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Abstract

Humans possess the capacity to reason about the fu-
ture based on a sparse collection of visual cues acquired
over time. In order to emulate this ability, we intro-
duce a novel task called Anticipation Captioning, which
generates a caption for an unseen oracle image using
a sparsely temporally-ordered set of images. To tackle
this new task, we propose a model called A-CAP, which
incorporates commonsense knowledge into a pre-trained
vision-language model, allowing it to anticipate the cap-
tion. Through both qualitative and quantitative evaluations
on a customized visual storytelling dataset, A-CAP out-
performs other image captioning methods and establishes
a strong baseline for anticipation captioning. We also ad-
dress the challenges inherent in this task.

1. Introduction
When humans observe the real world, we not only cap-

ture visual information (e.g. objects), but also forecast the
future from past and current observations. For example, in
Fig. 1, given some photos of an attack in a hockey game,
we can predict without a doubt that “the athlete will shoot
the puck toward the goalie”. In fact, anticipatory ability
aids us in surviving in a world of volatility. This ability
necessitates a significant shift from visual to cognitive un-
derstanding, which extends far beyond the scope of tasks
that primarily use visible visual data, such as object detec-
tion, action recognition, and existing image captioning. As
a result, a variety of new tasks have been proposed to emu-
late humans’ anticipatory ability, such as generating future
images [12,29], and action prediction [22,37]. Despite their
great success, the aforementioned tasks frequently involve
densely temporal information (i.e., video), which can be dif-
ficult to acquire at times, and their outcomes are not friendly
to everyone, particularly those with visual impairments.

Sparsely temporally-ordered images

(Input for all tasks)

Oracle image

(for reference)

Task
Output(s) for 

input images

Output for 

oracle image

Image 

captioning

a) A man standing with a hockey stick.

b) A man standing on an ice rink.

c) A man holding a hockey stick.

d) A group of men playing a game of hockey.

(N/A)

Story

telling

a, b, c, d) This breakaway was the first threat to 

score. The wingman took the puck to the goal 

but a nice play by the goalie saved the goal. 

Finally, the other team gets the puck deep into 

red zone. He is now within 20 feet of the goal.

(N/A)

Anticipation 

captioning 

(Ours)

(N/A)

He shoots, he 

scores and the 

game ends one 

to nothing.

a) b)

c) d)

Figure 1. Given a set of sparsely temporally-ordered images (a,
b, c, d), image captioning [38] and storytelling [35] tasks generate
captions for those images, while our anticipation captioning task
anticipates what happens afterward. To illustrate the potential fu-
ture, we show their related oracle image. It should be noted that
our task only receives the same inputs as others.

In this work, we hope to dislodge the time constraints
imposed by previous tasks while also looking for a more
user-friendly output format. Needless to say, textual de-
scription is a potential candidate because generating text
from images has been successfully explored in a variety
of ways [6, 14, 21, 33, 35, 38], showing a number of ap-
plications. Furthermore, we can easily leverage recent ad-
vances in text-to-image [28] or text-to-sound [36] as a flexi-
ble transformation that will benefit other downstream tasks,
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allowing everyone to fully grasp our output in their own
way. With this in mind, we go beyond the immediately vis-
ible content of the images, proposing a new task of image
captioning problems, called anticipation captioning. An-
ticipation captioning is to generate a caption for an unseen
image (referred to as the oracle image) that is the future
of a given set of sparsely temporally-ordered images. The
term “sparse” means that two consecutive images are not
required to be as close in time as those in a video, allowing
the scene to change freely as long as the change does not
disrupt the information flow of the image sequence, as seen
in Fig. 1. Our task is a new branch of the image captioning
problems [6, 14, 21, 35, 38]; it is to predict only captions in
the future. As an example, we depict the outputs of generic
image captioning, visual storytelling, and our task in Fig. 1.
The image captioning model [38] generates a caption for
each individual image, whereas visual storytelling [35] con-
nects all images in a story. Our task, on the other hand, pro-
duces a caption for the oracle image that is similar to human
anticipation: “he shoots, he scores, and the game ends one
to nothing”. Unlike [12, 22, 29, 37], anticipation captioning
does not require strictly temporal information while produc-
ing a more informative output. In theory, the greater the
success of this task, the greater the deductive ability of the
intelligent system. Meanwhile, other applications such as
incident prevention or behavior prediction can be launched.

Additionally, we propose a baseline model, A-CAP, to
solve this new task rather than simply using current image
captioning models, given their failures in predicting the fu-
ture. We hypothesize that under common thinking, the fu-
ture can be predicted from observable concepts (e.g., ob-
jects, events) appearing in the input images, implying that
the future cannot be dramatically changed to the “football
scene” from the “hockey scene”, for instance. As a result,
we make full use of commonsense knowledge to connect all
detected concepts in terms of a graph while expanding the
graph toward forecasted ones, creating a knowledge graph.
The term “forecasted concept” refers to a concept that is
not visible in the given image but related to another concept
visible in the image (we can infer the forecasted concept
from the related concept using common thinking). Techni-
cally, each node in our constructed graph is either a detected
concept in given inputs or a forecasted one explored using
the ConceptNet [30], and nodes are connected if and only if
they have corresponding ConceptNet relations. After aggre-
gating all node information with a graph neural network, we
use prompt learning [39,40] to integrate the enriched nodes
into a frozen pre-trained vision-language (VL) model, suc-
cessfully generating the anticipated caption. The following
are our primary contributions.

• We introduce a novel task of anticipation captioning,
which predicts a caption for the future from a given set
of sparsely temporally-ordered images.

• For anticipation captioning, we establish a strong base-
line model A-CAP, which incorporates commonsense
knowledge into a pre-trained VL model.

We evaluate the effectiveness of A-CAP in both qual-
itative and quantitative ways, using a customized VIST
dataset [14]. Extensive experiments show that A-CAP suc-
cessfully generates captions for oracle images that are more
accurate, descriptive, and reasonable than those generated
by other captioning methods [35, 38].

2. Related work

Future forecasting has long been studied in computer vi-
sion. Some attempts [12,16,29,34] have been made to gen-
erate future images/frames from a given video (i.e., dense
time-series images). Meanwhile, some methods [22, 37]
use past observations to predict future events. These meth-
ods heavily rely on the dense temporal-structure to learn
visual representations, implying that such representations
are different from those for sparsely temporally-ordered im-
ages. Furthermore, generated images/frames are not always
of high quality [12,16,29,34], and the set of predicted future
events is limited [22, 37], making them difficult to apply to
downstream tasks. Our method, on the other hand, accepts
only sparsely temporal information as long as we can de-
tect objects/events. Furthermore, our method is designed to
generate textual descriptions that are easier to interpret than
outputs by other methods [12, 16, 22, 29, 34, 37].

In NLP, there are also several approaches to predict the
future: story ending generation [7,18], temporal order antic-
ipation [23, 24]. Though those methods use texts as inputs
while our method uses images, we can think of story ending
generation as an indirect way to solve our problem because
we can generate a story first and then predict its ending.

Image captioning is a long-standing problem with nu-
merous methods developed to address various purposes.
Captioning models [6, 21] in an early stage aim to gen-
erate generic descriptions for given images. They are
then evolved in various directions to generate dense cap-
tions [15], novel object captions [33], controllable cap-
tions [9], or visual story telling [8, 14, 35]. Anticipation
captioning belongs to the image captioning family, with
the exception that we predict a caption for the future. Fur-
thermore, our method is based on recent methods [33, 38],
which use a vision-language model to generate better cap-
tions. Rather than fine-tuning or retraining the model, we
use prompt learning [39, 40] to replace the object tags used
in the concatenated sequence of words—object tags—ROIs
of VinVL [38] with our detected and forecasted concepts.
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Figure 2. The overall pipeline of our proposed A-CAP. The pre-
processing step is used to build the knowledge graph, extract im-
age features and tokenize the input words. In the knowledge graph
construction, blue nodes represent the detected concepts obtained
from concept detection while brown nodes represent the fore-
casted concepts obtained from the ConceptNet. Our network con-
sists of a trainable graph neural network and a frozen pre-trained
VinVL [38]. The outputs of the graph neural network are the en-
riched nodes of the knowledge graph. During inference time, the
dash-dotted red part is removed.

3. Our approach
3.1. Problem statement

Our input is a set of k sparsely temporally-ordered im-
ages I1, I2, . . . , Ik. It is worth noting that Ii and Ii+1 are
not necessarily strongly temporal as illustrated in Fig. 1. We
assume that an image Ik+1 is an oracle image that continues
the set of k images, and that a caption Ck+1 corresponds to
Ik+1 which is a future of I1, I2, . . . , Ik. Obviously, the or-
acle image is sparsely temporally-ordered with respect to
the input images as we intentionally seek to anticipate the
future.

Our task is to generate caption Ck+1 using given k im-
ages. The task is formally defined as follows:

Ck+1 = CAPTION(I1, I2, . . . , Ik), (1)

where CAPTION(·) is a captioning system that will be dis-
cussed later. Note that we produce neither captions for each
input image I1, . . . , Ik nor oracle image Ik+1.

3.2. Proposed A-CAP

3.2.1 Design of A-CAP

Given the progress of vision-language models in image cap-
tioning tasks, we choose VinVL [38] as our base archi-
tecture. VinVL takes a concatenated sequence of words–
concepts–ROIs as input (note that words are not used dur-
ing inference time; object tags are used instead of concepts
in the original paper [38]). The core idea is the usage of

concepts, which allows better alignment between the vi-
sion and language spaces. The above observation suggests
that incorporating forecasted concepts into VinVL is critical
in allowing the model to generate the anticipated caption.
However, simply using VinVL is not wise because it detects
only concepts appearing in images. We thus find forecasted
concepts based on the detected concepts. Under normal cir-
cumstances, forecasted concepts should be related to cur-
rent observable concepts. Therefore, to retrieve forecasted
concepts, we use commonsense knowledge, which consists
of many popular concepts and their relationships.

VinVL [38] is trained on a very large dataset, making
fine-tuning or re-training difficult. To avoid this difficulty,
we use the prompt learning technique to train the concept
embeddings only while other parameters are fixed. In what
follows, we detail our model.

3.2.2 Network architecture

We base A-CAP on the VinVL [38] architecture. As dis-
cussed above, we use concepts as a prompt to allow the
model to generate a desired caption. We can then focus on
learning the embeddings for all detected and forecasted con-
cepts. To this end, we first retrieve the forecasted concepts
using the detected ones and then construct the knowledge
graph that connects all concepts. This is because the graph
structure is effective for learning the interactions between
concepts. We use an undirected graph for simplicity where
two concepts are connected as long as their relationship ex-
ists. The concept embeddings are then enhanced using a
graph neural network. Next, the enriched concept embed-
dings are injected into a frozen VinVL to generate the cap-
tion. Fig. 2 depicts our simple yet effective A-CAP.

3.2.3 Modules of A-CAP

Pre-processing. The input images are pre-processed to (i)
construct the knowledge graph and (ii) extract image fea-
tures. We also tokenize the ground-truth captions used
to train the model during training. We obtain N features
(ROIs) with the size of 1 × 2054 each after image feature
extraction using Faster-RCNN [27] trained on the COCO
dataset. Each image feature is fed into VinVL’s embedding
layer to reduce its size to 1× 768. We then take the average
of all image features f̄ = 1

N

∑N
i=1 fi to construct a context

feature (1× 768) which will be used later. Simultaneously,
we obtain L word embeddings of the caption {wi}Li=1, each
of which has a size of 1×768. For more information on im-
age feature extraction and tokenizer, see VinVL [38].

We now detail knowledge graph construction. We fol-
low Chen et al. [8] to detect concepts for each input image.
Specifically, we use clarifai [1] to obtain the top-ten con-
cepts {ci}10i=1 for each image. As a result, we detect k × 10
concepts in total. Then, using ConceptNet [30], we use each



detected concept as a query to heuristically retrieve fore-
casted concepts with 2-hop neighbors of the query. Since
the number of forecasted concepts is large (> 400) and
many of them are unrelated to input images, we employ a
filtering process to retain only the informative concepts.

Let cfi be a forecasted concept. Using a pre-trained lan-
guage model RoBERTa [20], we compute a relevance score
between the forecasted concept and image context as:

ρcfi
= fhead(fenc([f̄ ; c

f
i ])),

where cfi = BERT(cfi ) is an embedding vector of the con-
cept cfi extracted by a pre-trained BERT [10], [·; ·] denotes
the concatenation operator, fenc is the encoder part of the
language model while fhead is a softmax layer. This score
indicates the probability of cfi related to f̄ .

We keep M forecasted concepts having high relevance
scores. In total, we have k× 10 detected concepts {ci}k×10

i=1

and M forecasted concepts {cfi }Mi=1 in our knowledge graph
(k × 10 + M nodes). If two concepts are related in the
ConceptNet [30], an undirected edge is given to connect
them. For simplicity, we do not use a specific relation (e.g.,
has, IsA). Furthermore, a concept in Ii is connected to its
related concepts in the adjacent images Ii−1 and Ii+1 to
ensure information flow and the awareness of the temporal
order of the images. Hereafter, we use the same notation to
refer to detected and forecasted concepts {ci}k×10+M

i=1 .
Graph neural network is used to update the node embed-
dings through iterative messages passing between neigh-
bors on the graph. We use graph attention network [32]
to build our graph neural network. To produce the input for
the graph network, we first employ pre-trained BERT [10]
to embed each concept into an embedding with the size of
1×768. To be more specific, each node embedding is calcu-
lated as ei = BERT(ci). To strengthen the connection be-
tween concepts and image context, we concatenate the node
embedding and the context feature as ei = [ei; f̄ ]. Brevity,
we summarize the entire computation in each graph layer:

{ẽ(l)1 , . . . , ẽ
(l)
k×10+M} = GNN({e(l−1)

1 , . . . , e
(l−1)
k×10+M}),

where l indicates the current graph layer while l−1 does the
previous one, GNN(·) represents a graph layer. In detail,
each node is updated by:

α̂ji = (e
(l−1)
i Wq)(e

(l−1)
j Wk)

⊤,

αji = SOFTMAX(α̂ji/
√
D),

ê
(l−1)
i =

∑
j∈Ni∪{i}

αji(e
(l−1)
j Wv),

ẽ
(l)
i = LAYERNORM(e

(l−1)
i + ê

(l−1)
i Wo),

where Wq,Wk,Wv,Wo ∈ RD×D are learnable matrices,
Ni represents the neighbors of node i, D = 768 + 768 =

1536, SOFTMAX and LAYERNORM are the softmax function
and the batch normalization, respectively. We note that e(0)i

is the initial node embedding (i.e., [ei; f̄ ]).
In practice, we use 2 graph layers. After the graph at-

tention network, we add two more fully connected layers to
reduce the size of each ẽi to 1× 768.
Frozen VinVL. As discussed above, the concept em-
beddings learned from the graph neural network are
used as a prompt to generate the caption. To this end,
we inject all {ẽi}k×10+M

i=1 into a frozen pre-trained
VinVL [38]. As a result, the input of VinVL is changed to
{w1, · · · ,wL, [SEP], ẽ1, · · · , ẽk×10+M , [SEP], f1, · · · , fN}.
We note that [SEP] is a special token used to distinguish
different types of tokens. We do not feed wi to the network
during inference time, but instead, create L × [MASK] as
pseudo words. Formally, Eq. 1 becomes

Ck+1 = A-CAP(ẽ1, · · · , ẽk×10+M , [SEP], f1, · · · , fN ).

Loss function. Following previous works, we simply use
cross entropy between the generated and the ground-truth
captions to train the network. We do not use CIDEr op-
timization because the pre-trained VinVL has been well-
trained on a large text–image corpus.

4. Experiments
4.1. Dataset and training details

Dataset. We use the visual storytelling dataset (VIST) [14]
with a modification to evaluate our method because there is
no dataset tailored for our task. The original VIST includes
210,819 photos from 10,117 Flickr albums. Given five input
temporally ordered images from the same event, the corre-
sponding five human-annotated sentences are provided as
ground-truths. There are 4,098, 4,988, and 5,050 samples
for training, validation, and test sets, respectively. We use
the first four images of each sample as input (k = 4) and
the last sentence of each sample as the ground-truth cap-
tion. We keep the last image of each sample as an oracle
image for reference. The training, validation, and test sets
all have the same number of samples as the original dataset.
Dataset verification. We investigate the correlation be-
tween Ck+1 and C1, C2, . . . , Ck (corresponding captions to
I1, I2, . . . , Ik) in two ways. First, we compute the sentence
cosine similarity sim(S(Ck+1),S(Ci)) (i = 1, . . . , k) and
then test whether those similarities monotonically increase
(i.e., sim(S(Ck+1),S(Ci)) < sim(S(Ck+1),S(Ci+1))
(S(·) is a pre-trained SentenceTransformer model [2], out-
putting an embedding vector for a given sentence). We
confirm that 72.69% of samples follow monotonic increas-
ing, 10.32% have only one sentence similarity that vio-
lates monotonic increasing, and only 4.4% do not comply
with the monotonicity. As the second, we use a pre-trained
BERT model [10] to figure out whether Ci+1 is the next



Sparsely temporally-ordered images

Oracle 

image (for 

reference)

VinVL VinVL + 

Oracle image

AREL + BART A-CAP Ground-truth

after the 

ceremony, the 

teams got to eat 

outside.

the defense was 

able to close 

out the game 

and had a great 

time.

i was getting 

ready to leave 

the game and i

took a picture 

of the players 

on the field 

before the 

game.

the goalie 

caught the puck 

as it passed the 

goalie.

he shoots, he 

scores and the 

game ends one 

to nothing.

she let the 

crowd ask 

questions in the 

end.

we got to meet 

the people 

behind the 

company's 

logo.

he welcomed to 

the stage his 

new assistant

at the end of the 

show, the 

audience 

enjoyed 

themselves.

they were all 

about 

preserving the 

internet

the llamas were 

very curious.

the competition 

ended with a 

bang.

they had a great 

time.

it was a great 

time for the 

horse racers.

he thought he 

was going to 

cry

the vice 

president closed 

the meeting by 

thanking all the 

workers of the 

company.

the party went 

on well into the 

night.

everyone was 

having a great 

time.

they ended the 

night with a 

speech.

eventually the 

winner was 

announced, and 

he was very 

grateful

Figure 3. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. In contrast, our
method A-CAP predicts more accurate, descriptive, and plausible captions than others.

VinVL VinVL + 
Oracle image

AREL + BART A-CAP Ground-truth

Figure 4. The generated images obtained by using stable diffusion
model [28] to generate an image from each generated caption in
Fig. 3. The order of images is the same as the order of captions in
Fig. 3. The images generated using our captions are close to the
ground-truth ones while those by other methods are not.

sentence of Ci. We see that 77.34% of the samples satisfy
the next sentence condition (i.e., Ci+1 is always the next

sentence of Ci for all sentences in the sequence), 17.78%
have only one sentence that does not meet the condition,
and 0.06% do not satisfy the condition (i.e., Ci+1 is never
the next sentence of Ci). The above verification shows that
the VIST dataset mostly meets our assumption.
Training details. We set the length of the word sequence
L = 35, the number of ROIs N = 100 (25 ROIs for each
image), the number of forecasted concepts M = 60 (the
number of concepts is 4× 10 + 60 = 100 in total).

We build A-CAP using PyTorch, in which we use the
pre-trained VinVL model published by its authors [3]. We
remark that we freeze all the parameters of VinVL during
training time. Given the small size of our used dataset, we
train the model for only 10 epochs with a batch size of 16
and a learning rate of 3e-5. It takes four hours to train our
model on a single GTX-3090 GPU.

4.2. Compared methods and evaluation metrics

Compared methods. We carefully design methods that can
be straightforwardly applied to our task. For a fair compari-
son, all compared methods are fine-tuned on VIST. To avoid
over-tuning, we only train the methods for a few epochs and
select their best checkpoints.

VinVL [38] is a cutting-edge image captioning model.
We strictly adhere to its settings, but instead of a single im-



age, we use the input as our method. Comparing our method
to VinVL will demonstrate the advancement of our method
over the conventional image captioning model.

VinVL [38] + Oracle image is the method where VinVL
uses the ground-truth oracle image in training and testing.
Since we do not successfully generate oracle images using
existing methods, we may regard this method as a method
that sequentially generates the oracle image and caption.

AREL [35] + BART [17] is a combination of vi-
sual storytelling (AREL [35]) and story ending generation
(BART [17]). Particularly, we generate a story for the in-
put and then generate the ending sentence for that story. We
compare the ending sentence to the caption by our method.
Evaluation metrics. Since our problem is an open domain
generation like dialogue generation, we follow [11] to use
automatic metrics to quantitatively evaluate all the meth-
ods in two aspects: accuracy and descriptiveness. For ac-
curacy evaluation, we report referenced metrics including
BLEU [25], CIDEr [31]. Since those metrics are sensitive to
the whole sentence structure [19], we also report SPICE [5],
CLIPScore, and RefCLIPScore [13] to overcome the struc-
tural dependency. For descriptiveness evaluation, we adopt
a self-retrieval strategy, drawing on prior work. This strat-
egy is based on the observation that more descriptive cap-
tions with significant details frequently lead to more precise
self-retrieval, i.e., retrieving the target image from a set of
similar images given the generated caption. We report the
refined R@1, R@5, and R@10 scores using CLIP [26] as
the retriever.

4.3. Qualitative comparisons

In Fig. 3, we show some randomly selected examples of
captions generated by our method as well as others. De-
spite its enormous success in image captioning, VinVL [38]
is unable to generate the expected captions. We can see
that the captions generated by VinVL are completely out of
context with the input images. This observation suggests
that the current image captioning model is inadequate for
our task. VinVL [38] + Oracle image generates reasonable
captions to some extent when the oracle images are close
enough to the input images (see first and second samples).
However, if the temporal information is too sparse as in the
third and fourth samples, it fails to generate captions that
are linked to the inputs. These results imply that even if we
can generate a high-quality unseen oracle image, the model
struggles to complete the task. We notice that AREL [35]
+ BART [17] generates a general ending for the story (e.g.,
having a great time). On the contrary, our method produces
more accurate and reasonable captions that reflect the in-
puts’ future. In most cases, we can see that our method
accurately predicts what is likely to happen, which is close
to the ground-truth captions. When we examine the third
sample in greater detail, we can see that our caption is in-

correct because we failed to detect the concept “falling” in
the second image. However, we believe that the generated
caption is still plausible under ordinary situations.

To have a better understanding of the generated captions,
we use the stable diffusion model [28] implemented on the
Huggingface platform [4] with the default settings to gener-
ate an image from each generated caption, and choose the
first generated image for each method as shown in Fig. 4.
The images obtained from our generated captions are sim-
ilar to the ground-truth ones, indicating that our method
generates correct anticipated captions. Furthermore, Fig. 4
demonstrates the benefits of our task to downstream tasks,
specifically future image generation in this case.

4.4. Quantitative comparisons

The quantitative scores are summarized in Table 1, first
four rows. We first assess all methods based on their ac-
curacy. All of the results in Table 1 support the advantage
of our method over the other methods. Though our method
obtains the highest scores, we notice that it does not sig-
nificantly outperform the other methods on referenced met-
rics (BLEU and CIDEr). The reason for this observation
is that those metrics are calculated using ground-truth cap-
tions. Because our task is an open-domain generation, it is
difficult to generate a caption that is nearly identical to the
ground-truth one. However, based on the qualitative com-
parison in Figs. 3 and 4, we can conclude that our method
outperforms the others. SPICE and the unreferenced met-
rics (CLIPScore, RefCLIPScore) also justify our conclu-
sion. We see substantial improvements in these metrics,
indicating that our generated captions accurately reflect the
oracle images. Notably, as shown in Fig. 3, our generated
captions are, without a doubt, the future of input images.

The descriptiveness of generated captions is then as-
sessed using R@1, R@5, and R@10 scores. In compar-
ison to VinVL [38] and AREL [35] + BART [17], our
method outperforms them significantly. This is thanks to the
fact that captions generated by our method are close to the
ground-truth images, whereas those obtained by the other
methods are not. Our method and VinVL [38] + Oracle im-
age achieve the same level. This is not surprising, given
that VinVL [38] + Oracle image generates captions directly
from oracle images.

We conclude that our method is more promising than the
other methods in solving the anticipation captioning task.
Furthermore, the experiments highlight the shortcomings of
using image captioning and story ending models in our task.

4.5. Detailed analysis

Ablation study. To validate the plausibility of our model
design, we investigate two ablated models: A-CAP w/o
GNN and A-CAP w/o context. A-CAP w/o GNN denotes
the model that does not use a graph neural network (instead,



Table 1. Quantitative comparison against other methods. For accuracy evaluation, we report referenced metrics (BLEU [25] (B-1, B-4),
CIDEr [31]), SPICE [5], and unreferenced metrics (CLIPScore and RefCLIPScore [13]). For descriptiveness evaluation, we report top-1,
top-5 and top-10 retrieval accuracy (R@1, R@5, R@10, respectively). Our method outperforms others on all metrics. Higher scores are
better. Gray background indicates results obtained by our method, and ∆ indicates the improvement over compared methods.

Method Accuracy Descriptiveness
B-1 B-4 CIDEr SPICE CLIPScore RefCLIPScore R@1 R@5 R@10

VinVL [38] 31.7 3.1 2.6 13.8 40.7 42.8 1.3 6.5 10.8
VinVL [38] + Oracle image 34.9 3.8 4.3 16.9 57.9 61.3 8.1 17.2 31.1
AREL [35] + BART [17] 30.9 2.0 3.1 11.4 37.8 39.7 1.1 5.9 9.3

A-CAP 37.2 6.9 4.7 20.1 65.2 70.2 8.7 18.9 31.5
A-CAP w/o GNN 34.8 5.2 3.7 14.5 38.2 47.3 3.6 8.7 15.4
A-CAP w/o context 36.1 6.2 4.2 13.9 39.8 46.9 4.1 9.5 16.1

∆ 2.3↑ 3.1↑ 0.4↑ 3.2↑ 7.3↑ 8.9↑ 0.6↑ 1.7↑ 0.4↑
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A-CAP 
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Ground-

truth

the 

downtown 

streets 

were lined 

with 

people 

enjoying 

themselves

we walked 

around a 

bit more 

before 

heading 

home.

we ended 

the night 

by 

shopping 

in the 

center of 

the city.

we stopped 

at a 

souvenir 

store to get 

some 

things 

before 

finally 

heading 

back to the 

hotel.

the 

nightlife 

was just 

amazing to 

look at.

we had a 

great time 

walking 

around.

it was a 

great night 

and i can't 

wait to go 

back next 

year.

the place 

was ready 

to close

and we had 

to leave.

Figure 5. Examples of generated captions by two ablated models:
A-CAP w/o GNN, A-CAP w/o context, and full model A-CAP.
We select two inputs where the detected concepts almost overlap.
A-CAP w/o GNN generates captions that most likely describe the
inputs. A-CAP w/o context generates captions that are far from
the inputs and similar to each other.

we directly feed the concept embeddings ẽi = BERT(ci) to
the pre-trained VinVL). A-CAP w/o context is the model in
which we do not concatenate the node embeddings and the
context feature (we instead use only the node embeddings
as graph neural network inputs). We also drop the two fully
connected layers on top of the graph neural network because
reducing the size of embeddings is no longer required.

The last two rows of Table 1 quantify the performance of
the two ablated models. When we simplify the model, the
performance scores are degraded. In the case of A-CAP w/o
GNN, the concept embeddings are insufficient to guide the
model to generate the expected caption. As a result, the cap-
tion most likely describes the inputs as depicted in Fig. 5.
The graph neural network enriches and connects concept
embeddings, making them more powerful as a prompt to
the model. Similarly, A-CAP w/o context breaks the con-
nections between concepts and the context of images in gen-

Table 2. Impact of the number of forecasted concepts on the per-
formance of our model. Using either a large number of concepts
or no concepts drops the performance drastically.

Number of forecasted concepts Accuracy Descriptiveness
SPICE CLIPScore RefCLIPScore R@1 R@5 R@10

M = 400 5.8 15.3 12.1 1.1 3.7 7.6
M = 200 5.4 16.7 13.0 0.9 4.2 7.1
M = 100 15.7 48.6 52.4 6.2 15.7 26.6
M = 60 (used model) 20.1 65.2 70.2 8.7 18.9 31.5
M = 0 14.2 43.1 44.7 1.9 7.3 11.2

eral, resulting in captions that are far from the inputs and
similar to each other if the detected concepts are similar
(Fig. 5). This indicates that the context feature compensates
for the concepts in order to make the correct prediction. In
contrast, the full model generates plausible captions.

We do not investigate the model where all the parameters
are trainable since the training collapsed despite our best
efforts. The reason for this failure is that the training data is
too small in comparison with the one used to train VinVL.
Impact of the number of forecasted concepts. As stated
above, when we search for concepts on ConceptNet, we
usually have more than 400 forecasted concepts. We em-
pirically retain M = 60 forecasted concepts to eliminate
irrelevant concepts and balance the number of concepts and
image features. We now investigate how the number of fore-
casted concepts affects the captions generated. To this end,
we run our method through a series of scenarios using the
number of forecasted concepts at 400, 200, 100, and 0.

Table 2 shows the results of all tested scenarios on accu-
racy and descriptiveness. We can see that retrieving a large
number of concepts (M = 400 or M = 200) degrades per-
formance. The reason is obvious because when we include
a larger number of irrelevant concepts, the input becomes
too noisy, preventing the model from selecting essential in-
formation. The model with M = 100 forecasted concepts



Sparsely temporally-ordered images

Oracle 

image (for 

reference)

A-CAP Ground-truth

the bride and 

groom are about 

to cut the cake.

night settles on 

this wonderous 

day and everyone 

heads home.

Figure 6. A case study of samples with low scores. Though our
method generates a plausible caption, it is far from the ground-
truth caption. The reason is that the oracle image changes signifi-
cantly from the inputs.

comes close to our best performance (M = 60). Finally,
we examine an extreme case where no forecasted concept
is employed (M = 0). The performance drops to the same
level as that of VinVL [38] (first row in Table 1). This is
due to the fact that the inputs to the two models are nearly
identical. This experiment confirms that the number of fore-
casted concepts has an effect on our performance, implying
that retrieving a sufficient number of concepts results in im-
proved effectiveness.
A case study of samples with low scores. While our
method produces promising quantitative results, we notice
a relatively small number of samples with low scores when
delving into each sample in detail. We thus manually check
those samples, as shown in Fig. 6. Given what is happening
in the inputs, our generated caption is reasonable because
the next step of the wedding party is “cutting a wedding
cake”. The ground-truth caption, in contrast, is completely
different because the scene shifts from “wedding” to “night-
time”. We recall that our hypothesis is that the scene does
not change significantly, but in this case, it does. Though
our method fails to predict the far future, it does correctly
predict the near future. We may ignore such failures be-
cause they contradict our hypothesis. In fact, when we ex-
clude those failure samples from quantitative comparison,
our outperformance becomes more significant than before.
Limitations. First, our method is heavily reliant on con-
cept detection (here, clarifai). When we are unable to detect
important concepts, our method is unable to predict the cor-
rect caption, as seen in Fig. 4, third example. Second, as
shown in Table 2, the performance of our method is depen-
dent on the number of forecasted concepts from common-
sense knowledge. We use a simple filtering process in this
paper, namely, computing the relevance score between con-
cept and image context and empirically retaining M = 60
forecasted concepts. Our strategy is effective, but it may
not be optimal. To improve this issue, it is necessary to
learn how to determine a suitable number of concepts. One
possible solution is to learn concept selection while training
the model. This is left for our future work.

5. Discussions
We now discuss the potential negative societal impacts

of our task. While we believe our introduced task will push

more applications to make our lives safer and benefit down-
stream tasks, we have noticed that it has the potential to be
abused. One of the concerns is that it will be used to predict
behavior for nefarious purposes, such as criminal activity.

Our task still has some difficulties. First, to the best
of our knowledge, no suitable dataset exists to serve as a
benchmark. Though our used VIST dataset [14] is use-
ful to some extent, it is originally designed for the visual
storytelling task, so it does not always meet task require-
ments, as already seen. As a result, a new dataset for this
task is required, which should cover various scenarios such
as near future, far future, abnormal thinking, and rationale.
We should note that owing to the labor cost of creating a
dataset, we are currently using the customized VIST to as-
sess the performance of our method. Second, evaluating the
task is difficult. Although appropriate evaluation metrics
for the open domain are still unavailable, our used metrics
are partially effective in our task. This is because, as we do
not account for the diversity of potential futures, generat-
ing a caption close to the ground-truth (BLEU, CIDEr) is a
valid indicator of the model’s predictive capability. More-
over, considering the dataset that we employed, CLIP-based
scores are suitable for evaluating the degree of similarity be-
tween the generated captions and the oracle images, which
are presumed to represent the future of the input images. In
fact, our experiments show that the current metrics cannot
evaluate the task thoroughly. User study may compensate
for the automatic metrics, but it is expensive and subjec-
tive, as is customary. We believe that new metrics for this
task can capitalize on the advantages of the vision-language
space, such as CLIP [26]. Furthermore, new metrics should
emphasize the rationale, which explains the reason why the
model generates that caption but not another.

6. Conclusion

We introduced a new task, called anticipation caption-
ing, that generates a caption for an unseen oracle image,
given a sparsely temporally-ordered set of images. For this
new task, we proposed a baseline model (A-CAP), which
incorporates commonsense knowledge into the off-the-shelf
vision-language model VinVL. We evaluated A-CAP on a
customized VIST dataset, showing that A-CAP outperforms
other image captioning methods. We also addressed the po-
tential positive and negative impacts of the task as well as
its challenges, in order to encourage further research.
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Supplemental Material
I. Prompt Learning

Prompt learning was developed by NLP research. It con-
siders pre-trained language models such as BERT [10], as
knowledge-based sources of useful information for down-
stream tasks. The key idea is to create a prompt (template)
that can guide the pre-trained model through the adaptation
process to a new task. It should be noted that the prompt
format should be the same as the input format learned by
the pre-trained model. Furthermore, the parameters of the
pre-trained model are not updated during the training pro-
cess; instead, we train the layers to learn prompt embed-
dings. The concept of prompt learning has recently been
explored in computer vision [39, 40], where the context-
word-generated prompt is converted into a set of learnable
vectors and fed into a pre-trained vision-language model to
solve downstream tasks.

In our method, we use prompt learning in the same
way as recent methods [39, 40]. We see that the key idea
of VinVL [38] is the usage of concepts (object names),
which allows better alignment between vision and language
spaces, leading to the appearance of concepts in the cap-
tion. If we add forecasted concepts to the model, the model
will be able to generate the caption based on the forecasted
concepts. In our method, we combine detected and fore-
casted concepts to create the prompt. To this end, we change
the VinVL’s input to words–(detected, forecasted)concepts–
ROIs because the format of the prompt should be familiar
to the pre-trained model (i.e., sequence of words–concepts–
ROIs). During the training time, by using cross-entropy
loss, we update the graph neural network to learn the em-
beddings for the concepts to ensure that the pre-trained
model can understand the prompt embeddings. After train-
ing, the pre-trained model can easily generate the desired
captions from the input.

II. More Examples

We randomly select more examples of captions gener-
ated by our method and our compared methods. They are
shown in Figs. A, C, E, and G. We also show their corre-
sponding generated images obtained by using stable diffu-
sion model [28] in Figs. B, D, F, and H. Along with Fig. 3 in
the main paper, these figures consistently demonstrate that
our method generates captions that are more accurate, de-
scriptive, and plausible than the other methods.

In addition, Figs. I and J show the captions generated
by ablated models: A-CAP w/o GNN, A-CAP w/o context,
and our full model. We can see that, as stated in the main
paper, the captions generated by A-CAP w/o GNN most
likely describe the inputs, whereas those generated by A-
CAP w/o context are far from the inputs. Meanwhile, our
full model can produce plausible captions.

The observations from the additional examples support
our conclusion that our method is better suited to the antic-
ipation captioning task than the other methods and ablated
models.

III. Visualization of Knowledge Graph
We visualize the knowledge graphs corresponding to the

examples in Fig.3 (main paper) in Figs. K, L, M, and N to
better understand the contributions of forecasted concepts
in the anticipated captions. The left graph in each figure is
the full knowledge graph, which contains all detected and
forecasted concepts. We see nodes in the graph are densely
connected, meaning most nodes are related. We remark that
the number of nodes is 100 (= 4×10+60) and the number
of edges is 6000 on average.

The right graph, on the other hand, is the portion of the
knowledge graph that is extracted using only the forecasted
concepts (brown nodes) appearing in the anticipated cap-
tion and the detected concepts (blue nodes) related to the
forecasted ones. We can see that our method successfully
retrieves forecasted concepts from ConceptNet [30], which
are the future of detected concepts. More importantly, our
method can include forecasted concepts in the final caption
thanks to our usage of prompt learning.
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everyone had a 

great time.

it was a great 

night with lots 

of great food.

they were all 

excited for the 

event to start.

[ female ] was 

excited to see 

what was going 

on.

this is [female] 

watching as her 

dad scores a 

strike to win the 

game.

the couple was 

wed and the 

day was merry.

the bride's 

parents were 

especially 

happy.

at the end of the 

night, they all 

took a group 

photo to 

remember the 

day.

the bride and 

groom made a 

toast to their 

new life 

together.

the pastor 

presenting them 

as husband and 

wife for the 

first time.

they finished 

the night with a 

glass of wine 

and some good 

food.

the lights were 

still on by the 

time we were 

done.

we had a great 

time and 

enjoyed it.

after a long day 

of drinking, 

they went home 

for the night.

later they all 

left, full and 

happy

the band played 

with purple 

lights, stunning 

the audience.

at the end of the 

day, we all 

went home.

the audience 

was having a 

great time.

the stage was 

set up and 

everyone was 

ready for the 

show to begin.

Afterwards the 

graduates 

congratulated 

each other and 

discussed the 

directions their 

lives were now 

going in 

beyond school.

Figure A. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.

VinVL VinVL + 
Oracle image

AREL + BART A-CAP Ground-truthSparsely temporally-ordered images

Figure B. The generated images obtained by using stable diffusion model [4] to generate an image from each generated caption in Fig. A.
The order of images is the same as the order of captions in Fig. A. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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and, to make it 

less boring, 

goof around 

with some of 

the products.

and of course, 

there was no 

food left for the 

people to eat.

he wasn't sure if 

he wanted to 

buy it, but he 

didn't want to 

buy it at the 

store.

finally, we got 

to grab some 

lunch at the 

convenience 

store.

time to check 

out the food.

they were there 

to protest 

against laws 

they didn't 

accept

and they paid 

their respects to 

those who had 

lost their lives.

i had a great 

time.

the government 

officials also 

honored the 

fallen soldiers.

It was easy to 

tell that he was 

impressed 

about the 

special event 

for veterans' 

day

this is the stuff I 

got to keep in 

the museum.

the jack - o -

lantern 

competition had 

some very 

impressive 

contestants.

they have a 

great time and 

are ready to go 

home.

at the end of the 

night, they all 

made their own 

pumpkins.

while others 

made their own, 

unique 

creations.

the stands 

selling 

sculptures are 

also very 

popular.

we went to the 

waffle shop to 

get some food.

i really enjoyed 

all of the fresh 

fruits and 

vegetables.

we got to buy 

some fresh fruit 

and vegetables.

after lunch, we 

found a small 

candy shop and 

got some 

dessert.

Figure C. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.

VinVL VinVL + 
Oracle image

AREL + BART A-CAP Ground-truthSparsely temporally-ordered images

Figure D. The generated images obtained by using stable diffusion mode [4] to generate an image from each generated caption in Fig. C.
The order of images is the same as the order of captions in Fig. C. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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the celebration 

began to wind 

down as the 

night dragged 

on.

we had a great 

time.

the men are 

waiting for the 

food to be 

served.

the night ended 

with people 

camping in 

tents on the side 

of the road.

everyone made 

friends.

we had a great 

time watching 

the game.

the owner of 

the car was 

awarded a star.

afterward there 

were a lot of 

rides.

the arena was 

packed with 

people.

self driving cars 

are shown to be 

the future of 

transportation.

after the 

ceremony, the 

teams got to eat 

outside.

and got to 

throw the ball.

the game was 

very exciting.

we had a great 

time at the 

baseball game.

he was tired by 

the end of the 

day, but it is a 

day he will 

remember 

forever.

the night ended 

with an 

amazing 

fireworks 

display.

the weather was 

nice and we had 

a great time.

they had a lot 

of fun.

we had a great 

time at the 

concert.

when the show 

starts 

everybody is 

cooking, eating 

and waiting for 

the speaker to 

begin.

Figure E. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.

VinVL VinVL + 
Oracle image

AREL + BART A-CAP Ground-truthSparsely temporally-ordered images

Figure F. The generated images obtained by using stable diffusion model [4] to generate an image from each generated caption in Fig. E.
The order of images is the same as the order of captions in Fig. E. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.
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Oracle 
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reference)

VinVL VinVL + 

Oracle image

AREL + BART A-CAP Ground-truth

the park was 

beginning to 

close because it 

was getting 

late, so they 

left.

we had a great 

time and can't 

wait to come 

back next year.

they won a 

prize at a prize.

it was a great 

night and 

everyone had a 

good time.

the lobsters are 

then place in 

the tubs for the 

guest to choose 

from.

my husband 

loves a good 

organization.

the principal 

gave a 

presentation for 

the students.

they had a great 

time at the 

wedding.

[ male ] is tired 

from all the 

school day and 

is ready to go 

home.

he studied 

throughout the 

day, making 

sure to finish 

his homework.

this is the stuff i

got to keep in 

the museum.

everyone had a 

great time.

after that we 

played in the 

water.

the day ended 

with a picnic in 

the park.

there were also 

games for 

children.

the view from 

our room is 

breathtaking.

the boy was 

really glad he 

got out of the 

car.

he rode his bike 

down the road 

and stopped for 

a bite to eat.

as the sun went 

down, we 

headed back 

home.

I think I’ll take 

a nap and ride 

my bike some 

more tomorrow.

Figure G. Examples of generated captions obtained by all compared methods. We show the oracle images and ground-truth captions for
reference purposes. VinVL [38] generates captions that are out of context with the input images. VinVL [38] + Oracle image sometimes
generates reasonable captions. AREL [35] + BART [17] tends to generate a general ending for the sequence of images. On the other hand,
our method A-CAP predicts more accurate, descriptive, and plausible captions than others.

VinVL VinVL + 
Oracle image

AREL + BART A-CAP Ground-truthSparsely temporally-ordered images

Figure H. The generated images obtained by using stable diffusion model [4] to generate an image from each generated caption in Fig. G.
The order of images is the same as the order of captions in Fig. G. The images generated using our captions are close to the ground-truth
ones while those by other methods are not.



Sparsely temporally-ordered images

Oracle 

image (for 

reference)

A-CAP 

w/o GNN

A-CAP 

w/o 

context

A-CAP

(full)

Ground-

truth

everyone 

had a good 

time 

carving 

pumpkins.

they made 

pumpkins 

for 

everyone 

to eat.

at the end 

of the 

night, we 

got to see 

some scary 

pumpkins.

what a 

harvest at 

halloween.

it was a 

great day 

for both 

teams.

we had a 

great time.

after the 

game, the 

mascots 

posed for a 

picture 

with their 

fans.

the first 

inning was 

over and 

the pitcher 

was 

practicing.

they had a 

lot of fun 

in the car, 

and they 

had a lot of 

fun.

the driver 

of the 

yellow car 

happily 

takes a 

picture 

with the 

camera 

crew to 

celebrate 

his win

the driver 

of the red 

and yellow 

car took 

the lead in 

a race.

it is the 

final lap 

and the 

lowe’s car 

is in the 

lead, the 

crowd goes 

wide.

there were 

many 

people 

walking 

around in 

the parade.

we had a 

great time.

the parade 

ended in 

the center 

of the city.

all in all, it 

was a fun 

celebration

.

Figure I. Examples of generated captions by two ablated models: A-CAP w/o GNN, A-CAP w/o context, and full model A-CAP. We select
two inputs where the detected concepts almost overlap. A-CAP w/o GNN generates captions that most likely describe the inputs. A-CAP

w/o context generates captions that are far from the inputs and similar to each other.



Sparsely temporally-ordered images

Oracle 

image (for 

reference)

A-CAP 

w/o GNN

A-CAP 

w/o 

context

A-CAP

(full)

Ground-

truth

i had a 

great time 

there.

the family 

of the bride 

and groom 

were happy 

to be 

together.

the family 

and friends 

gathered 

for a group 

photo.

however in 

the end 

seeing his 

happy face 

brought a 

smile to 

mine

the family 

was 

incredibly 

proud of 

her 

achieveme

nt.

the family 

and friends 

pose for 

one last 

photo 

before 

heading off 

to the 

hospital.

after the 

ceremony, 

the family 

and friends 

posed for a 

picture on 

the steps.

many 

friends and 

family 

have come 

to show 

their 

support.

the food 

was great 

and i had a 

great time.

the fruit 

and 

vegetables 

were very 

colorful.

we ended 

the night 

with a ride 

on the 

horse and 

buggy.

our 

evening 

ended with 

a carriage 

ride back 

to our 

hotel.

the 

downtown 

streets 

were lined 

with 

people 

enjoying 

themselves

we ended 

the day 

with a ride 

on a boat 

on the 

river.

then we 

headed 

back to the 

market to 

buy some 

fresh fruit.

they all 

looked so 

good and 

fresh.

Figure J. Examples of generated captions by two ablated models: A-CAP w/o GNN, A-CAP w/o context, and full model A-CAP. We
select two inputs where the detected concepts almost overlap. A-CAP w/o GNN generates captions that most likely describe the inputs.
A-CAP w/o context generates captions that are far from the inputs and similar to each other.



Figure K. Visualization of knowledge graph of the first example in Fig. 3 in the main paper. The full graph is shown on the left, while the
detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.

Figure L. Visualization of knowledge graph of the second example in Fig. 3 in the main paper. The full graph is shown on the left, while
the detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.



Figure M. Visualization of knowledge graph of the third example in Fig. 3 in the main paper. The full graph is shown on the left, while the
detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.

Figure N. Visualization of knowledge graph of the fourth example in Fig. 3 in the main paper. The full graph is shown on the left, while
the detected concepts (blue nodes) and forecasted concepts (brown nodes) that contribute to the caption are shown on the right. We can see
that our method successfully retrieves forecasted concepts from ConceptNet [30], which are the future of detected concepts.
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