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Abstract

A fundamental characteristic common to both human vi-
sion and natural language is their compositional nature. Yet,
despite the performance gains contributed by large vision
and language pretraining, we find that—across 7 architec-
tures trained with 4 algorithms on massive datasets—they
struggle at compositionality. To arrive at this conclusion, we
introduce a new compositionality evaluation benchmark,
CREPE, which measures two important aspects of compo-
sitionality identified by cognitive science literature: system-
aticity and productivity. To measure systematicity, CREPE
consists of a test dataset containing over 370K image-text
pairs and three different seen-unseen splits. The three splits
are designed to test models trained on three popular training
datasets: CC-12M, YFCC-15M, and LAION-400M. We also
generate 325K, 316K, and 309K hard negative captions
for a subset of the pairs. To test productivity, CREPE con-
tains 17K image-text pairs with nine different complexities
plus 183K hard negative captions with atomic, swapping
and negation foils. The datasets are generated by repurpos-
ing the Visual Genome scene graphs and region descriptions
and applying handcrafted templates and GPT-3. For sys-
tematicity, we find that model performance decreases con-
sistently when novel compositions dominate the retrieval set,
with Recall@1 dropping by up to 12%. For productivity,
models’ retrieval success decays as complexity increases,
frequently nearing random chance at high complexity. These
results hold regardless of model and training dataset size.

1. Introduction

Compositionality, the understanding that “the meaning
of the whole is a function of the meanings of its parts” [13],
is held to be a key characteristic of human intelligence.
In language, the whole is a sentence, made up of words.
In vision, the whole is a scene, made up of parts like
objects, their attributes, and their relationships [37, 41].

*Equal contribution

Figure 1. We introduce CREPE, a benchmark to evaluate whether
vision-language foundation models demonstrate two fundamental
aspects of compositionality: systematicity and productivity. To
evaluate systematicity, CREPE utilizes Visual Genome and in-
troduces three new test datasets for the three popular pretraining
datasets: CC-12M, YFCC-15M, and LAION-400M. These enable
evaluating models’ abilities to systematically generalize their under-
standing to seen compounds, unseen compounds, and even unseen
atoms. To evaluate productivity, CREPE introduces examples of
nine complexities, with three types of hard negatives for each.

Through compositional reasoning, humans can understand
new scenes and generate complex sentences by combining
known parts [7, 32, 35]. Despite compositionality’s impor-
tance, there are no large-scale benchmarks directly evaluat-
ing whether vision-language models can reason composition-
ally. These models are pretrained using large-scale image-
caption datasets [75, 77, 88], and are already widely applied
for tasks that benefit from compositional reasoning, includ-
ing retrieval, text-to-image generation, and open-vocabulary
classification [12,68,73]. Especially as such models become
ubiquitous “foundations” for other models [6], it is critical
to understand their compositional abilities.

Previous work has evaluated these models using image-
text retrieval [38,67,98]. However, the retrieval datasets used
either do not provide controlled sets of negatives [53, 88]
or study narrow negatives which vary along a single axis
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Figure 2. An overview of the systematicity retrieval set generation process. First, a model’s image-caption training set is parsed to identify
what atoms and compounds the model has seen. Then, an evaluation set is divided into three compositional splits according to whether the
model has seen all the compounds (Seen Compounds), only all the atoms of the caption (Unseen Compounds), or neither (Unseen Atoms).
Finally, hard negative captions HN-ATOM and HN-COMP are generated for the hard negatives retrieval set DHN

test .

(e.g. permuted word orders or single word substitutions as
negative captions) [24, 61, 78, 89]. Further, these analyses
have also not studied how retrieval performance varies when
generalizing to unseen compositional combinations, or to
combinations of increased complexity.

We introduce CREPE (Compositional REPresentation
Evaluation): a new large-scale benchmark to evaluate two
aspects of compositionality: systematicity and productivity
(Figure 1). Systematicity measures how well a model is able
to represent seen versus unseen atoms and their composi-
tions. Productivity studies how well a model can compre-
hend an unbounded set of increasingly complex expressions.
CREPE uses Visual Genome’s scene graph representation as
the compositionality language [41] and constructs evaluation
datasets using its annotations. To test systematicity, we parse
the captions in three popular training datasets, CC-12M [10],
YFCC-15M [88], and LAION-400M [75], to identify atoms
(objects, relations, or attributes) and compounds (combina-
tions of atoms) present in each dataset. For each training set,
we curate corresponding test sets containing 385K, 385K
and 373K image-text pairs respectively, with splits checking
generalization to seen compounds, unseen compounds, and
unseen atoms. To test productivity, CREPE contains 17K
image-text pairs split across nine levels of complexity, as
defined by the number of atoms present in the text. Exam-
ples across all datasets are paired with various hard negative
types to ensure the legitimacy of our conclusions.

Our experiments—across 7 architectures trained with 4
training algorithms on massive datasets—find that vision-
language models struggle at compositionality, with both
systematicity and productivity. We present six key findings:
first, our systematicity experiments find that models’ perfor-
mance consistently drops between seen and unseen composi-
tions; second, we observe larger drops for models trained on

LAION-400M (up to a 12% decrease in Recall@1); third,
our productivity experiments indicate that retrieval perfor-
mance degrades with increased caption complexity; fourth,
we find no clear trend relating training dataset size to mod-
els’ compositional reasoning; fifth, model size also has no
impact; finally, models’ zero-shot ImageNet classification
accuracy correlates only with their absolute retrieval per-
formance on the systematicity dataset but not systematic
generalization to unseen compounds or to productivity. 1

2. Related Work

Our work lies within the field of evaluating foundation
models. Specifically, we measure visio-linguistic composi-
tionality. To do so, we create a retrieval benchmark with
hard negatives.
Contrastive Image-Text Pretraining. The recently re-
leased contrastively trained CLIP model [67] has catalyzed
a wide array of work at the intersection of Computer Vision
and Natural Language Processing. Since its release, CLIP
has enabled several tasks, ranging from semantic segmen-
tation to image captioning, many of which have remark-
able zero-shot capability [14, 18, 45, 67, 84, 87]. CLIP has
been used as a loss function within image synthesis applica-
tions [34, 52, 54, 64, 95, 100], acted as an automated evalua-
tion metric [25, 62], used successfully as a feature extractor
for various vision and language tasks [79], and incorpo-
rated into architectures for various tasks including dense
prediction and video summarization [51, 60, 65, 69, 80, 81].
This success has also encouraged the design of other con-
trastive vision and language pretraining algorithms for
image [17, 21, 47, 48, 50, 56, 82, 96, 97] and video do-

1We release our datasets, and code to generate and evaluate on our test
sets at https://github.com/RAIVNLab/CREPE.

https://github.com/RAIVNLab/CREPE


mains [46, 91, 94]. Our work evaluates how well such con-
trastively trained models capture a fundamental property
present in human vision and language: compositionality.

Compositionality. Compositionality allows us to compre-
hend an infinite number of scenes and utterances [43]. For
an AI model, compositionality would not only allow for sys-
tematic, combinatorial generalization, but would also confer
benefits such as controllability [6]. This promise prompted a
wealth of work on both designing [2, 28, 30] and evaluating
[20, 22, 31, 42, 85] compositional models. In our work, we
focus on two aspects of compositionality: systematicity and
productivity. While there is a plethora of benchmarks for sys-
tematic generalization within Computer Vision [3, 5, 22, 39]
and Machine Learning [40, 42, 72], the subject has been al-
most unexplored for vision-language models, largely due to
lack of benchmarks complementary to the different large-
scale training datasets. To address this, CREPE provides a
benchmark with three different datasets to evaluate the com-
positional generalization of vision-language models. Produc-
tivity, on the other hand, has been studied only for special-
ized tasks [22] or toy domains [32,42,72]. CREPE evaluates
productivity by using an image-text retrieval task featuring
captions of varying compositional complexity.

Evaluation with hard negatives. Like us, past work
evaluating models has commonly designed tasks featur-
ing hard negatives to isolate particular model capabilities
while overcoming the limitations of prior evaluation tasks.
Using atomic foils that replace an atom in the image or
text with a distractor has been the most common strat-
egy [5,11,24,29,61,63,78]. Notably, Park et al. [63] targets
verbs and person entities in videos; COVR [5] studies ques-
tion answering with distractor images; VALSE [61] targets
linguistic phenomena such as existence, cardinality and the
recognition of actions and spatial relationships. Another
strategy has been to swap atoms within a caption to test
whether models behave akin to a bag-of-words [1, 61, 89].
In particular, Winoground [89] introduces a set of 800 hu-
man edited negatives to evaluate compositionality; it is the
closest related work to us. We complement Winoground by
scaling it up by three orders of magnitude, by decomposing
compositionality into systematicity and productivity, and by
studying a variety of different types of hard negatives.

3. Compositional evaluation

The following section builds from the formally vacuous
principle of compositionality to a well-defined evaluation
scheme [32]. First, we establish the syntax and semantics
of the composed language (Section 3.1). Then, we define
expected behaviors from a model that achieves comprehen-
sion of said language ( 3.2, 3.3). Finally, we establish how
to empirically measure those behaviors via retrieval ( 3.4).

3.1. Compositional language of visual concepts

To evaluate vision-language models, we find that a compo-
sitional language consisting of scene graph visual concepts
is an appropriate foundation [41]. Accordingly, an atom A
is defined as a singular visual concept, corresponding to a
single scene graph node. Atoms are subtyped into objects
Ao, relationships Ar, and attributes Aa. A compound C is
defined as a primitive composition of multiple atoms, which
corresponds to connections between scene graph nodes. Vi-
sual concepts admit two compound types: the attachment of
attribute to objects (“black dog”) Cao, and the attachment of
two objects via a relationship (“man hugs child”) Coro.

The composition of these compounds form subgraphs
S, which can be translated to natural language captions T .
Conversely, captions T derived from image-text datasets D
can be parsed to become scene graphs S. This extensible lan-
guage is capable of capturing a number of linguistic phenom-
ena identified in existing literature [61, 85], including the ex-
istence of concepts (“a photo with flowers”), spatial relation-
ships (“a grill on the left of a staircase”), action relationships
(“a person throwing a frisbee”), prepositional attachment
(“A bird with green wings”), and negation (“There are no
trucks on the road”). Furthermore, while this study focuses
on visual concepts, scene graphs featuring common-sense re-
lationships or other more abstract concepts can be designed;
therefore, our methodology is widely applicable [74].

3.2. Systematicity

With our compositional language in place, we now de-
fine two dimensions of compositionality—systematicity and
productivity—which we adapt to vision-language represen-
tations. Systematicity evaluates a model’s ability to sys-
tematically recombine seen atoms in compounds. Con-
cretely, let SEEN(A,D) denote if an atom is seen in a
training dataset D, namely ∃(I, S) ∈ D : A ∈ S, and
SEEN(C,D) denote if a compound is seen in a dataset D,
namely ∃(I, S) ∈ D : C ⊆ S. To evaluate systematic-
ity, we define three compositional splits: Seen Compounds
(SC), Unseen Compounds (UC) and Unseen Atoms (UA).
SC is the split where all compounds (and thus all atoms)
of every caption have been seen in the training dataset, i.e.
DSC = {(I, S) ∈ Dtest | ∀C ⊆ S : SEEN(C,Dtrain)}.
UC is the split where, for each caption, all atoms have
been seen but at least one compound has NOT, i.e. DUC =
{(I, S) ∈ Dtest | (∀A ∈ S : SEEN(A,Dtrain) ∧ (∃C ⊆
S : ¬Seen(C,Dtrain))}. UA is the split where each cap-
tion contains at least one atom that has NOT been seen, i.e.
DUA = {(I, S) ∈ Dtest | ∃A ∈ S : ¬SEEN(A,Dtrain) }.

3.3. Productivity

Productivity refers to a capacity to comprehend an un-
bounded set of expressions. Since the set of atoms in any
dataset is finite, a reasonable substitute for testing unbounded



Figure 3. An overview of the productivity retrieval set generation process. By performing random walks on the scene graphs of an
evaluation dataset, we generate subgraphs of various complexities. Then, for complexities n ∈ {4, , 5 . . . , 12} and three hard negative types,
we populate the retrieval set DHN

test by generating a ground truth caption for each n-subgraph and hard negatives for each caption.

Table 1. We summarize the sizes of the eight evaluation datasets we create for systematicity and productivity evaluation.

Systematicity Productivity

DRAW
test (# of image-text pairs) DHN

test (# of texts) DRAW
test DHN

test

Training data CC-12M YFCC-15M LAION-400M CC-12M YFCC-15M LAION-400M Any Any
Dataset size 385,777 385,777 373,703 325,523 316,668 309,342 17,553 183,855

comprehension is testing comprehension over increasingly
complex scenes. Now, an image I does not have a notion of
complexity, since it is theoretically infinitely describable; on
the other hand, we can define a notion of complexity for a
caption T : the number of atoms in its corresponding scene
graph |ST |. 2 Therefore, a productive vision-language model
should be able to match a given image to the correct corre-
sponding caption, regardless of that caption’s complexity.
To evaluate productivity, we define a range of productivity
complexity (in our case, n = 4, 5, . . . , 12). We need splits
of the evaluation dataset based on these complexities, where
image-text pairs in a given split have a fixed complexity n,
and evaluate a model’s performance over each split.

3.4. Compositional evaluation via retrieval

We evaluate compositional reasoning using zero-shot
image-to-text and text-to-image retrieval. This formulation
probes the representation space as directly as possible and
is already the most common evaluation method for vision-
language foundation models [67]. Theoretically, any existing
image-text dataset can be used as retrieval sets for our evalua-
tion. However, one challenging limitation in existing datasets
renders the metrics evaluated on them inaccurate. Consider
using an image query of a “plant inside a yellow vase on
top of a black television.” Retrieving unintended alternative
positives (e.g. “a black television”) is not necessarily incor-

2By avoiding captions with redundant objects (“... a lamb and a lamb
and...”) and abstract modifiers (“there are many lampposts”), we ensure
atom count is tightly coupled with caption complexity.

rect. Similarly, if no other texts in the retrieval set contain a
“plant” and a “television”, retrieving the correct text doesn’t
suggest that the model comprehends the image. Ideally, to
properly evaluate a model, the retrieval dataset should con-
tain hard negatives for every query. A hard negative is a
caption that does not faithfully represent the corresponding
image, and differs from the ground truth caption by some
minimal atomic shift. A example hard negative for the query
above is “man inside a yellow vase on top of a black televi-
sion.” By erring in a single, granular syntactic or semantic
fashion, hard negatives allow for variations in retrieval per-
formance to be attributable to a specific failure mode of a
model’s compositional comprehension (see Appendix). We
address this need for a new benchmark dataset to evaluate the
systematicity and productivity of vision-language models.

4. CREPE: a large-scale benchmark for
vision-language compositionality

There are several challenges to creating image-text re-
trieval datasets that evaluate compositional systematicity and
productivity. For systematicity, the primary challenge lies in
parsing the training dataset for seen atoms and compounds
in order to split the data into the three compositional splits.
For productivity, the major challenge is generating image-
text pairs across different text complexities for the retrieval
sets. For both datasets, it is crucial to enumerate different
types of hard negatives, and to design an automated hard
negative generator which ensures the incorrectness of the



negatives it generates. We detail our methods for tackling
these challenges for future efforts that attempt to create simi-
lar benchmarks for other training datasets.

4.1. Creating systematicity datasets

To create the three systematicity splits—SC, SA,
UA—we parse a given training dataset D into its constituent
atoms and compounds, filter low-quality data, and generate
hard negatives (Figure 2).
Parsing a dataset into atoms and compounds Since we
utilize the scene graph representation as our compositional
language, we use the Stanford Scene Graph Parser [76,93] to
parse texts in Dtrain into their corresponding scene graphs
with objects, attributes and relationships. Since the parser
only parses for objects and relationships, we further extract
the attributes from the text via spaCy’s natural language
processing parser by identifying adjective part-of-speech
tags. These connected objects, attributes, and relationships
constitute our seen atoms and compounds. Similarly, we
parse a given Dtest and divide all the image-text pairs into
the three splits based on the presence of unseen atoms and/or
compounds in the parsed training set. Details on the quality
of the scene graph parser can be found in the Appendix.
Filtering low-quality data We perform the following filter-
ing steps on the image-text pairs in all splits: we only keep
region crops which have an area greater than or equal to
40K pixels, occupy at least 10% of the whole image, and
whose width-to-height ratio is between 0.5-2.0. We only in-
clude text which have at least 2 atoms and 1 compound and
de-duplicate text using their corresponding scene graphs.
Generating hard negatives We introduce two types of hard
negatives: HN-ATOM and HN-COMP. HN-ATOM replaces
Aa, Ao, or Ar in the text with an atomic foil. For example,
for the caption “a grill on top of the porch”, one HN-ATOM
can be “a grill underneath the porch”, where the Ar “on
top of” is replaced by “underneath”. Since captions and
scene graphs are not exhaustive, this replacement must be
done carefully. For example, if a dog is white and furry,
but only “white” is annotated, replacing the atom “white”
with “furry” would result in a correct caption. To minimize
errors, we employ WordNet [59] to pick replacement atoms
that are either antonyms (“black dog”) or share the same
grand-hypernym (“pink dog") with respect to the original
atom. Furthermore, we use BERT to select the most sensical
negatives for each ground truth caption [15, 61]. HN-COMP
concatenates two compound foils where each contains an
atomic foil. For instance, one HN-COMP of the caption “a
pink car” can be “a blue car and a pink toy”, where “blue”
and “toy” are the atomic foils in the two compounds foils
“blue car” and “pink toy”. We only generate negatives for
one-compound examples for systematicity evaluation, as
productivity covers complex captions with more atoms.

4.2. Creating productivity datasets

We first generate ground truth captions for scene graphs of
varying complexity, filter for data quality, and then generate
hard negatives for each example (Figure 3).
Generating captions We systematically generate captions
of different atom counts for each image. Given a scene graph,
we perform a random walk of length n through the graph
to generate a subgraph. Each subgraph corresponds to a
specific region of the image, determined by the union of the
bounding boxes of the subgraph atoms. We filter out low-
quality regions using the same process as systematicity with
additional deduplication on patches that overlap by ≥ 75%.
For simple subgraphs (n = 4), we produce captions using
handcrafted templates. For larger subgraphs (n ≥ 5), we
leverage GPT-3 [8] (text-davinci-002) to generate captions
based on a text description of the scene graph, which lists all
objects and relationships. We prompt GPT-3 using 5 manu-
ally written captions per complexity, filtering out captions
where GPT-3 errs and omits atoms from the subgraph during
generation (see more details in Appendix).
Generating hard negatives For productivity, we employ
three hard negatives types (HN-ATOM from systematicity,
HN-SWAP, and HN-NEG) corresponding to three hypoth-
esized model error modes. First, as a caption’s complexity
increases, a model may begin to ignore individual atoms.
HN-ATOM randomly selects an atom from the caption and
replaces it with an incorrect atom. Second, as a caption’s
complexity increases, a model may treat captions as “bags
of words”, ignoring syntactic connections built out of word
order. A swap hard negative (HN-SWAP) accordingly per-
mutes atoms of the same subtype in a caption. This hard
negative is similar to Winoground [89], but in the context
of varying caption complexity. On top of Wordnet, we use
entailment with RoBERTa to further filter errant HN-SWAP
hard negatives [55]. Finally, as a caption’s complexity in-
creases, a model may begin to lose comprehension of nega-
tions. A negation hard negative (HN-NEG) either negates
the entire caption or a specific atom. Refer to the Appendix
for details on generating HN-SWAP and HN-NEG.

4.3. The final benchmark datasets

For both productivity and systematicity, we generate two
test datasets: DHN

test , which contains image-ground truth text
pairs along with all generated hard negatives, and DRAW

test ,
which contains only image-ground truth text pairs. To mea-
sure the data quality, we randomly sample 2% of produc-
tivity ground truth captions generated by GPT-3 and 1%
of the queries in the productivity and systematicity DHN

test

sets for manual human verification. We assign 2 annotators
to each set and measure both generated quality and intra-
annotator agreement. 87.9% of sampled productivity ground
truth captions generated by GPT-3 are rated as faithful to
the image, with an average pairwise annotator agreement of
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Figure 5. Productivity Analysis. We plot models’ Recall@1 on the hard negatives retrieval set against complexity, averaged across all models
pretrained on all three training datasets. We find that models’ ability to retrieve the ground-truth degrades as complexity increases.

88.8%. 83.7% of productivity and 86.0% of systematicity
hard negatives were rated as genuine negatives (i.e. made fac-
tually incorrect statements about the image), with pairwise
annotator agreements of 84.3% and 83.7% respectively.

5. Experiments

We present our experimental setup and results with six
takeaways. First, our systematicity experiments show per-
formance decreases consistently on compounds unseen in
training. Second, the greatest drop between splits occurs for
models trained on LAION-400M. Third, our productivity
results reveal models’ retrieval performance decays with in-
creasing complexity. Fourth, we find that dataset size has
no impact on compositionality. Fifth, we find no clear trend
relating model size to compositionality. Finally, models’
zero-shot ImageNet classification accuracy correlates with
retrieval performance on the systematicity dataset but not
systematic generalization to the UC split or productivity.
Datasets. We utilize Visual Genome to create our test
datasets. For systematicity, image patches and corresponding
spelling-corrected region descriptions are used. We provide
three different splits for DHN

test , for three training datasets:

CC-12M, YFCC-15M and LAION-400M. For productivity,
Visual Genome’s image-scene graph pairs are used to create
captions and hard negatives for DRAW

test and DHN
test (Table 1).

Models. We firstly evaluate seven vision-language mod-
els pretrained with contrastive loss [83] across three com-
monly used image-text datasets: Conceptual Captions 12M
(CC-12M) [10], a subset of the YFCC100M dataset (YFCC-
15M) [67, 88] and LAION-400M [75]. We limit our eval-
uation to models openly released in the OpenCLIP reposi-
tory [33] for systematicity evaluation. These include ResNet
(RN) [23] and Vision Transformer (ViT) [16] encoders of dif-
ferent sizes: RN50, RN101, ViT-B-16, ViT-B-16-plus-240,
ViT-B-32 and ViT-L-14. Additionally, since productivity
evaluation is not restricted to models that were trained on
publicly released datasets, we conduct productivity evalu-
ation on other foundation vision-language models as well.
Specifically, we consider OpenAI’s CLIP [67] with ResNet
and ViT backbones, CyCLIP [21] (a variant of CLIP intro-
ducing auxiliary losses that regularize the gap in similarity
scores between mismatched pairs, trained on Conceptual
Captions 3M [77] with a ResNet-50 [23] backbone), AL-
BEF [48] (additionally trained with a masked language mod-
eling and image-text matching loss) and FLAVA [82] (which
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further adds unimodal losses for image and text domains).
Retrieval. For DHN

test , we perform image-to-text retrieval
and stratify results by split and hard negative type. For sys-
tematicity, the splits are SC, UC, and UA; for productivity,
the splits are by caption complexity n (denoted DHN,n

test ).
Each retrieval task is between one image and its ground truth
caption plus h hard negatives of a single type (see Appendix).
We adopt commonly used retrieval metrics Recall@1, 3, 5
and Average Recall@K. For DRAW

test , retrieval experiments
are described in the Appendix.

5.1. Systematicity evaluation

Model performance on the DHN
test dataset for systematic-

ity decreases monotonically when compounds are un-
seen. We first observe a monotonic decrease in recall@1
from the Seen Compounds to the Unseen Compounds split
on the systematicity DHN

test set consisting of both HN-ATOM
and HN-COMP (Figure 4 left). This drop is relatively small
(2− 4%) for the CC-12M and YFCC-15M trained models
and the most pronounced for models trained on the largest
dataset LAION-400M [75], with the decrease reaching 6%
for the ViT-B-32 model. However, CC-12M and YFCC-15M

models also significantly underperform LAION-400M mod-
els in general, meaning that small drops between sets may
be due to overall poor performance rather than improved
systematic generalization. In comparison, human oracle
experiments generalize with 100% accuracy to DHN

test .
Similar to the overall results, there is also a consistent

discrepancy between the SC and UC split on the DHN
test subset

consisting of HN-ATOM only (Figure 4 center). This drop is
consistently smaller (3−5%) for models trained on CC-12M
and YFCC-15M, but pronounced (higher than 10%, reaching
12.5% drop for ViT-B-32) for LAION-400M models.

On the HN-COMP subset (Figure 4 right), we find little
(1− 3%) to no difference in performance between the two
splits. We hypothesize that this is due to the lower difficulty
of the HN-COMP hard negatives, as they introduce more
foils to the caption, are always longer than the ground truth,
and thus offer more opportunities for the model to correctly
distinguish the ground truth. This hypothesis is supported
by the fact that Recall@1 values on HN-COMP are overall
higher than the ones on HN-ATOM even though the HN-
COMP retrieval set size is larger than that of HN-ATOM.

5.2. Productivity evaluation

Models’ performance decreases with complexity on
HN-ATOM and HN-SWAP negatives. At small complex-
ities such as n = 4, we observe that model retrieval quality is
well above random chance (Figure 5). However, as caption
complexity increases, we observe a steady decrease in perfor-
mance, nearing random chance for HN-ATOM and dipping
below it for HN-SWAP negatives. Similarly, we find that
the same downward trend persists for other vision-language
foundation models (Figure 6) on HN-ATOM, and these mod-
els also perform near random chance on HN-SWAP. Impor-
tantly, the downward trend occurs for FLAVA and ALBEF
even though their training set contains Visual Genome im-
ages. We note that for HN-NEG negatives, the OpenAI CLIP
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Figure 8. A plot showing the correlation between zero-shot top-1 accuracy on ImageNet and Recall@1 on CREPE’s productivity hard
negative sets for complexities of 4, 8, and 12. Overall, we find a strong correlation between ImageNet accuracy and Recall@1 on our
productivity HN-NEG (R2 > 0.78) and HN-ATOM (R2 > 0.54) sets and weak to no correlation on HN-SWAP.

models do not adhere to the downward trend, achieving their
lowest scores for the lowest complexity. Their performances
on higher complexities, however, show great variation. Over-
all, we find that all vision-language foundation models in our
evaluation struggle at the productivity hard negative retrieval
sets, demonstrating near-random chance performance and/or
worse performance at higher caption complexity.
We see no effect of dataset size on productivity. We do not
observe a clear advantage for larger pretraining datasets in
our productivity evaluation. For atomic and swapping foils,
we see similar performance for models trained on the three
datasets, with slightly worse performance on atomic foils
for the CC-12M trained models. However, on negation hard
negatives (Figure 5), we see variable performance across
training sets, with CC-12M models outperforming larger
models trained on larger datasets YFCC and LAION.

5.3. Effect of model size

We find no trends relating compositionality to model
size. Overall, we note that the LAION trained models (which
are both larger models and trained on larger datasets) achieve
significantly better absolute performances than smaller mod-
els. However, model’s systematicity and productivity remain
indifferent to the size of the model itself (Figures 4 and 5).

5.4. Correlation with ImageNet performance

We find that zero-shot ImageNet accuracy strongly cor-
relates with models’ Recall@1 on the hard negative re-
trieval sets except for productivity HN-SWAP. Specifi-
cally, we acquire R2 scores of 0.95, 0.80 for the systematic-
ity SC and UC split on HN-ATOM, and 0.91, 0.97 on HN-
COMP (Figure 7). On productivity datasets, we obtain R2

scores of 0.60, 0.79, 0.55 for HN-ATOM, 0.92, 0.78, 0.88
for HN-NEG and 0.07, 0.08, 0.47 for HN-SWAP negatives
on complexity n = 4, 8, 12 respectively (Figure 8). How-
ever, this correlation does not imply that models’ zero-shot

ImageNet performance correlates with systematic or pro-
ductive generalization, which is indicated by small or no
difference between the SC and UC and complexity splits.

6. Discussion
Limitations. First, although our data validation protocols
verified our generated hard negatives for productivity as high-
quality, approximately 70% of HN-SWAP and of HN-NEG
negatives were rated as correct. While this does not invali-
date our key productivity result, this noise is a limitation of
CREPE and could hinder future evaluations once foundation
models begin performing better. Second, our evaluation only
covers a limited set of vision-language foundation models
that were trained with contrastive loss. Additionally, given
the computational requirements associated with training a
foundation model, our experiments centered around model
architectures that were already available publicly. We hope
that future foundation models are evaluated with our publicly
available CREPE benchmark. Third, while we observe text-
to-image and image-to-text retrieval to have similar trends
for our systematicity experiments, we lack text-to-image
datasets with hard negatives. Future work can explore mech-
anisms to generate counterfactual negative images.

Conclusion. We present CREPE, a collection of image-
to-text retrieval datasets with hard negative texts for evalu-
ating pretrained vision-language models’ systematicity and
productivity. We demonstrate that models struggle with
compositionality along both axes, with performance drops
across compositional splits and complexities. We expect that
CREPE will provide a more systematic evaluation to bench-
mark the emergence of compositionality as future models
improve. Finally, researchers can leverage our hard-negative
generation method to create training batches with hard nega-
tives to improve vision-language compositionality.
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A. Additional details on dataset generation
A.1. Hard negative types

In both our productivity and systematicity experiments,
we rely on hard negatives to ensure that the retrieval sets
we construct meaningfully probe a model’s comprehen-
sion. Specifically, to granularly probe a model’s compre-
hension, we identify a set of common failure modes of non-
compositional models and design hard negative types that
address each of these failure modes. Examples of each fail-
ure mode and hard negative type are outlined in Table 2.

A.2. Scene graph parser verification

To generate data splits for our systematicity experiments,
we employed a rule-based implementation of the Stan-
ford Scene Graph Parser [76, 93]. To verify its perfor-
mance, we randomly sample 20 captions from each of
CC-12M, YFCC-15M and LAION-400M and manually
annotate scene graphs for the captions. We report preci-
sion and recall values for object, attribute and relationship
atoms and object-relationship-object triplets on Table 3. For
CC-12M, YFCC-15M and LAION-400M, the object pre-
cision was 88.14, 96.24, 70.00%, attribute precision was
93.00, 94.44, 72.22% and triplet precision was 91.67, 92.31
and 87.00% respectively. For recall values, on the other
hand, we found that object recall was 83.06, 93.33, 60.68%,
attribute recall was 56.51, 75.56, 36.11% and triplet recall
was 64.04, 81.11 and 39.55% respectively. The precision
values help determine whether the atoms the parser identifies
are valid, while the recall values help determine whether
the parser can identify the atoms and triplets present in the
caption, important for the validity of our seen compounds
(SC) and unseen compounds (UC) splits.

We find that the parser’s precision values are high through-
out for each dataset. Recall values are lower compared to
precision, particularly for the LAION dataset, where cap-
tions can be more similar to bags of words rather than well
structured sentences. We note, however, that if compounds
were incorrectly placed into the UC set due to poor recall,
our systematicity task would become easier. As all models
experience drops in performance between SC and UC splits,
we do not observe this.

A.3. Productivity caption generation

As discussed in the main text, each instance in the produc-
tivity test dataset is a image-text pair of complexity n with
a set of hard negative captions. To generate such examples,
we begin by sampling a n-node subgraph from a scene graph
in Visual Genome [41]. We sample this subgraph using a
random walk (see the paragraph titled Random walk). This
subgraph is then transformed into a caption either using a
template or GPT-3 (see the paragraph titled Caption gener-
ation). Finally, we crop the original image to the union of



Table 2. A list of the potential failure modes a vision-language model may encounter when parsing increasingly complex scenes, and the
corresponding hard negatives generated in our test datasets.

Dataset Label Error Mode Hard Negative Example

Sys HN-ATOM Ignoring incorrect atoms. Atomic foils. Replace a single atom with a
mutually exclusive or antonymic atom, en-
forced by WordNet.

A grill on top of the porch.
→: A grill underneath the porch.

Sys HN-COMP Ignoring proper binding of
atoms into compounds.

Compound foils. Split the correct atoms of
a single compound over two compounds; fill
in the partial compounds with atomic foils
(see above).

A pink car.
→: A blue car and a pink toy.
→: A pink flower and a black car.

Prod HN-ATOM Ignoring incorrect atoms. Atomic foils. Replace a single atom with a
mutually exclusive or antonymic atom, en-
forced by WordNet.

Yellow vase on top of television.
→: Red vase on top of television.
→: Yellow vase underneath television.
→: Yellow vase on top of shelf.

Prod HN-SWAP Ignoring proper binding of
atoms.

Swapping foils. Swap two atoms of the
same type – or permute several atoms of
the same type.

Yellow vase on top of television.
→: Yellow television on top of vase.
→: Television on top of yellow vase.

Prod HN-NEG Disregarding incorrect nega-
tions.

Negation foils. Negate the entire caption
or an individual atom with a grammatically
correct “not" modifier.

Yellow vase on top of television.
→: There is no yellow vase on top
of television.
→: Vase that is not yellow on top
of television.

Table 3. Scene Graph Parser Validation: We report precision and recall values the Stanford Scene Graph parser obtains on the CC-12M,
YFCC-15M and LAION-400M datasets. For each dataset, we compute values for object, attribute and relationship atoms as well as
object-relationship-object triplets. Overall, the scene graph obtains high precision values but lower recall scores. The parser performs the
poorest on LAION-400M due its noisier captions.

CC-12M YFCC-15M LAION-400M
Precision Recall Precision Recall Precision Recall

Object 88.14 83.06 96.24 93.33 69.91 60.68
Attribute 93.00 56.51 94.44 75.56 72.22 36.11
Relationship 92.86 70.18 93.59 83.33 88.33 40.15
Triplet 91.67 64.04 92.31 81.11 87.00 39.55

all object bounding boxes in the subgraph (see main text).
We describe these details below.

Random walk Given a scene graph G, we generate an
n-atom subgraph (n ≤ |G|). We initialize a subgraph S with
a single random object in G. While this subgraph contains
less than n atoms, a compound C consisting of at least one
unadded atom is added to S. If C is a relationship compound
(Coro), the walk continues from the newly added object; oth-
erwise, the walk is continued from the same object. If the
entire connected component of the scene graph is exhausted,
another object is selected at random from a different con-
nected component. This process ends when n atoms are
added to the subgraph. We discard all walks that result in
insufficient number of atom.

Caption generation To generate captions, we either uti-
lize hand crafted templates or use GPT-3. For subgraphs
of complexity n > 4, we use GPT-3 to generate a coherent
caption for each prompt; otherwise, we use the templates.
When prompting GPT-3 to produce captions, we populate
the the first line of the prompt with a list the objects in the
subgraph, prepended with their attributes. If multiple in-
stances of an object type occur (e.g., we have two objects
both with name “window” in the graph), we append a numer-
ical suffix to distinguish between then (e.g. “window1” from
“window2.”). On the second line of the prompt, we list all
the relationships between objects in the graph, in the form
subject relationship object. Additionally, we
manually generate 5 caption examples per complexity from
random subgraphs and prepend both the random subgraph
and the manually generated caption to the prompt above, as
few-shot training examples for GPT-3. We provide examples
of graphs, prompts, and their generated captions in Figure 9.



Image Subgraph GPT Prompt Caption

man

table top

chair

window padding

table

pushing

on

next to

man pushing a stroller with a 
child in it

OBJECTS: man; stroller; child


RELATIONS: man pushing stroller; 
child in stroller

OBJECTS: table top; window; chair; 
padding; table


RELATIONS: table top on table; 
chair next to table

a table with a table top, a 
window, a chair, and padding

in

stroller

child

Figure 9. Examples of image-text pairs we generate for our productivity evaluation. The image is the union of the objects bounding boxes in
the subgraphs. We also showcase the GPT-3 prompt associated with the subgraph and their corresponding generated ground-truth captions.

For examples of complexity n = 4, we found
that stringing together a simple templated prompt was
sufficient to produce fluent captions. This was done
by prepending attributes in front of objects and string-
ing together subjects, relations, and objects in the
correct order. For example, a subgraph contain-
ing boy=(tall,blue); grass=(green); (boy,
on, grass) would be templated as tall and blue
boy on green grass. Any disconnected atoms are ap-
pended with the prefix “and a.”

Table 4. Productivity ground truth captions’ faithfulness to their
paired images, split by caption complexity. Overall, the generated
captions’ faithfulness is stable and consistently high across different
complexities.

Complexity Avg faithfulness
n = 7 88.7± 10.8
n = 8 85.7± 7.0
n = 9 90.0± 6.0
n = 10 87.7± 9.3
n = 11 88.1± 7.8
n = 12 89.1± 2.9

Data verification. We manually verify the accuracy of our
produced productivity dataset. We provide a breakdown
of annotators’ scores for GPT-3 caption faithfulness across
complex subgraphs with n ≥ 7 in Table 4. We see that
scores are consistently high for ground-truth captions across
complexities.

A.4. Hard negative generation details

We provide additional detail for the procedure of gen-
erating a hard negative of types HN-SWAP and HN-NEG.
Suppose throughout that for a given image and its annotated
scene graph G, we seek to generate a hard negative caption
for caption t associated with the subgraph S ⊆ G.

HN-SWAP The following pairs of atoms could be
swapped to create a hard negative for S:

• The subject Ao and object A′
o of a relationship com-

pound Coro ∈ S.

• Two attributes Aa and A′
a attached to distinct objects

Ao, A′
o, such that one attribute is not present for the

other object in G and vice versa. ((Aa, A
′
o) ̸∈ G and

(A′
a, Ao) ̸∈ G).

• Two objects Ao, A′
o not connected by a relationship

such that their swapping within G does not create an
identical graph.

Additionally, some swap hard negatives generated are per-
mutations rather than a swapped pair:

• One attribute Aa can be transferred from one object Ao

to another object A′
o, so long as that attribute doesn’t

apply to the new object ((Aa, A
′
o) /∈ G).

• For low complexities (n = 4), any permutation of
atoms of the same type are allowed. For example:
(“There is a dog on the bed and also a nightstand"
→ “There is a nightstand on the dog and also a bed")



HN-NEG We verify with G to ensure that negating an
atom results in an incorrect caption. If an attribute Aa con-
nected with Ao is negated, we ensure that there does not exist
an object of A′

o that doesn’t have an attribute Aa but shares
all the other attributes of Ao. For example, if we negate
“black" in “Black dog on a building", we ensure there doesn’t
exist another dog on the building that isn’t black. Similar
checks are performed for negating relationships and objects.
When a relationship Ar connecting Ao and A′

o is negated,
there cannot exist another identical subject and object pair
connected by a different relationship A′

r. When an object is
negated, there cannot exist any other object with the same
attributes and relationships.

A.5. Test dataset sizes, examples, and additional
verification

Table 5 expands on Table 1 from the main paper to pro-
vide a breakdown of the number of image-text pair per hard
negative type and, for productivity, for each sentence com-
plexity. We remark that DRAW

test , which contains only image-
ground-truth caption pairs, is a superset of the ground-truth
captions in DHN

test . This is because, for some ground truth
captions in DRAW

test , a sufficient number of hard negatives
to perform retrieval in DHN

test could not be generated. Ad-
ditionally, due to the prevalence of rare atoms, we could
only generate valid hard negatives for very few captions in
the UA split. Therefore, we omit the evaluation on the UA
split with hard negatives and focus on the analysis of results
between the SC and UC split, which is more interesting as
models have seen all the atoms in both splits. Table 6 sum-
marizes the text retrieval set size of each image query for
both Draw

test and DHN
test in our systematicity and productivity

evaluation. Figures 10 and 11 present examples of ground
truth captions and hard negative captions in our test datasets
for systematicity and productivity, respectively.

We provide a breakdown of annotators’ scores for the
accuracy of productivity hard negatives in Table 7. A hard
negative caption is accurate if it contains incorrect facts
about the image. We find that the accuracy and pairwise
agreement of the HN-ATOM is the highest and much higher
than those of HN-SWAP and HN-NEG.

A.6. Systematicity hard negative dataset details

Table 8 summarizes the number of unique atoms and
compounds in the SC and UC split of the systematicity hard
negative set. Additionally, we plot the atom count in the
systematicity test set vs. the training set (on a log scale).
As shown in Figure 12, we see that the atom count in the
training set is always on the same scale across both splits for
the same training dataset (x-axis in each row). We further
observe that the atom distributions are similar in the SC and
UC splits. These suggest that the atoms appearing in the
UC split are not substantially rarer or more difficult than the

ones in the SC split.

B. Additional evaluation results
B.1. Full retrieval results on hard negative datasets

Systematicity We additionally include the full retrieval
results on DHN

test with both HN-ATOM and HN-COMP, HN-
ATOM only and HN-COMP only in Tables 9, 10 and 11. We
note that as we relax the metric from R@1 to R@3, the
difference between models’ performance in the SC and UC
split decreases.

Productivity We report the full retrieval results on produc-
tivity DHN

test sets in Tables 12, 14 and 13.

B.2. Retrieval results on raw datasets

In addition to DHN
test retrieval experiments, we perform

retrieval experiments with DRAW
test .

We perform both image-to-text and text-to-image retrieval
within splits of DRAW

test . Each retrieval task is between one
image and every caption in the split, or vice versa. We report
the mean and standard deviation of Recall@1 across K-
fold retrievals (where K = min(20, ⌊ |DRAW

test |
N ⌋), and N =

min{|SC|, |UC|, |UA|} = 1855 for systematicity and N =

minn∈{4...12} |DRAW,n
test | = 1508 for productivity), as the

data size varies across compositional splits and complexities.

Systematicity We present the systematicity retrieval re-
sults on Draw

test in Table 15, where each retrieval set for an
image consists of the captions of the other images. We con-
tinue to observe a monotonic decrease in performance when
compounds are unseen. Additionally, we continue to observe
a drop in performance for larger training datasets. In particu-
lar, we see a similar drop in performance for LAION-trained
models across both the image-to-text and text-to-image tasks.
We also observe larger drops on LAION-trained models than
for DHN

test when moving across the SC → UC, and across
UC → UA splits, with LAION models dropping as much
as 13% for ViT-L/14.

Productivity We additionally present the productivity re-
trieval results on Draw

test in Table 16. We observe that models’
Recall@1 generally increases as the caption complexity in-
creases. We hypothesize that models’ low performance in
the low-complexity subset is caused by false negatives in
the original dataset: since the captions are simple and likely
true for multiple images, there are multiple false negatives
in the retrieval set, making these numbers unreliable. As
the captions become more complex, however, the chance of
such false negatives is lower. This means there are more true
negatives in the higher-complexity subsets, making retrieval
easier for these models.



Table 5. We report the ground truth caption counts in Draw
test and hard negative counts in DHN

tests for systematicity and productivity, separated
by hard negative type and split.

Systematicity Productivity

Split Ground Truth HN-ATOM HN-COMP Split Ground Truth HN-ATOM HN-SWAP HN-NEG

CC-12M SC 262,541 104,024 156,036 n = 4 1,508 6,290 135 2,510
CC-12M UC 113,659 14,348 21,522 n = 5 1,734 7,270 180 3,425
CC-12M UA 9,577 - - n = 6 1,905 9,025 1,310 6,565
YFCC SC 194,502 75,948 113,922 n = 7 2,171 10,410 2,525 7,845
YFCC UC 172,469 39,204 58,806 n = 8 2,247 11,205 4,955 10,210
YFCC UA 18,806 - - n = 9 1,969 9,485 4,420 8,310
LAION SC 170,253 62,884 94,326 n = 10 2,246 11,325 6,465 10,460
LAION UC 201,595 49,604 74,406 n = 11 1,895 8,620 5,380 7,925
LAION UA 1,855 - - n = 12 1,878 10,005 7,890 9,710

Systematicity

CC-12M Ground truth captions Hard negatives

Seen

compounds

a purple umbrella HN-ATOM: a purple 
HN-COMP: a purple  umbrella

awning 
 marquee and blue

Unseen

compounds

sidewalk next to black train HN-ATOM: sidewalk next to black 
HN-COMP: sidewalk next to black  train

sedan 
bus and brown

Unseen

atoms

green bushes next to pole No hard negatives for unseen atoms.

LAION-400M

Seen

compounds

dirty fork HN-ATOM: dirty 
HN-COMP: dirty fork

spoon 
china and clean 

Unseen

compounds

hat on the man.
 HN-ATOM:  on the man 
HN-COMP: hat on  man

swimsuit
 lamb and hat off

Unseen

atoms

mauve colored food tray No hard negatives for unseen atoms.

YFCC-15M

Seen

compounds

the two dogs on the chair HN-ATOM: the two  on the chair 
HN-COMP: wolf  chair

panda
on chair and dogs off

Unseen

compounds

purple couch HN-ATOM: purple 
HN-COMP: purple  couch

desk 
booth and green

Unseen

atoms

green and white stripe wallpaper No hard negatives for unseen atoms.

Figure 10. A sample of image-caption pairs in the systematicity retrieval sets. One ground truth caption is shown for each split of each
training dataset, each of which lie in both DRAW

test and DHN
test . Additionally, one example of each hard negative type is shown for each ground

truth caption.

B.3. Retrieval results with all hard negatives at once

Productivity We present models’ retrieval performances
over the whole productivity DHN

test dataset, where each re-
trieval set contains one ground truth caption and fifteen hard
negatives, five for each of the three types HN-ATOM, HN-
SWAP and HN-NEG. We find in Figure 13 that models’

Recall@1 performance decreases with complexity, which
aligns with the findings on the separate retrieval sets for
HN-ATOM, HN-SWAP and HN-NEG.



Productivity Ground truth captions Hard negatives

n = 4 speaker beside pope. there is a stand HN-ATOM: speaker beside . There is a stand.

HN-SWAP:  besides . there is a stand 
HN-NEG:  speaker beside pope. 

mistress
pope speaker

there is no

n = 5 tree on a sidewalk next to a meter HN-ATO�

� tree on a  next to a mete�
�  on a sidewalk next to a meter

catwalk
pineapple

HN-SWA�

�  on a  next to a 
�  on a  next to a 

meter tree sidewal�
meter sidewalk tree

HN-NE�

� there is  on a sidewalk next to a mete�
� tree  a sidewalk next to a meter

no tree
not on

n = 6 a dog behind a surfboard and water with 
splashes

HN-ATOM: a dog behind a  and water with splashes

HN-SWAP:  a  behind a  and water with splashes

HN-NEG: a dog behind  and water with splashes


foil
surfboard dog

an object which is not a surfboard

n = 7 chairs in a row with umbrellas above them; 
there are also tables and chairs

HN-ATOM: chairs in a row with umbrellas  them; there are also tables and chairs

HN-SWAP: chairs in a  with umbrellas above them; there are also  and chairs

HN-NEG: chairs in a row with umbrellas  them; there are also tables and chairs

below
tables row

not above

n = 8 a person wearing a cap and another 
person standing on the sidewalk, and 
another person on the sidewalk


HN-ATOM: a person wearing a  and another person standing on the sidewalk, and another 
person on the sidewalk

HN-SWAP: a person wearing a  and another person standing on the , and another person 
on the sidewalk

HN-NEG: a person wearing a cap and another person standing  the sidewalk, and another 
person on the sidewalk

coverall

sidewalk cap

not on

n = 9 a laptop and paper on a table. a man is 
standing by the table with his hands on it.

HN-ATOM: a laptop and paper on a . a man is standing by the table with his hands on it

HN-SWAP: a laptop and paper on a . a man is standing by the  with his  on it.

HN-NEG: a laptop and paper on a table. a man is  by the table with his hands on it


matrix
hands hands table

not standing

n = 10 a black chair with wheels in front of a desk, 
with a laptop and lamp on it

HN-ATOM: a black chair with wheels in front of a , with a laptop and lamp on it

HN-SWAP: a black chair with  in front of a , with a laptop and lamp on it

HN-NEG: a black chair with wheels  of a desk, with a laptop and lamp on it

console
desk wheels

not in front

n = 11 a cardboard under a pan, and a deep dish 
pizza in the pan. the pan is filled with the 
deep dish pizza and there is a spatula in the 
deep dish pizza.


HN-ATOM: A cardboard under a pan, and a deep dish pizza  the pan. the pan is filled with the deep dish 
pizza and there is a spatula not in the deep dish pizza.


HN-SWAP: a  under a , and a deep dish pizza in the pan. the pan is filled with the deep dish pizza 
and there is a spatula in the deep dish pizza.


HN-NEG: a cardboard under a pan, and a deep dish pizza in the pan. the pan is filled with the deep dish pizza 
and there is an  in the deep dish pizza.

not in

pan cardboard

 object that is not a spatula

n = 12 stand with handles and advertisements, 
with a tv resting on top of three drawers. 
the surface of the tv has a reflection, and 
there is a sign on top of the stand.

HN-ATO�

� stand with handles and advertisements, with a tv resting on top of three drawers. The surface of the tv has 
a , and there is a sign on top of the stand�

�  with handles and advertisements, with a tv resting on top of three drawers. the surface of the tv has a 
reflection, and there is a sign on top of the stand

rendering
wing

HN-SWA�

�  with handles and advertisements, with a tv resting on top of three drawers. the surface of the tv has a 
reflection, and there is a  on top of the �

� stand with handles and , with a tv resting on top of three drawers. the surface of the tv has a 
, and there is a sign on top of the stand.

sign
stand sign

reflection
advertisements

HN-NE�

�  with handles and advertisements, with a tv resting on top of three drawers. 
the surface of the tv  has a reflection, and there is a sign on top of the an object which is not a stand.',�

� stand with handles and advertisements, with a tv  top of three drawers. the surface of the tv 
has a reflection, and there is a sign on top of the stand

an object which is not a stand

not resting on

Figure 11. A sample of image-caption pairs in the productivity retrieval sets. One ground truth (GT) caption is shown for each complexity
n. These GT captions lie in both DRAW

test and DHN
test . One example of each hard negative type is shown for each GT caption. For two

highlighted example captions (n = 5, 12), we show 2 hard negatives per type for comprehensiveness.

Table 6. We summarize the retrieval set sizes for both DHN
test and

DRaw
test in our systematicity and productivity evaluation.

Retrieval set size DHN
test DRAW

test

Systematicity HN-ATOM HN-COMP —
5 7 1,855

Productivity HN-ATOM HN-SWAP HN-NEG —
6 6 6 1,508

Table 7. Accuracy of our generated hard negatives for productivity,
split by type, in our data verification. While HN-ATOM atoms
receive strong human evaluation scores, we find that HN-SWAP

and HN-NEG negatives are noisier.

Type Acc. mean ± std Pairwise agreement
HN-ATOM 91.6± 4.2 83.1
HN-SWAP 70.1± 9.1 58.5
HN-NEG 72.4± 0.0 59.5



Figure 12. We plot the atom count in training vs. in the systematicity hard negative test set. We observe that the atoms in the SC and UC test
splits have similar counts in the training dataset.

B.4. Qualitative analysis on systematicity evalua-
tion

We perform a qualitative analysis to better understand
why the LAION-400M trained models ViT-B-16 and ViT-L-
14 show a large versus small performance drop from the Seen
to Unseen Compounds split respectively. Table 17 presents

examples where both ViT-B-16 and ViT-L-14 retrieve the
correct caption successfully in the SC split and where VT-B-
16 fails in the UC split. Through this analysis, we find that
the SC split for LAION-400M trained models is dominated
by simple two-atom examples such as “purple couch”. The
UC split, however, contains more complex examples that
involve relationships such as “curtains on the window”. In



Table 8. We summarize the unique atom and compound counts in
the SC and UC split of the systematicity hard negative set.

SC UC
Train dataset Atom (seen) Comp (seen) Atom (seen) Comp (unseen)
CC12M 3,348 26,006 946 3,587
YFCC 3,173 18,987 1,405 9,801
LAION 2,968 12,401 1,951 15,721

Figure 13. Productivity Analysis on Hard Negatives of All Types.
We plot models’ Recall@1 on the overall hard negatives retrieval set
against complexity, where each retrieval set contains hard negatives
of all types. We find that models’ ability to correctly retrieve the
ground-truth caption drops as complexity increases.

particular, we find that the ViT-B-16 model struggles with
the relationship “on” and often retrieves a wrong caption
where “on” is replaced with “off” or where the object is re-
placed with an atomic foil. For example, ViT-B-16 retrieves
“plants on bob and plants off building” incorrectly when the
groundtruth caption is “plants on a building”. Nevertheless,
the rank of the groundtruth caption is often still within the
top three. This explains the narrower gap in ViT-B-16’ Re-
call@3 between Seen Compounds and Unseen Compounds.
On the other hand, we see that ViT-L-14 continues to retrieve
the correct caption even on the more challenging Unseen
Compounds split, suggesting that a larger model size could
improve compositional systematicity.

C. Additional Related Work
Evaluating learned representations By analyzing the prop-
erties of pretrained representations, our work continues a
tradition of research in Computer Vision [19,49,57,58,71,90]
and Natural Language Processing [26, 36, 66, 70, 86, 92] that
probes characteristics of representations themselves rather
than their performance on downstream tasks. Instead of
learning probes, we use retrieval for zero-shot evaluation in
order to avoid scenarios where the learned probe compen-
sates for the characteristics deficient in the original represen-
tations [4, 9, 27, 44, 99].



Table 9. Systematicity HN-ATOM + HN-COMP Dataset Analysis. We report Recall@1,3,5 and Avg R@K results for all models on the
DHN

test hard-negative datasets with both HN-ATOM + HN-COMP. Model performance decreases from the Seen all compounds (SC) to the
Unseen Compounds (UC) split, particularly for LAION-400M models.

Training dataset Model
R@1 R@3 Avg R@K

SC UC SC UC SC UC

Random 9.09 9.09 27.27 27.27 18.18 18.18

Image-to-text

CC12M RN50 23.26 19.96 62.44 59.52 42.85 39.74

YFCC15M
RN50 23.38 20.08 60.09 56.61 41.74 38.34
RN101 22.74 20.50 59.15 57.59 40.94 39.04

LAION400M

ViT-B-32 34.28 28.00 70.74 68.74 52.51 48.37
ViT-B-16 37.01 30.81 73.92 72.85 55.46 51.83
ViT-B-16+240 37.32 32.26 75.03 73.46 56.17 52.86
ViT-L-14 39.44 33.81 74.31 73.47 56.87 53.64

Table 10. Systematicity HN-ATOM Dataset Analysis. We report Recall@1,3 and Avg R@K results for all models on the DHN
test subset

with HN-ATOM. Model performance decreases from the Seen Compounds (SC) to the Unseen Compounds (UC) split, particularly for
LAION-400M models.

Training dataset Model
R@1 R@3 Avg R@K

SC UC SC UC SC UC

Random 20.00 20.00 60.00 60.00 40.00 40.00

Image-to-text

CC12M RN50 39.26 34.88 88.81 88.10 64.04 61.49

YFCC15M
RN50 43.35 39.50 90.55 90.07 66.95 64.78
RN101 43.26 39.85 90.33 90.30 66.79 65.08

LAION400M

ViT-B-32 55.32 42.75 93.38 91.92 74.35 67.34
ViT-B-16 57.18 44.93 94.01 92.95 75.59 68.94
ViT-B-16+240 57.95 46.53 94.36 93.40 76.16 69.97
ViT-L-14 59.11 47.86 94.39 93.66 76.75 70.76

Table 11. Systematicity HN-COMP Dataset Analysis. We report Recall@1,3 and Avg R@K results for all models on the DHN
test subset with

HN-COMP. We observe little to no difference in performance between the SC and UC split.

Training dataset Model
R@1 R@3 Avg R@K

SC UC SC UC SC UC

Random 14.29 14.29 42.86 42.86 28.57 28.57

Image-to-text

CC12M RN50 48.02 45.27 80.24 79.59 64.13 62.43

YFCC15M
RN50 42.07 39.83 75.06 73.66 58.56 56.74
RN101 40.72 39.56 74.71 74.16 57.72 56.86

LAION400M

ViT-B-32 52.29 54.80 82.40 83.25 67.35 69.02
ViT-B-16 56.00 59.00 84.64 86.24 70.32 72.62
ViT-B-16+240 56.57 60.19 85.28 85.69 70.92 72.94
ViT-L-14 57.10 60.78 84.17 85.69 70.64 73.24



Table 12. Productivity HN-ATOM Dataset Analysis. We report mean Recall@1 results for all models across all complexities. We find that
models’ Recall@1 values decrease as caption complexity increases.

Training dataset Model 4 5 6 7 8 9 10 11 12

Random 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67

Image-to-text

CC-12M RN50 19.71 21.46 16.40 18.35 15.31 14.92 13.38 15.26 12.04

YFCC-15M
RN50 21.30 23.31 19.94 18.11 15.62 16.03 14.97 15.14 12.89
RN101 22.66 22.21 18.17 18.44 15.22 16.34 15.85 17.34 13.04

LAION-400M

ViT-B-32 23.21 21.25 19.06 18.59 16.15 13.92 15.76 15.49 12.84
ViT-B-16 23.13 22.83 19.89 21.09 18.65 15.92 16.42 17.00 13.39
ViT-B-16+240 29.73 23.31 21.72 21.81 18.38 18.08 17.62 18.39 14.89
ViT-L-14 28.54 25.10 21.55 24.06 19.81 18.61 17.88 18.68 15.44
CyCLIP RN50 18.20 15.13 15.24 14.46 11.91 11.12 11.70 11.95 8.35
FLAVA 29.17 16.23 14.13 15.08 14.46 14.55 14.88 15.72 14.79
ALBEF 38.71 32.94 27.87 27.76 26.51 25.94 25.92 27.03 24.34

CLIP’s dataset

RN50 26.79 26.41 21.83 21.09 18.38 19.40 17.40 19.14 15.49
RN101 28.46 26.34 22.22 22.33 18.56 19.14 19.16 18.56 17.94
ViT-B-32 28.70 23.31 21.33 19.79 18.61 18.13 17.66 18.10 16.69
ViT-B-16 30.68 26.41 23.93 23.15 19.19 19.19 18.76 20.19 16.44
ViT-L-14 31.00 28.47 22.71 22.48 19.01 21.09 18.01 19.14 18.24

Table 13. Productivity HN-SWAP Dataset Analysis. We report mean Recall@1 results for all models across all complexities. We find that
models’ Recall@1 values are near or even below random chance across all complexities.

Training dataset Model 4 5 6 7 8 9 10 11 12

Random 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67

Image-to-text

CC-12M RN50 7.41 19.44 9.92 12.87 12.61 13.12 13.53 14.87 12.93

YFCC-15M
RN50 11.11 16.67 14.50 15.25 13.32 14.14 10.75 13.48 13.88
RN101 25.93 30.56 8.40 12.67 11.81 11.76 12.30 13.85 13.69

LAION-400M

ViT-B-32 25.93 19.44 12.98 13.86 12.31 14.37 11.60 12.08 14.13
ViT-B-16 14.81 22.22 10.31 14.85 12.31 14.03 13.77 14.87 13.50
ViT-B-16+240 22.22 22.22 14.12 15.05 14.13 14.48 13.69 18.31 15.91
ViT-L-14 14.81 22.22 12.60 14.06 12.92 15.61 15.00 17.84 16.79
CyCLIP RN50 11.11 5.56 11.07 14.46 11.81 12.56 13.23 13.75 11.79
FLAVA 7.41 19.44 9.16 10.50 9.69 11.65 10.44 12.36 16.22
ALBEF 25.93 13.89 17.56 20.00 21.19 19.80 20.42 22.12 22.43

CLIP’s dataset

RN50 22.22 19.44 19.47 20.20 17.66 17.99 17.71 18.49 18.12
RN101 29.63 25.00 16.79 17.62 17.15 15.38 17.40 19.61 18.06
ViT-B-32 25.93 22.22 22.90 15.64 15.14 16.63 16.24 20.91 18.95
ViT-B-16 33.33 22.22 20.99 18.42 17.86 16.40 15.78 19.42 16.79
ViT-L-14 11.11 13.89 19.08 16.83 17.05 16.86 16.01 18.49 18.06



Table 14. Productivity HN-NEG Dataset Analysis. We report mean Recall@1 results for all models across all complexities. We find that
models’ Recall@1 values either stay near random chance or decrease as caption complexity increases except for some of OpenAI’s CLIP
models.

Training dataset Model 4 5 6 7 8 9 10 11 12

Random 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67 16.67

Image-to-text

CC-12M RN50 15.13 19.28 18.41 23.59 20.94 20.83 21.95 20.90 18.34

YFCC-15M
RN50 8.32 10.29 12.18 12.64 12.30 12.23 12.65 13.49 12.96
RN101 8.56 9.30 10.96 10.35 11.41 10.36 9.88 11.08 10.25

LAION-400M

ViT-B-32 23.53 18.75 18.08 21.01 20.50 21.88 21.32 20.78 21.36
ViT-B-16 24.80 26.91 23.47 23.89 25.67 25.88 24.59 25.54 26.98
ViT-B-16+240 23.53 28.20 26.36 29.12 28.83 27.03 28.30 30.30 27.49
ViT-L-14 30.35 29.04 26.14 29.92 28.48 27.41 28.70 30.72 29.60
CyCLIP RN50 16.24 12.65 15.35 14.39 13.19 12.77 13.23 12.77 13.27
FLAVA 16.16 13.72 16.52 12.29 11.54 14.42 20.25 16.81 12.86
ALBEF 75.83 45.12 43.55 44.05 47.28 48.19 46.45 47.71 40.05

CLIP’s dataset

RN50 14.10 34.83 37.10 41.76 41.18 40.90 39.61 40.06 31.41
RN101 8.72 12.88 15.57 14.73 15.91 18.20 17.34 20.66 25.83
ViT-B-32 15.85 30.56 34.09 35.99 38.99 40.13 39.87 41.33 38.94
ViT-B-16 7.13 26.22 28.64 32.11 33.16 31.41 34.29 36.51 31.56
ViT-L-14 13.79 26.91 26.36 23.05 22.37 24.07 24.05 27.17 24.92

Table 15. Systematicity Raw Dataset Analysis. We report mean Recall@1 results for all models across k-fold evaluations. Model performance
consistently decreases from Seen all Compounds (SC) to Unseen Compounds (UC) and from Unseen Compounds to Unseen Atoms (UA)
splits, particularly for LAION-400M models.

Training dataset Model SC UC UA

Random 0.05± 0.00 0.05± 0.00 0.05± 0.00

Image-to-text

CC-12M RN50 19.92± 0.94 17.82± 0.99 15.02± 0.85

YFCC-15M
RN50 16.30± 0.70 14.57± 0.69 12.80± 0.90

RN101 17.10± 0.90 15.58± 1.04 13.62± 0.84

LAION-400M

ViT-B-16 35.61± 0.92 30.04± 1.42 25.88± 0.00

ViT-B-16+240 36.80± 0.90 31.10± 1.37 26.25± 0.00

ViT-B-32 33.86± 0.97 29.00± 1.40 23.99± 0.00

ViT-L-14 38.24± 0.70 32.70± 1.30 26.42± 0.00

Text-to-image

CC-12M RN50 20.85± 0.98 18.15± 0.84 15.46± 1.10

YFCC-15M
RN50 15.60± 0.79 14.05± 0.84 12.17± 0.64

RN101 16.11± 0.84 14.47± 0.87 12.54± 0.66

LAION-400M

ViT-B-16 35.74± 0.76 29.58± 1.39 23.29± 0.00

ViT-B-16+240 37.25± 0.97 30.57± 1.33 24.26± 0.00

ViT-B-32 33.66± 1.03 29.00± 1.40 22.10± 0.00

ViT-L-14 38.69± 0.86 32.00± 0.90 25.61± 0.00



Table 16. Productivity Raw Dataset Analysis. We report mean Recall@1 results for all models across all complexities. We find that models’
Recall@1 increases as the caption complexity increases.

Training dataset Model 4 5 6 7 8 9 10 11 12

Random 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

Image-to-text

CC-12M RN50 13.19 14.23 16.20 19.02 21.17 19.26 22.70 24.29 25.77

YFCC-15M
RN50 9.08 10.92 12.09 14.23 14.17 15.40 14.54 16.75 19.02
RN101 11.10 11.47 11.90 14.60 15.34 16.50 16.99 18.90 20.67

LAION-400M

ViT-B-16 20.80 20.00 25.89 27.30 29.63 29.02 30.31 34.11 37.36
ViT-B-16+240 22.39 21.53 26.93 28.10 30.61 30.18 32.88 36.50 38.83
ViT-B-32 20.49 20.37 23.50 26.93 29.20 28.22 29.94 32.58 35.40
ViT-L-14 22.09 23.07 27.67 29.69 33.13 31.04 35.09 37.12 40.25

Text-to-image

CC-12M RN50 12.52 15.03 15.52 17.85 17.30 19.75 21.66 22.52 25.58

YFCC-15M
RN50 8.04 9.82 9.82 12.15 12.94 13.62 13.37 14.97 15.15
RN101 9.39 11.10 11.10 13.31 13.74 15.03 14.48 16.07 18.40

LAION-400M

ViT-B-16 18.16 19.26 23.62 24.85 27.85 27.79 28.77 31.53 33.93
ViT-B-16+240 18.96 20.67 25.46 26.13 28.83 29.02 31.41 32.88 37.24
ViT-B-32 17.55 18.65 22.21 23.50 26.20 26.13 27.36 28.83 32.21
ViT-L-14 19.88 20.43 24.97 26.63 30.37 30.00 32.76 34.42 36.99

Table 17. Systematicity Qualitative Analysis. We present examples where LAION-400M trained ViT-B-16 and ViT-L-14 both perform well
on the Seen Compounds (SC) split, and where ViT-B-16 performs poorly on the Unseen Compounds (UC) split.

ViT-B-16 ViT-L-14
Image GT caption R@1 Top 3 captions R@1 Top 3 captions

SC

purple couch 1
purple couch
purple altar and brown couch
purple commode and red couch

1
purple couch
purple altar and brown couch
purple desk and brown couch

a white parked car 1
a white parked car
a green parked car
a white bike

1
a white parked car
a green parked car
a orange parked car

a fully grown brown horse 1
a fully grown brown horse
a fully grown brown mule and red horse
a fully grown brown mule and yellow horse

1
a fully grown brown horse
a fully grown brown mule and red horse
a fully grown brown zebra and blue horse

UC

a cat on the sofa. 0
a cat on the console.
a cat on the sofa.
cat on counter and cat off sofa

1
a cat on the sofa.
a cat on the console.
badger on sofa and cat on console

boat on the water 0
boat on the polish
boat on the soda
boat on the water

1
boat on the water
boat on the lime
ship on water and boat on rubber

plants on a building 0
plants on bob and plants off building
plants on a building
court on building and plants off building

1
plants on a building
park on a building
billboard on building and plants off building
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