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Abstract

We propose a self-supervised approach for learning to
perform audio source separation in videos based on natu-
ral language queries, using only unlabeled video and au-
dio pairs as training data. A key challenge in this task is
learning to associate the linguistic description of a sound-
emitting object to its visual features and the correspond-
ing components of the audio waveform, all without access
to annotations during training. To overcome this chal-
lenge, we adapt off-the-shelf vision-language foundation
models to provide pseudo-target supervision via two novel
loss functions and encourage a stronger alignment between
the audio, visual and natural language modalities. Dur-
ing inference, our approach can separate sounds given text,
video and audio input, or given text and audio input alone.
We demonstrate the effectiveness of our self-supervised ap-
proach on three audio-visual separation datasets, includ-
ing MUSIC, SOLOS and AudioSet, where we outperform
state-of-the-art strongly supervised approaches despite not
using object detectors or text labels during training. Our
project page including publicly available code can be found
at https://cs-people.bu.edu/rxtan/projects/VAST.

1. Introduction
Our everyday audiovisual world is composed of many

visible sound sources, often with multiple sources layering
on top of one another. For example, consider the video of
the guitar and cello musicians playing together in Fig. 1.
The two instruments have distinct timbres, and the musi-
cians play non-unison, but complementary melodies. De-
spite hearing both instruments simultaneously, humans have
an innate ability to identify and isolate the melody of a sin-
gle source object. In this paper, we define the corresponding
machine task as follows: given a natural language query that
selects a sounding object, such as “person playing a guitar”,
separate its sound source from the input audio waveform
and localize it in the input video, without any supervision.

This task is challenging. First, there is no approach for

Prior work: strong supervision with object detectors

Ours: self- supervised without object detectors
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Figure 1. We propose to separate and localize audio sources based
on a natural language query, by learning to align the modalities on
completely unlabeled videos. In comparison, prior audio-visual
sound separation approaches require object label supervision.

associating the linguistic description of a sound-emitting
object to its visual features and the corresponding compo-
nents of the audio waveform without access to annotations
during training. Existing audio-visual methods [5, 15, 43]
do not generalize to natural language queries due to their
dependence on discrete object class labels. Second, an
ideal solution would jointly identify and localize sound-
emitting objects in videos as well as separate the corre-
sponding components in the audio waveform without strong
supervision. Although prior audio-visual work has demon-
strated the benefits of aligning relevant object regions in
the video with their corresponding sounds [5, 15], these ap-
proaches require strong supervision including object label
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and bounding box annotations (see Fig. 1 top). Overcoming
these challenges would enable important downstream appli-
cations including holistic video understanding [35], embod-
ied AI [6], and bidirectional audio-to-video retrieval [40].

To address these challenges, we make the following
contributions. First, we propose Video-Audio Separation
through Text (VAST), a self-supervised approach that lever-
ages large vision-language “foundation” models [21, 28] to
provide pseudo-supervision for learning the alignment be-
tween the three modalities: audio, video and natural lan-
guage. Our key insight is to learn a strong transitive rela-
tion from audio to natural language using vision as an inter-
mediary modality, while preserving the alignment between
the visual and natural language modalities embodied by the
foundation models. However, just using the visual represen-
tations of these foundation models in existing AV separation
approaches does not preserve the transitive relationships be-
tween the three modalities (Sec. 4.1).

Our second contribution introduces two novel multi-
modal alignment objectives that encourage the learnt audio
representations to encode the semantics of captions and in-
fer the latent transitive relation between the three modali-
ties. While natural language can express a large and var-
ied range of visual concepts for audio separation in videos,
the absence of captions in unlabeled videos during training
poses a significant challenge in our self-supervised formu-
lation. To learn the transitive alignment, we adapt a founda-
tion model to extract latent captions from unlabeled videos.
Intuitively, the latent captions are representations that ex-
press the visual concepts present in the videos. Third, we
introduce a Multiple Instance Learning formulation to learn
to perform audio separation at the video region level since
we do not have prior information on relevant objects or their
locations in the videos during training.

Finally, we demonstrate the effectiveness of our pro-
posed VAST approach through extensive evaluations on
the audio source separation task on the SOLOS [25], MU-
SIC [43], and AudioSet [16] datasets. We show that our
self-supervised approach outperforms strongly-supervised
state-of-the-art approaches without using labels during
training by leveraging the capability of vision-language
foundation models. More importantly, we demonstrate that
VAST learns to use language queries for audio separation
despite not training with ground-truth language supervision.

2. Related Work
Audio-only source separation. The goal of audio-only
source separation is to use the aural cues present in the
input audio waveform to separate the individual compo-
nents. Conventional audio signal processing techniques rely
on strong assumptions such as the number of sources in
the audio waveforms to compute non-negative matrix fac-
torization [3, 11, 39] of audio spectrograms. Deep learn-

ing methods commonly adopt the self-supervised ‘mix-and-
separate’ strategy where multiple audio sources are com-
bined into a synthetic mixture and then predict a spectro-
gram mask to retrieve queried audio components [5,15,43].
Multimodal source separation. Recent work in audio-
text [22, 23] and audio-visual [5, 7, 15, 42, 43] separation
also use the ‘mix-and-separate’ strategy to train a decoder to
predict a spectrogram mask based on natural language and
video queries, respectively. In the case of the former, state-
of-the-art approaches can either accept a single object la-
bel [5,15,43] or free-form natural language queries [22,23].
Existing audio-visual source separation approaches often
rely on training object detectors with strong supervision
from bounding box annotations to localize objects of in-
terest before learning to perform source separation at the
object-level. In contrast, our proposed approach does not
rely on pretrained object detectors or object labels in the
training videos. The Sound of Pixels (SOP) model is the
most similar in spirit to our proposed approach since it does
not rely on object detectors. Instead, it learns to perform
sound separation based on a video-level representation dur-
ing training. Our VAST approach is also similar to the
Voiceformer [30] approach which aims to separate speech
from multiple speakers using a combination of audio, vi-
sual and language inputs. In contrast to our approach, their
approach requires ground-truth text transcripts for training.
Finally, the task is also similar in nature to that of sound
localization in videos [10, 20].
Multimodal representation learning. One key challenge
is grounding information from the text and/or audio modal-
ities in the video frames [2, 5, 15, 37]. Since annotating
video datasets is a costly process, prior work has inves-
tigated self-supervised pretraining methods on unlabeled
videos [18, 38]. This often involves utilizing complemen-
tary information from the audio, text and visual modali-
ties [41] to learn robust representations that can generalize
to downstream tasks such as action recognition [1, 27, 34]
and text-to-video retrieval [2, 24]. These approaches of-
ten use large-scale pretraining datasets such as Kinetics-
400 / 600 [4] and HowTo100M [24] before finetuning linear
probes for target tasks and datasets. Recent work has also
focused on prompting multimodal foundation models such
as CLIP [28] and ALIGN [21] to adapt them to new tasks
ranging from open-vocabulary object detection [17] to do-
main adaptation [14] without modifying their parameters.

3. Video-Audio Separation through Text
Given a set of unlabeled videos and their audio tracks,

we strive to learn a self-supervised model that separates an
audio source given a natural language query and, optionally,
an accompanying video. This goal requires a model to learn
a strong alignment between the audio, vision, and language
modalities. To this end, we propose a novel Video-Audio
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Figure 2. Training overview of our proposed VAST approach.
We introduce tri-modal (Section 3.1) and audio-language (Sec-
tion 3.1) consistency objectives to learn the latent alignment be-
tween the audio, video and language modalities. Furthermore, we
adopt a prior mask prediction loss [43] (Section 3.2) to guide the
training of our mask prediction decoder.

Separation through Text (VAST) approach that learns an ef-
fective representation for audio-visual source separation, as
well as a strong alignment between the audio and language
modalities for audio-text source separation (see Figure 2
for an overview). To learn this representation, we exploit
the strong joint visual-semantic alignment embodied in pre-
trained vision-language foundation models by encouraging
our model to learn a direct projection function for audio in-
puts into their joint embedding space (Section 3.1). Our
key insight is to use videos as an intermediary modality to
learn a transitive alignment between the audio and language
modalities. Since the visual and language modalities are
already aligned, learning a strong correspondence between
audio and vision should also provide an alignment between
audio and language through videos via transitivity.

Despite the intuitiveness of this idea, our experiments
will show that using the visual representations of existing
audio-visual foundation models does not help them learn
the above-mentioned transitive alignment. To address this
limitation, we introduce our novel tri-modal and audio-
language consistency alignment objectives (Figure 2). The
tri-modal objective encourages the model to maximize the
semantic consistency between all three modalities by us-
ing videos as the intermediary modality and the audio-
language objective helps to further improve the transitive
alignment between audio and natural language. We lever-
age vision-and-language foundation models to infer latent
captions that correspond to the audio components without
text annotations, thus providing pseudo-language supervi-
sion (Section 3.1). In addition, we adopt the “mix-and-
separate” strategy [43] to train our audio separation model,
where the audio from multiple videos are mixed and then
separated using only the video’s visual information. For an
input audio waveform A, we apply a Short-Time Fourier
Transform (STFT) to obtain its magnitude spectrogram AS

and phase Aphase. Our learning objective only makes use
of AS , which encodes how the magnitude of the audio fre-

quencies changes over time. We reconstruct the predicted
waveform by applying the inverse STFT on the predicted
spectrogram using the original phase Aphase. We describe
our VAST audio separation model M in Section 3.2.

3.1. Alignment between audio, language and video

A standard method to learn a strong alignment between
the audio, language and vision modalities is to maximize
the pairwise similarities of their input representations using
a contrastive learning formulation [1, 24]. However, learn-
ing this alignment necessitates the presence of labels that in-
dicate ground-truth correspondences between these modal-
ities. In our self-supervised setting, the unlabeled videos
only provide noisy labels of audio-visual pairings but do not
contain text labels. To circumvent this limitation, we pro-
pose to extract latent captions, which are pseudo-words that
encode the visual concepts in videos with language seman-
tics. Prior work [8,12] has demonstrated that the rich visual-
semantic alignment in vision-language foundation models
can be adapted to extract latent word representations that
convey the semantics of their conditioning images. Inspired
by this insight, we introduce the novel idea of using la-
tent captions to identify sound-emitting object candidates
in unlabeled videos for training, thereby allowing us to train
without prior knowledge of existing objects in the videos.
Latent captions. We perform “textual inversion” [8,12,13]
where we adapt the CLIP language encoder to express the
visual concepts of a video in the form of an encoded learn-
able parameter. Instead of introducing new concepts into
the vocabulary of these models which require their parame-
ters to be updated, we search for their latent language rep-
resentations through a visual reconstruction objective. This
objective is based on the key insight that the final learnt la-
tent captions should be expressive enough to convey the vi-
sual semantics of the video. While it is also possible to use
the visual frame representations as latent captions, we rea-
son that learning them as outputs of the language encoder
will help a model generalize better to language queries dur-
ing inference. For a given video V , we encode its cen-
ter frame Vcenter as: fV

center = gV (Vcenter), where gV is
the embedding function of the CLIP visual encoder. Then,
we replace the token embeddings used for language queries
with a learnable parameter p and encode it as: gL(p), where
gL is the embedding function of the CLIP language encoder.
We optimize the weights of p by maximizing the cosine sim-
ilarity between fV

center and gL(p):

p∗ ∈ argmax
p

sim
(
fV
center, g

L(p)
)

(1)

where sim(x, y) = xT y/(∥x∥∥y∥) and ||.|| denotes the L2

norm operator. Let C∗ = gL(p∗) be the latent caption. We
illustrate this operation in the supplemental. In theory, C∗ is
analogous to a representation of a description of the frame
and may replace ground-truth annotations effectively.
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Figure 3. Audio-language and tri-modal consistency alignment objectives. (a) The audio-language objective aims to maximize the
semantic similarity between the predicted audio and its latent caption. (b) In the tri-modal consistency objective, we compute normalized
probability distributions over the spatiotemporal regions based on cosine similarity scores (colored frame patches) with respect to the
predicted audio and latent captions. K and Q denote the key and query terminology that is used in self-attention. Intuitively, this objective
encourages agreement between where the latent caption and predicted audio is occuring in the video.

Our audio-language and tri-modal consistency alignment
objectives are based on our reasoning that well-separated
audio sources should be semantically consistent with the
visual concepts that guide their separation as well as their
text labels. Given an input video V of T frames V =
{V1, · · ·VT } and an audio spectrogram AS ∈ RF xN with
F frequency bins and N STFT time frames, our model pre-
dicts a separated audio spectrogram ÂS ∈ RF xN . We ex-
tract a latent representation for the predicted spectrogram:
f̂A = Mθ(Â

S) ∈ RD where M denotes our audio sepa-
ration model. For each video, we use its encoded predicted
spectrogram and latent caption to provide pseudo-language
supervision in our alignment objectives detailed below.

Audio-language consistency loss. To encourage our audio
encoder to learn audio representations that are effective for
separating sound components when conditioned on either
text or video queries, we aim to maximize the pairwise sim-
ilarities between all three modalities. The key insight is that
the audio sources that are well-separated by the visual con-
cepts in a video should have a strong semantic relevance to
its latent caption which express the same concepts in natu-
ral language (Figure 3a). Theoretically, this is similar to the
self-supervised multimodal learning objective of maximiz-
ing the similarity between the representations of an image
and its corresponding caption as well as the dissimilarity
of non-corresponding captions. In lieu of ground-truth ob-
ject labels, we can maximize the alignment between the pre-
dicted audio representations and the latent captions over the
entire vocabulary of captions X :

LAudio-language = − log

(
exp(f̂A · C∗/τ)∑
x∈X exp(f̂A · x/τ)

)
(2)

where τ is the temperature.
However, the problem of false negatives has been well-

documented in image-text datasets, where captions for

some images may be relevant to other images but are treated
erroneously as negatives. Since we are training on unla-
beled videos, we account for the high likelihood that some
videos may contain similar sounding objects by using a
lower weight for this objective. Intuitively, this weighting
helps to alleviate the effect of false negatives and prevent it
from introducing a lot of noise during training.

Tri-modal consistency loss. While the audio-language
consistency objective facilitates improving the alignment
between audio sources and their corresponding latent cap-
tions, it does not provide a straightforward solution to dis-
regard false negatives in its contrastive formulation. To
address this issue, we further introduce a softer tri-modal
alignment constraint which exploits the implicit localization
capability of vision-language foundation models for super-
vision without requiring any negative samples. Specifically,
we propose to use the intermediary visual modality to en-
courage well-separated audio components to be grounded
correctly in the relevant spatiotemporal regions of a video.
Prior work [31, 44] has demonstrated that the CLIP model
can be engineered to extract a segmentation map based on
natural language queries. Inspired by this finding, we use
the latent captions to provide pseudo-target attention maps.

Our intuition is that enforcing a soft constraint on the
predicted spectrograms such that they can be mapped to
similar relevant regions as determined by the latent cap-
tions will encourage the model to implicitly learn the tran-
sitive alignment between the audio and language modali-
ties. Let PAtt(A, b) = σ (A · b) to be the attention opera-
tion where σ(z)i = zi/

∑
j zj is the softmax function. For

a given video V , we extract a set of spatiotemporal region
representations by encoding each frame separately. Specifi-
cally, we encode the t-th frame as: fV

t = gVθ (Vt), where
fV
t ∈ RHW xD, where H and W are the downsampled

height and width of the input video. Then, we compute a
probability distribution of similarity scores over the set of
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Figure 4. Spectrogram mask prediction. During inference, our
model is able to separate audio sources using video or language
queries despite training without ground-truth text annotations. We
note that we only use unlabeled videos during training. We illus-
trate the audio-visual separation mode MAV in the supplemental.

spatial region features with respect to its latent caption C∗

for the t-th frame: P t
V C = PAtt(f

V
t , C∗) ∈ RHW×1. Next,

we compute a similar distribution over the region features of
the t-th frame with respect to the encoded audio representa-
tion of the masked spectrogram: P t

V A = PAtt(f
V
t , f̂A) ∈

RHW×1. We encourage the predicted audio representation
to be similar to that of the latent caption by minimizing the
Kullback-Leibler (KL) divergence between both attention
distributions over the set of all time steps in a video T :

LTrimodal = Et∼T

[
HW∑
x=1

P t
V C(x) log

P t
V C(x)

P t
V A(x)

]
, (3)

where P t
V A(x) denotes the audio-video attention distribu-

tion over the t-frame of the x-th spatial region.

3.2. Audio Separation Model

We introduce two audio separation models MAL and
MAV which share the same audio model parameters for
separating audio sources. MAL (Figure 4) infers a spec-
trogram mask based on a language query while MAV

(shown in supplemental) conditions its prediction on the in-
put video. We adopt the U-Net [33] model as the audio com-
ponent in MAL and MAV , which has been demonstrated
by prior work [15, 43] to be effective at audio source sep-
aration, and the CLIP visual and language encoders to ex-
ploit its learnt visual-semantic alignment. The U-Net model
comprises an encoder E and a decoder D. Given an input
audio spectrogram AS , the encoder E applies a series of
downsampling convolutional layers to output a set of bot-
tleneck features: fA = E(AS), fA ∈ RHA×WA×D, where
HA and WA denote the height and width of the downsam-
pled spectrogram, respectively.

Given a natural language query L ∈ RNw where Nw is
the number of words, we extract its representation fL ∈
R1xD using the text encoder: fL = gL(L). We stress that
language queries with ground-truth object labels are only
used during inference. Then, we tile the language repre-
sentation by the factor HAWA and concatenate with the

audio bottleneck representations along the channel dimen-
sion: fAL = concat(fA, tile(fL)), where fAL has the di-
mensions RHA×WA×2D. We pass the concatenated repre-
sentations into the decoder D consisting of a series of up-
sampling convolutional layers to generate a real-valued ra-
tio mask: M̂ = D(fAL) ∈ RF×N . To predict the sepa-
rated audio source, each element of the mask is multiplied
with the corresponding location in the input spectrogram:
ÂS = M̂ ⊙AS , where ⊙ denotes the Hadamard product.
Video and Multiple Instance Learning for mask predic-
tion. Since language annotations are not used during train-
ing, we train only with unlabeled videos. During training,
as well as inference on audio-visual separation, we use the
CLIP visual encoder to extract a set of language-grounded
spatiotemporal region representations fV ∈ RT×H×W×D.
Similarly, we can perform the same mask inference opera-
tion using videos by using the representation of each spa-
tiotemporal region representation interchangeably in place
of the language representation. This interchangeability is
due to the fact that the CLIP representations project the
video to the joint vision-language embedding space.

Prior work [15] has demonstrated the advantages of
performing audio-visual separation at the object level for
videos with multiple objects. In the absence of object detec-
tors and labels, we propose an MIL formulation, where all
spatiotemporal regions in the input video are treated as pos-
itive candidates. Specifically, given a spatiotemporal grid
of region representations extracted from the visual encoder
as defined in this section, we predict a spectrogram mask
M̂j for the j-th region. Finally, we aggregate them over all
regions to obtain a spectrogram mask for the entire video:

M̂ =
1

T

∑THW

j=1
M̂j . (4)

Intuitively, this formulation encourages the model to learn
to identify the salient regions with sounding objects for
audio separation. We obtain the predicted mask for each
frame by computing the sum of the predicted masks over
all spatial regions and average the predicted masks over the
temporal dimension since we reason that a sounding object
should have similar prediction masks across frames. We
adopt the self-supervised ‘mix-and-separate’ learning ob-
jective [15, 43] to train our model for predicting spectro-
gram masks. In this formulation, audio from two or more
videos are mixed and the goal is to use the visual informa-
tion of a video to separate its audio component. This setting
allows us to generate pseudo-target masks for training su-
pervision. We compute Lmask as the L1 loss between the
pseudo-target and predicted ratio masks [43]. Please refer
to the supplemental for details of our spatiotemporal region
representation, audio-visual separation model and Lmask.
The final objective function is computed as:

L = λ1Lmask + λ2LTrimodal + λ3LAudio-language (5)
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Object # Region Solos Duets
Method detectors proposals SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑
Co-Separation [15] Yes 2 7.38 13.70 10.82 7.42 13.81 10.60
AVSGS1 [5] Yes 42 9.04 14.45 12.24 10.25 15.60 12.82
Sound-of-Pixels [43] No None 7.30 11.90 11.90 6.05 9.81 10.61
AV-Mix-and-Separate [15] No None 3.16 6.74 8.89 3.23 7.01 9.14
NMF-MFCC [36] No None 0.92 5.68 6.84 0.92 5.68 6.84
VAST (Ours) No None 7.98 13.92 12.35 8.08 13.97 11.33

Table 1. Audio-visual source separation on MUSIC. We report results on videos that contain one instrument (solos) and two instruments
(duets). Despite not training with object bounding boxes, VAST performs competitvely with state-of-the-art detection-based approaches.

where λ1, λ2 and λ3 denote the weights for the mask, tri-
modal and audio-language consistency losses, respectively.

4. Experiments
We evaluate the effectiveness of our proposed VAST ap-

proach on audio-text and audio-visual source separation in
videos. To perform fair comparison to prior work, we con-
duct experiments on the SOLOS [25], MUSIC [43] and Au-
dioSet [16] datasets. We refer readers to the supplemental
for additional implementation and dataset details. Given a
language query containing a prompt template and an ob-
ject, the goal of audio-text source separation is to extract
its corresponding sound component from an audio input,
which is often comprised of a mixture of sounds emitted by
various objects. Similarly, in audio-visual source separa-
tion, a model has to leverage the visual information in the
input video to extract its corresponding sound component
and align it with the relevant video pixels.
Evaluation metrics. We adopt the Signal-to-Distortion Ra-
tio (SDR), Signal-to-Interference Ratio (SIR) and Signal-
to-Artifact Ratio (SAR) [29, 32]. SDR computes the differ-
ence between the SDR of the predicted and mixed audio
with respect to the ground-truth waveforms, which mea-
sures the sound quality of the separated audios. SIR mea-
sures the amount of contamination from other audio sources
in the predicted audio. Finally, SAR measures the amount
of artifacts in the predicted audio.

4.1. Quantitative results

We compare our approach to the following baselines.
Similar to our approach, Sound of Pixels (SOP) [43] does
not require object detectors but learns to perform video-
level separation. We also implement the AV-Mix-and-
separate baseline from [15] with the same audio-visual sep-
aration model as ours but is trained to perform video-level
separation and without our alignment objectives. The off-
the-shelf NMF-MFCC [36] baseline performs audio sepa-
ration using non-negative matrix factorization (NMF) and
Mel frequency cepstrum coefficients (MFCC). Next, we
also compare to Co-Separation [15] that learns to perform
audio separation at the object-level by relying on object de-

tectors. Last but not least, we include AVSGS [5] that also
relies on a high number of object proposals to construct a
spatiotemporal scene graph to reason about context.
Audio-visual source separation on MUSIC. We report the
results of our evaluation under two settings in Table 1. In
the first setting, each video contains only a single instru-
ment while the ‘duet’ setting includes videos that contain
two different instruments. To begin, our VAST approach
outperforms SOP by a large margin despite not relying on
object detectors too. As shown in Table 4, we show that
this performance gain is not due to just replacing ImageNet-
pretrained Resnet18 [19] visual representations with those
of the CLIP model since it leads to a large drop in perfor-
mance. We hypothesize that SOP does not learn a direct
projection of the audio inputs used in source separation into
the CLIP embedding space. In contrast, VAST facilitates a
better adaptation of the learnt audio representations to the
CLIP embedding. We also found it important to modify
CLIP’s self-attention (see supp.). We observe that VAST
outperforms AV-Mix-and-Separate by significantly, partic-
ularly under the duet setting. This suggests that performing
region-level audio separation provides more capacity for the
model to reason about multiple sounding objects in videos.

More significantly, we observe that our approach outper-
forms the Co-Separation approach [15], which relies on ob-
ject labels in the videos. Since Co-Separation uses a high
confidence region proposal for each instrument to localize
relevant regions, our improvements over it suggest that our
latent captions are able to express multiple visual concepts
that are present in the video. Last but not least, our approach
is also comparable to AVSGS even without scene graph rea-
soning modules. The latter constructs a spatiotemporal vi-
sual scene graph over a large number of region proposals to
reason about context between detected objects. We note that
their audio-visual scene graph component can be combined
with our VAST approach to possibly improve performance
but is beyond the scope of this work.
Audio-visual source separation on SOLOS. While the
videos in the SOLOS dataset generally have less back-
ground noise than those of the MUSIC dataset, we see in Ta-

1Compute-efficient.
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Object
Method detectors SDR ↑ SIR ↑ SAR ↑
Co-Separation [15] Yes 7.11 12.09 10.05
AVSGS [5] Yes 9.20 14.05 12.17
Sound-of-Pixels [43] No 6.28 10.84 10.13
AV-Mix-and-Sep [15] No 2.94 5.81 8.33
NMF-MFCC [36] No 0.68 4.75 5.12
VAST (Ours) No 8.58 14.16 12.35

Table 2. Audio-visual source separation results on the SOLOS
dataset. Similar to the results in Table 1, we see that VAST sig-
nificantly closes the gap with object detection-based approaches.

Object
Method detectors SDR ↑ SIR ↑ SAR ↑
Co-Separation [15] Yes 4.26 7.07 13.00
AVSGS [5] Yes 5.28 8.27 13.04
Sound-of-Pixels [43] No 1.66 3.58 11.50
AV-Mix-and-Sep [15] No 1.68 3.30 12.20
NMF-MFCC [36] No 0.25 4.19 5.78
VAST (Ours) No 4.15 7.62 13.20

Table 3. Audio-visual source separation results on AudioSet.
VAST generalizes much better to the noisier AudioSet dataset than
Sound-of-Pixels which also does not use object detections.

Model Visual encoder SDR ↑ SIR ↑ SAR ↑
SOP [43] ImageNet 6.28 10.84 10.13
SOP [43] CLIP 4.42 8.36 8.21
Ours CLIP 8.58 14.16 12.35

Table 4. Using CLIP visual features in SOP model on the
SOLOS dataset. Using CLIP visual features naively in existing
methods results in a drop in performance.

ble 2 that AV-Mix-and-Separate and NMF-MFCC are still
unable to generalize to the cleaner audio signals. Similar
to the reported performance on the MUSIC dataset, we also
observe that VAST is comparable to the strongly supervised
AVSGS approach on the SOLOS dataset. One possible rea-
son behind the lower performance of AVSGS on videos with
single instrument is that it is less critical to reason about
context for videos with a single sounding object. Our bet-
ter performance as compared to Co-Separation suggests that
learning to perform audio separation at the coarse video re-
gion level under an MIL formulation can serve as an effec-
tive replacement for training object detectors. These results
also indicate the great promise of latent captions in replac-
ing ground-truth object annotations for supervision.
Audio-visual source separation on AudioSet. Finally, we
report the results of our evaluation on the AudioSet dataset
in Table 3. AudioSet has been documented by prior work
[15] to be much noisier than the videos in the other two
datasets, which explains the lower performance across all
approaches. Unlike the SOP model, we observe that our

LAudio-language LTrimodal SDR ↑ SIR ↑ SAR ↑
✗ ✗ 5.47 10.55 10.95
✓ ✗ 8.08 13.74 12.18
✗ ✓ 8.10 13.84 11.79
✓ ✓ 8.58 14.16 12.35

Table 5. Ablation of our audio-language and tri-modal consis-
tency alignment objectives on SOLOs. The alignment objectives
help to improve audio-visual separation performance.

# tokens SDR ↑ SIR ↑ SAR ↑
1 7.31 11.34 11.71
2 7.67 13.07 11.45
3 8.58 14.16 12.35
4 8.02 13.39 11.53

Table 6. Ablation over number of learnable tokens on SOLOS.
Using more learnable tokens generally improves performance.

training approach is more robust to noise in the dataset
where the sounding object may not always be visible.

4.1.1 Model Analysis

Ablation of LTrimodal and LAudio-language. Table 5 provides
an ablation over our audio-language and tri-modal consis-
tency losses. Despite being trained on a larger and more di-
verse set of visual concepts, we find the CLIP visual repre-
sentations alone do not encourage the audio encoder to learn
a strong alignment between the audio and vision modalities
(row 1). We observe the importance of our proposed align-
ment objectives where adding one or the other leads to a
significant improvement in audio separation performance.
Due to multiple training videos containing similar instru-
ments, it is likely that we are treating some latent captions as
false negative samples for each video in the audio-language
consistency objective. However, we see that the consistency
objective is still beneficial towards audio separation.
Number of learnable token embeddings in latent cap-
tions. We report the results of our ablation over the number
of learnable token parameters used in the extraction of latent
captions in Table 6. We observe that increasing the number
of learnable tokens generally helps to improve the perfor-
mance, although using 4 tokens hurts performance slightly.
We hypothesize that a higher number of learnable tokens
provide more capacity for the CLIP language model to ex-
press multiple visual concepts that are present in the videos.
This finding suggests that using more tokens may be bene-
ficial for videos with more complex visual scenes.

4.2. Audio-language source separation

Finally, we evaluate the capability of our trained model
to separate audio components based on natural language
queries in Table 7. We construct each query using the tem-
plate ‘person playing a {instrument}’. We stress that we
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Query Alignment SOLOS MUSIC Audioset
Modality objectives SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑
Language No -3.05 2.79 3.77 -3.67 2.51 3.41 -5.02 1.98 14.94
Language Yes 6.92 12.07 10.41 6.45 11.18 10.77 2.36 4.71 10.28

Table 7. Audio-text separation with natural language queries. We evaluate our model, that is trained only on unlabeled videos, on the
task of audio-text separation. Note that we do not compare to other audio-visual separation baselines since there is no straightforward way
to adapt them for language queries. We compare our full VAST model to a variant that is only trained with the mask prediction loss.

only train on unlabeled videos without text supervision. To
begin, we compare our VAST model to a variant that is
trained without our alignment objectives. Note that we do
not compare to other audio-visual approaches since there is
no straightforward way to adapt them for language queries.
As evidenced by the significant performance gap between
both variants, our alignment losses are integral to learning
a strong transitive alignment between the audio and lan-
guage modalities. This finding suggests that just learning
an alignment between the audio and visual modalities does
not result in a transitive relationship between the audio and
natural language modalities.

Additionally, for effective sound source separation given
either video or text inputs, we hypothesize that it is crit-
ical to learn an audio encoder E that is well-aligned with
CLIP’s vision-language embedding. Note that the same
shared audio encoder E encodes both mixed and predicted
audio sources. Thus, it can also be used as a general audio
encoder and the decoder D can condition its separation pro-
cess on either language or video queries. Lastly, we observe
that our alignment objectives are still insufficient for closing
the performance gap between audio-text and audio-visual
separation (Tables 1, 2 and 3) completely. This observation
indicates that future work is needed for further improving
the latent alignment between all three modalities.

4.3. Qualitative results

Predicted audio-to-video attention visualizations. To
evaluate the semantic consistency between the predicted au-
dio sources and the visual cues that guide the separation
process, we plot the attention map between the encoded pre-
dicted spectrograms and their corresponding video frames
(Section 3.1) in Figure 5. We observe that VAST helps the
model to learn to ground the audio source in the video pixels
despite not requiring bounding box supervision.
Predicted outputs of language-based audio separation.
Finally, we present an example of how different language
queries affect the separation performance for the same audio
input in Figure 6. Significantly, despite not relying on text
annotations for training supervision, our model can separate
audio components based on free-form language queries.
This demonstrates the effectiveness of our proposed idea to
substitute ground-truth text annotations with latent captions
during training. Additionally, we also observe that provid-
ing more context in the language query (e.g., “violin” versus

Predicted audio-
video attention

Language query: “saxophone”

Text-video
attention

Language query: “trumpet”

Caption-video
attention

Predicted audio-
video attention

Figure 5. Predicted audio attention in videos. Our consistency
objectives help the model to localize the relevant regions more ac-
curately without prior knowledge of sounding object locations.

Ground-truth 
spectrogram 

Ground-truth 
spectrogram 

Input video 1

Input video 2

“person playing  
a violin”

“person playing 
a trumpet”

SDR: 6.15

“person playing a 
silver trumpet”

SDR: 8.00

“person playing a 
brown violin”

Figure 6. Predicted audio spectrograms with language queries.
Interestingly, we see that including visually grounded adjectives in
the queries affects the quality of the separated audio sources.

“person playing a violin”) can lead to improved separations.

5. Conclusion
In summary, we introduce a self-supervised approach for

learning to separate audio based on a language query, or
a video. In the absence of object labels, we propose to
extract latent captions to provide pseudo-language super-
vision. Furthermore, we introduce the novel tri-modal and
audio-language alignment objectives that use the latent cap-
tions to improve the alignment of the audio, language and
video modalities. By reducing the training need for object
labels, our work opens up the possibility of large-scale pre-
training on unlabeled videos with diverse visual concepts.
Acknowledgements: This material is based upon work
supported, in part, by DARPA under agreement number
HR00112020054 and a gift from Adobe Research.
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In this supplemental, we provide the following additional
material to the main paper:

A Latent caption extraction details

B Extraction of CLIP region representations

C Mix-and-separate training strategy and Lmask

D Dataset details

(a) MUSIC

(b) SOLOS

(c) AudioSet

E Implementation details

F Additional ablation experiments

(a) weights for LAudio-language and LTri-modal

(b) shared parameters for audio U-Net encoder E
(c) Bounding box experiment

G Discussion of limitations of VAST

H Predicted separated audio samples

A. Latent caption extraction
We provide an illustration of our latent caption extrac-

tion operation (Section 3.1) in Figure 8 and a more detailed
description of the entire operation. As mentioned earlier,
we extract a latent caption from each unlabeled video to
provide pseudo-language supervision. Given a video V , we
begin by encoding its center frame using the CLIP visual
encoder: fV

center = gV (Vcenter). Symmetrically, we seek to
extract a language representation that corresponds to the en-
coded center frame semantically, described next.

The encoding function of the CLIP language transformer
encoder gL provides a mechanism that is amenable to
searching for latent captions that already exist in its learnt
vocabulary, which allows us to freeze its parameters and
leverage its strong visual-semantic alignment with the vi-
sion modality. Instead of using the trained token embed-
dings, we introduce a learnable token parameter p and pass
it into the language encoder gL. We adopt the simple objec-
tive function of maximizing the cosine similarity between
the center frame representation and the output of the lan-
guage encoder, which allows us to update the weights of p
through gradient back-propagation. We formulate the opti-
mization operation mathematically as:

p∗ = argmax
p

sim
(
fV
center, g

L(p)
)

(6)

where sim(x, y) = xT y/(∥x∥∥y∥) and ||.|| denotes the L2

norm operator. We compute the final latent caption of the

video as C∗ = gL(p∗). The latent captions are used in our
proposed alignment objectives to provide pseudo-language
supervision. The search time for parameter p in Equation 1
is about ∼148 seconds per video on a RTX 2080 GPU for
5k iterations.

B. Extraction of spatiotemporal region repre-
sentations from CLIP in Section 3.1

We begin by providing an overview of the 2D attention
pooling layer in the CLIP Resnet visual encoders. By de-
fault, the CLIP visual encoder outputs a global visual repre-
sentation for each input image. While we use the Resnet
variants instead of the transformer-based architectures in
CLIP, the former differs from the standard Resnet archi-
tecture in two ways. First, the CLIP variant contains three
convolutional stems instead of one. Second, and more im-
portantly, the CLIP Resnet variant also replaces the global
average pooling (GAP) layer with a 2D self-attention oper-
ation, which contains the key, query and value projections.
Next, we describe in more detail this self-attention layer and
how we modify it for our task.
CLIP 2D attention pooling. We begin by extracting a set
of spatial region representations from an input image I as:
f I = gV (I) ∈ RHW×D, where H , W and D are the down-
sampled height, width and channel dimensions. Recall that
a self-attention operation involves the use of keys, queries,
and values. The CLIP model computes an average im-

age representation as the query vector: f
I
= 1

HW

HW∑
j=1

f I
j ,

where f I
j denotes the j-th row of f I . Then, it computes a

final representation for the entire image as follows:

K = f
I
WK ∈ R1×D

Q = f IWQ ∈ RHW×D

V = f IWV ∈ RHW×D

(7)

where WK , WQ and WV are the key, query and value pro-
jection matrices, respectively and WK , WQ and WV ∈
RD×D. Lastly, we compute the final contextualized image
representation as:

f I
global = WL

(
V ⊤ softmax

((
QK⊤)
√
D

))
(8)

where WL is the final language projection layer that maps
the visual representations into the joint visual-semantic em-
bedding space and WL ∈ RD×D .
Modified attention operation. Our Multiple Instance
Learning formulation necessitates the presence of region
representations in each input frame since we are predicting a
spectrogram mask for each region. Additionally, we require
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these region representations to be well-aligned with the lan-
guage modality such that a region should have a high simi-
larity with the language query if its visual concept is seman-
tically consistent with that of the query. Consequently, we
extract a set of spatiotemporal region representations fV

conv
for our input video V with T frames. We encode the t-frame
as: fV

t,conv = gV (Vt) ∈ RHW×D. Finally, we compute
the set of language-aligned spatiotemporal region represen-
tations by projecting them through the value and language
projection layers as follows:

fV
val = WV f

V
conv

fV = WLf
V
val

(9)

We pass this set of spatiotemporal region representations
into our audio separation model M along with an input au-
dio spectrogram to predict a mask.

C. Mix-and-separate training objective in Sec-
tion 3.2

Given an input video V , we begin by using the CLIP
visual encoder to extract a set of language-grounded spa-
tiotemporal region representations fV ∈ RT×H×W×D. For
the j-th spatiotemporal region, we tile its visual representa-
tion by the factor HAWA and concatenate them with the
audio bottleneck representations (Figure 7) along the chan-
nel dimension: fAV

j = concat(fA, tile(fV
j )), where fAV

j

has the dimensions RHA×WA×2D. We pass the concate-
nated representations into the decoder D consisting of a se-
ries of upsampling convolutional layers to generate a real-
valued ratio mask: M̂j = D(fAV

j ) ∈ RF×N . To predict the
separated audio source, each element of the mask is multi-
plied with the corresponding location in the input spectro-
gram: ÂS

j = M̂j ⊙ AS , where ⊙ denotes the Hadamard
product. The mask is then applied to the input spectrogram
to predict the audio component corresponding to the video:
ÂS

j = M̂j ⊙AS .
To train the audio U-Net decoder D to predict spectro-

gram masks given fused audio-visual and audio-text rep-
resentation inputs, we use the self-supervised “mix-and-
separate” learning objective since we do not have ground-
truth audio source annotations within each training video.
Specifically, we synthetically combine the audio of multiple
videos and the goal is to use the visual information within
each video to separate its corresponding audio waveform.
This objective allows us to compute ground-truth ratio spec-
trogram masks for training without annotations. Next, we
describe the generation process of the ground-truth ratio
masks for a pair of videos which is also commonly used in
prior work [15,43]; the same process is generalizable to any
number of input videos. Given a pair of ground-truth audio
spectrograms AS

1 and AS
2 , we compute their ratio masks as

Audio-Visual Separation Model

Input Audio 
Spectrogram

Predicted 
Spectrogram

Tile

C
o
n
c
a
t

Predicted 
mask

Region
Aggregation

Video 
features

Concatenated 
audio-visual 

features
Tile

Figure 7. Audio-visual separation approach in VAST. We infer
a predicted spectrogram mask for each spatiotemporal region and
aggregate them to compute a final prediction for the input video.

follows:

M1 =
AS

1

AS
1 +AS

2

and M2 =
AS

2

AS
1 +AS

2

(10)

We adopt the mask prediction loss [5,15,43] to train the au-
dio U-Net decoder D for audio separation. Given the pair
of predicted masks M̂1 and M̂2, we compute the mask pre-
diction loss as:

Lmask = ||M̂1 −M1||1 + ||M̂2 −M2||1 (11)

We note that it is also possible to compute the above-
mentioned L1 regression loss using the ground-truth audio
spectrograms but prior work [15, 43] has demonstrated it is
more numerically stable to use the ratio masks for supervi-
sion.

D. Ablation experiments
Ablation over region MIL mask prediction vs video-level
prediction. We evaluate the effectiveness of learning to
perform source separation at the region level as compared
to the video level in Table 8. To perform video-level spec-
trogram mask prediction, we adopt the same video aggre-
gation function in Sound of Pixels [43], where the region
representations are maxpooled over the channel dimension
to compute a final video representation that is passed into
the audio U-Net decoder D (Figure 7). We note that our
proposed alignment objectives are used in the training of
both model variants. We observe that training a model to
perform region-level predictions under the MIL formulation
results in a significant performance gain over performing
video-level predictions, which validates our hypothesis that
a model trained to perform video-level predictions may not
be able to identify candidate objects that emit sound.
Effect of sharing parameters in U-Net encoder E . Prior
work [15] learns a separate audio encoder for encoding the
predicted audio waveforms to classify them according to
discrete audio category labels. Here, we aim to determine
the benefit of using shared parameters for our audio encoder
component of the U-Net model E in Table 10. In this case,
unlike prior work [15], we observe that using a shared audio
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U-Net encoder to encode the input audio spectrogram for
source separation and the predicted spectrogram for the two
new losses is integral to improving the final performance of
our trained model on audio-visual separation.
Ablation over weights of LAudio-language and LTri-modal. We
report the results of our ablation over the weights of our pro-
posed audio-language and tri-modal consistency alignment
objectives in Table 11. The results of adding the audio-
language consistency loss seem to validate our initial hy-
pothesis that using a lower weight term for this loss is ben-
eficial. As discussed earlier in Section 3.1, this is similar
to the multimodal contrastive formulation used for training
joint vision-language foundation models such as CLIP and
ALIGN. Thus, there is a high probability that we are treat-
ing some latent captions as false negatives for each video
even though they may contain similar sounding objects.
Setting a low weight helps to alleviate this negative conse-
quence. However, we observe that the audio-language con-
sistency loss is still very helpful for improving audio-visual
source separation as well as learning a strong transitive
alignment between the audio and natural language modality.
The reported results also suggest that adding the tri-modal
consistency loss also helps to improve performance signifi-
cantly. In this case, we note that this alignment objective is
formulated as a KL divergence minimization problem and
does not require negative samples. Consequently, it may
not be as important to use a low weight for this term as
compared to the audio-language consistency objective.

Prediction SDR SIR SAR
Video-level 6.72 11.47 10.58
Region-level 8.58 14.16 12.35

Table 8. Comparison between video-level and region-level au-
dio predictions with our trained model on the SOLOS dataset.

Replacing regions with bounding boxes. To determine if
our approach can generalize well to pre-extracted bounding
boxes during inference, we evaluate our trained model by
replacing spatiotemporal region representations with those
of bounding boxes during inference. We encode each
bounding box as an image representation separately. Note
that this is different from the region representations that are
extracted from the modified self-attention operation in CLIP
visual encoder (Section B). Consequently, our trained mod-
els may not generalize well to the different visual represen-
tations used during training and inference. We report our
results in Table 9, where we observe that using bounding
box representations in our trained models leads to a slightly
lower performance in audio-visual separation.
Visualizations of latent captions. To understand what the
latent captions encode, we provide some examples of their
attention maps with respect to the video frames in Figure 9.

SDR ↑ SIR ↑ SAR ↑
Regions 8.58 14.16 12.35
Boxes 8.32 13.63 12.22

Table 9. Evaluation on SOLOS. We evaluate our trained model
by replacing spatiotemporal region representations with those of
detected bounding boxes and their representations.

Interestingly, we observe that a latent caption is capable of
describing multiple instances of the same object in the mid-
dle visualization, where it is focusing on all three clarinets.

Figure 8. Extraction of latent captions for pseudo-supervision.
We formulate the extraction mechanism as an optimization process
and learn the weights of the parameter p by maximizing the cosine
similarity between the final visual and language representations.

E. Datasets
We train and evaluate our proposed VAST approach as

well as other baselines on the widely-used SOLOS, MUSIC
and AudioSet datasets which we describe below.
MUSIC [43]. The MUSIC dataset consists of videos that
are downloaded from YouTube using queries about various
musical instruments. It contains approximately 536 and 149
solo and duet videos, respectively. The entire set is com-
prised of videos containing 11 instrument categories: ac-
cordion, acoustic guitar, cello, clarinet, erhu, flute, saxo-
phone, trumpet, tuba, violin and xylophone. Since the orig-
inal splits of the dataset are not released, we adopt the same
splits as [15], where the first and second videos in each in-
strument category are used as validation / test data and the
rest are used for training.
SOLOS [25]. Similar to the MUSIC dataset, the SO-
LOS dataset contains 755 videos of musical videos that span
13 instrument categories. These videos are obtained from
YouTube where the authors use queries of instruments as
well as the ‘solo’ or ‘auditions’ tag. Unlike the MUSIC
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Shared audio SOLOS MUSIC Audioset
encoder params SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑ SDR ↑ SIR ↑ SAR ↑

No 7.52 12.68 10.22 7.39 13.25 9.81 3.27 6.48 11.51
Yes 8.58 14.16 12.35 8.08 13.97 11.33 11.33 7.62 13.20

Table 10. Ablation over using shared parameters for audio U-Net encoder. We observe that using a common audio encoder E to
encode both mixed and predicted audio inputs for separation and localization, respectively, helps to improve performance on audio-visual
separation.

dataset, the SOLOS dataset does not contain duet videos.
AudioSet-Unlabeled [16]. AudioSet is a dataset that con-
tains over two million 10 second video clips spanning 632
audio event classes that are sourced from YouTube. Com-
pared to the MUSIC and SOLOS datasets, the audio clips in
AudioSet are generally much noisier due to the presence of
background sounds. Following prior work [15], we filter the
video clips according to 15 musical instrument categories
and select those from the ‘unbalanced’ split for training and
the ‘balanced’ split for validation and testing.

F. Implementation details

We implement our proposed approach using the Pytorch
deep learning library [26]. Consistent with prior work
[15, 43], we downsample the audio clips to 11 kHz and use
a Hann window size of 1022 samples2 and a hop length
of 256 samples in the STFT operation. This step results
in an audio spectrogram of dimensions 512 x 256, which
is re-sampled on a log-frequency scale to compute a final
spectrogram of dimensions 256 x 256. We use the CLIP
Resnet50 model [28] and its language encoder to extract a
latent caption for each video as well as encode visual and
language representations for audio separation. We set the
dimension of the audio U-Net bottleneck features D to be
the same as that of CLIP embedding space, which is 1024.
We freeze the CLIP encoders during training and train the
audio U-Net from scratch using a base learning rate of 4e-
3. We train all models for 100 epochs with the SGD opti-
mizer as well as using a linear warmup of 1000 steps and
anneal the learning rate using a cosine decay schedule. We
train our full model using 4 Quadro 6000 GPUs for approx-
imately 8 days.

G. Limitations

While we have demonstrated that our proposed VAST
approach is able to generalize well to free-form natural lan-
guage queries for source separation, we observe that it is
only able to handle visually descriptive adjectives such as
person playing a small trumpet instead of a loud trumpet.

2While it is common to use powers of 2 as FFT size, we use 1022 as
opposed to 1024 to be consistent with previous literature.

LAudio-language LTrimodal SDR ↑ SIR ↑ SAR ↑
weight weight

0.0 0.0 5.47 10.55 10.95
1e-1 0.0 6.09 11.77 10.77
1e-2 0.0 8.08 13.74 12.18
1e-3 0.0 7.45 13.40 11.11
1.0 - 1.24 4.97 11.27
- 1e-1 8.02 13.82 11.76

0.0 1e-2 7.92 13.49 11.65
0.0 1e-3 8.10 13.84 11.79
0.0 1.0 6.81 12.61 11.00

1e-3 1e-2 8.58 14.16 12.35

Table 11. Ablation results over the weights of the audio-
language and tri-modal consistency alignment objectives on
SOLOs. We observe that the inclusion of the audio-language and
tri-modal consistency alignment objectives is beneficial for audio-
visual separation.

Ground-truth object 
label: violin

Ground-truth object 
label: clarinet

Ground-truth object 
label: trumpet

Figure 9. Visual attention of latent captions. We see that the
latent captions tend to focus on salient foreground objects.

We hypothesize that this limitation is due to a higher like-
lihood of visually descriptive adjectives appearing in the
alt text of the pretraining dataset used by CLIP. Addition-
ally, we only focus on separating sounds of different object
classes. Our approach does not generalize well to discrimi-
nating between sounds from multiple instances of the same
class (cf ., Fig 5 middle showing that we can detect the clar-
inets but not distinguish the different instances). An exam-
ple of such a challenging task is audio-visual speech sepa-
ration, where there are two or more people speaking simul-
taneously and the goal is to separate for the speech for each
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person. Similar to existing audio-visual speech separation
approaches [9,30], future work can aim to address this lim-
itation by leveraging representations of different instances
and additional information in the form of object labels and
speech narrations.

H. Demo video with predicted audio compo-
nent generations

We provide a demo video where we evaluate our trained
models on random videos in the wild which contain two
instruments. The video contains 4 evaluation samples on
the task of audio-language source separation in the input
videos. Additionally, we also localize the separated audio
sources in the corresponding video frames. For the first
task, our objective is to separate an audio input based on
a natural language query and the goal of the second task is
to localize the predicted separated audio in its correspond-
ing video. Note that we use our full VAST model that
is trained with our proposed audio-language and tri-modal
consistency alignment objectives. For each evaluation sam-
ple, we provide the following in order:

1. Input video with mixed audio input (composed of two
different instruments)

2. Separated audio predicted by the full VAST model of
the first instrument

3. Attention heatmap between the first separated audio in
(2) and the center frame

4. Separated audio predicted by the full VAST model of
the second instrument

5. Attention heatmap between the second separated audio
in (4) and the center frame

We observe that our full VAST model, that is trained with-
out ground-truth text annotation or object bounding boxes,
is generally able to separate the audio inputs based on natu-
ral language queries.
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