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Abstract

Despite the growing demand for tuning foundation vision
transformers (FViTs) on downstream tasks, fully unleash-
ing FViTs’ potential under data-limited scenarios (e.g., few-
shot tuning) remains a challenge due to FViTs’ data-hungry
nature. Common data augmentation techniques fall short
in this context due to the limited features contained in the
few-shot tuning data. To tackle this challenge, we first iden-
tify an opportunity for FViTs in few-shot tuning: pretrained
FViTs themselves have already learned highly representa-
tive features from large-scale pretraining data, which are
fully preserved during widely used parameter-efficient tun-
ing. We thus hypothesize that leveraging those learned fea-
tures to augment the tuning data can boost the effective-
ness of few-shot FViT tuning. To this end, we propose a
framework called Hint-based Data Augmentation (Hint-
Aug), which aims to boost FViT in few-shot tuning by aug-
menting the over-fitted parts of tuning samples with the
learned features of pretrained FViTs. Specifically, Hint-Aug
integrates two key enablers: (1) an Attentive Over-fitting
Detector (AOD) to detect over-confident patches of founda-
tion ViTs for potentially alleviating their over-fitting on the
few-shot tuning data and (2) a Confusion-based Feature
Infusion (CFI) module to infuse easy-to-confuse features
from the pretrained FViTs with the over-confident patches
detected by the above AOD in order to enhance the feature
diversity during tuning. Extensive experiments and ablation
studies on five datasets and three parameter-efficient tuning
techniques consistently validate Hint-Aug’s effectiveness:
0.04% ∼ 32.91% higher accuracy over the state-of-the-art
(SOTA) data augmentation method under various low-shot
settings. For example, on the Pet dataset, Hint-Aug achieves
a 2.22% higher accuracy with 50% less training data over
SOTA data augmentation methods.

1. Introduction
Foundation vision transformers (FViTs) [16, 41, 54, 55,

64] with billions of floating point operations (FLOPs) and
parameters have recently demonstrated significant poten-

tial in various downstream tasks [40, 41]. The success of
FViTs has ushered in a new paradigm in deep learning:
pretraining-then-tuning [16, 40, 67], which first pretrains an
FViT on a large-scale dataset, then uses recently developed
parameter-efficient tuning methods (e.g., visual prompt tun-
ing (VPT) [34], visual prompting [2], LoRA [33], and
Adapter [72]) to tune pretrained FViTs on downstream tasks
with limited tuning data. However, although it is highly de-
sirable, effectively tuning pretrained FViTs for real-world
applications, especially under few-shot tuning scenarios, re-
mains a particularly challenging task. The reason is that al-
though parameter-efficient tuning methods are dedicatedly
designed for FViTs and can alleviate the overfitting issue by
reducing the number of trainable parameters [2, 34, 72], the
data-hungry nature of FViTs [16, 54] is not mitigated and
thus the achievable accuracy under data-limited scenarios
(e.g., few-shot tuning scenarios) are still limited. Therefore,
how to effectively tune pretrained FViTs on various down-
stream tasks with few-shot tuning is still an open question.

To enhance the effectiveness of parameter-efficient FViT
tuning under few-shot settings, one promising direction is to
leverage data augmentation techniques to increase the data
diversity and thus the feature diversity of the models when
being tuned on few-shot data, boosting the achievable accu-
racy [12, 31, 68, 71]. Nevertheless, it has been shown that
existing data augmentation techniques fall short in boost-
ing the model accuracy under few-shot tuning scenarios.
This is because most of the existing data augmentation tech-
niques are random-based (e.g., RandAugment [13], Au-
toAugment [12], color jitter, mixup [71], and cutmix [68]),
which only randomly permute existing features in the train-
ing data and thus cannot generate new and meaningful
features [63]. As illustrated in Fig. 1, we observe that
neither the widely-used random-based data augmentation
techniques (i.e., a dedicated combination of techniques in-
cluding RandAugment [13], color jitter, and random eras-
ing [74] as in [72]) nor training without data augmentation
can consistently achieve a satisfactory accuracy across dif-

†Our code is available at https://github.com/GATECH-
EIC/Hint-Aug
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Figure 1. The normalized achieved accuracies when few-shot tun-
ing the ViT-base model [16] on various datasets and numbers of
tuning shots using (1) vanilla training without augmentation (i.e.,
No-Aug), (2) the SOTA parameter-efficient tuning technique [72]
(i.e., NPS), and (3) our proposed Hint-Aug.

ferent datasets under few-shot tuning. Specifically, when
being applied to fine-grained classification tasks, e.g., the
Aircraft dataset [45], these random-based data augmenta-
tion techniques actually hurt the achievable accuracy. The
reason is that random-based data augmentation techniques
can easily create out-of-manifold samples [68, 71], espe-
cially on commonly used fine-grained datasets. Such out-
of-manifold samples can largely degrade the achievable ac-
curacy given the limited number of training samples under
few-shot tuning scenarios [27]. Therefore, it is crucial to
develop data augmentation techniques that can adaptively
augment the given training samples with diverse, but still
within-manifold, features to boost the effectiveness of tun-
ing FViTs on various downstream tasks.

This work sets out to close the increasing gap be-
tween the growing demand for effective few-shot FViT tun-
ing and the unsatisfactory achievable accuracy by exist-
ing techniques. In particular, we identify that in few-shot
parameter-efficient tuning, the pretrained FViTs’ weights
are fixed during tuning. Meanwhile, existing works have
shown that (1) pretrained transformer models have already
learned complex but generalizable features [16, 41, 54] and
(2) gradient-based methods can extract the learned features
from pretrained models and then add them to the input
images [44, 46]. Therefore, we hypothesize that FViTs’
few-shot tuning accuracies can be non-trivially improved
by leveraging the learned features in the pretrained FViTs.
Specifically, we make the following contributions:

• We propose a framework called Hint-based Data
Augmentation (Hint-Aug), which is dedicated to boosting
the achievable accuracy of FViTs under few-shot tuning
scenarios by leveraging the learned features of pretrained
FViTs to guide the data augmentation strategy used for the

training dataset in an input-adaptive manner.

• Our Hint-Aug framework integrates two enablers: (1) an
Attentive Over-fitting Detector (AOD) to identify the over-
fitting samples and patches in the given training dataset by
making use of the attention maps of pretrained FViTs and
(2) a Confusion-based Feature Infusion (CFI) module to
adaptively infuse pretrained FViTs’ learned features into
the training data to better tuning those models on down-
stream tasks, alleviating the commonly recognized chal-
lenge of having limited features under few-shot tuning.

• Extensive experiments and ablation studies on five datasets
and three parameter-efficient tuning techniques consis-
tently validate the effectiveness of our proposed Hint-Aug
framework, which achieves a 0.04% ∼ 32.91% higher
accuracy over state-of-the-art (SOTA) data augmentation
methods [72] across different datasets and few-shot set-
tings. For example, on the Pets dataset, Hint-Aug achieves
a 2.22% higher accuracy with 50% less training data com-
pared with the SOTA augmentation method.

2. Related Works

2.1. FViTs

Inspired by the recent success of vision transformers
(ViTs), one of the most notable directions in ViTs is to scale
up ViTs’ model size to build FViTs, aiming to replicate the
success of large-scale neural language processing founda-
tion models [15, 19, 50] in the field of computer vision [16,
40, 67]. Existing efforts in developing FViTs mainly fall
into two categories: (1) exploring how to scale up ViTs’
architectures to construct powerful FViTs [40, 69, 75]; (2)
developing self-supervised pretraining techniques to train
FViTs so that their learned representations can be more ef-
fectively generalized to downstream tasks [4, 7, 17, 30, 36].

Unlike conventional convolutional neural networks
(CNNs), FViTs extensively use the self-attention mech-
anism to extract global features, resulting in improved
task accuracy with larger models (e.g., over 10G FLOPs).
Specifically, in ViTs, a series of N input image patches
X = [x1, · · · , xN ]⊤ ∈ RN×D, where D is the embedding
dimension, is sequentially processed by ViT blocks. In each
block, the input is first converted into queries Q ∈ RN×d,
keys K ∈ RN×d and values V ∈ RN×d (d denotes the hid-
den dimension) via linear projection, followed by the com-
putation of the self-attention, which is calculated as:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (1)

The outputs are then fed into a feed-forward network to
extract information in the channel dimension.



2.2. Parameter-efficient Tuning

Motivated by the impressive pretraining performance
of FViTs on large-scale datasets, there has been a grow-
ing interest in applying FViTs to real-world applications.
The common solution follows the pretraining-then-tuning
paradigm, which tunes pretrained FViTs on various down-
stream tasks based on the corresponding applications’
needs. However, with conventional weight tuning, each
task would need to store an additional set of model weights,
which can lead to cumbersome and prohibitive storage over-
head. To this end, various parameter-efficient tuning meth-
ods have been proposed [2,33,53,72]. In parameter-efficient
tuning, a set of tiny learnable modules are added to the pre-
trained FViTs, while the weights of the backbone FViTs
remain unchanged during tuning [32–34]. This approach
offers two benefits: (1) it allows FViTs to be tuned on
new downstream tasks with negligible additional parame-
ters, and (2) the pretrained FViTs can be easily retrieved at
any time by simply removing the added parameter-efficient
tuning modules.

Among recent parameter-efficient tuning techniques,
LoRA [33] proposes to learn a set of low-rank weights and
apply them on top of the backbone weights, and VPT [34]
proposes to use the idea of prompt tuning, inserting a set of
task-specific prompts as additional tokens. More recently,
NPS [72] proposes to search for the optimal combination of
parameter-efficient tuning techniques and their correspond-
ing hyperparameters through neural architecture search.

2.3. Few-shot Tuning

Few-shot tuning aims to tune pretrained models on new
tasks with limited samples per class [18, 21, 28, 39, 42]. It
has gained increasing attention in recent years [59] as high-
quality data is scarce in many real-world applications [3].
Recently, a few pioneering works that target few-shot tun-
ing for ViTs propose to customize meta-learning tasks and
learning objectives under the guidance of self-attention
modules [8, 10, 38, 61, 65]. In this paper, we aim to en-
hance FViTs’ few-shot tuning accuracy from an orthogonal
direction, i.e., adaptively augmenting the few-shot tuning
samples to compensate for their lack of diverse features.

2.4. Data Augmentation

Data augmentation aims to enhance data diversity and
thus the feature diversity of the models [9, 11, 24, 31,
49, 60, 68, 71, 74]. An effective data augmentation strat-
egy should properly enhance data diversity, while simul-
taneously avoiding the generation of out-of-manifold data
caused by excessive augmentation intensity [57, 71]. Al-
though various data augmentation techniques have been
proposed, how to effectively augment the data under few-
shot tuning settings is still an open question. The limited
data diversity in few-shot data calls for techniques that can

generate novel but meaningful features [62,63]. To this end,
most existing few-shot data augmentation techniques adopt
generative models to generate in-domain data, which, how-
ever, further increase the memory and storage overhead of
tuning FViTs [23, 29, 37, 43].

One potential way to alleviate the aforementioned chal-
lenges is to use adversarial techniques to generate samples
with beneficial features [20, 51, 59]. However, the major-
ity of these works focus on improving adversarial robust-
ness instead of the clean accuracy [20, 26, 51, 59, 70, 73].
In contrast, our work explores the opportunities of leverag-
ing adversarial training to generate beneficial features that
can boost the clean accuracy during few-shot parameter-
efficient tuning.

3. The Proposed Hint-Aug Framework

3.1. Hint-Aug: Motivation

We first identify that the characteristics of parameter-
efficient tuning together with pretrained FViTs provide a
unique opportunity for FViTs’ parameter-efficient tuning.
Based on this observation, we then propose our Hint-Aug
framework, which utilizes these characteristics to enhance
the tuning effectiveness. We describe each of the character-
istics in detail below:

Characteristics of parameter-efficient tuning: As
mentioned in Sec. 2.1 and Sec. 2.2, the weights of pre-
trained FViTs are fixed during tuning. Therefore, the
tuned FViTs behave the same as their pretrained counter-
part after the added tuning modules (e.g., those adopted in
Adapter [32], VPT [34], and LoRA [33]) are removed [72].
This motivates us to consider whether we can make use of
this characteristic to improve the achievable few-shot tuning
accuracy by leveraging the pretrained FViTs.

Characteristics of pretrained FViTs: Existing works
have shown that pretrained FViTs have two promising char-
acteristics regarding their learned features: (1) pretrained
FViTs can identify complex but meaningful features [16,
41], even on unseen datasets without tuning [6, 30, 36];
(2) the learned features in FViTs can be reversely pro-
jected to the input image space using gradient-based meth-
ods [22, 44, 46].

Given the aforementioned characteristics of both
parameter-efficient tuning and pretrained FViTs, we hy-
pothesize that these characteristics provide a unique oppor-
tunity to effectively leverage the pretrained FViTs to aug-
ment the few-shot tuning data. To validate our hypothesis,
we aim to explore proper ways to leverage the learned fea-
tures in pretrained FViTs to boost the effectiveness of few-
shot tuning. Specifically, given the two commonly recog-
nized major challenges of few-shot tuning, which are over-
fitting [1, 58] and the lack of data diversity in the tuning
data [62, 63], we set out to answer the following questions:
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Figure 2. An overview of our proposed Hint-Aug framework, which consists of two enablers: (1) an AOD to detect whether the current
sample is prone to over-fitting and which patch is prone to over-fitting, and (2) a CFI to infuse easy-to-confuse features to the over-fitted
patches detected by the aformentioned AOD to increase the feature diversity of the tuning data and thus alleviate the over-fitting issue.
In the figure, PET represents the parameter-efficient tuning module (e.g., Adapter [32], VPT [34], and LoRA [33]) added on top of the
pretrained FViTs.

Q1 - Can pretrained FViTs detect the potential over-fitting
issue during few-shot tuning? and Q2 - Can we leverage
pretrained FViTs to generate meaningful features for en-
hancing the data diversity? Our proposed Hint-Aug frame-
work provides an effective solution to these two questions.

3.2. Hint-Aug: Overview

We first give an overview of our proposed Hint-Aug
framework, which is dedicatedly designed for few-shot
parameter-efficient tuning of FViTs by leveraging the
characteristic of parameter-efficient tuning that pretrained
FViTs’ weights are not updated during tuning, allowing the
features learned in pretrained FViTs to be utilized to aug-
ment the tuning data. As shown in Fig. 2, Hint-Aug adopts
a two-stage detect-then-augment pipeline. In particular, to
answer the above Q1, Hint-Aug uses AOD to detect (1)
whether the tuned FViT is over-fitted on this image and (2)
which patch in the image is more prone to be over-fitted;
To address Q2, Hint-Aug further augments the patch de-
tected from AOD by infusing the easy-to-confuse features
with our proposed CFI module. We introduce our AOD and
CFI modules in Sec. 3.3 and Sec. 3.4, respectively.

3.3. Enabler 1: Attentive Over-fitting Detector

Over-fitting is a well-known issue in few-shot tuning sce-
narios [37, 62], and becomes even more severe due to the
combination of larger model size and limited data size dur-
ing few-shot FViT tuning. Therefore, our AOD aims to
explore whether we can detect the underlying over-fitting
issue for each tuning sample on-the-fly during parameter-
efficient tuning of FViTs.

Inspired by the various visualizations showing FViTs’ at-
tention distributions in previous works [22, 30, 52, 66], we
hypothesize that the evolution of attention distributions dur-
ing the tuning process contains hidden traces for identifying

the existence of over-fitting. To validate this hypothesis,
we utilize an attention-score map to quantify the impact of
each input image patch on the FViT’s attention distribution.
Specifically, an attention-score map is constructed with the
attention-score corresponding to each patch of the input im-
age and we define the attention-score as follows: given the
attention distribution [a

(l,h,i)
1 , · · · , a(l,h,i)N ] for the i-th patch

of the h-th head in the l-th layer, the attention-score s
(l,k)
j

of the j-th patch for the k-th query patch is defined as:

s
(l,k)
j =

∑
h

a
(l,h,k)
j (2)

For the sake of simplicity, we omit the superscript l and k
in the following text.

By visualizing the attention-score at different stages of
tuning, as shown in Fig. 3, we can draw two observations:
(1) the attention-score map of the pretrained FViT itself (see
Fig. 3(a)) shares a high correlation with that of the half-
tuned FViT model (see Fig. 3(b)), and a relatively higher
tuning accuracy (e.g., 64.37%) suggests that the over-fitting
issue is not severe at the corresponding tuning stage; (2) the
attention-score map at the end of tuning (see Fig. 3(c)) fo-
cuses more on certain patches (marked in red) that are not
focused on by the pretrained FViT, and a lower tuning accu-
racy (e.g., 61.55%) indicates the existence of the over-fitting
issue. Additionally, we observe that patches with a newly
attracted higher attention-score (marked in red) do not con-
tain human-readable information for identification. For ex-
ample, some patches only consist of a black background
that does not contribute to identifying the target class, e.g., a
cheese plate. This finding suggests that these patches could
be the reason for over-fitting.

Based on the observations above, we propose an AOD
module to use the attention-score map difference between
the pretrained FViT and the corresponding one being tuned



Input Image (a)

(b) Accuracy: 64.37% (c) Accuracy: 61.59%

Figure 3. Visualization of the attention-score map from the (a) pre-
trained foundation model, called ViT-base, (b) parameter-efficient
tuned ViT-base model with 20% of the total tuning epochs, achiev-
ing an accuracy of 64.37%, and (c) parameter-efficient tuned ViT-
base model with an accuracy of 61.55%.

to identify both the existence of over-fitting and which
patch contributes most to the over-fitting issue. Specifi-
cally, given the attention-score maps SP = [sP1 , · · · , sPN ]
generated from the pretrained FViT (denoted as P ) and
ST = [sT1 , · · · , sTN ] generated from the FViT model to be
tuned (denoted as T ), we define the over-fitting indicator as:

I =

{
0,

∑
i ∥sPi − sTi ∥ < λ

∑
i ∥sPi ∥

1, otherwise (3)

where λ is a hyperparameter to control the sensitivity of
over-fitting detection.

When over-fitting occurs (i.e., I = 1), we select the
patch that significantly changes the attention-score map as
the target patch to be augmented in order to alleviate the
over-fitting issue. Thus, we select the patch p to augment,
where p is defined by:

p = argmax
i

(∥sPi − sTi ∥) (4)

Otherwise, when there is no detected over-fitting issue,
we select the patch p with the highest attention-score as the
target patch to be augmented from all patches in the corre-
sponding image.

3.4. Enabler 2: Confusion-based Feature Infusion

With the selected over-fitted patch detected by the AOD
above, the remaining question is how to augment the se-
lected patch with meaningful features to (1) alleviate the
over-fitting issue and (2) increase the diversity of tuning
data with meaningful features. Therefore, we propose CFI
that uses adversarial attack-based methods to extract the
learned features from the pretrained FViT model and infuse

them into the selected patch with the aim of improving the
feature diversity in a meaningful way, thus alleviating the
over-fitting issue.

However, achieving a meaningful feature extraction and
infusion that can help boost the few-shot tuning accuracy
is non-trivial. Naively augmenting samples with commonly
used attack objectives (e.g., perturbing the image to reduce
the value of the model’s output logit on the correct class)
can easily lead to out-of-manifold samples, as shown in our
alation study in Sec. 4.3.2. To overcome this, the CFI mod-
ule incorporates injected features to steer the model predic-
tion towards a synthetic target label. This target label is
determined by utilizing a confusion matrix, which quanti-
fies the degree to which the model is prone to confusion
between pairs of classes.

Specifically, we construct a confusion matrix C ∈
RM×M

≥0 in CFI, where M is the total number of classes.
As shown in a recent study on open set detection [56], a
pre-softmax model output has a better ability to preserve a
model’s uncertainty of samples. We thus define C as fol-
lows:

Ci,j =
∑

X:y(X)=j

(
fi(X)−min

i′
fi′(X)

)
(5)

where i and j are coordinates in C that represent two
classes; y and f ∈ RM are the ground truth label and pre-
softmax output given the input image X . The generated
confusion matrix C helps to identify the class-wise similar-
ity learned by the model and distinguish the class pairs that
are easy to be confused by the model.

To infuse the easy-to-confuse features to the patch, given
input X with label y, we propose to design the attack label
f̃(X) ∈ RM

≥0 where the i-th element is computed as:

f̃i(X) =

{
Ci,y∑

j Cj,y−Cy,y
, i ̸= y

0, i = y
(6)

The loss function is defined as

Ltar = CrossEntropy(softmax(f), softmax(f̃)) (7)

By optimizing the patch to minimize the above loss, the
generated features are further shifted towards the direction
where the model considers an easy-to-confuse class from
the current class. This shift allows the model to learn to dif-
ferentiate between the current class and the easy-to-confuse
class, effectively extending the decision boundary of the
current class.

4. Experimental Results
4.1. Experimental Setup

Datasets, few-shot settings, models, and parameter-
efficient tuning techniques. Datasets and few-shot



settings. We adopt five commonly-used datasets for few-
shot tuning, including Food [5], Pet [48], Cars [35], Flow-
ers [34], and Aircraft [45], and benchmark our Hint-Aug
under 1/2/4/8/12/16-shot scenarios to provide a thorough
evaluation of its achieved accuracy across different few-shot
tuning scenarios. Models. We conduct our experiment on
a widely used FViT model, i.e., ViT-Base [16]. Adopted
parameter-efficient tuning methods. We consider three most
widely used parameter-efficient tuning methods including
Adapter [32], LoRA [33], and VPT [34].

Baselines. We benchmark our proposed Hint-Aug
against two baselines, including the SOTA data augmen-
tation technique for parameter-efficient FViT tuning intro-
duced in [72] (denoted as NPS) and the vanilla tuning with-
out augmentation (denoted as No-Aug). It is worth noting
that, given the unique challenge of limited data diversity
in the few-shot tuning scenarios, even the SOTA data aug-
mentation technique, i.e., the aforementioned NPS [72], can
lead to an inferior accuracy than that of the vanilla tuning
without augmentation (as shown in Fig. 1). Thus, it is nec-
essary to include No-Aug as one of the baselines.

Tuning settings. In our experiments, we set l = 5 and
adopt the center patch in each image as the query patch (i.e.,
k = 90), following [22]. We follow the widely adopted
few-shot tuning settings in [72]. Specifically, we tune the
model for 100 epochs using a batch size of 256, a learning
rate of 0.01, and an SGD optimizer starting from the Ima-
geNet [14] pretrained ViT-Base [16]. Following NPS [72],
we also use data augmentation techniques including color-
jitter with a factor of 0.4 and RandAugment [13] with a
magnitude of 9 and a standard deviation equal to 0.5. We set
λ in Eq. 3 as 0.1 and use FGSM [25] to generate the adver-
sarial samples with attack radius ϵ = 0.001. Additionally,
we run all experiments in the paper three times and report
the average accuracy, following NPS [72].

4.2. Benchmark on Few-shot Image Classification

We first benchmark our proposed method on five com-
monly used few-shot image classification datasets [5,34,35,
45, 48] with different parameter-efficient tuning techniques
and few-shot settings. As shown in Fig. 4, although the
SOTA augmentation baseline NPS [72] suffers from con-
siderable accuracy degradation compared with the vanilla
tuning method No-Aug on fine-grained image classification
dataset (e.g., a 5.55% accuracy drop on [45]), our proposed
Hint-Aug achieves 0.25% ∼ 6.10%, 0.10% ∼ 32.91%, and
0.04% ∼ 6.17% higher accuracies across different shot se-
lections over baselines when using Adapter [32], VPT [34],
and LoRA [33] tuning, respectively.

In particular, we draw the following two exciting obser-
vations: (1) the features generated by Hint-Aug can com-
pensate for the lack of sufficient tuning data and improve
accuracy under more stringent few-shot settings. Specif-

Table 1. Ablation study on each enabler’s contribution to the final
accuracy.

AOD CFI Food Pets Cars

66.25 86.97 40.83
68.53 88.01 42.17
70.52 89.07 43.55
71.04 89.42 44.80

ically, Hint-Aug boosts the accuracy of 8-shot tuning by
2.45% ∼ 4.96% and surpasses the 12-shot tuning with
NPS [72] by a 0.73% ∼ 2.22% higher accuracy when tun-
ing Adapter and LoRA on the Food and Pets datasets; (2)
Hint-Aug’s ability to extract features from the pretrained
FViTs and infuse them into the tuning data can considerably
boost accuracy in extreme few-shot scenarios (e.g., 1-shot
tuning). For example, on the Pets dataset, tuning VPT with
Hint-Aug under a 1-shot setting leads to a 32.91% higher
accuracy than that of NPS [72].

4.3. Ablation Studies
4.3.1 Accuracy Improvement Breakdown

Setup. To better understand the contribution of each en-
abler of Hint-Aug, including AOD and CFI, to the final
accuracy, we conduct an ablation study where we run 8-
shot tuning with Adapter [32] on three datasets, namely
Food [5], Pets [48], and Cars [35]. We implement this
accuracy improvement breakdown experiment as follows:
(1) when using AOD only, we adopt the data augmentation
method in [72] to augment the selected patch; (2) when us-
ing CFI only, we generate the samples with Ltar loss and
randomly select a patch to augment in each image.

Observations. As shown in Tab. 1, when augment-
ing a selected patch, we can observe that (1) enabling ei-
ther AOD or CFI can lead to an accuracy improvement of
1.04% ∼ 2.28% and 2.10% ∼ 4.27% over the baseline
(e.g., neither AOD nor CFI enabled), respectively. This in-
dicates that both key challenges (i.e., the over-fitting issue
and lack of feature diversity as analyzed in Sec. 3.1) in-
deed hurt the achievable accuracy of few-shot tuning and
our proposed enablers can effectively alleviate the challenge
in over-fitting; (2) Combining both AOD and CFI can marry
the merit of both, thus further boosting the achievable accu-
racy by 0.35% ∼ 2.63% over that of enabling only one of
AOD or CFI.

4.3.2 Ablation on Adversarial Objectives

Setup. We conduct ablation studies to validate the choice of
loss functions for generating the adversarial sample for fea-
ture infusion. As mentioned in Sec. 3.4 and Sec. 2.3, differ-
ent loss functions can have different impacts on the tuning
accuracy and an improper loss function can lead to inferior
clean accuracy. In Tab. 2, we validate the objective function
we selected with other potential candidates when tuning on
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Figure 4. Benchmark Hint-Aug on Food [5], Pets [48], Cars [35], Flowers [47], and Aircraft [45] with parameter-efficient tuning methods
(a) VPT, (b) Adapter, and (c) LoRA on 1/2/4/8/12/16-shot setting.

Table 2. Ablation study on different adversarial objectives.

Target Full Untarget Random Proposed

4-shot 57.49 59.21 62.35 64.92
8-shot 66.04 67.36 69.14 71.04

16-shot 70.78 71.58 73.85 74.90

the Food dataset [5] using Adapter [32], where “Full” indi-
cates generating adversarial samples with the whole image,
instead of the selected patch, “Untarget” means using the
conventional attack target that minimizes the value of the
model’s output logit on the correct class by augmenting the
selected patch, and “Random” means augmenting the se-
lected patch to mislead the output of the augmented image
toward another randomly selected class.

Observations. As shown in Tab. 2, “Full” leads to the
worst achieved accuracy which is 0.80% ∼ 1.72% lower
than the second worst object “Untarget”. “Untarget” also
leads to a 3.32% ∼ 5.71% lower accuracy than our pro-
posed method. These two observations suggest that (1) at-
tacking the image as a whole cannot effectively help with

FViT tuning, and (2) naively using the “Untarget” attack
can easily lead to out-of-manifold data. Furthermore, the
1.78% ∼ 3.14% accuracy improvement of “Random” over
“Untarget” suggests that despite the simple method of se-
lecting the direction to add features, adding features from
other classes can help with tuning. However, the lack of a
more precise augmentation direction still limits the achiev-
able accuracy when using the “Random” adversarial objec-
tive, leading to a 1.05% ∼ 2.57% lower accuracy than the
adversarial objective adopted in Hint-Aug.

4.3.3 Sensitivity to Augmentation Intensity

According to recent studies [52,54], augmentation intensity
is a crucial factor in FViT tuning. Thus, we investigate the
impact of the adversarial attack radius ϵ on the achievable
accuracy of Hint-Aug. When tuning with Adapter [32] on
Food [5] under an 8-shot setting, Hint-Aug achieves rela-
tively stable achieved accuracy under the drastic change in
attack radius. Specifically, as shown in Tab. 3, increasing
or decreasing ϵ by 5 times only leads to a 0.03% ∼ 0.21%
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Figure 5. Visualization of attention score maps of images trained
with different augmentation techniques.

Table 3. Impact of adversarial attack radius on the achievable ac-
curacy of the Hint-Aug framework.

ϵ 0.01 0.005 0.001 0.0002 0.0001

Acc. (%) 70.01 70.83 71.04 71.01 70.15

Table 4. Ablation on the number of selected patches to augment.
# patches 1 2 3 8 32 All

Average Acc. 65.42 65.44 65.35 65.08 64.59 63.72

accuracy change, while changing ϵ by 10 times leads to a
0.89% ∼ 1.03% accuracy change compared with a radius
of 0.001 that we select in Hint-Aug, proving the robustness
of Hint-Aug in different selections of hyperparameters. It
is worth noting that changing ϵ by 10 times is a non-trivial
change. As suggested in [22], changing ϵ by 8 times leads
to an accuracy change larger than 27.94% when attacking
DeiT-Tiny on ImageNet.

4.3.4 Number of Patches to Augment

Motivated by the promising accuracy-data efficiency trade-
off achieved by Hint-Aug, an interesting question arises
whether augmenting more than one patch for each image
can further push forward the accuracy-efficiency trade-off.
To answer this question, we conduct an ablation study on
Hint-Aug with different numbers of augmented patches and
report the average achieved accuracy when tuning with an
8-shot VPT [34] across five datasets. Notably, augmenting
all patches (i.e., column “All” in Tab. 4) is equivalent to
augmenting the whole image without considering the patch
information. Our experiments show that augmenting one
to three patches in each image leads to similar average ac-
curacy (less than 0.1% accuracy change). However, when
augmenting more patches in the image, the average accu-
racy drops by 0.34% ∼ 1.70% when augmenting more than
8 patches in each image. We suspect this is because only a
few patches are prone to over-fitting in each image, as sug-
gested in Fig. 3. Augmenting too many patches may ruin the
attention-score map instead, leading to reduced accuracy.

4.4. Visualization of Attention Score Maps

To verify Hint-Aug’s effectiveness in alleviating the
over-fitting issue, we visualize the attention score maps of
the pretrained FViT, FViT tuned by NPS [72], and FViT
tuned with our proposed Hint-Aug. As shown in Fig. 5,
we can observe that (1) after tuning with our proposed
Hint-Aug, the over-fitted patches (marked in red) that are
commonly observed in the attention score maps tuned by
NPS [72] are successfully eliminated, and (2) the attention
score map obtained from Hint-Aug features similar loca-
tions of high-attention score patches to those obtained from
the pretrained FViT, indicating that Hint-Aug effectively al-
leviates the over-fitting issue.

4.5. Visualization of the Confusion Matrix

Table 5. The averaged confu-
sion matrix value of the Cats
and Dogs meta-group.

Cats Dogs

Cats 4.94 3.96
Dogs 3.96 5.72

We visualize the confu-
sion matrix using a 4-shot
Adapter [32] tuning setting
on Pets [48] to interpret the
discovered class-wise sim-
ilarity. We calculate the
averaged confusion matrix
value of the Cats and Dogs
meta-group and visualize
them in Tab. 5. We observe
that the FViT is much more confused in distinguishing be-
tween different classes within the Cat or Dog meta-group
than distinguishing between the Cat and Dog meta-groups.
This suggests that despite the simplicity of our strategy that
uses the pre-softmax output, the generated confusion matrix
can effectively identify the class pairs with easy-to-confuse
features and thus provide correct guidance for CFI.

5. Conclusion
In this paper, we propose a framework called Hint-Aug,

which is dedicated to boosting the few-shot parameter-
efficient tuning accuracy of FViTs. Specifically, Hint-
Aug features two enablers called AOD and CFI, aiming
to alleviate the over-fitting issue and the lack of diverse
data in few-shot tuning, respectively. Extensive experi-
ments and ablation studies validate that Hint-Aug achieves a
0.04% ∼ 32.91% higher accuracy over SOTA data augmen-
tation methods, opening up a new perspective towards more
effectively tuning pretrained FViTs on downstream tasks in
a realistic low-data scheme.
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