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Abstract

Deep sequence recognition (DSR) models receive in-
creasing attention due to their superior application to var-
ious applications. Most DSR models use merely the tar-
get sequences as supervision without considering other re-
lated sequences, leading to over-confidence in their pre-
dictions. The DSR models trained with label smoothing
regularize labels by equally and independently smoothing
each token, reallocating a small value to other tokens for
mitigating overconfidence. However, they do not consider
tokens/sequences correlations that may provide more ef-
fective information to regularize training and thus lead
to sub-optimal performance. In this work, we find to-
kens/sequences with high perception and semantic correla-
tions with the target ones contain more correlated and effec-
tive information and thus facilitate more effective regular-
ization. To this end, we propose a Perception and Semantic
aware Sequence Regularization framework, which explore
perceptively and semantically correlated tokens/sequences
as regularization. Specifically, we introduce a semantic
context-free recognition and a language model to acquire
similar sequences with high perceptive similarities and se-
mantic correlation, respectively. Moreover, over-confidence
degree varies across samples according to their difficul-
ties. Thus, we further design an adaptive calibration in-
tensity module to compute a difficulty score for each sam-
ples to obtain finer-grained regularization. Extensive ex-
periments on canonical sequence recognition tasks, includ-
ing scene text and speech recognition, demonstrate that our
method sets novel state-of-the-art results. Code is available
at https://github.com/husterpzh/PSSR.

1. Introduction
Deep neural networks (DNNs) have shown remarkable

performance in sequence recognition tasks, such as scene
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Figure 1. Text strings placed along the right side of images are
target, prediction, and sequence confidence respectively from top
to bottom. Fig. 1 (a): the model assigns higher confidence to the
character that extremely resembles to the ground-truth character in
visual perception (e.g., texture and topological shape); Fig. 1 (b):
the word that are semantically correlated to the ground-truth label
will be predicted with a high confidence.

text recognition (STR) [35, 104, 115] and speech recogni-
tion (SR) [6, 60]. Despite impressive accuracy, recent stud-
ies have indicated that DNNs [16,17,23,51], including deep
sequence recognition (DSR) models, are usually poorly cal-
ibrated and tend to be overconfident [44,62,69]. In the sense
that the confidence values associated with the predicted la-
bels are higher than the true likelihood of the correctness
of these labels, even for the wrong predictions, the over-
confident DSR models may assign high confidences. This
property may lead to potentially disastrous consequences
for many safety-critical applications, such as autonomous
driving [36] and medical diagnosis [61, 91].

Current DSR models use merely the target sequence as
supervision and consider little information about any other
sequences. Thus, they may tend to blindly give an over-
confident score for their predictions, leading to the over-
confidence dilemma. Presently, some works [38, 145] in-
troduce label smoothing, which smooth each token by re-
allocating a small value to all non-target token class from
the target class, to prevent the DSR models from assign-
ing the full probability mass to target sequences. However,
these algorithms do not consider token/sequences correla-
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tions, and are difficult to provide effective and sufficient in-
formation. In this work, we find that tokens/sequences with
high perception or semantic correlations, which refer to to-
kens/sequences with high visual/auditory similarities and
with high co-occurrence similarities respectively, may be
mistakenly given a highly-confident score. Taking STR for
example, the Figure 1 shows that token “l” shares highly
visual similarity with “i”, and thus the models may easily
predict it to “i” with high confidence. On the other hand,
word “universiti” is semantically similar to word “univer-
sity” and thus it is also predicted to “university”. These
tokens/sequences are easily ambiguous with the target ones
and thus may provide more effective information to regular-
ize training.

In this paper, we propose a calibration method for
DSR models: Perception and Semantic aware Sequence
Regularization (PSSR). The PSSR enables the DSR mod-
els with stronger vital perception discrimination ability and
richer semantic contextual correlation knowledge by incor-
porating additional perception similarity and semantic cor-
relation information into training. Specifically, we con-
struct a similar sequence set that comprises sequences ei-
ther perception similar to the instantiated sequence input
or semantic correlated with the target text sequence. Dur-
ing the training stage, these similar sequences are used as
weighted additional supervision signals to offer more per-
ception similarity of different token classes and semantic
correlation in the same context. Furthermore, we discover
that the degree of overconfidence of the model on its pre-
dictions varies across samples and is related to the hard-
ness of recognizing samples. Hence, we further introduce a
modulating factor function to adjust the calibration among
different samples adaptively. To evaluate the effectiveness
of the proposed method, we conduct experiments on two
canonical sequence recognition tasks, including scene text
recognition and speech recognition. Experimental results
demonstrate that our method is superior to the state-of-the-
art calibration methods across different benchmarks.

The major contributions of this paper are fourfold. First,
we discovered the overconfidence of DSR models com-
prises perception overconfidence and semantic overconfi-
dence. Second, following our observations, we propose a
calibration method for DSR models that enables the DSR
models with more vital perception discrimination ability
and richer semantic contextual correlation knowledge, so as
to obtain more calibrated predictions. Third, we introduce a
modulating factor function to achieve adaptive calibration.
Fourth, we provide comprehensive experiments over mul-
tiple sequence recognition tasks with various network ar-
chitectures, datasets, and in/out-domain settings. We also
verify its effectiveness on the downstream application ac-
tive learning. The results suggest that our method yields
substantial improvements in DSR models calibration.

2. Related Works
Sequence Recognition. Sequence recognition gen-

erally involves dealing with instantiated sequential data,
which usually carries rich information on perception and
semantic modalities. Previous methods, such as segmenta-
tion [26, 120] and CTC-based methods [5, 41, 123], predict
the sequence mainly depending on the perception feature of
tokens, hardly taking semantic information into considera-
tion. For example, the CTC-based model splits the input
sequence into several vertical pixel frames and outputs per-
frame predictions, which are purely based on the perception
features of the corresponding frame at each time step. Re-
cent works increasingly pay attention to conjointly exploit-
ing both perception and semantic information [35,152,165],
since the two types of information complement each other
in the recognition process. Some works implicitly incorpo-
rate the semantic correlation to the models using RNNs with
attention [6,78,124,151] or Transformers [139,160]. Addi-
tionally, [60,87,115] explicitly integrates a language model
to learn semantics for supervision. Although remarkable
progress has been achieved in the public benchmarks, we
discover that it meanwhile incurs a problem, that is, these
state-of-the-art methods are biased towards the commonly-
seen perception pattern or the semantic context in the train-
ing set and produce overconfident predictions [140].

Confidence Calibration. Calibration of scalar classifi-
cation has been extensively studied for a long time [77,105,
114, 157]. A simple yet efficient manner is post-hoc cal-
ibration, which directly rescales the prediction confidence
of already trained models to the calibrated confidence dur-
ing the inference stage [44, 56, 110, 114]. While showing
favorable effectiveness for in-domain samples calibration,
they fail to be applied under the condition of dataset shift,
since a held-out dataset is required to learn the re-calibration
function [62]. As another prevalent line of research, several
studies calibrate networks by modifying the training process
during the training stage [10]. Label smoothing [134], orig-
inally proposed as a regularization technique, has shown a
favorable effect on model calibration [112]. [112] and [98]
fix overconfidence from the perspective of maximizing the
entropy of the prediction distribution. More recently, Liu
et al. argue that Label smoothing pushes all the logit dis-
tances to zero and lead to a non-informative solution, and
propose a margin-based Label smoothing to realize better
calibration [85]. [47] developed an auxiliary loss function
that calibrates the entire confidence distribution in a multi-
class setting.

The aforementioned methods mostly focus on the im-
provement and analysis of scalar classification task. How-
ever, almost little literature is proposed to study the cal-
ibration for DSR models calibration [52, 128]. Sloss-
berg et al. simply extend the temperature scaling for scene
text recognition calibration, which rescale the logits on
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Figure 2. The upper part illustrates the confusion matrix of the
mispredictions, which represents the distribution that the actual to-
kens in a sequence are recognized as other classes. And the bottom
part plots the correlation between perplexity and the confidence of
sequence.

each time-step individually with a specific temperature
value [128]. However, it essentially calibrates individual
tokens to achieve the calibration of a sequence, unaware
of perception and semantic correlation in calibration of se-
quences. Huang et al. achieve the adaptive calibration on
each token with taking the contextual dependency underly-
ing the sequence [52]. Despite of showing a certain extent
effectiveness, the method is insufficient for DSR models
calibration, since only the inter-token context is considered,
the potential cause of the overconfident prediction brought
by the overfiting on the perception features are ignored.

3. What Causes Overconfidence of DSR mod-
els?

In this section, we delve into reasons for the observed
overconfidence of DSR models and identify that the per-
ception similarity and semantic correlation of sequence are
responsible for the phenomenon. All the statistics are de-
rived from the prediction results of a CTC-based model
(NRNC [2]), and an attention-based model (MASTER [87])
on the ensembled testing set [53,58,59,88,94,113,117,143].

3.1. Perception Similarity

To study how the perception information influences the
miscalibration of DSR models, we build confusion matrices

to count the frequency that the ground-truth class is recog-
nized as other classes. The upper part of Fig. 2 displays
part of the confusion matrices (see appendix for the com-
plete confusion matrices), from which we can observe that
the ground-truth class is more likely to be confused with
the classes with higher perception similarity, that is, these
classes suffer from more severe overconfidence. For exam-
ple, the ground-truth token “0” is almost exclusively con-
fused with “o” in either attention or CTC models.

Table 1 further presents the quantitative metrics, includ-
ing the frequency (Fvis) and the average probability (Pvis)
of the ground-truth token being confused to most perception
similar token (see appendix for detailed calculation of the
two metrics). As shown, a similar token owns a relatively
high frequency and probability to be mispredicted. Note
that, due to the data bias of the training set, where the pro-
portion of letters is much larger than numbers, perception
overconfidence mainly occurs in the letter-related classes.
For example, the Fvis in Table 1 show that, the letter “o” is
seldom predicted as number “0”.

3.2. Semantic Correlation

We additionally compute the perplexity of the mispredic-
tion of models to measure how well the predicted sequences
are formed (see appendix for details of perplexity). In gen-
eral, the lower perplexity score represents that the predic-
tion has a stronger semantic correlation. As shown in the
bottom part of Fig 2, the semantically correlated mispre-
dictions with lower perplexity scores demonstrate a more
severe overconfidence problem. Another interesting obser-
vation is that, although all the models tend overconfident
in wrong predictions, the perplexity varies from the models
based on different decoders. Compared with the CTC-based
models that rely more on visual information, the context-
aware attention-based models generally have lower perplex-
ity scores. The phenomenon indicates that introducing the
semantic information during training makes the model tend
to predict legitimate sequences in the training set.

4. Proposed Methodology

4.1. Preliminaries

Let {(Xi, Yi)}Ni=1 ∈ D(X ,Y) denotes a dataset, where
Xi ∈ X is a sequential input sequence (e.g. text image,
speech audio, etc), and Yi = {yi,1, yi,2, ..., yi,ni

} ∈ Y is
the corresponding target sequence consisting of multiple to-
kens. Let P(Ỹ |Xi) denotes the posterior probability that a
sequence recognition network predicts for a candidate se-
quence Ỹ on the given input Xi. And the predicted se-
quence is obtained as Ŷi = argmaxỸ ∈Y P(Ỹ |Xi) with its
confidence as P(Ŷi|Xi) = maxỸ ∈Y P(Ỹ |Xi). Generally,
the DSR model are said to be perfectly calibrated when, for



Table 1. The frequency (Fvis) and the average probability (Pvis) of ground-truth token being confused to most visually similar token

CTC
Pair 0-o 1-i 3-s 4-a 5-s 8-s c-e i-l l-i m-n o-0
Fvis 95.92 55.10 40.74 52.17 88.89 57.14 35.80 36.88 45.11 50.20 4.72
Pvis 84.01 75.02 60.92 78.79 76.87 76.57 68.10 70.86 69.11 66.23 65.13

Attn
Pair 0-o 3-2 3-5 5-s 8-s 9-a 9-g c-e m-n n-m o-0
Fvis 70.00 50.00 50.00 72.73 44.44 40.00 40.00 37.33 40.75 56.64 2.58
Pvis 70.85 68.13 96.40 81.63 81.42 41.71 90.81 75.06 73.79 74.66 85.25

each sample (Xi, Yi) ∈ D(X ,Y):

P(Ŷi = Yi | P(Ŷi|Xi)) = P(Ŷi|Xi). (1)

4.2. Sequence-level Calibration

The vanilla training process of the DSR model adopts
one-hot encoding that places all the probability mass in one
target sequence and thus encourages the probability of the
target sequence being biased toward one-hot distribution.
This myopic training algorithm may be useful for recogni-
tion accuracy, but it ignores the perception similarity be-
tween different token classes and various semantic contex-
tual correlations. This lack of knowledge makes the model
predict recklessly without considering various conditions.
To alleviate this problem, we attempt to incorporate addi-
tional information into the training stage, which comprises
the perception similarity information between different to-
ken classes and more semantic contextual correlations.

Specifically, we construct a similarity sequence set that
comprises sequences either perception similar to the se-
quence instance inside the input sequence or semantic cor-
related with the corresponding target sequence. And we in-
troduce a regularization term to the vanilla loss to smooth
the empirical loss over these similar sequences. Formally,
the entire loss is defined as:

Ltotal
i = LG(Yi, Ŷi) + α f(pi)

∑
Y ′
i ∈S(Xi,Yi)

LG(Y
′
i , Ŷi)

(2)
where LG refers to the empirical loss function (e.g., cross-
entropy and CTC loss) generally used in DSR models of
different decoding mechanisms, α is a hyperparameter used
for adjusting the global calibration intensity, f(pi) is an
adaptive calibration intensity function which is used for lo-
cal adjustment of calibration intensity among different sam-
ples (see Sec. 4.4 for more details), and S(Xi, Yi) is the
similarity sequence set consisting of perception similarity
and semantic correlation sequences of sample (Xi, Yi).

Most previous calibration methods for DSR models are
implemented at the token-level, which require a token-
to-token alignment relationship between input and output
sequence and is therefore limited to the partial decoders
(e.g., attention). In contrast, our proposed loss is computed

among different sequences, which can avoid the compli-
cated alignment strategies operated on token-level and thus
can be applied to different decoding schemes.

4.3. Similar Sequence Mining

In this section, we describe how to obtain the similar se-
quence set, which consists of perception similarity and se-
mantic correlation sequences

Perception Similarity Sequences. The prediction dis-
tribution of DSR models is affected by both perception
and semantic contextual features. Thus, the critical chal-
lenge of effectively modeling the perception similar be-
tween sequences is to eliminate the effect of semantic con-
text. Hence, we resort to the semantic context-free model
(e.g., CTC-based model). Specifically, we first fed the in-
put sequences Xi into a well-trained CRNN [123] model to
obtain the probability matrix consisting of token prediction
distribution at each time step. Then, we can calculate the
posterior probability P(Ỹ |Xi) of any candidate sequence Ỹ
over the entire sequence space. Benefiting from the context-
free attribute, the higher the probability of a candidate se-
quence, the higher its perception similarity to the input se-
quence. Thus, we conduct a search algorithm based on the
probability matrix to rank the posterior probability among
the sequence space and finally collect the top N probable
sequences as the perception similarity sequences.

Semantic Correlation Sequences. Recently, [141] dis-
covered models tend to assign high probabilities to se-
quences that share a highly similar context to the target
sequence and appear more frequently in training, even if
these sequences obviously deviate from the perception fea-
ture of the input sequence. Here, we define them as se-
mantic correlation sequences of the target sequence. And
we search for these sequences with the help of a pre-trained
language model BCN [35], which is a variant of transformer
decoder with a diagonal attention mask to prevent the model
from attending to the current time-step token of the tar-
get sequence. As a result, the token distribution at each
time step is conditioned on its bidirectional context, that
is P (yt|y1:t−1, yt+1:n). In this setting, we can efficiently
model the correlation between tokens and their contexts.
Specifically, a higher probability for a certain token class
means that the semantics of the combination of this token



class with its context is stronger, i.e., this combination ap-
pears more frequently in training. Then, we multiply the
probability of each token together as the probability of se-
mantic context correlation between the candidate sequence
and the target sequence. Similarly, we perform a search al-
gorithm to rank the probability of sequences in the entire
sequence space and collect the top N probable sequences as
the semantic correlation sequences of the target sequence.

4.4. Hardness ranking adaptive calibration

The models differ in the degree of overconfidence of
their predictions on different samples, with more or less.
Applying the identical calibration intensity to each sample
may result in underconfident in some samples while may
still be overconfident in others, which makes it challeng-
ing to achieve co-calibration. To analyze the claim, we take
STR as an example and construct a dataset with adjustable
hardness property (see appendix for details). We compare
the calibration performance of TRBA [2] and TRBC [2]
on the dataset with different hardness ratios. As shown in
Fig. 3 (b), the ECE values all increase with increasing hard-
ness ratio, indicating that the models become more over-
confident. One reason for this may be that the confidence
of target sequences continuously increase when the model
is trained with hard label, irrespective of the fact that the
actual posterior probabilities of target sequences of difficult
samples should be low intuitively. And the training process
only leads to the predicted confidence scores become fur-
ther greater than the actual probabilities.

Following our observation, and inspired by the Focal
loss [82] that views the posterior probability of the target
class as a measure of the sample hardness (i.e. the lower the
probability, the harder the sample), we propose a modulat-
ing factor function f(pi) that is integrated into the regular-
ization term to achieve adaptive calibration based on sample
hardness. It is defined as:

f(pi) = εe + (εh − εe)(1− pi)
2 (3)

where εe and εh are the hyper-parameters that control the
calibration intensity for the easiest and hardest samples
(εh ≥ εe), respectively, and pi is the posterior probability
of the target sequence (i.e. P(Yi|Xi)). When the sample is
hard to recognize and the pi is small, the result of f(pi)
is close to the εh, so that more probability is smoothed
from the target sequence towards similar sequences, and
vice versa. In this work, we set εe and εh are 0.01 and
1.0, respectively.

5. Experiment
5.1. Experimental Setup

We evaluate our method on the two classic sequence
recognition tasks: scene text recognition (STR) and speech

Easy Sample

Hard Sample
(a)

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 3. The illustration of: (a) easy and hard recognition sam-
ples; (b) the ECE results of TRBA and TRBC on different degrees
of hardness of dataset.

recognition (SR). Detailed settings are described below.
Datasets: For STR, we conduct the experiments on

the English and Chinese benchmarks: 1) The English
benchmark contains two synthetic datasets for training, i.e.,
Synth90K [53] and SynthText [45], and the ensemble of
seven realistic datasets for testing, including IIIT5K [94],
SVT [143], IC03 [88], IC13 [59], IC15 [58], SVTP [113],
and CUTE80 [117]. 2) The Chinese benchmark [15] ensem-
bles five public datasets, consisting of 509,164 and 63,645
images for training and testing, respectively. For SR, we
use the AISHELL-1 [12], which is a large-scale mandarin
speech dataset containing 141,600 sentences with 120,098
for training, 14326 for validation, and 7,176 for testing.

Models: For STR, we adopt six models, including
ASTER [124], TRBA [2], SEED [115], MASTER [87],
CRNN [123], and TRBC [2], which cover the advanced
and classical attention-based and CTC-based models. For
SR, we use U2-Tfm [161] and U2-CTC [161], which use
a shared Comformer [111] encoder with self-attention and
CTC as two branch decoders.

Evaluation Metrics: We adopt the widely used expected
calibration error (ECE) [101], adaptive ECE (ACE) [103],
maximum calibration error (MCE) [47], and reliability dia-
gram [25] as calibration metrics. Following [52], these met-
rics are calculated by taking the entire sequence as a unit to
calculate the sequence-level confidence and accuracy.

Comparison Methods: We compare our method with
SOTA scalar and sequential calibration methods. Specif-
ically, scalar calibration methods, including Brier Score
(BS) [10], Label Smoothing (LS) [134], Focal Loss
(FL) [98], Entropy Regularization (ER) [112], Margin-
based Label Smoothing (MBLS) [85], and MDCA [47],
are extended to sequence recognition by applying them
to each token. In addition, sequential calibration meth-
ods, including Graduated Label Smoothing (GLS) [145],
Context-Aware Selective Label Smoothing (CASLS) [52],
are adopted for comparison. However, the two methods are
limited to attention-based models due to the utilization of



Table 2. How hardness ranking adaptive calibration affects the
sequence recognition calibration. The best method is highlighted
in bold.

Method TRBA TRBC
ECE ACE MCE ECE ACE MCE

PSSR w/o f(pi) 0.74 0.93 8.97 1.19 0.85 10.65
PSSR 0.36 0.28 3.99 0.47 0.25 6.22

0% 20% 40% 60% 80% 100%
Perception Sequence Proportion

0.275
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(a) TRBA
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Figure 4. The results of different perception similar sequence pro-
portions in similarity sequence set on TRBA and TRBC models.

one-hot encoding.

5.2. Ablation Study

We conduct ablation studies to discuss and analyze the
actual contribution of each component. All the experiments
are conducted on the English STR benchmark. TRBA and
TRBC are adopted to validate the effectiveness of the pro-
posed method on the sequence recognition models of atten-
tion and CTC decoders, respectively.

5.2.1 Effect of Adaptive Calibration

As discussed in Sec. 4.4, the hardness of recognizing a sam-
ple plays an important role in the calibration performance.
We remove the component of hardness ranking f(pi) from
the PSSR in Eq. 2, and show the comparison results of the
PSSR with and without hardness ranking component in Ta-
ble 2. From the results, the resulting method suffers from
a severe performance drop on all the metrics across TRBA
and TRBC models. The calibration performance is more ev-
ident in the TRBA model, where the ECE, ACE, and MCE
are increased by 0.38%, 0.65%, and 4.98%, respectively.

5.2.2 Effect of Similar Sequence Set

The similar sequence set comprises both perception and se-
mantic similar sequences. Here, we explore how the differ-
ent combined proportions of these two kinds of sequences
affect the calibration performance. The results are shown
in the Fig. 4. As for TRBA, the calibration performance is

better when the number of visually similar sequences is ap-
proximately equal to that of semantically similar sequences.
However, the TRBC is better with the increase of visually
similar sequences. This confirms our claim above that the
CTC-based models, such as TRBC, mainly occurring per-
ception overconfidence, while overconfidence in attention-
based models derives from both perception overconfidence
and semantic overconfidence.

5.3. Comparison with State-of-the-arts

In this section, we compare the proposed method against
the state-of-the-art method on the two tasks: scene text
recognition (STR) and speech recognition (SR).

5.3.1 Results on STR

We present the quantitative calibration results of attention-
based models on the English STR benchmark in Table 3.
The results show that our proposed PSSR outperforms all
the compared state-of-the-art methods across all the mod-
els in terms of ECE, ACE, and MCE metrics. Among other
comparison methods, the two calibration methods for se-
quential data, GLS and CASLS, generally perform better
than the methods for scalar data and achieve the second-
best performances. Compared with the sub-optimal GLS
method, particularly in the TRBA model, the proposed
method still reduces 0.56%, 0.62%, and 3.18% in ECE,
ACE, and MCE, respectively. Moreover, Table 4 reports
the calibration results of CTC-based models on the English
STR benchmark. Compared with the uncalibrated models
trained with CTC loss, the models trained with PSSR per-
form much better in terms of all the metrics, including ac-
curacy, ECE, ACE, and MCE. Combined with the above,
the satisfying performance demonstrates that the proposed
method can be well adapted to the model with different de-
coding schemes.

We further verify the effectiveness of our method on
the Chinese STR benchmark, and the calibration results of
attention and CTC models are presented in Table 5 and
6, respectively. Notably, our PSSR outperforms other ap-
proaches and sets a new state-of-the-art with better accuracy
and confidence calibration on almost all the models.

5.3.2 Results on SR

Table 7 reports the calibration results of uncalibrated mod-
els and PSSR on the AISHELL-1 dataset. As shown, the
proposed PSSR performs better than uncalibrated mod-
els in ECE, ACE, and MCE metrics. Compared to un-
calibrated models, the proposed PSSR reduces 20.54%,
20.69%, 43.84% in terms of ECE, ACE, and MCE on
the attention-based model and reduces 17.73%, 17.85%,
37.46% in terms of ECE, ACE, and MCE on the CTC-based
model. More results are presented in the appendix.



Table 3. The calibration results comparison of NLL, BS, LS, FL, ER, MBLS, MDCA, GLS, CASLS and PSSR on the English STR
benchmark of attention-based models. The accuracy and three calibration metrics: Acc(%), ECE(%), ACE(%) and MCE(%), are listed.
The best method is highlighted in bold.

Method ASTER TRBA SEED MASTER
Acc ECE ACE MCE Acc ECE ACE MCE Acc ECE ACE MCE Acc ECE ACE MCE

NLL 85.27 3.82 3.82 17.10 85.51 3.88 3.88 21.49 85.34 4.04 4.04 23.09 84.52 3.86 3.86 16.01
BS [10] 85.17 3.46 3.41 16.53 86.06 3.44 3.42 23.72 85.20 4.14 4.14 21.23 85.83 3.26 3.26 16.17
LS [134] 84.35 0.99 0.81 10.27 84.12 1.59 1.52 10.38 84.62 1.23 1.20 9.61 85.16 1.37 1.32 8.11
FL [98] 84.94 1.79 1.40 9.55 85.34 1.36 0.99 11.04 85.89 2.23 2.24 16.01 84.86 1.22 0.97 7.37
ER [112] 76.33 7.25 7.21 23.85 85.64 1.31 1.10 9.18 85.50 1.07 0.95 13.73 85.09 1.40 1.02 10.86
MBLS [85] 84.42 1.12 1.03 7.63 84.51 1.34 1.16 9.47 84.55 1.39 1.38 10.22 85.01 1.03 1.05 5.72
MDCA [47] 85.09 2.18 2.14 10.70 85.98 1.50 1.44 7.85 86.08 2.54 2.47 20.58 84.92 1.25 0.82 6.70
GLS [145] 84.12 0.93 0.71 6.36 83.83 0.92 0.90 7.17 85.13 1.26 1.11 11.24 85.05 2.66 2.64 11.76
CASLS [52] 84.65 0.86 0.77 5.55 85.41 1.02 0.98 7.94 85.71 1.59 1.36 13.15 84.89 1.16 0.93 12.20
PSSR 85.06 0.69 0.48 5.26 86.45 0.36 0.28 3.99 85.54 0.94 0.77 7.48 86.03 0.78 0.40 8.36

Table 4. The calibration results of CTC-based models on the En-
glish STR benchmark. The best method is highlighted in bold.

Method CRNN TRBC
Acc ECE ACE MCE Acc ECE ACE MCE

CTC 78.91 2.80 2.80 14.45 84.94 2.73 2.71 16.62
PSSR 79.53 0.97 0.49 8.52 85.48 0.47 0.25 6.22

5.4. Calibration Performance under Dataset Shift

The DNNs are discovered to be overconfident and highly
uncalibrated under the condition of data shift. Inspired
by [49], the data distribution drift test datasets are derived
from the English benchmark test dataset after four diverse
corruption types, including speckle noise, Gaussian blur,
spatter, and saturate. Figure 5 shows the clean and the
four corrupted examples. Table 8 reports the calibration re-
sults of uncalibrated models and PSSR on the English STR
benchmark of corrupted datasets, which demonstrates that
the model trained with the proposed PSSR can still achieve
a good calibration performance even under data shift. And
compared with the state-of-the-art calibration methods, our
method performs best in terms of all the metrics across all
the drift datasets. And the details on other methods and their
corrupted calibration results are presented in the appendix.

Clean Speckle Noise Gaussian Blur Spatter Saturate

Figure 5. Clean and four corruption examples.
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Figure 6. The results of active learning task on TRBA and TRBC.

5.5. Downstream Application

We argue that calibration benefits the downstream active
learning task when adopting a confidence-based query strat-
egy. In general, active learning trains an initial model based
on a small amount of labeled data, and then a query strat-
egy is applied to the output of models to select the most in-
formative samples with the least confidence for an oracle to
annotate. The model is then retrained with the additional la-
beled data. The above process will be repeated until model
accuracy is satisfied or the labeling resource is exhausted.

The active learning experiment is conducted on the En-
glish STR benchmark, where an attention-based TRBA
model and a CTC-based TRBC model are adopted. Specif-
ically, only 10% of training samples are used initially to
train the base model. Then, 1% samples of the unlabeled
data pool (consisting of the remaining 90% of training sam-
ples) are queried, combining the original labeled samples
to retrain the model. We compare three query strategies:
random sampling, least uncalibrated confidence, and confi-
dence calibrated with our PSSR. And the querying process
is iterated five times.

Fig. 6 shows the average accuracy on the test set against



Table 5. The calibration results comparison of NLL, BS, LS, FL, ER, MBLS, MDCA, GLS, CASLS and PSSR on the Chinese STR
benchmark of attention-based models. The accuracy and three calibration metrics: Acc(%), ECE(%), ACE(%) and MCE(%), are listed.
The best method is highlighted in bold.

Method ASTER TRBA SEED MASTER
Acc ECE ACE MCE Acc ECE ACE MCE Acc ECE ACE MCE Acc ECE ACE MCE

NLL 56.12 6.69 6.14 16.00 56.23 10.78 10.78 27.14 42.09 11.27 11.27 26.55 61.28 9.01 9.01 21.19
BS [10] 56.18 6.14 5.58 16.03 56.82 10.18 10.18 25.34 44.15 10.41 10.41 24.55 65.06 8.77 8.77 20.88
LS [134] 56.31 1.95 1.53 4.71 56.16 1.25 1.23 4.18 42.54 1.31 1.34 4.21 65.28 1.33 1.33 3.22
FL [98] 55.98 5.73 5.19 12.95 56.78 9.74 9.74 24.58 43.02 8.69 8.72 21.45 64.04 2.96 2.96 7.43
ER [112] 55.66 3.62 3.42 6.45 55.40 3.42 3.35 7.59 42.70 3.70 3.71 11.74 63.53 2.39 2.39 5.66
MBLS [85] 56.32 1.96 1.52 5.15 56.26 1.29 1.18 2.29 42.22 1.25 1.19 2.96 65.66 1.13 1.13 3.31
MDCA [47] 56.06 5.63 5.08 13.01 56.85 9.97 9.97 26.74 43.43 9.68 9.69 22.78 64.12 3.02 3.02 8.93
GLS [145] 56.16 1.38 1.15 2.83 56.38 1.31 1.27 3.35 41.54 1.16 1.18 3.62 64.89 1.54 1.46 4.82
CASLS [52] 56.10 1.40 1.05 2.96 56.18 1.40 1.40 3.41 41.45 1.27 1.15 3.34 64.78 1.50 1.42 4.46
PSSR 55.91 1.02 0.58 3.14 56.55 0.72 0.63 2.29 41.64 1.01 0.86 2.99 65.86 1.03 0.93 2.11

Table 6. The calibration results of CTC-based models on the Chi-
nese STR benchmark. The best method is highlighted in bold.

Method CRNN TRBC
Acc ECE ACE MCE Acc ECE ACE MCE

CTC 41.10 8.62 8.62 21.85 58.07 15.02 15.02 39.80
PSSR 40.44 0.64 0.48 3.38 57.25 0.79 0.73 1.78

Table 7. The calibration results of U2-Tfm and U2-CTC on
AISHELL-1. The best method is highlighted in bold.

Models Method Acc ECE ACE MCE

U2-Tfm NLL 58.81 22.75 22.75 50.85
PSSR 57.36 2.21 2.06 7.01

U2-CTC CTC 58.14 20.20 20.20 41.28
PSSR 57.44 2.47 2.35 3.82

Table 8. Corrupted calibration results on the English STR bench-
mark. Uncal is short for Uncalibrated. The best method is high-
lighted in bold.

Corruption Method TRBA TRBC
Acc ECE ACE MCE Acc ECE ACE MCE

Speckle Noise Uncal 65.71 3.80 3.85 15.83 65.63 1.51 1.46 7.59
PSSR 67.01 0.64 0.66 5.84 66.45 1.19 0.54 9.26

Gaussian Blur Uncal 42.10 19.10 19.10 57.63 40.52 14.49 14.50 44.80
PSSR 42.29 2.45 2.55 10.92 40.50 1.45 1.25 7.80

Spatter Uncal 59.91 4.12 4.12 11.79 58.12 2.23 1.89 6.41
PSSR 61.68 1.06 0.86 4.89 58.82 1.99 1.87 5.13

Saturate Uncal 81.04 3.95 3.95 16.96 80.41 2.56 2.48 17.56
PSSR 81.56 0.74 0.54 7.07 80.92 0.64 0.38 6.78

the percentage of images sampled from the unlabeled data
pool for different models. It can be seen that the accuracy
using the confidence-based strategy performs better than

other query strategies. And it further outperforms the uncal-
ibrated confidence-based strategy with accuracy improve-
ment by 1.02% and 1.03% after the final iteration on TRBA
and CRNN, respectively.

6. Conclusion
Despite the superior performance of deep sequence

recognition models, they have been proven to suffer from
the over-confidence dilemma. In this paper, we investigate
the overconfidence problem of the DSR model and discover
that tokens/sequences with higher perception and semantic
correlations to the target ones contain more sufficient and
correlated information to supervise the regularization of la-
bels and facilitate more effective regularization. Motivated
by the observation, we propose a Perception and Semantic
aware Sequence Regularization framework, which explores
perceptively and semantically correlated tokens/sequences
as regularization. Comprehensive experiments are con-
ducted on classic DSR tasks: scene text and speech recog-
nition, and our method achieves state-of-the-art confidence
calibration performance. In the future, we will explore more
effective strategies to conjointly utilize perception and se-
mantic information for better DSR model calibration.
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Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, pages 1724–1734. ACL.

[21] Jan Chorowski and Navdeep Jaitly. Towards better decod-
ing and language model integration in sequence to sequence
models. arXiv preprint arXiv:1612.02695, 2016.

[22] Charles Corbière, Nicolas Thome, Antoine Saporta, Tuan-
Hung Vu, Matthieu Cord, and Patrick Perez. Confidence
estimation via auxiliary models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 2021.

[23] Gang Dai, Yifan Zhang, Qingfeng Wang, Qing Du, Zhu-
liang Yu, Zhuoman Liu, and Shuangping Huang. Disen-
tangling writer and character styles for handwriting genera-



tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5977–5986,
2023. 1

[24] Debasmit Das and CS George Lee. Zero-shot image recog-
nition using relational matching, adaptation and calibration.
In 2019 International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE, 2019.

[25] Morris Degroot and Stephen Fienberg. The comparison and
evaluation of forecasters. Journal of the Royal Statistical
Society: Series D (The Statistician), 32(1-2):12–22, 1983.
5

[26] Dan Deng, Haifeng Liu, Xuelong Li, and Deng Cai. Pix-
ellink: Detecting scene text via instance segmentation. In
Sheila A. McIlraith and Kilian Q. Weinberger, editors, Pro-
ceedings of the Thirty-Second AAAI Conference on Artifi-
cial Intelligence, (AAAI-18), the 30th innovative Applica-
tions of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, pages 6773–6780. AAAI Press, 2018. 2

[27] Shrey Desai and Greg Durrett. Calibration of pre-trained
transformers. arXiv preprint arXiv:2003.07892, 2020.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

[29] Thomas G. Dietterich. Machine learning for sequential
data: A review. In Structural, Syntactic, and Statistical
Pattern Recognition, Joint IAPR International Workshops
SSPR 2002 and SPR 2002, Windsor, Ontario, Canada, Au-
gust 6-9, 2002, Proceedings, volume 2396 of Lecture Notes
in Computer Science, pages 15–30. Springer, 2002.

[30] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Nietham-
mer. Local temperature scaling for probability calibration,
2020.

[31] Zhipeng Ding, Xu Han, Peirong Liu, and Marc Nietham-
mer. Local temperature scaling for probability calibration.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6889–6899, 2021.

[32] Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
Token-level and sequence-level loss smoothing for RNN
language models. In Iryna Gurevych and Yusuke Miyao,
editors, Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2094–2103,
Melbourne, 2018. Association for Computational Linguis-
tics.

[33] Maha Elbayad, Laurent Besacier, and Jakob Verbeek.
Token-level and sequence-level loss smoothing for rnn lan-
guage models. arXiv preprint arXiv:1805.05062, 2018.

[34] Shohei Enomoto and Takeharu Eda. Learning to cas-
cade: Confidence calibration for improving the accuracy
and computational cost of cascade inference systems. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pages 7331–7339, 2021.

[35] Shancheng Fang, Hongtao Xie, Yuxin Wang, Zhendong
Mao, and Yongdong Zhang. Read like humans: Au-
tonomous, bidirectional and iterative language modeling
for scene text recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2021, vir-
tual, June 19-25, 2021, pages 7098–7107. Computer Vision
Foundation / IEEE, 2021. 1, 2, 4

[36] Di Feng, Lars Rosenbaum, Claudius Gläser, Fabian Timm,
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Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems, vol-
ume 32, pages 4696–4705, Vancouver, BC, Canada, 2019.
Curran Associates, Inc.

[100] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using

bayesian binning. In Twenty-Ninth AAAI Conference on Ar-
tificial Intelligence, 2015.

[101] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos
Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In Proceedings of the 29th AAAI Confer-
ence on Artificial Intelligence, pages 2901–2907, Austin,
Texas, USA, 2015. AAAI Press. 5

[102] Lukas Neumann, Andrew Zisserman, and Andrea Vedaldi.
Relaxed softmax: Efficient confidence auto-calibration for
safe pedestrian detection. 2018.

[103] Khanh Nguyen and Brendan O’Connor. Posterior calibra-
tion and exploratory analysis for natural language process-
ing models. arXiv preprint arXiv:1508.05154, 2015. 5

[104] Nguyen Nguyen, Thu Nguyen, Vinh Tran, Minh-Triet Tran,
Thanh Duc Ngo, Thien Huu Nguyen, and Minh Hoai.
Dictionary-guided scene text recognition. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, pages 7383–7392. Com-
puter Vision Foundation / IEEE, 2021. 1

[105] Alexandru Niculescu-Mizil and Rich Caruana. Predicting
good probabilities with supervised learning. In Machine
Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11,
2005, volume 119 of ACM International Conference Pro-
ceeding Series, pages 625–632. ACM, 2005. 2

[106] Jeremy Nixon, Michael W Dusenberry, Linchuan Zhang,
Ghassen Jerfel, and Dustin Tran. Measuring calibration in
deep learning. In CVPR Workshops, volume 2, 2019.

[107] Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio
Ranzato. Analyzing uncertainty in neural machine transla-
tion. In International Conference on Machine Learning,
pages 3956–3965. PMLR, 2018.

[108] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev
Khudanpur. Librispeech: An ASR corpus based on public
domain audio books. In 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, ICASSP
2015, South Brisbane, Queensland, Australia, April 19-24,
2015, pages 5206–5210. IEEE, 2015.

[109] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages 311–
318, Philadelphia, PA, USA, 2002. ACL.

[110] Kanil Patel, William Beluch, Bin Yang, Michael Pfeiffer,
and Dan Zhang. Multi-class uncertainty calibration via
mutual information maximization-based binning. arXiv
preprint arXiv:2006.13092, 2020. 2

[111] Zhiliang Peng, Wei Huang, Shanzhi Gu, Lingxi Xie,
Yaowei Wang, Jianbin Jiao, and Qixiang Ye. Conformer:
Local features coupling global representations for visual
recognition. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 367–376, 2021. 5

[112] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks



by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017. 2, 5, 7, 8

[113] Trung Quy Phan, Palaiahnakote Shivakumara, Shangxuan
Tian, and Chew Lim Tan. Recognizing text with perspec-
tive distortion in natural scenes. In IEEE International Con-
ference on Computer Vision, pages 569–576, Sydney, Aus-
tralia, 2013. IEEE Computer Society. 3, 5

[114] J. C. Platt. Probabilistic outputs for support vector ma-
chines and comparisons to regularized likelihood methods.
Advances in Large Margin Classifiers, 10(3):61–74, 1999.
2

[115] Zhi Qiao, Yu Zhou, Dongbao Yang, Yucan Zhou, and Weip-
ing Wang. SEED: semantics enhanced encoder-decoder
framework for scene text recognition. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, pages 13525–13534, Seattle, USA, 2020. Computer
Vision Foundation / IEEE. 1, 2, 5

[116] Amir Rahimi, Kartik Gupta, Thalaiyasingam Ajanthan,
Thomas Mensink, Cristian Sminchisescu, and Richard
Hartley. Post-hoc calibration of neural networks. arXiv
preprint arXiv:2006.12807, 2020.

[117] Anhar Risnumawan, Palaiahnakote Shivakumara,
Chee Seng Chan, and Chew Lim Tan. A robust arbi-
trary text detection system for natural scene images. Expert
Systems with Applications, 41(18):8027–8048, 2014. 3, 5

[118] Mamshad Nayeem Rizve, Kevin Duarte, Yogesh Singh
Rawat, and Mubarak Shah. In defense of pseudo-labeling:
An uncertainty-aware pseudo-label selection framework for
semi-supervised learning. In 9th International Conference
on Learning Representations, ICLR 2021. OpenReview.net,
2021.

[119] Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, and
Michael C. Mozer. Mitigating bias in calibration error es-
timation. In Gustau Camps-Valls, Francisco J. R. Ruiz,
and Isabel Valera, editors, International Conference on Ar-
tificial Intelligence and Statistics, AISTATS 2022, 28-30
March 2022, Virtual Event, volume 151 of Proceedings
of Machine Learning Research, pages 4036–4054. PMLR,
2022.

[120] David Rybach, Christian Gollan, Ralf Schlüter, and Her-
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