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Abstract

Compositional Zero-Shot Learning (CZSL) aims to train
models to recognize novel compositional concepts based
on learned concepts such as attribute-object combinations.
One of the challenges is to model attributes interacted with
different objects, e.g., the attribute “wet” in “wet apple”
and “wet cat” is different. As a solution, we provide anal-
ysis and argue that attributes are conditioned on the recog-
nized object and input image and explore learning condi-
tional attribute embeddings by a proposed attribute learn-
ing framework containing an attribute hyper learner and
an attribute base learner. By encoding conditional at-
tributes, our model enables to generate flexible attribute
embeddings for generalization from seen to unseen compo-
sitions. Experiments on CZSL benchmarks, including the
more challenging C-GQA dataset, demonstrate better per-
formances compared with other state-of-the-art approaches
and validate the importance of learning conditional at-
tributes. Code‡ is available at https://github.com/
wqshmzh/CANet-CZSL.

1. Introduction

Deep machine learning algorithms today can learn
knowledge of concepts to recognize patterns. Can a ma-
chine compose different learned concepts to generalize to
new compositions? Compositional generalization is one of
the hallmarks of human intelligence [3, 18]. To make the
models equipped with this ability, Compositional Zero-Shot
Learning (CZSL) [25] is proposed, where the models are
trained to recognize images of unseen compositions com-
posed of seen concepts. In this work, we concentrate on the
situation where each composition is composed by attribute
(e.g., wet) and object (e.g., apple). For example, given im-
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Figure 1. The diagram of our work. We aim to learn conditional
attributes conditioned on the recognized object and input image
through an attribute learning framework containing an attribute hy-
per learner and an attribute base learner. We first recognize the ob-
ject in the input image. Then, we feed prior knowledge extracted
from the conditions, which are recognized object word embedding
and input image visual embedding, to the attribute hyper learner.
Finally, conditional attribute embeddings are produced by the at-
tribute base learner parameterized by the attribute hyper learner.

ages of wet apple and dry cat, a well-trained model can rec-
ognize images of new compositions dry apple and wet cat.

Compositional Zero-Shot Learning of attribute-object
compositions requires modeling attributes, objects, and the
contextuality between them. Learning to model objects in
CZSL is similar to conventional supervised object classi-
fication task since the model has access to all objects in
CZSL task [33]. Learning to model contextuality between
attribute and object is mostly addressed in the literature
[23,25,26,31,39–41]. One of the main challenges of CZSL
is the appearance diversity of an attribute when composed
with different objects, e.g., attribute wet in wet apple and
wet cat is different. This reveals that the information of each
attribute is dependent on different objects. However, most
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recent works in CZSL [4, 27, 32, 33, 42, 45] extract attribute
representations irrelevant to the object from seen composi-
tions to infer the unseen compositions. These approaches
neglect the nature of attribute diversity and learn concrete
attribute representation agnostic to different objects.

In this paper, we learn conditional attributes rather than
learning concrete ones in a proposed Conditional Attribute
Network (CANet). We first conduct analysis to determine
the exact conditions by considering the recognition of at-
tribute and object as computing a classification probability
of attribute and object conditioned on the input image. By
decomposing this probability, we demonstrate that the prob-
ability of the input image belonging to an attribute is condi-
tioned on the recognized object and the input image.

We present an attribute learning framework to learn con-
ditional attribute embeddings conditioned on the above two
conditions. The framework contains an attribute hyper
learner and an attribute base learner, which are sketched
in Fig. 1. The attribute hyper learner learns from prior
knowledge extracted from the conditions. The attribute base
learner is parameterized by the attribute hyper learner and
is designed to encode all attribute word embeddings into
conditional attribute embeddings. With the attribute learn-
ing framework, the attribute embeddings are changed along
with the recognized object and input image. Finally, the at-
tribute matching is processed in an attribute space where the
input image embedding is projected. The attribute classifi-
cation logits are computed by cosine similarities between
the projected input image embedding and all conditional
attribute embeddings. Additionally, we model the contex-
tuality between attribute and object as composing attribute
and object word embeddings. We use cosine similarities
between the projected input image embedding and all com-
posed attribute-object embeddings to get the classification
logits.

Our main contributions are as follows:
• We propose to learn attributes conditioned on the rec-

ognized object and input image.
• We propose an attribute learning framework contain-

ing an attribute hyper learner and an attribute base
learner for learning conditional attribute embeddings.

• Experiments and ablation studies indicate the effec-
tiveness of our proposed conditional attribute network,
which further validates the importance of learning con-
ditional attributes in the CZSL task.

2. Related Work
Compositional Zero-Shot Learning. Given descrip-

tions only, we can recognize objects that are never seen
before. In conventional Zero-Shot Learning (ZSL), mod-
els have access both to images of seen classes and descrip-
tions of seen and unseen classes [19]. In contrast, CZSL
presents no description of seen and unseen attribute-object

compositions while all attributes and objects as concepts
are seen during training. Recently, works in CZSL are di-
vided into two main streams. One extracts attribute and ob-
ject words or visual features independently from a compo-
sition during training, including learning attributes as linear
transformations of objects [27], learning to hierarchically
decompose compositions and recompose the concepts with
learned visual concepts [41], learning independent proto-
types of attributes and objects and compositing prototypes
via graph network [32], and learning decomposed proto-
types of visual concept features [33] via siamese contrastive
embedding network [20]. The other is to learn a composi-
tional space [23], a graph network [2,26], an episode-based
cross-attention module [39], and a contrastive space [1] for
contextuality modeling. Also, Yang et al. [42] rethink the
CZSL task in a decomposable causal way and learn three
spaces for attribute, object, and composition classifications.
Additionally, with pre-trained large vision language models
like CLIP, Nayak et al. [30] propose to tune soft prompts as
concept embeddings.

Recent work in [12] addresses the problem of attribute
diversity. They propose to learn translational attribute
features conditionally dependent on the object prototypes.
Specifically, they add generic object embedding as the ob-
ject prototype to the concatenated attribute and object em-
bedding. However, this approach makes the model con-
centrate more on the composition instead of the attribute,
causing the attribute learning degrade to learning the con-
textuality between attribute and object. On the contrary,
we explicitly focus on learning conditional attribute embed-
dings. The learned conditional attribute embeddings can be
changed along with the objects and input images.

Attribute Learning. Learning features of attributes is
explored by a large community including image search
[16, 34], sentence generation [17], and zero-shot classifica-
tion [9,29]. Conventional attribute learning approaches map
the attributes into high-dimensional space and train a dis-
criminative classification head without considering the di-
verse nature of attributes [22, 35, 37]. Our work also learns
high-dimensional embeddings to represent attributes. The
main difference is that our learned attribute embeddings are
conditioned on different objects and input images.

3. Approach

3.1. Task Definition

The task of CZSL aims to learn to classify an image i
into a composition c composed by multiple seen concepts,
where i and c are unseen during training. Denote sets of
images, compositions, attributes, and objects as I, C, A,
and O, we have i ∈ I, c ∈ C, a ∈ A, o ∈ O, and
C = A×O. During training, machines have access to seen
set Dseen = {(is, cs)|is ∈ Is, Is ⫋ I, c ∈ Cs, Cs ⫋ C},



Figure 2. Structure of our proposed CANet. The symbol
⊕

is channel-wise concatenation. The mapping networks ωo, ωa, and ωc map
the input image embedding x into object, attribute, and composition spaces So, Sa, and Sc. All object word embeddings vo along with
the object-mapped input image embedding are used in So to compute loss Lo and get the recognized object o∗. The attribute hyper learner
H learns to parameterize the attribute base learner G using the prior knowledge β extracted from the recognized object word embedding
vo∗ and x. The conditional attribute embeddings ea are encoded by G parameterized by H. Using all ea along with the attribute-mapped
input image embedding in space Sa to compute loss La. Loss La,o is computed using all compositional word embeddings produced by
composing network C and the composition-mapped input image embedding in space Sc.

attribute set A, and object set O, where Is and Cs are
sets of images and compositions seen when training. Also,
evaluation of algorithms requires unseen set Dunseen =
{(iu, cu)|iu ∈ Iu, cu ∈ Cu, Iu ⫋ I, Cu ⫋ C} used for
validation and testing. In conventional ZSL, Is ∩ Iu = ∅,
Cs ∩ Cu = ∅, i.e. unseen images and compositions are not
overlapped with the seen ones. Here, we follow the setting
of Generalized Zero-Shot Learning (GZSL) where images
in Is and Iu and labels in Cs and Cu appear during valida-
tion and testing. GZSL is a challenging setting with larger
label space and a strong bias of seen compositions to unseen
ones, relaxing the less realistic assumption in conventional
ZSL that test data only belongs to unseen classes.

3.2. Conditional Attribute Network

Determining Conditions. In CZSL, it is common to learn
to classify attributes and objects besides compositions. We
first assume that the model recognizes the input image i as
attribute a∗ and object o∗. The recognizing score can be
formulated as a conditional probability P (a∗, o∗|i) condi-
tioned on input image i. We propose to decompose this
probability to express the attribute and object recognition as
a one-label classification task. According to multi-variable
conditional probability formulation, we have:

P (a∗, o∗|i) = P (a∗|o∗, i)P (o∗|i) (1)
where P (o∗|i) is probability of image i belonging to object
o∗ and P (a∗|o∗, i) represents the probability of attribute a∗

conditioned on the joint presentation of o∗ and i. This in-
dicates that the recognition of an attribute is conditioned
on the recognized object and input image. To better solve
the attribute diversity problem, we consider the information
of the recognized object and input image as conditions for
conditional attribute encoding.

Object Recognition. Object recognition requires learning
to map the input image embedding into an object space. To
incorporate object semantic information, we compute co-
sine similarities between object-mapped image embedding
ωo(x) and all object word embeddings vo instead of di-
rectly learning a classification head:

⟨ωo(x),vo⟩ =
ωo(x)

⊤vo

∥ωo(x)∥2∥vo∥2
(2)

where x = f(i) ∈ X is the visual embedding of input
image i in visual space X extracted by image backbone
f (e.g., ResNet-18 [11]), ωo is the mapping from X to
object semantic space So, vo = ϕ(o), vo ∈ So is ob-
ject word embedding in So extracted by word embedder ϕ
(e.g., word2vec [24], FastText [7]). The recognized object
o∗ = argmax

o∈O
⟨ωo(x), ϕ(o)⟩.

Learning Conditional Attributes. With the recognized
object o∗ and visual embedding x of input image i, we learn
the attribute hyper learner H and attribute base learner G
in the proposed attribute learning framework to extract at-
tribute embeddings conditioned on the recognized object o∗



and input image i. We consider the information of o∗ and i
as prior knowledge for H. Specifically, the prior knowledge
is implemented as a feature vector β:

β = P(cat(vo∗ ,x)) (3)
where vo∗ = ϕ(o∗) is word embedding of o∗, P is a com-
posing network for vo∗ and x, cat(·) is channel-wise con-
catenation operation. With the prior knowledge, the at-
tribute hyper learner H can parameterize G as:

ΘG = H(β;ΘH) (4)
where ΘH is the set of randomly initialized parameters of
H, ΘG is the set of generated parameters of G. In this way,
the attribute embeddings ea conditioned on o∗ and i can be
encoded via G parameterized by H:

ea = G(va;ΘG) (5)
where va = ϕ(a) is word embedding of attribute word a.
Modeling Contextuality. Although the conditional at-
tribute embeddings are related to the recognized object and
input image, object embeddings are also supposed to be in-
fluenced by attributes. Therefore, we model the contextu-
ality of attribute-object compositions to address the rela-
tionships between them. We follow the work of Mancini
et al. [23] in their closed world setting that contextuality is
modeled as the mixture of attribute and object word embed-
dings to extract attribute-object compositional embeddings:

va,o = C(cat(va,vo)) (6)
where C is a composing network for va and vo.

The entire structure of our model is shown in Fig. 2.

3.3. Training Objectives

Similar to object recognition, attribute or composition
recognition is also implemented by computing cosine sim-
ilarities ⟨ωa(x),va⟩ or ⟨ωc(x),va,o⟩ between attribute-
mapped or composition-mapped image embeddings, i.e.,
ωa(x) or ωc(x), and attribute word embeddings or attribute-
object compositional embeddings, i.e., va or va,o:

⟨ωa(x), ea⟩ =
ωa(x)

⊤ea
∥ωa(x)∥2∥ea∥2

(7)

⟨ωc(x),va,o⟩ =
ωc(x)

⊤va,o

∥ωc(x)∥2∥va,o∥2
(8)

The recognition probability P (o∗|i), P (a∗|o∗, i), and
P (c∗|i) are normalized cosine similarities, where P (c∗|i) is
the probability of input image i belonging to the recognized
attribute-object composition c∗. As shown in Fig. 2, our
model learns three embedding spaces: attribute space Sa,
object space So, and attribute-object compositional space
Sc. Therefore, we incorporate three separate cross-entropy
losses to maximize the three recognition probabilities to
make the model optimized in these three spaces. The losses
are as follows:

La = −
∑
a∈A

log
exp(⟨ωa(x), ea⟩/τ)∑

a′∈A exp(⟨ωa(x), ea′⟩/τ)
(9)

Lo = −
∑
o∈O

log
exp(⟨ωo(x),vo⟩/τ)∑

o′∈O exp(⟨ωo(x),v′
o)⟩/τ)

(10)

Also, for composition recognition, we have:

La,o = −
∑

(a,o)∈C

log
exp(⟨ωc(x),va,o⟩/τ)∑

(a′,o′)∈C exp(⟨ωc(x),va′,o′⟩/τ)
(11)

where τ is temperature factor [46]. Finally, the training loss
as a whole linearly combines the three losses above:

L =
La + Lo

2
+ La,o (12)

3.4. Inference

During validation and testing, we incorporate a linear
normalization function g for cosine similarities:

g(d) = (1 + d) ∗ 0.5 (13)
Then, we have P (a|o∗, i) = g(⟨ωa(x), ea⟩), P (o|i) =
g(⟨ωo(x),vo⟩), and P (c|i) = g(⟨ωc(x),va,o⟩). The in-
ference rule is parameterized as:

s = (1− α)P (c|i) + αP (a|o∗, i)P (o|i) (14)
where α is the weight factor controlling balance.

4. Experiments
In this section, experiments are conducted following the

concrete introductions of datasets, metrics, implementation
details, and baselines. Then, we report ablation results to
demonstrate the effectiveness of our model.

4.1. Experimental Setup

Datasets We conduct experiments with three widely
adopted datasets in the CZSL task, which are MIT-States
[14], UT-Zappos50K [43, 44], and C-GQA [26]. MIT-
States contains 53753 crawled web images labeled with
1962 attribute-object (e.g., mossy highway) compositions.
This dataset has 30338, 10420, and 12995 training, valida-
tion, and testing images [31] labeled with 1262, 600, and
800 compositions. In validation and test sets, the numbers
of seen and unseen compositions are the same. All com-
positions are composed of 115 attributes and 245 objects.
UT-Zappos50K is made up of 50025 images labeled with
116 fine-grained shoe classes composed of 16 attributes
(e.g., rubber) and 12 objects (e.g., sneaker). This dataset
has 22998, 3214, and 2914 training, validation, and test-
ing images [31] labeled with 83, 30, and 36 compositions.
Also, numbers of seen and unseen compositions in valida-
tion and test sets share the same quantity. C-GQA is created
based on Stanford GQA dataset [13] used for VQA task.
C-GQA contains 39298 images labeled with 7767 compo-
sitions composed of 413 attributes and 674 objects. This
dataset has 26920, 7280, and 5098 training, validation, and
testing images labeled with 5592, 2292, and 1811 composi-
tions. Detailed splits are presented in Tab. 1.



Training Validation Test
Dataset A O Cs I Cs Cu I Cs Cu I
UT-Zappos50K [43, 44] 16 12 83 22998 15 15 3214 18 18 2914
MIT-States [14] 115 245 1262 30338 300 300 10420 400 400 12995
C-GQA [26] 413 674 5592 26920 1040 1252 7280 888 923 5098

Table 1. Detailed dataset splits of UT-Zappos50K, MIT-States, and C-GQA in training, validation, and test sets.

Metrics To demonstrate the advances in attribute learn-
ing, we report the attribute and object classification accura-
cies (best attr and best obj). The setting of GZSL requires
both seen and unseen compositions to exist during valida-
tion and testing. As a result, there is an inherent bias of seen
against unseen compositions. We follow the evaluation pro-
tocols proposed in [8] where a scalar bias is added to final
activations of classes of seen compositions to calibrate the
model. As the scalar varies from negative infinity to posi-
tive infinity, there must be a best operating point at which
the bias between seen and unseen compositions is the low-
est. We report the results in terms of the best accuracies of
seen images (best seen), unseen images (best unseen), best
Harmonic Mean (best HM), and Area Under Curve (AUC)
with different scalar biases.

Implementations We consider image backbone f as
ResNet-18 pre-trained on ImageNet [10] to extract 512 di-
mension vectors following preceding works. The map-
ping networks ωa, ωo, and ωc share the similar struc-
ture of two Fully Connected (FC) layers with ReLU [28],
LayerNorm [5], and Dropout [36] following the first FC
layer. We adopt word embedder ϕ as 600-dimensional
word2vec+FastText for MIT-States, 300-dimensional Fast-
Text for UT-Zappos50K, and word2vec for C-GQA. The
layer structures of G, P , and C are the same as the map-
ping networks, where ReLU is added in P and C to the last
FC layer. Weight generation for the attribute base learner G
through the attribute hyper learner H requires more param-
eters and makes learning difficult, as noted by Bertinetto et
al. [6]. Therefore, we adopt weight factorization in [38] to
reduce parameters for the attribute hyper learner H, that is

e(i)a = (vaW
(i)
G + b

(i)
G )⊙ λ

(i)
G (15)

λ
(i)
G = H(β;Θ

(i)
H ) (16)

where (i) indicates ith FC layer, W
(i)
G and b

(i)
G are the

weight matrix and bias vector of ith FC layer in G,
{W(i)

G ,b
(i)
G } ⊂ ΘG , Θ(i)

H ⊂ ΘH, and ⊙ denotes element-
wise multiplication. During training, we fix the image back-
bone f and train other modules using Adam [15] optimizer
and an Nvidia GeForce GTX 1080Ti GPU with a learning
rate and weight decay of 0.00005. The batch size is 256.
The temperature factor τ , weight factor α, and the maxi-
mum number of epochs are set to 0.02, 0.4, and 500 for UT-
Zappos50K; 0.05, 0.2, and 800 for MIT-States; and 0.05,
0.4, and 1000 for C-GQA.

Baselines We conduct experiments with the following
algorithms: 1) AttrAsOp [27] treats attributes as linear trans-
formations on object vectors instead of data points in some
high-dimensional space and optimizes the transformations
through several regularizers in the loss function. 2) TMN
[31] constructs task-driven modular networks in semantic
space configured through a gating function conditioned on
the task. 3) SymNet [21] proposes symmetry property in
attribute-object compositions and group axioms as objec-
tives in an end-to-end manner. 4) CGEff [26] exploits de-
pendencies between attributes, objects, and compositions
through an end-to-end graph formulation where ”ff” means
fixed image feature backbone. 5) CompCos [23] learns a
mapping from image features to semantic space of com-
positions and computes cosine similarities between them.
6) DeCa [42] rethinks the CZSL task in a decomposable
causal perspective and learns three independent mappings
from image feature space to attribute, object, and compo-
sition semantic space. Cosine similarities are also adopted.
7) SCEN [20] computes visual prototypes of attributes and
objects in a siamese contrastive space and proposes a de-
signed State Transition Module to increase the diversity of
training compositions.

4.2. Quantitative Analysis

All results are computed on test sets of all datasets and
from their published papers and [26] for a fair comparison.
We report quantitative results with the best AUC in Tab. 2.

From Tab.2, our model outperforms other state-of-the-art
algorithms in terms of best attr, best unseen, and AUC in all
three datasets including the recently proposed C-GQA, in-
dicating the better attribute learning performance and gener-
alization ability from seen to unseen compositions. Specif-
ically, our model performs much better on C-GQA with
more state-of-the-art results although it is a much more
challenging dataset than MIT-States and UT-Zappos50K.

For UT-Zappos50K, the observations are that our model
boosts attribute recognition accuracy, unseen image classi-
fication accuracy, and AUC from 47.3%, 63.1%, and 32.0%
of SCEN to the new state-of-the-art of 48.4%, 66.3%, and
33.1% with 1.1%, 3.2%, and 1.1% improvement respec-
tively. For MIT-States, our model achieves 30.2%, 32.6%,
26.2%, and 5.4% accuracies for attribute and object classi-
fication, unseen image classification, and AUC on the test



Algorithm UT-Zappos50K MIT-States C-GQA
Name Venue Att. Obj. S. U. HM AUC Att. Obj. S. U. HM AUC Att. Obj. S. U. HM AUC

AttrAsOp [27] ECCV’18 38.9 69.6 59.8 54.2 40.8 25.9 21.1 23.6 14.3 17.4 9.9 1.6 8.3 12.5 11.8 3.9 2.9 0.3
TMN [31] ICCV’19 40.8 69.9 58.7 60.0 45.0 29.3 23.3 26.5 20.2 20.1 13.0 2.9 9.7 20.5 21.6 6.3 7.7 1.1
SymNet [21] CVPR’20 41.3 68.6 49.8 57.4 40.4 23.4 26.3 28.3 24.4 25.2 16.1 3.0 15.0 23.1 27.0 10.8 10.9 2.2
CGEff [26] CVPR’21 45.0 73.9 56.8 63.6 41.2 26.4 27.9 32.0 28.7 25.3 17.2 5.1 12.7 26.9 27.5 11.7 11.9 2.5
CompCos [23] CVPR’21 44.7 73.5 59.8 62.5 43.5 28.7 27.9 31.8 25.3 24.6 16.4 4.5 - - - - - -
DeCa [42] TMM’22 - - 62.7 63.1 46.3 31.6 - - 29.8 25.2 18.2 5.3 - - - - - -
SCEN [20] CVPR’22 47.3 75.6 63.5 63.1 47.8 32.0 28.2 32.2 29.9 25.2 18.4 5.3 13.6 27.9 28.9 12.1 12.4 2.9

Ours 48.4 72.6 61.0 66.3 47.3 33.1 30.2 32.6 29.0 26.2 17.9 5.4 17.5 22.3 30.0 13.2 14.5 3.3

Table 2. Quantitive results on test sets of all datasets with the state-of-the-art in terms of best attr (Att.), best obj (Obj.), best seen (S.), best
unseen (U.), best HM (HM), and AUC.

set, providing 2.0%, 0.4%, 1.0%, and 0.1% improvements
on the recently proposed SCEN as the new state-of-the-
art results. This indicates that the proposed conditional at-
tribute network can truly improve the attribute recognition
performance and consequently the unseen image classifica-
tion and AUC.

For the more challenging dataset C-GQA, since it is sig-
nificantly harder than MIT-States and UT-Zappos50K with
4.4× and 0.9× composition labels and images in the train-
ing set compared with MIT-States, our model outperforms
all other algorithms except best obj with 3.9%, 1.1%, 1.1%,
2.1%, and 0.4% boosting in terms of best attr, best seen, best
unseen, best HM, and AUC in the testing set. This indicates
that the proposed conditional attribute network makes a crit-
ical contribution when facing a more challenging dataset
even if the object recognition accuracy is lower.

We give an analysis of the importance that attributes
should be conditioned on objects. First, note that although
DeCa also learns attribute, object, and composition spaces
separately, it learns attributes as static embeddings inde-
pendent from objects, causing lower best unseen and AUC
on UT-Zappos50K and MIT-States compared with ours in
Tab. 2. Next, different baselines incorporate different tech-
niques to handle the CZSL task though, they learn static
attribute embeddings too, producing lower best attr, best
unseen, and AUC. Then, the proposed method performs
much better on C-GQA compared with other baselines. All
the above phenomena demonstrate that attributes should be
conditioned on objects and performance on datasets with
larger label space can gain more boosts in this way.

From the results of the three datasets above, we observe
an interesting phenomenon. Although the results of best
obj in three datasets are all lower than that of SCEN, re-
sults of best unseen are all higher accompanied by higher
results of best attr. We speculate the reason is that some
objects have more attributes (or are more dominated) in un-
seen compositions and the misclassified objects recognized

by our model are less dominated (i.e. have few attributes or
are long-tailed in terms of attribute). As a result, with the
correctly predicted objects dominated in unseen composi-
tions, the more correctly classified attributes, the higher the
results of best unseen.

4.3. Qualitative Analysis

In this section, we present some qualitative results
of novel compositions with top-3 predictions on UT-
Zappos50K, MIT-States, and C-GQA in Fig. 3. We show
results for each dataset in each row. Images whose top
prediction matches the label are shown in the first three
columns and the rest columns show wrong results. For UT-
Zappos50K, the remaining two answers of all images can
match at least one label factor. For some instances in MIT-
States, we can notice that the top and second predictions
can both describe the image. For example, for the image la-
beled with winding stream, there is sunlight reflecting from
the stream and creek is the synonym of stream. Therefore,
sunny creek can also be the label of the image. Another ex-
ample is that image labeled with wide valley also present
cloudy cloud in the blue sky located in the upper part. As
a result, the model has difficulty deciding what to predict.
This reflects that labels in MIT-States are heavy in noise.
For C-GQA where labels are clear, our model can produce
more answers that match the label factors in the remaining
two predictions, which indicates the better performance and
robustness of our model.

Additionally, we present wrong predictions in the last
two columns. It can be noticed that our model can predict
correct answers in most top-3 predictions. As for the image
of MIT-States labeled as broken bottle, our model predicts
the attribute as small because it is difficult to focus on a cer-
tain attribute of the bottle since the bottle in this image is
both small and broken. Besides, images in the training set
are limited in the status of objects. For example, training
images of sheep hardly present the action of laying down



Variant UT-Zappos50K C-GQA
# Name Att. Obj. S. U. HM AUC Att. Obj. S. U. HM AUC

(1) w/o La + Lo 46.1 74.3 61.5 64.7 46.1 31.7 10.8 30.6 29.8 12.8 13.4 3.0
(2) w/o Lc 41.9 60.7 59.5 54.7 45.7 28.3 14.8 17.1 28.1 11.2 12.4 2.6
(3) w/o G + H + P 47.0 74.0 59.9 65.8 46.3 31.7 14.8 27.8 29.9 13.1 14.6 3.1
(4) w/o P 46.7 73.2 60.7 64.5 47.5 31.6 14.5 26.4 30.1 13.0 14.5 3.1
(5) w/o H 46.2 70.3 58.5 62.7 46.3 30.5 13.9 25.8 29.1 11.2 12.5 2.4
(6) w/o x for H 45.6 71.3 61.6 62.8 44.8 30.1 13.4 20.8 30.2 12.7 13.9 2.9
(7) Full 48.4 72.6 61.0 66.3 47.3 33.1 17.5 22.3 30.0 13.2 14.5 3.3

Table 3. Ablation results on test sets in terms of best attr (Att.), best obj (Obj.), best seen (S.), best unseen (U.), best HM (HM), and AUC.

Figure 3. Qualitative Results. We demonstrate top-3 predictions of some instances using our proposed model.

causing our model mistakenly classify the sheep in the im-
age labeled as light sheep into elephant. Thus, with the
recognized object elephant, the model can only focus on
attributes conditioned on elephant and find the appropriate
attribute that matches the image.

4.4. Ablation Study

In this section, we ablate the proposed model to eval-
uate the performance of each module. The ablation study
is conducted on test sets of UT-Zappos50K, C-GQA. To
achieve more convincing ablation results, we do not choose
MIT-States because images in MIT-States are labeled us-
ing automatic search. As a result, the noise of labels is too
heavy to be used for evaluations, as is pointed out by Atz-
mon et.al. [4]. Ablation results are reported in Tab. 3. The
detailed ablation process is as follows:

We first study the effects of recognizing compositions
only and recognizing attributes and objects without compo-
sitions, which are corresponded to variants (1) and (2) in
Tab. 3, and report results in terms of six metrics used in
Tab. 2. Compared with variant (6), the results of each vari-
ant mostly decline, indicating the importance of recogniz-
ing attributes, objects, and compositions jointly. As to the
results of Obj. in UT-Zappos50K and C-GQA from variants

(1) and (6), we can observe that those object classification
accuracies decline. This is mainly because when recogniz-
ing objects individually each object presents visual diver-
sity caused by different attributes, e.g., sliced apple is dif-
ferent from apple in visual appearance since a sliced apple
is sliced into multiple pieces. However, this phenomenon
does not affect other results, especially for the dataset with
larger label space, e.g., C-GQA.

Next, with attributes, objects, and compositions being
recognized, we ablate G + H + P (where attribute word
embeddings are directly used in Sa), H (where the concate-
nation of β and va is fed to G), P (where the concatenation
of vo∗ and x is directly fed to H), and x in β that is fed
to H, which are corresponded to variants (3)-(6) in Tab. 3.
Note that if P is presented then G is required to be presented
also because the concatenation of β and va requires chang-
ing the number of dimensions to that of x through G. Also,
G can not be ablated only otherwise the model changes to
variant (3). Compared to variant (7), all results are mostly
declined, indicating that optimizing the model with G, H,
P , and x is essential. As for variant (5), it performs worse
on seen and unseen images compared with variant (4), in-
dicating the importance of using the attribute hyper learner.
Comparing results of variants (5) with (6), we observe that



Figure 4. Influence of weighting factor α on AUC, seen accuracy, and unseen accuracy.

adding the attribute hyper learner H for G without image
visual embedding x marginally increases overfitting to seen
images. Results of variant (6) present the best generaliza-
tion compared with variants (3)-(5) because adding x in β
for H provides diverse instances that are seen for H during
training since the number of image visual embeddings is far
more than the number of object word embeddings.

Lastly, we conduct experiments to study the impact of
weighting factor α in Eq. (14) on all datasets. In detail,
we present results of AUC, seen accuracy, and unseen ac-
curacy in Fig. 4 with α ∈ [0, 1] with an interval of 0.1. It
can be observed that all results of AUC increase first and
then decrease with α increases from 0.0. The peaks of
AUC are reached when α equals 0.5, 0.1, and 0.3 in UT-
Zappos50K, MIT-States, and C-GQA. This phenomenon re-
veals that learning to classify attributes, objects, and com-
positions all contribute to making our model reach optimal.
Additionally, it can be noticed that the results of AUC are all
generally declined when α changes from 0.0 to 1.0. This is
because attribute-object compositions involve not only the
side information of attribute and object, but also the con-
textuality between attribute and object. As for the results
of seen and unseen accuracies reported in the second row,
the same trend can be observed. Specifically, results of un-
seen accuracy are more sensitive than seen accuracy and
also have peaks with various α, indicating that α also has an
impact on the generalization ability of our model. In con-
clusion, using a small weighting factor α is always better
than using a larger one, indicating that modeling contextu-
ality between attribute and object is a bit more beneficial
to the CZSL task than separately classifying attributes and
objects.

5. Conclusion
In this work, we address the attribute diversity problem

in Compositional Zero-Shot Learning. As a solution, we
propose a Conditional Attribute Network (CANet) to learn
attributes conditioned on the recognized object and input
image. We first decompose the probability of attribute and
object recognition conditioned on the input image to lay
a foundation for learning conditional attributes. Then, we
build an attribute learning framework to encode conditional
attribute embeddings. Experiments show that our model
outperforms recent CZSL approaches and achieves new
state-of-the-art results. Despite the better attribute recog-
nition performance, a limitation is that our model is less
qualified to handle object long-tailed distribution in terms
of attribute mentioned in Sec. 4.2. Future works can be fo-
cused on solving the problem above while learning condi-
tional attributes.
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