in multidimensional transformers.
arXiv:1912.12180, 2019. 7

[21] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian
Weinberger. Deep networks with stochastic depth. In Euro-
pean Conference on Computer Vision, pages 646–661, 2016.
6

[22] Zilong Huang, Xinggang Wang, Lichao Huang, Chang
Huang, Yunchao Wei, and Wenyu Liu. Ccnet: Criss-cross
attention for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 603–612, 2019. 5, 7

[23] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun
Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens
matter: Token labeling for training better vision transform-
ers. Advances in Neural Information Processing Systems,
34:18590–18602, 2021. 2, 5, 6, 8

[24] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr
Dollár. Panoptic feature pyramid networks. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6399–6408, 2019. 7

[25] Kunchang Li, Yali Wang, Peng Gao, Guanglu Song, Yu Liu,
Hongsheng Li, and Yu Qiao. Uniformer: Unified trans-
former for efficient spatiotemporal representation learning.
arXiv:2201.04676, 2022. 5, 6, 7, 8

[26] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He.
Exploring plain vision transformer backbones for object de-
tection. arXiv preprint arXiv:2203.16527, 2022. 11

[27] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2980–2988, 2017. 6

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 6

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 2, 3, 4, 5, 6,
7, 8, 9

[30] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. 6

[31] Nvidia. How to access global memory efficiently in cuda
c/c++ kernels. https://developer.nvidia.
com / blog / how - access - global - memory -
efficiently - cuda - c - kernels/. Accessed:
2022-10-25. 2

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Proceedings of Advances in Neural Information Processing
Systems, volume 32, 2019. 4

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. 2018. 1

[34] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020. 5

[35] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan
Bello, Anselm Levskaya, and Jon Shlens. Stand-alone self-
attention in vision models. In Proceedings of Advances in
Neural Information Processing Systems, volume 32, 2019. 7

[36] Mr D Murahari Reddy, Mr Sk Masthan Basha, Mr M Chin-
naiahgari Hari, and Mr N Penchalaiah. Dall-e: Creating im-
ages from text. 2021. 1

[37] Sucheng Ren, Daquan Zhou, Shengfeng He, Jiashi Feng, and
Xinchao Wang. Shunted self-attention via multi-scale token
aggregation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10853–
10862, 2022. 5, 7, 8

[38] Shitao Tang, Jiahui Zhang, Siyu Zhu, and Ping Tan. Quadtree
attention for vision transformers. In The International Con-
ference on Learning Representations, ICLR 2022, 2022,
2022. 3, 5, 6, 7, 9

[39] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient transformers: A survey. ACM Computing Surveys
(CSUR), 2020. 3

12

https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/
https://developer.nvidia.com/blog/how-access-global-memory-efficiently-cuda-c-kernels/

[40] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 2, 6, 11

[41] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In ECCV, 2022. 1, 2, 3, 4,
5, 7

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1, 3, 4

[43] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv:2006.04768, 2020. 3

[44] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021. 1, 7

[45] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):415–424, 2022. 5, 8

[46] Wenxiao Wang, Lu Yao, Long Chen, Binbin Lin, Deng Cai,
Xiaofei He, and Wei Liu. Crossformer: A versatile vision
transformer hinging on cross-scale attention. In Interna-
tional Conference on Learning Representations, ICLR, 2022.
1, 2, 3, 4, 5, 6, 7

[47] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 9

[48] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao
Huang. Vision transformer with deformable attention. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4794–4803, 2022. 1, 2,
3, 4, 5, 7

[49] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and
Jian Sun. Unified perceptual parsing for scene understand-
ing. In Proceedings of the European conference on computer
vision (ECCV), pages 418–434, 2018. 7, 11

[50] Rui Yang, Hailong Ma, Jie Wu, Yansong Tang, Xuefeng
Xiao, Min Zheng, and Xiu Li. Scalablevit: Rethinking
the context-oriented generalization of vision transformer.
arXiv:2203.10790, 2022. 5

[51] Ting Yao, Yingwei Pan, Yehao Li, Chong-Wah Ngo, and Tao
Mei. Wave-vit: Unifying wavelet and transformers for visual
representation learning. In European Conference on Com-
puter Vision, pages 328–345. Springer, 2022. 5, 6, 7, 8

[52] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regular-
ization strategy to train strong classifiers with localizable fea-
tures. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 6023–6032, 2019. 6

[53] Wang Zeng, Sheng Jin, Wentao Liu, Chen Qian, Ping Luo,
Wanli Ouyang, and Xiaogang Wang. Not all tokens are

equal: Human-centric visual analysis via token clustering
transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11101–
11111, 2022. 3

[54] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, ICLR 2018, 2018. 6

[55] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal of Computer Vision, 127(3):302–321, 2019. 6, 7

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	1 . Introduction
	2 . Related Works
	3 . Our Approach: BiFormer
	3.1 . Preliminaries: Attention
	3.2 . Bi-Level Routing Attention (BRA)
	3.3 . Complexity Analysis of BRA
	3.4 . Architecture Design of BiFormer

	4 . Experiments
	4.1 . Image Classification on ImageNet-1K
	4.2 . Object Detection and Instance Segmentation
	4.3 . Semantic Segmentation on ADE20K
	4.4 . Ablation Study
	4.5 . Visualization of Attention Map

	5 . Limitation and Future Work
	6 . Conclusion
	A . Discussion on Regional Representations
	B . Throughput Comparison
	C . Choices of top-k and partition factor S
	D . Adapting Pretrained Plain ViT with BRA
	E . More Visualization Results

