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Abstract

In this paper, we introduce a novel learning scheme
named weakly semi-supervised instance segmentation (WS-
SIS) with point labels for budget-efficient and high-
performance instance segmentation. Namely, we consider a
dataset setting consisting of a few fully-labeled images and
a lot of point-labeled images. Motivated by the main chal-
lenge of semi-supervised approaches mainly derives from
the trade-off between false-negative and false-positive in-
stance proposals, we propose a method for WSSIS that
can effectively leverage the budget-friendly point labels as
a powerful weak supervision source to resolve the chal-
lenge. Furthermore, to deal with the hard case where the
amount of fully-labeled data is extremely limited, we pro-
pose a MaskRefineNet that refines noise in rough masks.
We conduct extensive experiments on COCO and BDD100K
datasets, and the proposed method achieves promising re-
sults comparable to those of the fully-supervised model,
even with 50% of the fully labeled COCO data (38.8% vs.
39.7%). Moreover, when using as little as 5% of fully la-
beled COCO data, our method shows significantly supe-
rior performance over the state-of-the-art semi-supervised
learning method (33.7% vs. 24.9%). The code is available
at https://github.com/clovaai/PointWSSIS.

1. Introduction

Recently proposed instance segmentation methods [5,
8, 9, 13, 15, 16, 24, 33, 43, 47] have achieved remark-
able performance owing to the availability of abundant
of segmentation labels for training. However, compared
to other label types (e.g., bounding box or point), seg-
mentation labels necessitate delicate pixel-level annota-
tions, demanding much more monetary cost and human ef-
fort. Consequently, weakly-supervised instance segmen-
tation (WSIS) and semi-supervised instance segmentation
(SSIS) approaches have gained attention to reduce anno-
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Figure 1. Proposals and instance masks. The absence of a pro-
posal leads to the missing mask, even though the mask could be
generated if given the correct proposal (zebra). Also, noise pro-
posal often leads to noisy masks. Our motivation stems from the
bottleneck in the proposal branch, and this paper shows economic
point labels can be leveraged to resolve it.

tation costs. WSIS approaches alternatively utilize inex-
pensive weak labels such as image-level labels [1, 27, 55],
point labels [11, 27, 28] or bounding box labels [19, 32, 44].
Besides, SSIS approaches [49, 54] employ a small amount
of pixel-level (fully) labeled data and a massive amount
of unlabeled data. Although they have shown potential
in budget-efficient instance segmentation, there still exists
a large performance gap between theirs and the results of
fully-supervised learning methods.

Specifically, SSIS approaches often adopt the following
training pipeline: (1) train a base network with fully la-
beled data, (2) generate pseudo instance masks for unla-
beled images using the base network, and (3) train a target
network using both full and pseudo labels. The major chal-
lenge of SSIS approaches comes from the trade-off between
the number of missing (i.e., false-negative) and noise (i.e.,
false-positive) samples in the pseudo labels. Namely, some
strategies for reducing false-negatives, which is equivalent
to increasing true-positives, often end up increasing false-
positives accordingly; an abundance of false-negatives or
false-positives in pseudo labels impedes stable convergence
of the target network. However, optimally reducing false-
negatives/positives while increasing true-positives is quite
challenging and remains a significant challenge for SSIS.
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To address this challenge, we first revisit the funda-
mental behavior of the instance segmentation framework.
Most existing instance segmentation methods adopt a two-
step inference process as shown in Figure 1: (1) generate
instance proposals where an instance is represented as a
box [9,16,22,33] or point [43,45,47,48] in proposal branch,
and (2) produce instance masks for each instance proposal
in mask branch. As shown in Figure 1, if the network fails to
obtain an instance proposal (i.e., false-negative proposal), it
cannot produce the corresponding instance mask. Although
the network could represent the instance mask in the mask
branch, the absence of the proposal becomes the bottleneck
for producing the instance mask. From the behavior of the
network, we suppose that addressing the bottleneck in the
proposals is a shortcut to the success of the SSIS.

Motivated by the above observations, we rethink the po-
tential of using point labels as weak supervision. The point
label contains only a one-pixel categorical instance cue but
is budget-friendly as it is as easy as providing image-level
labels by human annotators [3]. We note that the point la-
bel can be leveraged as an effective source to (i) resolve the
performance bottleneck of the instance segmentation net-
work and (ii) optimally balance the trade-off between false-
negative and false-positive proposals. Thus, we formulate a
new practical training scheme, Weakly Semi-Supervised
Instance Segmentation (WSSIS) with point labels. In
the WSSIS task, we utilize a small amount of fully labeled
data and a massive amount of point labeled data for budget-
efficient and high-performance instance segmentation.

Under the WSSIS setting, we filter out the proposals
to keep only true-positive proposals using the point labels.
Then, given the true-positive proposals, we exploit the mask
representation of the network learned by fully labeled data
to produce high-quality pseudo instance masks. For prop-
erly leveraging point labels, we consider the characteristics
of the feature pyramid network (FPN) [35], which consists
of multi-level feature maps for multi-scale instance recog-
nition. Each pyramid level is trained to recognize instances
of particular sizes, and extracting instance masks from un-
fit levels often causes inaccurate predictions, as shown in
Figure 4. However, since point labels do not have instance
size information, we handle this using an effective strat-
egy named Adaptive Pyramid-Level Selection. We estimate
which level is the best fit based on the reliability of the net-
work (i.e., confidence score) and then adaptively produce
an instance mask at the selected level.

Meanwhile, on an extremely limited amount of fully la-
beled data, the network often fails to sufficiently represent
the instance mask in the mask branch, resulting in rough
and noisy mask outputs. In other words, the true-positive
proposal does not always lead to a true-positive instance
mask in this case. To cope with this limitation, we pro-
pose a MaskRefineNet to refine the rough instance mask.

The MaskRefineNet takes three input sources, i.e., image,
rough mask, and point; the image provides visual informa-
tion about the target instance, the rough mask is used as the
prior knowledge to be refined, and the point information ex-
plicitly guides the target instance. Using the richer instruc-
tive input sources, MaskRefineNet can be stably trained
even with a limited amount of fully labeled data.

To demonstrate the effectiveness of our method, we
conduct extensive experiments on the COCO [36] and
BDD100K [51] datasets. When training with half of the
fully labeled images and the rest of the point labeled im-
ages on the COCO dataset (i.e., 50% COCO), we achieve a
competitive performance with the fully-supervised perfor-
mance (38.8% vs. 39.7%). In addition, when using a small
amount of fully labeled data, e.g., 5% of COCO data, the
proposed method shows much superior performance than
the state-of-the-art SSIS method [49] (33.7% vs. 24.9%).

In summary, the contributions of our paper are

• We show that point labels can be leveraged as effec-
tive weak supervisions for budget-efficient and high-
performance instance segmentation. Further, based on
this observation, we establish a new training protocol
named Weakly Semi-Supervised Instance Segmenta-
tion (WSSIS) with point labels.

• To further boost the quality of the pseudo instance
masks when the amount of fully labeled data is
extremely limited, we propose the MaskRefineNet,
which refines noisy parts of the rough instance masks.

• Extensive experimental results show that the proposed
method can achieve competitive performance to those
of the fully-supervised models while significantly out-
performing the semi-supervised methods.

2. Related Work
2.1. Instance Segmentation

Mask R-CNN [16] is the most widely used method for
instance segmentation. They represent an instance as a
bounding box and produce the instance mask after pooling
each box region. These box-based approaches have many
variants, such as [9,22,33,41] and have shown state-of-the-
art results. Meanwhile, there is a different type of approach,
named point-based approaches [43, 45, 47, 48]. They repre-
sent an instance as a point and generate the instance mask
using the point-encoded mask representation. For exam-
ple, SOLOv2 [47] extracts point-encoded kernel parameters
and generates instance masks with a dynamic convolution
scheme. We note that the inference pipeline of these two
approaches is the same as shown in Figure 1; they generate
proposals in the form of either bounding boxes or points and
then produce an instance mask for each proposal. Here, the
proposal is indispensable for producing the instance mask.
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(a) Confidence Threshold=0.1 (b) Confidence Threshold=0.5 (c) With Point Labels

Figure 2. The qualitative results of pseudo instance masks. (a) and (b): the quality of pseudo masks is largely affected by the confidence
score of the proposal due to the trade-off between false-negative and false-positive instance proposals. (c): our point-driven method can
filter the proposals to keep only true-positive proposals, resulting in clearer quality of pseudo instance masks.

2.2. Budget-Efficient Instance Segmentation

Instance segmentation requires a huge amount of
instance-level segmentation labels. However, the annota-
tion cost of segmentation labels is much higher than other
labels. According to seminar works [3, 4], the annotations
time is measured on VOC dataset [14] as follows: image-
level (20.0 s/img), point (23.3 s/img), bounding box (38.1
s/img), full mask (239.7 s/img). To reduce the annotation
cost, weakly-supervised instance segmentation (WSIS) and
semi-supervised instance segmentation (SSIS) have been
actively studied. The WSIS methods exploit the activation
maps generated by self-attention of the network trained with
only cost-efficient labels such as image-level [1, 27, 55],
point [11, 27, 28], and bounding box [19, 32, 44] labels.
Meanwhile, the SSIS methods [49, 54] use a small amount
of fully labeled data and an abundant amount of unlabeled
data. Utilizing the knowledge of the segmentations learned
with the fully labeled data, they generate pseudo instance
masks for the unlabeled data. Although they can reduce the
annotation cost, their performance is still far behind those
of the fully-supervised models.

2.3. Weakly Semi-Supervised Object Detection

There exist some previous attempts to tackle the weakly
semi-supervised object detection problem using point labels
(WSSOD) [10,52]. Namely, they use a few box-labeled data
and a lot of point-labeled data. Leveraging the point labels,
they show improved detection performances compared to
the semi-supervised setting. Object detection and instance
segmentation tasks share a similar goal: both are object-
level recognition tasks. However, we point out that the mo-
tivation for leveraging point labels is different. We focus
on the fundamental drawback of the instance segmentation
network to handle the trade-off between false-negative and
false-positive proposals. In contrast, PointDETR [10] lever-
ages the point labels as input queries for single-level fea-
ture map inference of DETR [6] architecture, and Group

R-CNN [52] employs the point labels to filter and augment
proposals with improved positive sample assignments. In
addition, we propose the MaskRefineNet for high-fidelity
mask refinement to handle the distinct challenge of instance
segmentation, which is a pixel-level recognition task.

3. Proposed Method

3.1. Motivation

Existing instance segmentation methods typically adopt
a two-step inference process: (1) generate proposals where
each instance is represented as bounding box [9, 16, 22, 33]
or point [43, 45, 47, 48] in proposal branch, and (2) produce
a mask for each instance in mask branch. Figure 1 provides
an intuition that the performance of the instance segmen-
tation network critically depends on the correctness of pro-
posals at the proposal branch. Thus, improving the proposal
branch may lead to a significant performance improvement
in semi-supervised instance segmentation (SSIS).

To delve deeper into the problem, we adjust a confidence
threshold in the proposal branch to verify the influence of
the proposal on the output instance mask as shown in Fig-
ure 2. At a low threshold of 0.1 with a larger number of
proposals, we obtain more true-positive masks but much
more false-positive masks as well (see Figure 2a). The rea-
son is that false-positive proposals (e.g., misclassified or
erroneously localized proposals) often lead to noisy mask
predictions. Conversely, when we increase the threshold to
0.5, we lose several true-positive masks that were detected
at lower thresholds (see Figure 2b). In other words, al-
though the mask branch could represent the instance mask,
the absence of the thresholded proposal results in miss-
ing instance masks. However, finding an optimal thresh-
old per instance is impractical, and balancing between true-
positive and false-positive proposals still remains a chal-
lenging problem in SSIS.
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Figure 3. Overview of the proposed method. Top: (step 1)
training the teacher network and MaskRefineNet with fully labeled
data. Bottom: (step 2) under the point label guidance, pseudo la-
bels are generated through the teacher network and further refined
using MaskRefineNet. Then, the student network is trained on
both the pseudo-labeled data and the fully labeled data.

3.2. Weakly Semi-Supervised Instance Segmenta-
tion using Point Labels

From the above observations, we can expect that obtain-
ing correct instance proposals will yield accurate mask rep-
resentations to improve an SSIS network. To this end, we
revisit the point label, which is a one-pixel categorical in-
stance representation cue. The annotation budget for point
labels is known as costly-efficient by the literature [3, 4].
Task definition. We propose a new training protocol named
Weakly Semi-Supervised Instance Segmentation (WSSIS)
using point labels and verify that the budget-friendly point
labels can provide effective guidance. The training proto-
col employs point-labeled data with a small amount of fully
labeled data, which yields reduced annotation costs.
Training basline. Figure 3 shows our proposed baseline of
a two-step learning procedure for WSSIS: (1) train a teacher
network using only the full labels; (2) train a student net-
work using both the full and pseudo labels generated by
the teacher network along with the point labels. Generat-
ing high-quality pseudo labels is crucial for WSSIS, so we
employ point labels as guidance for filtering the proposals
to remain only true-positive proposals. Then, given the fil-
tered proposals, we generate instance masks by exploiting
the mask representation of the teacher network. Note that
the proposed architecture is a baseline for the proposed task
so that one can explore a more advanced training scheme.

P2 P3 P4

P5 P6 Adaptive

Figure 4. Adaptive strategy with FPN and qualitative results.
Top: illustration of Adaptive Pyramid-Level Selection. Bottom:
the qualitative results from each pyramid level.

FPN head. Most existing instance segmentation ap-
proaches [9, 16, 43, 47] adopt Feature Pyramid Network
(FPN) [35] architecture for multi-scale instance prediction.
Namely, SOLOv2 [47] employs a 5-level feature pyramid
(P2∼P6), and each pyramid level recognizes instances of
particular sizes. When combined with using point labels
for sampling proposals, a careful approach to which level
to extract proposals based on the size of the instance is de-
manding. Otherwise, generated instance masks are often
noisy as shown in Figure 4 below.
Strategy of using pyramid-level adaptively. Since points
do not contain instance size information, we estimate which
pyramid level is proper for each point. To this end, we pro-
pose a strategy named Adaptive Pyramid-Level Selection,
which adaptively selects a pyramid level that is expected to
produce the most appropriate instance mask based on the re-
liability of the network. Namely, we rescale the coordinate
of point labels according to the resolution of each level and
extract confidence scores for all levels. Then, we generate
an instance mask only from the pyramid level with the max-
imum confidence score, as illustrated in Figure 4. Formally,
there is N proposal branches {Fp

i }Ni=1, and we follows the
configuration of FPN [35] with N=5. For each point label
(x, y, c), where c denotes category id, we extract an instance
proposal and confidence score (Pi, si) = Fp

i (x, y, c). Re-
garding the confidence score as the reliability of the pre-
diction, we adaptively select a pyramid level k with the
maximum score, k = argmaxk∈{1,2,...,N}sk. Finally, at
the mask branch Fm, we generate a pseudo instance mask
M = σ(Fm(Pk)), where σ is sigmoid function.
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Figure 5. Effect of MaskRefineNet. The qualitative results under
10% of COCO fully labeled data condition. When the teacher net-
work fails to disentangle objects in a rough mask, MaskRefineNet
can separate each representation owing to the given point label
(1st row). Our MaskRefineNet further enriches the resultant mask
representation (2nd row) and removes noisy parts (3rd row).

3.3. Mask Refinement Network

With a sufficient amount of fully labeled data (e.g., us-
ing 50% images), the teacher network can afford to generate
reasonable pseudo-instance masks given true-positive pro-
posals. However, when the amount of fully labeled data is
extremely small (e.g., using only 1% images), the mask rep-
resentation by the network would produce rough instance
masks; it means the true-positive proposal could not ensure
that the instance mask is a true-positive.

To handle such a challenging case, we propose a sim-
ple yet effective post-hoc mask refinement method named
MaskRefineNet. Figure 3 shows that MaskRefineNet can
refine the rough mask output from the teacher network
based on three input sources, including input image, rough
mask, and point information. Specifically, we loosely crop
each instance region in the input image, rough mask, and
point information, and resize them to 256×256, then con-
catenate them together into an input tensor. For the point
information, we transform the point label to the form of
a heatmap where each point is encoded into a 2D gaus-
sian kernel with a sigma of 6. The effectiveness of the
MaskRefineNet can be attributed to two reasons; (1) it lever-
ages the prior knowledge of the teacher network; since
MaskRefineNet takes the rough mask predictions from the
teacher network as the input, it learns how to calibrate com-
mon errors of predictions from the teacher network; (2) it
takes guidance from the input point that is likely to pro-
vide an accurate target instance cue for recognizing overlap-
ping instances and falsely predicted pixels. Consequently,
MaskRefineNet refines the missing & noisy parts and dis-
entangles the crowded target instances in the rough mask as
shown in Figure 5 with the help of the point guidance.

4. Experiments
4.1. Datasets

We evaluate our method on the COCO 2017 dataset [36]
that contains 118,287 training samples and 5,000 valida-
tion samples for 80 common object categories. To validate
our method under the WSSIS regime, we randomly sam-
ple subsets containing 1%, 2%, 5%, 10%, 20%∼50% of the
COCO training dataset. COCO 10% means using 10% of
the fully labeled data and the rest of 90% of the point la-
beled data. We use a centroid point of an instance mask
label as a point label. In addition, we conduct experiments
on BDD100K dataset [51], which is a large-scale driving
scene dataset with diverse scene types and 8 classes. The
BDD100K dataset contains 7k mask-labeled images and
67k box-labeled images, and we use the center of the box
as the point label for this dataset.

4.2. Implementation Details

We adopt SOLOv2 [47] as the baseline instance seg-
mentation network since it is a point-based and box-free
straightforward method. For both teacher and student net-
works, we use the same ResNet-101 [17] backbone network
and follow the default training recipe and network setting as
in [47]. For the MaskRefineNet, we adopt the ResNet-101
FPN [35] architecture and produce the output only from the
highest resolution pyramid level, P2. We set the batch size
of 16, the learning rate of 1e-4 with cosine decay schedul-
ing, dice loss [38], and input size of 256×256 for train-
ing the MaskRefineNet. After training the teacher network,
the MaskRefineNet is trained by taking the rough mask out-
puts from the teacher network. We implement the proposed
method using Pytorch [40] and train on 8 V100 GPUs.

Following the labeling budget calculation in [3,4], we es-
timate the labeling budget for the COCO trainset as follows:
Full mask (645.9s/img), Bounding box (127.5s/img),
Point (87.9s/img), Image-level (80s/img). Detailed cal-
culation method is described in our supplementary material.

4.3. Experimental Results

We compare the proposed method against two baselines
with the same network architecture and optimization strat-
egy. The first is training with only fully labeled data, and
the second is training with fully labeled and unlabeled data,
which is a semi-supervised setting. For the second base-
line, we generate pseudo instance masks for the unlabeled
data from the teacher network without any weak labels. As
shown in Figure 6, our method achieves remarkable per-
formances on all COCO subsets. Especially, the perfor-
mance gap between ours and the baselines is notably larger
when we use smaller subsets with fully labeled images, e.g.,
COCO 1% or 5%. Compared to the fully-supervised set-
ting (COCO 100%), our method with COCO 50% shows
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Figure 6. Performance trend comparison under supervisions.
We visualize the AP scores when varying numbers of fully la-
beled data in the COCO test-dev. MRN means applying our point-
guided MaskRefineNet.

a highly competitive result (38.8% vs. 39.7%). Moreover,
the qualitative results in Figure 7 show that ours with COCO
5% can properly segment instances of various sizes. These
results demonstrate that the cost-efficient point labels can be
leveraged as an effective source for instance segmentation.

We also compare against other methods that use vari-
ous weak labels based on the labeling budget in Table 1.
According to the type and the number of labels, we calcu-
late the labeling budget following the aforementioned cost.
All methods use the same amount of total training images,
so the labeling time of unlabeled data is treated as zero.
Compared to the state-of-the-art semi-supervised method,
NB [49], ours show superior performances when using the
same amount of fully labeled data, especially when using
5% of fully labeled data (33.7% vs. 25.6%). We also
achieve higher performance with a lower labeling budget
(35.8% with a budget of 196.7 vs. 35.5% with a budget of
265.2). In addition, compared to the state-of-the-art box-
supervised method, BoxInst [44], our efficiency is better
(33.7% with a budget of 158.5 vs. 33.2% with a budget
of 174.5). This result demonstrates the effectiveness of
budget-friendly point labels with the proposed method. Fur-
thermore, we emphasize the potential of our method for per-
formance improvement when using more labeling budget.

Also, we conduct experiments on BDD100K dataset. As
we increase the amount of point labeled data with a fixed
amount of 7k fully labeled data, the performance is gradu-
ally improved, as in Table 6. Especially, when leveraging
all available point labels (67k), ours can achieve significant
performance improvements compared to using only 7k fully
labeled data (22.1%→27.9%).

Method Label Types Budget (days) ↓ AP (%) ↑

Weakly-supervised Models ↓

BESTIE [27] I 100% 109.5 14.3
BESTIE [27] P 100% 120.3 17.7
BBAM [32] B 100% 174.5 26.0
BoxInst [44] B 100% 174.5 33.2

Semi-supervised Models ↓

NB [49] F 5% + U 95% 44.2 25.6
NB [49] F 10% + U 90% 88.4 30.3
NB [49] F 30% + U 70% 265.2 35.5
NB [49] F 50% + U 50% 442.1 36.8

Weakly Semi-supervised Models ↓

Ours F 5% + P 95% 158.5 33.7
Ours F 10% + P 90% 196.7 35.8
Ours F 30% + P 70% 349.5 38.0
Ours F 50% + P 50% 502.3 38.8

Fully Supervised Models ↓

MRCNN [16] F 100% 884.2 38.8
SOLOv2 [47] F 100% 884.2 39.6

Table 1. Performance trade-off of annotation budgets and AP.
We compare the methods on the COCO test-dev under various su-
pervisions; U (unlabeled data), I (image-level label), P (point
label), B (box label), F (full label). All methods use the same
backbone network of R-101 [17]

4.4. Ablation Study

We conduct an ablation study of our method on the
COCO 10% setting. Unless otherwise specified, we mea-
sure the quality of pseudo labels generated by the teacher
network using randomly sampled 5,000 images in the rest
90% of COCO data, we name it COCO train5K.
Effect of Point Labels. In Table 5, we verify the effective-
ness of each weak label candidate (i.e., unlabeled, image-
level, and point label) in instance segmentation. For this
analysis, we measure the quality of pseudo labels and the
performance of the student network on the COCO 2017 val-
idation set. When the unlabeled data is leveraged as a weak
label, we should carefully tune the confidence threshold to
balance between false-negative and false-positive propos-
als; the average recall (AR100) and precision (AP ) largely
vary according to the confidence threshold. It implies that
human effort for tuning the threshold is required for target
datasets, and this global threshold may not be optimal for
every instance. Leveraging the image-level label as a weak
label can eliminate the misclassified proposals, boosting the
performance from 25.9% to 29.5%. However, the perfor-
mance gap with the fully-supervised setting is still signifi-
cant (29.5% vs. 39.0%). When we leverage the point label
as a weak label, we filter out the proposals to keep only true-
positive proposals, deprecating the requirement of the confi-
dence threshold. It makes a more straightforward and effec-
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FPN Proposal AP↑ AP50↑ AR100↑

P2 P2 23.4 48.3 37.6
P2∼P6 P2∼P6 10.3 20.8 44.7
P2∼P6 argmaxk∈{2,3,...,6}sk 28.6 56.7 42.6

P2∼P6 w/ ground-truth size 30.9 62.0 44.9

Table 2. Impact of choosing features adaptively. Pn denotes n-
th feature pyramid. si is the confidence score of the proposal in
i-th pyramid level.

Rough mask Point AP↑ AP50↑

w/o MaskRefineNet 28.6 56.7

14.8 30.2
X 29.7 54.4

X 30.9 52.9
X X 39.1 65.3

Table 3. Impat of the input sources
for MaskRefineNet.

Point AP↑ AP50↑

Center 28.6 56.7
Random 28.8 57.0

Table 4. Robustness to
point sources. We com-
pare APs trained with dif-
ferent locations – center
and random points.

Label Types
COCO train5K COCO val

AP↑ AP50↑ AR100↑ AP↑ AP50↑

U (τ=0.1) 6.0 11.3 33.8 20.8 33.5
U (τ=0.3) 13.1 22.9 23.4 25.9 41.5
U (τ=0.5) 12.2 19.3 15.6 24.3 38.2
I (τ=0.3) 19.5 33.1 24.1 29.5 48.9

P 28.6 56.7 42.6 32.2 52.3
P† 39.1 65.3 52.0 35.5 56.0

Table 5. Impact of using point labels. We have the notations: U
(unlabeled data), I (image-level label),P (point label), andF (full
label). We use COCO train5K to measure the quality of pseudo la-
bels and COCO val to evaluate the baseline network trained with
the pseudo labels. τ is a confidence threshold in the proposal
branch. † means applying our point-guided MaskRefineNet.

tive pipeline, resulting in 32.2%. Compared to the annota-
tion cost of the image-level label (80 s/img), the point label
is still budget-friendly (87.9 s/img) and gives a noticeable
performance improvement (32.2% vs. 29.5%). Moreover,
our point-guided MaskRefineNet further reduces the per-
formance gap with the fully-supervised setting (35.5% vs.
39.0%). This result demonstrates that our method can ef-
fectively leverage the point label for cost-efficient and high-
performance instance segmentation.

Furthermore, we test the robustness of our method to the
position of the point label. We originally used the centroid
point of each instance as our point label. For the analy-
sis, we randomly choose one pixel in an instance mask as a
point label five times and measure the average quality of the
pseudo labels. As shown in Table 4, the performance gap
between the center point and the random point is marginal.
The reason is that all pixels included in the instance region
within the proposal branch are trained to generate instance
proposals, as in [47]. This result demonstrates the robust-
ness of our method to the position of the point labels, which
gives us more opportunity to reduce the annotation effort.
Effect of Adaptive Pyramid-Level Selection. We quanti-
tatively analyze the behavior of the FPN in Table 2. When
we produce pseudo instance masks from a single layer fea-
ture map, i.e., without FPN, we achieve an unsatisfactory

Label Types AP↑ AP50↑ AP75↑

F 7k 22.1 40.2 21.2
F 7k + P 20k 26.7 44.4 27.8
F 7k + P 40k 27.3 44.5 28.9
F 7k + P 67k 27.9 44.8 29.2

Table 6. Quantitative results on BDD100K validation set. We
report the AP scores with different training regimes concerning the
number of point labels.

pseudo label quality of 23.4% as shown in the first row in
Table 2. When we generate pseudo masks from all pyra-
mid feature maps (P2∼P6), we achieve an inferior qual-
ity of 10.3% because the outputs from unfit pyramid levels
are pretty noisy, as shown in Figure 4. Using our Adap-
tive Pyramid-Level Selection strategy, we choose one ap-
propriate pyramid level based on the reliability of the net-
work, achieving the improved quality of 28.6%. The result
demonstrates that the proposed strategy is highly effective
in leveraging the behavior of the FPN structure for gener-
ating high-quality pseudo labels. Also, the result of 30.9%
when using ground-truth instance size information leaves us
room for improvement of our method.
Effect of MaskRefineNet. In Figure 6, we conduct ex-
periments on various subsets without the MaskRefineNet.
When the teacher network has enough mask representation
ability as in the COCO 50% setting, the improvement of the
MaskRefineNet is marginal (38.3% vs. 38.8%). However,
the MaskRefineNet yields a considerable performance im-
provement, especially in the limited number of fully labeled
data settings, e.g., COCO 1% (14.3%→24.0%) and COCO
5% (29.0%→33.7%) settings. The result demonstrates that
MaskRefineNet is a remarkably effective method to im-
prove the quality of pseudo labels in the limited quantity
of fully labeled data conditions.

In addition, we analyze the effect of input sources of the
MaskRefineNet in Table 3. Before applying the MaskRe-
fineNet, the quality of pseudo labels is measured as 28.6%.
When the MaskrefineNet only takes an image as input,
the accuracy of the pseudo labels drastically reduces to
14.8% since the network fails to converge due to the ab-
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Figure 7. Qualitative results according to the various subsets in COCO data. We observe that training with 5% of full labeled data
appropriately localizes all the object instance masks owing to our proposed point guidance method along with MaskRefineNet.

sence of prior knowledge. When taking the rough mask as
an input source, the quality of the pseudo labels improves
from 14.8% to 29.7% because the MaskRefineNet takes the
knowledge of the teacher network for fast and stable conver-
gence. However, the improvement is still minor compared
to the model without MaskRefineNet. When additionally
taking the point information as an input source, the quality
of pseudo labels dramatically improves to 39.1%. The rea-
son is that the point information is used as a guidance seed
for the target instance, helping a more accurate segment of
occluded instances and refining the missing predictions in
the rough mask, as shown in Figure 5.

5. Conclusion and Limitation

In this paper, we proposed a novel and practical weakly
semi-supervised instance segmentation scheme leveraging
point labels as weak supervision for cost-efficient and high-
performance instance segmentation. We motivated that the
main performance bottleneck of modern instance segmen-
tation frameworks arises from the instance proposal extrac-
tion. To this end, we proposed a method that can effec-
tively exploit the budget-friendly point labels as weak su-

pervision to resolve the bottleneck. Moreover, we presented
the MaskRefineNet to deal with hard learning scenarios
where the amount of fully labeled data is extremely lim-
ited. Owing to the effectiveness of the proposed method, we
can generate high-quality pseudo instance masks, achiev-
ing promising instance segmentation results. Despite our
remarkable results driven by cost-efficient point labels, we
have a limit to straightforwardly exploiting the tremendous
amount of unlabeled image pools, such as web-crawling im-
ages without any annotations. Our future direction may in-
volve incorporating unlabeled images in our framework to
extend its application to semi-supervised learning scenarios.
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Appendix: Additional Experimental Details
Labeling Budget Calculation. Seminar works [3, 4] of-
fered the annotation time of various labeling sources (e.g.,
full mask, bounding box, point, image-level labels) on Pas-
cal VOC dataset [14]. Since the COCO dataset [36] we
used has more categories and instances per image than the
VOC dataset, we estimate the labeling budget for the COCO
dataset following their budget calculation method. The
COCO 2017 trainset has a total of 80 categories and con-
tains 118,287 images and 860,001 instances. Also, it has an
average of 7.2 instances and 2.9 categories per image. By
considering this statistic of COCO dataset, we calculate the
labeling budget as follows:

• Full mask: 77.1classes/img × 1s/class +
7.2inst/img × 79s/mask = 645.9s/img.

• Bounding box: 77.1classes/img × 1s/class +
7.2inst/img × 7s/bbox = 127.5s/img.

• Point: 77.1classes/img × 1s/class +
2.9classes/img × 2.4s/point + (7.2inst/img −
2.9classes/img)× 0.9s/point = 87.9s/img.

• Image-level: 80classes/img × 1s/class = 80s/img.

Input of MaskRefineNet. In this section, we further pro-
vide the details about the input sources for MaskRefineNet.
After training the teacher network using the fully labeled
data, we generate instance mask outputs for the point-
guided filtered proposals (i.e., true-positive proposals) us-
ing the trained teacher network. We treat the mask out-
puts as rough masks to be used as the input source of the
MaskRefineNet. For each rough mask, we loosely crop
each instance region in the input image, rough mask, and
point heatmap. Specifically, after obtaining the bounding
box from the rough mask using the min-max operations,
we re-scale the size of the box to double, and then we use
this box region as the cropping region. In addition, for the
point heatmap, we encode each point to a 2-dimensional
gaussian kernel with a sigma of 6, as done in [48, 53].
We concatenate the three input sources (i.e., cropped in-
put image RH×W×3, cropped rough mask RH×W×1, and
cropped point heatmap RH×W×C) to be the input tensor
RH×W×(3+1+C) of the MaskRefineNet, where C is the
number of classes.

Appendix: Additional Analysis
Effect of the input size of MaskRefineNet. We orig-
inally set the input size of MaskRefineNet to 256×256.
Here, we change the input size to verify its effect on the
WSSIS result in table 7. For this, we train the MaskRe-
fineNet using the input size of 128×128 or 384×384. We

Input Size AP AP50 AP75

128×128 34.1 53.4 36.1
256×256 35.5 56.0 37.8
384×384 35.5 55.9 37.7

Table 7. Effect of the input size of MaskRefineNet. The APs are
measured on COCO 2017 validation set.

Iterative 1% 2% 5% 10% 30% 50% 100%

23.9 25.1 33.4 35.5 37.4 38.3 39.0
X 25.6 26.0 34.5 35.9 37.6 38.3 39.0

Table 8. Effect of iterative training strategy. The APs are mea-
sured on COCO 2017 validation set according to COCO subsets.

Method Label Types Budget (days) ↓ AP (%) ↑

Weakly-supervised Models

BBTP [20] B 100% 174.5 21.1
BBAM [32] B 100% 174.5 25.7
BoxInst [44] B 100% 174.5 33.2

BoxLevelSet [34] B 100% 174.5 33.4
BoxTeacher [12] B 100% 174.5 35.4
Point-sup [11] P10 100% 263.2 37.7

Weakly Semi-supervised Models

Ours F 5% + P 95% 158.5 33.7
Ours F 10% + P 90% 196.7 35.8
Ours F 20% + P 80% 273.1 37.1
Ours F 30% + P 70% 349.5 38.0
Ours F 50% + P 50% 502.3 38.8

Fully Supervised Models

MRCNN [16] F 100% 884.2 38.8
CondInst [43] F 100% 884.2 39.1
SOLOv2 [47] F 100% 884.2 39.7

Table 9. Additional comparisons with weakly-supervised
methods in terms of labeling budget and accuracy. We com-
pare the methods on the COCO test-dev under various supervi-
sions; B (box label), P10 (10-points label), P (single-point label),
F (full mask label). All methods use the same backbone network
of ResNet-101 [17].

measure the AP result of the student network trained with
the pseudo and full labels on the COCO 2017 validation set.
Consequently, the 256×256 size yields the best AP score of
35.5% but its performance gap with the 384×384 size is
marginal (35.5% vs 35.4%).

Effect of iterative training strategy. Some weakly-
supervised methods [2,25,46] utilize iterative training strat-
egy; after training the target network, they generate pseudo
labels using the target network, and then they newly train
the target network using the pseudo labels. This strat-
egy could give additional performance improvement but de-
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Method 5% 10% 20% 30% 40% 50%

Point DETR [10] 26.2 30.3 33.3 34.8 35.4 35.8
Group R-CNN [52] 30.1 32.6 34.4 35.4 35.9 36.1

ours 32.4 34.3 35.6 36.9 37.0 37.6

Table 10. Qualitative comparisons on COCO test-dev object de-
tection benchmark. All methods used the ResNet-50 backbone.

mands a more complex training pipeline. In this work, we
suffer from the insufficient mask representation of the net-
work when the amount of fully labeled data is extremely
limited (e.g., COCO 1%). Although we can alleviate the
problem with the proposed MaskRefineNet, we addition-
ally try to adopt this strategy since we assume that the
trained student network may have stronger mask represen-
tation ability than the teacher network. For this, after train-
ing the student network, we newly generate pseudo instance
masks for point labeled images. Using both full labels and
new pseudo labels, we train a new student network. As the
results in table 8, the iterative training strategy yields mean-
ingful improvements on tiny fully labeled data conditions
(COCO 1%: 23.9%→25.6%). However, there is no signif-
icant performance improvement for subsets above COCO
30%. This result demonstrates that (1) the iterative train-
ing strategy is helpful only when the amount of fully la-
beled data is extremely limited, (2) in more generous con-
ditions such as COCO 30% and 50%, our MaskRefineNet is
enough to replenish the mask representation of the network.
Additional Comparison with weakly-supervised
method: Point-sup [11] introduced a new type of weak
supervision source, multiple (10) points. They achieved
remarkable instance segmentation results with a highly
reduced annotation cost. To compare with them, we
estimate the annotation time for 10-points according to
the literature; they labeled 10-points in the bounding box
region.

• 10 Points: 77.1classes/img × 1s/class +
7.2inst/img×(7s/bbox+10points×0.9s/point) =
192.3s/img.

In table 9, we provide the results for weakly-supervised
methods and ours on COCO test-dev in terms of accuracy
and labeling budget. Although Point-sup shows a slightly
better efficiency than ours (37.7% with a budget of 263.2
days vs. 37.1% with a budget of 273.1 days), we argue that
our training setting is more applicable for the current dataset
conditions than them because they require newly annotating
of 10-points. Also, we show the possibility for more perfor-
mance improvement up to 38.8%, which is highly close to
the result of the fully-supervised setting. Furthermore, they
give us a new future direction; incorporating 10-points and
single-point without any mask labels.

Comparison with weakly semi-supervised object de-
tection methods: In our main paper, we discussed the
weakly semi-supervised object detection (WSSOD) meth-
ods [10, 52], which used the box labels as strong labels and
the point labels as weak labels. Since the instance segmen-
tation covers object detection, we measure our performance
on the COCO test-dev object detection benchmark. For this,
we use the min-max points from the instance mask output
as our bounding box output. Even though our strong label
is different from theirs (full mask vs. bounding box), the
results in table 10 show that ours can surpass the state-of-
the-art WSSOD performance. We note that all methods use
the same ResNet-50 [17] backbone network and the same
amount of total strong and weak labels.

Qualitative analysis for the effect of input sources of
MaskRefineNet: In Table 2 of our main paper, we pro-
vided the quantitative analysis of the effect of input sources
of MaskRefineNet. Here, we supplement our analysis with
the qualitative results according to the input sources of the
MaskRefineNet in Figure 8. When given all three informa-
tive input sources, the MaskRefineNet can produce high-
quality refined masks by separating overlapping instances
and removing noisy pixels.

Qualitative comparison of baselines and our WSSIS
method. In Figure 6 of our main paper, we provided the AP
evolution of two baselines and our WSSIS method accord-
ing to the COCO subsets. In Figure 9, we provide the qual-
itative results of two baselines and our method under the
COCO 10% setting. There are four types of methods: (a)
training with fully labeled data only, (b) training with fully
labeled data and unlabeled data, (c) training with fully la-
beled data and point labeled data, and (d) training with fully
labeled data and point labeled data along with our point-
guided MaskRefineNet. The results demonstrate that the
network trained with our method can be guided with higher-
quality pseudo labels, resulting less false-positive and false-
negative outputs.

Additional qualitative results on COCO dataset. In Fig-
ure 10, we provide additional qualitative results of ours
trained with 5%, 20%, and 50% COCO subsets.

Qualitative results on BDD100K dataset. We quali-
tatively analyze the effect of leveraging point labels for
the instance segmentation model using the BDD100K
dataset [51]. There are two types of networks: the first is
the network trained with only 7K fully labeled data, and
the second is the network trained with 7K fully labeled data
and 67K point labeled data. As shown in Figure 11, due to
our effective leveraging of the point labels, the second net-
work is much more robust to large and small instances and
occluded instances.
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Figure 8. Qualitative analysis of the effect of input sources of MaskRefineNet. Object instances can not be distinguished when the
point label is not given for MaskRefineNet (3rd col). Meanwhile, mask representations are inaccurate due to the absence of prior rough
masks (4th col). Based on these low-cost priors, we can obtain sophisticated masks per object instance (5th col).
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Figure 9. Qualitative comparison of models trained with different types of supervision on COCO 10% setting. The result of the semi-
supervised setting can detect instance masks for all objects but is vulnerable to misclassification (e.g. cat, person, bear, airplane, toilet).
Meanwhile, our point-guided model presents accurate class predictions. Our MaskRefineNet further elaborates the mask representation.
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Figure 10. Additional qualitative results according to the various subsets in COCO data. Owing to our point guidance along with
MaskRefineNet, leveraging only 5% of full labeled data sufficiently localizes all the instances with elaborative mask representations.
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Figure 11. Qualitative comparison of leveraging point labels on BDD100K. Training with point labels clearly enriches the mask
representation and removes the noise incurred by visually hard samples (e.g., dark light condition in the first row).
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