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Abstract
In semi-supervised medical image segmentation, there

exist empirical mismatch problems between labeled and un-
labeled data distribution. The knowledge learned from the
labeled data may be largely discarded if treating labeled
and unlabeled data separately or in an inconsistent man-
ner. We propose a straightforward method for alleviating
the problem − copy-pasting labeled and unlabeled data
bidirectionally, in a simple Mean Teacher architecture. The
method encourages unlabeled data to learn comprehensive
common semantics from the labeled data in both inward and
outward directions. More importantly, the consistent learn-
ing procedure for labeled and unlabeled data can largely
reduce the empirical distribution gap. In detail, we copy-
paste a random crop from a labeled image (foreground)
onto an unlabeled image (background) and an unlabeled
image (foreground) onto a labeled image (background), re-
spectively. The two mixed images are fed into a Student
network and supervised by the mixed supervisory signals
of pseudo-labels and ground-truth. We reveal that the sim-
ple mechanism of copy-pasting bidirectionally between la-
beled and unlabeled data is good enough and the experi-
ments show solid gains (e.g., over 21% Dice improvement
on ACDC dataset with 5% labeled data) compared with
other state-of-the-arts on various semi-supervised medical
image segmentation datasets. Code is available at https:
//github.com/DeepMed-Lab-ECNU/BCP.

1. Introduction

Segmenting internal structures from medical images
such as computed tomography (CT) or magnetic resonance
imaging (MRI) is essential for many clinical applications
[34]. Various techniques based on supervised learning for
medical image segmentation have been proposed [4,13,45],
which usually requires a large amount of labeled data. But,
due to the tedious and expensive manual contouring process
when labeling medical images, semi-supervised segmenta-
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Figure 1. Illustration of the mismatch problem under semi-
supervised leaning setting. Assume the training set is drawn from
a latent distribution in (a). But the empirical distributions of small
amount of labeled data and a large amount of unlabeled data are
(b) and (c), respectively. It’s hard to use few labeled data to con-
struct the precise distribution of the whole dataset. (d) By using
our BCP, the empirical distributions of labeled and unlabeled fea-
tures are aligned. (e) But other methods such as SSNet [35] or
cross unlabeled data copy-paste cannot address the empirical dis-
tribution mismatch issue. All distributions are kernel density esti-
mations of voxels belonging to myocardium class in ACDC [2].

tion attracts more attention in recent years, and has become
ubiquitous in the field of medical image analysis.

Generally speaking, in semi-supervised medical image
segmentation, the labeled and unlabeled data are drawn
from the same distribution, (Fig. 1 (a)). But in real-world
scenario, it’s hard to estimate the precise distribution from
labeled data because they are few in number. Thus, there
always exists empirical distribution mismatch between a
large amount of unlabeled and a very small amount of la-
beled data [30] (Fig. 1(b) and (c)). Semi-supervised seg-
mentation methods always attempt to train labeled and un-
labeled data symmetrically, in a consistent manner. E.g.,
self-training [1,48] generates pseudo-labels to supervise un-
labeled data in a pseudo-supervised manner. Mean Teacher
based methods [40] adopt consistency loss to “supervise”
unlabeled data with strong augmentations, in analogy with
supervising labeled data with ground-truth. DTC [16]
proposed a dual-task-consistency framework, applicable to
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Figure 2. Dice scores for unlabeled and labeled training data of
different models on LA dataset [39]. A much smaller performance
gap is observed in our method.

both labeled and unlabeled data. ContrastMask [31] ap-
plied dense contrastive learning on both labeled and un-
labeled data. But most existing semi-supervised methods
used labeled and unlabeled data under separate learning
paradigms. Thus, it often leads to the discarding of massive
knowledge learned from the labeled data and the empirical
distribution mismatch between labeled and unlabeled data
(Fig. 1(e)).

CutMix [42] is simple yet strong data processing
method, also dubbed as Copy-Paste (CP), which has the
potential to encourage unlabeled data to learn common se-
mantics from the labeled data, since pixels in the same map
share semantics to be closer [29]. In semi-supervised learn-
ing, forcing consistency between weak-strong augmenta-
tion pair of unlabeled data is widely used [11, 14, 32, 47],
and CP is usually used as a strong augmentation. But ex-
isting CP methods only consider CP cross unlabeled data
[8, 10, 14], or simply copy crops from labeled data as fore-
ground and paste to another data [6, 9]. They neglect to
design a consistent learning strategy for labeled and unla-
beled data, which hampers its usage on reducing the distri-
bution gap. Meanwhile, CP tries to enhance the generaliza-
tion of networks by increasing unlabeled data diversity, but
a high performance is hard to achieve since CutMixed im-
age is only supervised by low-precision pseudo-labels. It’s
intuitive to use more accurate supervision to help networks
segment degraded region cut by CP.

To alleviate the empirical mismatch problem between
labeled and unlabeled data, a successful design is to en-
courage unlabeled data to learn comprehensive common se-
mantics from the labeled data, and meanwhile, furthering
the distribution alignment via a consistent learning strat-
egy for labeled and unlabeled data. We achieve this by
proposing a surprisingly simple yet very effective Bidirec-
tional Copy-Paste (BCP) method, instantiated in the Mean
Teacher framework. Concretely, to train the Student net-
work, we augment our inputs by copy-pasting random crops
from a labeled image (foreground) onto an unlabeled im-
age (background) and reversely, copy-pasting random crops
from an unlabeled image (foreground) onto a labeled im-

age (background). The Student network is supervised by
the generated supervisory signal via bidirectional copy-
pasting between the pseudo-labels of the unlabeled images
from the Teacher network and the label maps of the la-
beled image. The two mixed images help the network to
learn common semantics between the labeled and unlabeled
data bidirectionally and symmetrically. We compute the
Dice scores for labeled and unlabeled training set from
LA dataset [39] based on models trained by state-of-the-
arts and our method, as shown in Fig. 2. Previous models
which process labeled data and unlabeled data separately
present strong performance gap between labeled and unla-
beled data. E.g., MC-Net obtains 95.59% Dice for labeled
data but only 87.63% for unlabeled data. It means previous
models absorb knowledge from ground-truth well, but dis-
card a lot when transferring to unlabeled data. Our method
can largely decrease the gap between labeled and unlabeled
data (Fig. 1(d)) in terms of their performances. It is also in-
teresting to observe that Dice for labeled data of our BCP is
lower than other methods, implying that BCP can mitigate
the over-fitting problem to some extent.

We verify BCP in three popular datasets: LA [39],
Pancreas-NIH [21], and ACDC [2] datasets. Extensive ex-
periments show our simple method outperforms all state-
of-the-arts by a large margin, with even over 21% improve-
ment in Dice on ACDC dataset with 5% labeled data. Abla-
tion study further shows the effectiveness of each proposed
module. Note that compared with the baseline e.g., VNet
or UNet, our method does not introduce new parameters for
training, while remaining the same computational cost.

2. Related Work
2.1. Medical Image Segmentation

Segmenting internal structures from medical images is
essential for many clinical applications [34]. Existing meth-
ods for medical image segmentation can be groups into two
categories. The first category designed various 2D/3D seg-
mentation network architectures [3, 4, 13, 18, 20, 49]. The
second category leveraged medical prior knowledge to net-
work training [23, 28, 33, 38].

2.2. Semi-supervised Medical Image Segmentation

Many efforts have been made in semi-supervised medi-
cal image segmentation. Entropy minimization (EM) and
consistency regularization (CR) are the two widely-used
loss functions. Meanwhile, many works extended Mean
Teacher framework in different ways. SASSNet [12] lever-
aged unlabeled data to enforce a geometric shape constraint
on the segmentation output. DTC [16] proposed a dual-
task-consistency framework by building task-level regular-
ization explicitly. SimCVD [40] modeled geometric struc-
ture and semantic information explicitly and constrain them



Figure 3. Overview of our bidirectional copy-paste framework in Mean Teacher architecture, drawn with 2D inputs for better visualization.
The inputs to Student network are generated by mixing two labeled and two unlabeled images in the proposed bidirectional copy-paste
manner. Then, to provide the supervisory signal to the Student network, we combine the ground-truths and the pseudo-labels generated
by the Teacher network into one supervisory signal via the same bidirectional copy-paste, to enable strong supervision from ground-truths
help the weak supervision from pseudo-label.

between Teacher and Student networks. These methods
used geometric constraints to supervise the output of the
network. UA-MT [41] used uncertainty information to
guide Student network learn from the meaningful and re-
liable targets of Teacher network gradually. [46] combined
image-wise and patch-wise representations to explore more
complex similarity cues, enforcing the output to be con-
sistent given different input sizes. CoraNet [22] proposed
a model which can produce certain and uncertain regions,
and Student network treats regions indicated from Teacher
network with different weights. UMCT [37] used differ-
ent perspectives of the network to predict the same image
of different views. It utilized the predictions and the corre-
sponding uncertainty to generate the pseudo-labels, which
were used to supervise the prediction of unlabeled images.
These methods have furthered the effectiveness for semi-
supervised medical image segmentation. But, they ignored
how to learn common semantics from labeled to unlabeled
data. Treating labeled and unlabeled data separately often
impedes knowledge transfer from labeled to unlabeled data.

2.3. Copy-Paste

Copy-paste is a simple but strong data processing
method for many tasks, e.g., instance segmentation [7, 9],
semantic segmentation [6, 25] and object detection [5].
Generally speaking, copy-paste means copying crops of one
image and pasting them onto another image. Mixup [43]
and CutMix [42] are classic works of mixing whole images
and mixing image crops respectively. Many recent works
extended them to address specific goals. GuidedMix-Net
[25] used mixup to generate higher-quality pseudo-labels

by transferring the knowledge of labeled data to the unla-
beled data. InstaBoost [7] and Contextual Copy-Paste [5]
placed the cropped foreground onto another image elabo-
rately according to the surrounding visual context. CP2 [27]
proposed a pretraining method which copy-pastes a random
crop from an image to another background image, it has
been proved to be more suitable for downstream dense pre-
diction tasks. [9] made a systematic study of copy-paste
in instance segmentation. UCC [6] copied the pixels be-
longing to the class which has a low confidence score as
foreground during training to alleviate the distribution mis-
match and class imbalance problems. Previous methods
only considered copy-paste cross unlabeled data, or simply
copied crops from labeled data as foreground and pasted to
another data. They neglect to design a consistent learning
strategy for labeled and unlabeled data. Thus, a large distri-
bution gap is still inevitable.

3. Method
Mathematically, we define the 3D volume of a medical

image as X ∈ RW×H×L. The goal of semi-supervised
medical image segmentation is to predict the per-voxel la-
bel map Ŷ ∈ {0, 1, ...,K − 1}W×H×L, indicating where
the background and the targets are in X. K is the class
number. Our training set D consists of N labeled data
and M unlabeled data (N � M ), expressed as two sub-
sets: D = Dl ∪ Du, where Dl = {(Xl

i,Y
l
i)}Ni=1 and

Du = {Xu
i }M+N

i=N+1.
The overall pipeline of the proposed bidirectional copy-

paste method is shown in Fig. 3, in the Mean Teacher archi-
tecture. We randomly pick two unlabeled images (Xu

p ,X
u
q ),



and two labeled images (Xl
i,X

l
j) from the training set. Then

we copy-paste a random crop from Xl
i (the foreground) onto

Xu
q (the background) to generate the mixed image Xout, and

from Xu
p (the foreground) onto Xl

j (the background) to gen-
erate another mixed image Xin. Unlabeled images are able
to learn comprehensive common semantics from labeled
images from both inward (Xin) and outward (Xout) direc-
tions. Images Xin and Xout are then fed into the Student
network to predict segmentation masks Ŷ

in
and Ŷ

out
. The

segmentation masks are supervised by bidirectional copy-
pasting the predictions of the unlabeled images from the
Teacher network and the label maps of the labeled images.

3.1. Bidirectional Copy-Paste

3.1.1 Mean-Teacher and Training Strategy

In our BCP framework, there are a Teacher net-
work, Ft

(
Xu

p ,X
u
q ;Θt

)
, and a Student network

Fs

(
Xin,Xout;Θs

)
, where Θt and Θs are parame-

ters. The Student network is optimized by stochastic
gradient descent, and the Teacher network is by exponential
moving average (EMA) of Student network. [24] Our train-
ing strategy is divided into three steps. We first use only
labeled data to pretrain a model, then we use the pretrained
model as Teacher network to generate pseudo-labels for
unlabeled images. At each iteration, we first optimize
the Student network parameters Θs by stochastic gradient
descent. Finally, we update the Teacher network parameters
Θt using EMA of the Student parameters Θs.

3.1.2 Pre-Training via Copy-Paste

Inspired by previous work [9], we conducted Copy-Paste
augmentation on labeled data to train a supervised model,
the supervised model will generate pseudo-labels for unla-
beled data during self-training. This strategy was proved
to be effective to improve segmentation performance, more
details will be illustrated in ablation studies.

3.1.3 Bidirectional Copy-Paste Images

To conduct copy-paste between a pair of images, we first
generate a zero-centered mask M ∈ {0, 1}W×H×L, indi-
cating whether the voxel comes from the foreground (0) or
the background (1) image. The size of the zero-value region
is βH×βW ×βL, where β ∈ (0, 1). Then we bidirection-
ally copy-paste labeled and unlabeled images as follows:

Xin = Xl
j �M+ Xu

p � (1−M) , (1)

Xout = Xu
q �M+ Xl

i � (1−M) , (2)

where Xl
i, Xl

j ∈ Dl, i 6= j, Xu
p , Xu

q ∈ Du, p 6= q,
1 ∈ {1}W×H×L, and � means element-wise multiplica-

tion. Two labeled and unlabeled images are adopted to keep
the diversity of the input.

3.1.4 Bidirectional Copy-Paste Supervisory Signals

To train the Student network, supervisory signals are also
generated via BCP operation. Unlabeled images Xu

p and
Xu

q are fed into the Teacher network, and their probability
maps are computed:

Pu
p = Ft(Xu

p ;Θt), Pu
q = Ft(Xu

q ;Θt). (3)

The initial pseudo-label Ŷ
u

(p and q are dropped for sim-
plicity) are determined by taking a common threshold 0.5
on Pu for binary segmentation tasks, or taking argmax op-
eration on Pu for multi-class segmentation tasks. The final
pseudo-label Ỹ

u
is obtained via selecting the largest con-

nected component of Ŷ
u

which will effectively remove out-
lier voxels. Then, we propose to bidirectionally copy-paste
the pseudo-labels of unlabeled images and ground truth la-
bels of labeled images in the same manner as in Eq.1 and
Eq.2 to obtain the supervisory signals:

Yin = Yl
j �M+ Ỹ

u

p � (1−M) , (4)

Yout = Ỹ
u

q �M+ Yl
i � (1−M) . (5)

Yin and Yout will be used as the supervision to supervise
the Student network predictions of Xin and Xout.

3.2. Loss Function

Each input image of the Student network consists of
component from both labeled and unlabeled image. Intu-
itively, ground truth masks of labeled images are usually
more accurate than pseudo-labels of unlabeled images. We
use α to control the contribution of unlabeled image pixels
to the loss function. The loss functions for Xin and Xout

are computed respectively by

Lin = Lseg
(
Qin,Yin

)
�M+ (6)

αLseg
(
Qin,Yin

)
� (1−M) ,

Lout = Lseg
(
Qout,Yout

)
� (1−M)+ (7)

αLseg
(
Qout,Yout

)
�M,

where Lseg is the linear combination of Dice loss and
Cross-entropy loss. Qin and Qout are computed by:

Qin = Fs(Xin;Θs), Qout = Fs(Xout;Θs). (8)

At each iteration we update the parameters Θs in Student
network by stochastic gradient descent with the loss func-
tion:

Lall = Lin + Lout. (9)



Method
Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
V-Net 4(5%) 0 52.55 39.60 47.05 9.87
V-Net 8(10%) 0 82.74 71.72 13.35 3.26
V-Net 80(All) 0 91.47 84.36 5.48 1.51

UA-MT

4(5%) 76(95%)

82.26 70.98 13.71 3.82
SASSNet 81.60 69.63 16.16 3.58

DTC 81.25 69.33 14.90 3.99
URPC 82.48 71.35 14.65 3.65

MC-Net 83.59 72.36 14.07 2.70
SS-Net 86.33 76.15 9.97 2.31
Ours 88.02↑1.69 78.72↑2.57 7.90↓2.07 2.15↓0.16

UA-MT

8(10%) 72(90%)

87.79 78.39 8.68 2.12
SASSNet 87.54 78.05 9.84 2.59

DTC 87.51 78.17 8.23 2.36
URPC 86.92 77.03 11.13 2.28

MC-Net 87.62 78.25 10.03 1.82
SS-Net 88.55 79.62 7.49 1.90
Ours 89.62↑1.07 81.31↑1.69 6.81↓0.68 1.76↓0.14

Table 1. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on LA dataset. Improvements compared with
the second best results are highlighted.

Afterwards, Teacher network parameters Θ
(k+1)
t at the

(k + 1)th iteration are updated:

Θ
(k+1)
t = λΘ

(k)
t + (1− λ)Θ(k)

s , (10)

where λ is the smoothing coefficient parameter.

3.3. Testing Phase

In the testing stage, given a testing image Xtest, we ob-
tain the probability map by: Qtest = F(Xtest; Θ̂s), where
Θ̂s are the well-trained Student network parameters. The
final label map can be easily determined by Qtest.

4. Experiments
4.1. Dataset

LA dataset. Atrial Segmentation Challenge [39] dataset
includes 100 3D gadolinium-enhanced magnetic resonance
image scans (GE-MRIs) with labels. We strictly follow the
setting used in SSNet [35], DTC [16] and UA-MT [41].
Pancreas-NIH. Pancreas-NIH [21] dataset contains 82
contrast-enhanced abdominal CT volumes which are man-
ually delineated. For fair comparison, we follow the setting
in CoraNet [22].
ACDC dataset. ACDC [2] dataset is a four-class (i.e. back-
ground, right ventricle, left ventricle and myocardium) seg-
mentation dataset, containing 100 patients’ scans. The data
split [15] is fixed with 70, 10, and 20 patients’ scans for
training, validation, and testing.

4.2. Evaluation Metrics

We choose four evaluation metrics: Dice Score (%), Jac-
card Score (%), 95% Hausdorff Distance (95HD) in voxel

Method
Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
V-Net

12(20%) 50(80%)

69.96 55.55 14.27 1.64
DAN 76.74 63.29 11.13 2.97

ADVNET 75.31 61.73 11.72 3.88
UA-MT 77.26 63.82 11.90 3.06

SASSNet 77.66 64.08 10.93 3.05
DTC 78.27 64.75 8.36 2.25

CoraNet 79.67 66.69 7.59 1.89
Ours 82.91↑3.24 70.97↑4.28 6.43↓1.16 2.25↑0.61

Table 2. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on the Pancreas-NIH dataset.

Method
Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
U-Net 3(5%) 0 47.83 37.01 31.16 12.62
U-Net 7(10%) 0 79.41 68.11 9.35 2.70
U-Net 70(All) 0 91.44 84.59 4.30 0.99

UA-MT

3(5%) 67(95%)

46.04 35.97 20.08 7.75
SASSNet 57.77 46.14 20.05 6.06

DTC 56.90 45.67 23.36 7.39
URPC 55.87 44.64 13.60 3.74

MC-Net 62.85 52.29 7.62 2.33
SS-Net 65.83 55.38 6.67 2.28
Ours 87.59↑21.76 78.67↑23.29 1.90↓4.77 0.67↓1.61

UA-MT

7(10%) 63(90%)

81.65 70.64 6.88 2.02
SASSNet 84.50 74.34 5.42 1.86

DTC 84.29 73.92 12.81 4.01
URPC 83.10 72.41 4.84 1.53

MC-Net 86.44 77.04 5.50 1.84
SS-Net 86.78 77.67 6.07 1.40
Ours 88.84↑2.06 80.62↑2.95 3.98↓2.09 1.17↓0.23

Table 3. Comparisons with state-of-the-art semi-supervised seg-
mentation methods on the ACDC dataset.

and Average Surface Distance (ASD) in voxel. Given two
object regions, Dice and Jaccard mainly compute the per-
centage of overlap between them, ASD computes the aver-
age distance between their boundaries, and 95HD measures
the closest point distance between them.

4.3. Implementation Details

α = 0.5, β = 2/3 are set as the default value in exper-
iments, unless otherwise specified. We conduct all experi-
ments on an NVIDIA 3090 GPU with fixed random seeds.
LA dataset. Following SS-Net [35], we use rotation and
flip operations to augment data and train our model via an
SGD optimizer with the initial learning rate 0.01 decay by
10% every 2.5K iterations. The backbone is set as 3D V-
Net. During training, we randomly crop 112 × 112 × 80
patches, and the size of the zero-value region is 74×74×53
(β = 2/3). The batch size is set as 8, containing four la-
beled patches and four unlabeled patches. The iterations of
pre-training and self-training are set as 2k and 15k respec-
tively.
Pancreas-NIH. Following CoraNet [22], we augment data
by rotating, rescaling and flipping, and train a four-layer 3D



Method
LA ACDC

Scans used Metrics Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

In

4(5%) 76(95%)

87.35 77.77 8.75 2.21

3(5%) 67(95%)

81.68 70.07 4.69 1.28
Out 87.32 77.78 9.38 2.16 72.19 60.69 39.57 18.15
CP 79.67 67.05 14.66 3.21 81.80 71.70 16.29 6.43

Ours 88.02 78.72 7.90 2.15 87.59 78.67 1.90 0.67
In

8(10%) 72(90%)

89.02 80.38 8.08 1.81

7(10%) 63(90%)

85.55 75.65 4.93 1.50
Out 87.61 78.10 8.99 2.63 87.23 78.07 8.61 2.39
CP 86.74 77.18 8.65 2.26 88.17 79.64 6.14 1.45

Ours 89.62 81.31 6.81 1.76 88.84 80.62 3.98 1.17

Table 4. Ablation study of the copy-paste directions. In: inward copy-paste (foreground: unlabeled, background: labeled). Out: outward
copy-paste (foreground: labeled, background: unlabeled). CP: direct copy-paste (background & foreground: labeled & labeled and
unlabeled & unlabeled).

Figure 4. Visualizations of several semi-supervised segmentation
methods with 10% labeled data and ground truth on LA dataset
(best viewed by zoom-in on screen).

Figure 5. Kernel dense estimations of different methods, trained
on 10% labeled ACDC dataset. Top to bottom are kernel dense
estimations of features belong to three different class of ACDC:
right ventricle, myocardium and left ventricle. Baseline: Only la-
beled data are used to train the network. CP, In and Out are same
as Table 4. It can be seen that our BCP could make the features
of labeled data and unlabeled data align better. Furthermore, the
outstanding performance of our method compared with In and Out
demonstrates the necessity of bidirectional copy-paste.

V-Net by Adam optimizer with initial learning rate as 0.001.
During training, we randomly crop 96 × 96 × 96 patches
input the network, the size of the zero-value region of mask
M is 64×64×64. We set the batch size, pre-training epochs
and the self-training epochs as 8, 60 and 200 respectively.
ACDC dataset. Following SS-Net [35], we use 2D U-Net

Method Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

Mixup
4(5%) 76(95%)

41.71 29.58 59.75 21.87
FG-CutMix 67.05 54.00 30.52 6.15

Ours 88.02 78.72 7.90 2.15
Mixup

8(10%) 72(90%)
63.64 52.51 21.67 3.61

FG-CutMix 83.58 72.70 11.96 2.56
Ours 89.62 81.31 6.81 1.76

Table 5. Ablation study of interpolation strategies on LA dataset.
Mixup: We imitate the framework of GuidedMix-Net [25], which
is proposed for semi-supervised segmentation of natural images.
FG-CutMix: We crop images of the whole training batch into 4×4
patches and then combine them randomly to generate new images.

as the backbone of our experiments. During training, the
input patch size is 256× 256 (2D slices) and the size of the
zero-value region of maskM is 170× 170. The batch size,
pre-training iterations, and the self-training training itera-
tions are set as 24, 10k and 30k respectively.

4.4. Comparison with Sate-of-the-Art Methods

LA dataset We compare our framework on LA dataset
with various competitors: UA-MT [41], SASSNet [12],
DTC [16], URPC [17], MC-Net [36] and SS-Net [35]. Fol-
lowing SS-Net, semi-supervised experiments of different
labeled ratios (i.e. 5% and 10%) are carried out. Results
from other competitors were reported in the identical ex-
perimental setting in SS-Net [35] for fair comparisons. As
shown in Table 1, our method achieves the best performance
on all four evaluation metrics, outperforming other competi-
tors by a big margin. Thanks to BCP, the network “sees”
more variances for boundary regions or semantic change of
voxels, allowing for achieving good shape-related perfor-
mances (see 95HD and ASD) without any explicit bound-
ary or shape constraints during training. Moreover, it can
be seen in Fig. 4 that our method can segment fine de-
tails of the target organ, especially edges that are easy to
be misidentified (the first row) or missed (the second, third
and fourth row), highlighted by blue circles.

Pancreas-NIH dataset We conduct experiments on
Pancreas-NIH dataset with 20% labeled ratio [16, 22]. We



Mode Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

Random
4(5%) 76(95%)

86.15 76.03 9.19 2.38
Contact 86.64 76.32 9.61 2.58

Ours 88.02 78.72 7.90 2.15
Random

8(10%) 72(90%)
84.50 73.79 10.79 2.39

Contact 88.66 79.82 7.93 2.27
Ours 89.62 81.31 6.81 1.76

Table 6. Results with three masking strategies on LA dataset.

β
Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
1/3

4(5%) 76(95%)
79.92 67.73 15.44 3.63

1/2 86.49 76.63 8.74 2.23
2/3 88.02 78.72 7.90 2.15
5/6 87.92 78.57 8.29 2.26
1/3

8(10%) 72(90%)
83.20 72.04 11.64 2.94

1/2 88.81 89.10 7.33 1.96
2/3 89.62 81.31 6.81 1.76
5/6 88.75 79.96 7.63 2.07

Table 7. Ablation study of β on LA dataset.

compared BCP with V-Net [19], DAN [44], ADVNET [26],
UA-MT [41], SASSNet [12], DTC [16] and CoraNet [22] in
Table 2. In this table, DAN, ADVNET, UA-MT, SASSNet,
DTC, CoraNet and our method took both labeled and unla-
beled data to train the network with V-Net as the backbone,
while V-Net only uses labeled data in the supervised setting
(lower bound). BCP achieves significant improvement on
Dice, Jaccard and 95HD (i.e., surpassing the second best by
3.24%, 4.28% and 1.16, respectively). These results do not
conduct any post-processing for fair comparison.

ACDC dataset Table 3 shows the averaged performance
of four-class segmentation results on ACDC dataset with
5% and 10% labeled ratios. BCP surpasses all state-of-
the-arts. We obtain a huge performance improvement up
to 21.76% in terms of Dice for the setting with 5% labeled
ratio. Following SS-Net [35], 2D slices are used to train
our network. Noted that one 3D volume can be sliced into
many 2D slices, so much more combinations from labeled
and unlabeled slices could be produced than those using 3D
data. Hence, during training, the knowledge of labeled data
can be transferred to unlabeled data more sufficiently, es-
pecially when the number of labeled volume is very small.
This might be the reason for such a significant improvement
compared with others when the labeled ratio is 5%.

4.5. Ablation Studies

We conduct ablation studies to show the impact of each
component in BCP. Including CP directions, design choices
of masking strategies, interpolation strategies, β (size ra-
tio for zero-value region inM), and α (Eq. 6-7). We also
investigate step-by-step the significant improvement of our
method compared with competitors on the ACDC dataset
with 5% labeled ratio. Some ablation studies on ACDC
dataset are shown in the supplementary material.

Figure 6. Different masking strategies. (a): random mask; (b):
zero-centered mask; (c): contact mask.

Copy-Paste Direction We design three experiments to
investigate the influence of different copy-paste directions
in Table 4. Inward and outward copy-paste (In and Out
in the table) mean using Xl � M + Xu � (1−M) or
Xu � M + Xl � (1−M) respectively to train the net-
work. We also conduct within-set copy-paste (CP in the
table), i.e., copy-paste labeled data on another labeled data
and copy-paste unlabeled data on another unlabeled data.
We can see that all these variants get inferior performances
compared with our BCP, since they either lack consistent
manner for training labeled and unlabeled data, or lack com-
mon semantics transfer between labeled and unlabeled data.

Interpolation Strategies We compare BCP with other
two interpolation strategies: Mixup [43] and Fine-Grained
CutMix (FG-CutMix). For Mixup, we superimpose labeled
and unlabeled data to generate new training images, im-
itating the framework of GuidedMix-Net [25]. For FG-
CutMix, we crop training images into 4×4 patches and
combine them in batch to generate new images. The net-
work predictions of new images are re-combined and then
supervised by ground-truth or pseudo-labels. The results
of LA dataset are shown in Table 5. Due to similar spatial
structures of medical images, Mixup brings more influential
noise in medical images. FG-CutMix maintains less struc-
ture information after CutMix than BCP. More details will
be discussed in supplementary material.

Design Choices of Masking Strategies As shown in
Fig. 6, we explore different masking strategies in BCP on
LA dataset. To conduct a fair comparison, we maintain the
same number of zero-value voxels for different strategies.
We randomly sample 27 small βH × βW × βL zero-value
cubes in an all-one mask, and set β = 2/9 for each zero-
value cube. For contact mask, the shape of zero-value re-
gion is βH × W × L, and β is set as 8/27 to control the
number of zero-value voxels. As shown in Table 6, random
mask obtains worst performance, since small random cubes
only contain incoherently local foreground of an image,
which lacks the ability in learning complete foreground rep-
resentation. Contact mask has better integrity of foreground
information, which performs better than random mask, but
still performs worse than zero-centered mask used in our
method, since foreground has less chance interacting with
the background, compared with zero-centered mask. Thus,



α
LA ACDC

Scans used Metrics Scans used Metrics
Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓ Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓

0.5

4(5%) 76(95%)

88.02 78.72 7.90 2.15

3(5%) 67(95%)

87.59 78.67 1.90 0.67
1.5 87.21 77.49 8.67 2.37 85.88 76.02 3.17 0.93
2.5 86.56 76.46 9.82 2.60 85.43 75.47 12.02 4.05
0.5

8(10%) 72(90%)

89.62 81.31 6.81 1.76

7(10%) 63(90%)

88.84 80.62 3.98 1.17
1.5 89.35 80.88 7.46 2.09 88.65 80.31 1.99 0.68
2.5 88.74 79.88 7.73 2.15 87.13 78.19 3.67 1.24

Table 8. Ablation study of the weights α in the loss function.

Strategy
Scans used Metrics

Labeled Unlabeled Dice↑ Jaccard↑ 95HD↓ ASD↓
random

4(5%) 76(95%)
86.06 75.96 9.48 2.33

w/o CP 86.46 76.50 8.93 2.31
Ours 88.02 78.72 7.90 2.15

random
8(10%) 72(90%)

87.93 78.67 8.24 2.08
w/o CP 88.75 79.88 7.66 1.83

Ours 89.62 81.31 6.81 1.76

Table 9. Ablation study of pre-training strategy on LA dataset.
random: Initialized randomly. w/o CP: Initialized from a pre-
trained model trained on labeled data without copy-paste.

BCP nms Pre-Train Dice↑ Jaccard↑ 95HD↓ ASD↓
47.62 36.61 29.02 11.46

X 83.26 72.71 23.90 7.49
X X 82.33 72.76 9.78 4.74
X X X 87.59 78.67 1.90 0.67

Table 10. Ablation on ACDC dataset with 5% labeled data,
α = 0.5 across all experiments. nms: Post-processing the pseudo-
labels for unlabeled data. Pre-Train: Initialized from a pre-trained
model with copy-paste on labeled data.

both random mask and contact mask have weaker ability in
mitigating the distribution mismatch problem between la-
beled and unlabeled data.

Size of Zero-value Region in M We study the impact of
zero-value region size on LA dataset, as shown in the Ta-
ble 7. For the zero-value region βH × βW × βL in the
maskM, we set β = { 13 ,

1
2 ,

2
3 ,

5
6}. The performance gets

worse as β decreases, which means small copy-pasted fore-
ground has limited ability in transferring common seman-
tics to/from the background. Best performance is achieved
when β = 2/3 and it decreases a bit when β = 5/6.

Weight in Loss Function We set α = 0.5 as the default
value. Now we vary α = {0.5, 1.5, 2.5} to see how the
performance changes. Table 8 shows it is not sensitive when
α changes from 0.5 to 1.5, but an obvious performance drop
is observed when α = 2.5.

Teacher Network Initialization Strategy In our default
setting, the Teacher network is initialized by a pre-trained
model, which is trained on labeled data in a copy-paste man-
ner. We study other network initialization strategies: ini-
tialized randomly and initialized from a pre-trained model
which is trained on labeled data without copy-paste. Com-
parison results are shown in Table 9. Compared with pre-

training on original labeled data, performing copy-paste on
the labeled data during pre-train can effectively improve the
generalization ability of the network.

Ablation on ACDC with 5% Labeled Data In Table 3,
our method achieves a huge improvement on ACDC dataset
with 5% labeled data. We separate our method into three
components and study which component contributes the
most to this improvement. As shown in Table 10, with-
out our component (the first row), it degenerated into a nor-
mal pseudo-label-based self-training method, which means
the segmentation of labeled and unlabeled images are su-
pervised by ground truth and pseudo-labels respectively.
Then, BCP leads to a significant performance gain (from
47.62% to 83.26% in Dice). Post-processing (nms) and a
better Teacher network initialization enhance the quality of
pseudo-labels and thus further improve the performance.

5. Conclusion

We have presented the bidirectional copy-paste (BCP)
for semi-supervised medical image segmentation. We ex-
tend copy-paste-based method in a bidirectional manner,
which reduces the distribution gap between labeled and un-
labeled data. Experiments on LA, NIH-Pancreas and ACDC
datasets show the superiority of the proposed BCP, with
even over 21% Dice improvement on ACDC dataset with
5% labeled data. Note that BCP does not introduce new
parameters or computational cost compared with the back-
bone network. Limitations. We didn’t specifically design
a module to enhance local attributes learning. Though BCP
performs better than all competitors, target parts with ex-
tremely low contrast are still hard to segment well (e.g.,
bottom left part on 2nd row of Fig. 4 is missing).
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Cord, and Patrick Pérez. ADVENT: adversarial entropy
minimization for domain adaptation in semantic segmenta-
tion. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pages 2517–2526. Computer Vision Foundation /
IEEE, 2019. 7

[27] Feng Wang, Huiyu Wang, Chen Wei, Alan L. Yuille, and Wei
Shen. CP2: copy-paste contrastive pretraining for semantic
segmentation. In Proc. ECCV, 2022. 3

[28] Fakai Wang, Kang Zheng, Le Lu, Jing Xiao, Min Wu,
and Shun Miao. Automatic vertebra localization and iden-
tification in CT by spine rectification and anatomically-
constrained optimization. In Proc. CVPR, 2021. 2

[29] Jiacheng Wang, Xiaomeng Li, Yiming Han, Jing Qin, Lian-
sheng Wang, and Qichao Zhou. Separated contrastive learn-
ing for organ-at-risk and gross-tumor-volume segmentation
with limited annotation. In Proc. AAAI, 2022. 2

[30] Qin Wang, Wen Li, and Luc Van Gool. Semi-supervised
learning by augmented distribution alignment. In 2019
IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November
2, 2019, pages 1466–1475. IEEE, 2019. 1

[31] Xuehui Wang, Kai Zhao, Ruixin Zhang, Shouhong Ding,
Yan Wang, and Wei Shen. Contrastmask: Contrastive learn-
ing to segment every thing. In Proc. CVPR, 2022. 2

[32] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue
Fan, Zhen Wu, Marios Savvides, Takahiro Shinozaki, Bhik-
sha Raj, and Bernt Schiele. Freematch: Self-adaptive thresh-
olding for semi-supervised learning. CoRR, abs/2205.07246,
2022. 2

[33] Yan Wang, Xu Wei, Fengze Liu, Jieneng Chen, Yuyin Zhou,
Wei Shen, Elliot K. Fishman, and Alan L. Yuille. Deep
distance transform for tubular structure segmentation in CT
scans. In Proc. CVPR, 2020. 2

[34] Yan Wang, Yuyin Zhou, Wei Shen, Seyoun Park, Elliot K.
Fishman, and Alan L. Yuille. Abdominal multi-organ seg-
mentation with organ-attention networks and statistical fu-
sion. Medical Image Anal., 55:88–102, 2019. 1, 2

[35] Yicheng Wu, Zhonghua Wu, Qianyi Wu, Zongyuan Ge,
and Jianfei Cai. Exploring smoothness and class-separation
for semi-supervised medical image segmentation. CoRR,
abs/2203.01324, 2022. 1, 5, 6, 7

[36] Yicheng Wu, Minfeng Xu, Zongyuan Ge, Jianfei Cai, and
Lei Zhang. Semi-supervised left atrium segmentation with
mutual consistency training. In Medical Image Comput-
ing and Computer Assisted Intervention - MICCAI 2021 -

24th International Conference, Strasbourg, France, Septem-
ber 27 - October 1, 2021, Proceedings, Part II, volume
12902 of Lecture Notes in Computer Science, pages 297–
306. Springer, 2021. 6

[37] Yingda Xia, Dong Yang, Zhiding Yu, Fengze Liu, Jinzheng
Cai, Lequan Yu, Zhuotun Zhu, Daguang Xu, Alan L. Yuille,
and Holger Roth. Uncertainty-aware multi-view co-training
for semi-supervised medical image segmentation and do-
main adaptation. Medical Image Anal., 65:101766, 2020.
3

[38] Lingxi Xie, Qihang Yu, Yuyin Zhou, Yan Wang, Elliot K.
Fishman, and Alan L. Yuille. Recurrent saliency transforma-
tion network for tiny target segmentation in abdominal CT
scans. IEEE Trans. Medical Imaging, 39(2):514–525, 2020.
2

[39] Zhaohan Xiong, Qing Xia, Zhiqiang Hu, Ning Huang, Cheng
Bian, Yefeng Zheng, Sulaiman Vesal, Nishant Ravikumar,
Andreas K. Maier, Xin Yang, Pheng-Ann Heng, Dong Ni,
Caizi Li, Qianqian Tong, Weixin Si, Élodie Puybareau,
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