
 

 

 
Abstract 

 
Anatomical consistency in biomarker segmentation is 

crucial for many medical image analysis tasks. A 
promising paradigm for achieving anatomically consistent 
segmentation via deep networks is incorporating pixel 
connectivity, a basic concept in digital topology, to model 
inter-pixel relationships. However, previous works on 
connectivity modeling have ignored the rich channel-wise 
directional information in the latent space. In this work, we 
demonstrate that effective disentanglement of directional 
sub-space from the shared latent space can significantly 
enhance the feature representation in the connectivity-
based network. To this end, we propose a directional 
connectivity modeling scheme for segmentation that 
decouples, tracks, and utilizes the directional information 
across the network. Experiments on various public medical 
image segmentation benchmarks show the effectiveness of 
our model as compared to the state-of-the-art methods. 
Code is available at https://github.com/Zyun-Y/DconnNet.  
 

1. Introduction 
Maintaining anatomical consistency in the segmentation 

of medical images is important but challenging, as minor 
geometric errors may change the global topology [1, 2] and 
cause functional mistakes in downstream clinical decision-
making [3]. Anatomical consistency in images can be 
expressed with topological properties, such as pixel 
connectivity and adjacency [4, 5]. As such, by directly 
modeling the mutual information between pixels or 
regions, graph-based methods have long been used to 
correct topological and geometrical errors [6-8]. However, 
such classic machine vision techniques usually depend on 
manually defined priors and thus are not easily 
generalizable for a wide variety of applications. 

Alternative to the classic approaches, deep learning-
based segmentation methods utilized an encoder-decoder 
architecture [9] to learn from a group of pixels in a 
particular receptive field at each layer. More recently, 
significant progress has been made in capturing the inter- 
pixel dependency inside a network’s latent space [10-12];  

 
Figure 1. The latent space differences between traditional pixel-
classification-based and connectivity-based models. In the former, 
only categorical features, e.g., boundaries, are highlighted; while 
in the latter, the feature map also contains directional information 
(e.g., the horizontal connections between boundary pixels). 

 
Figure 2. The flows of the two groups of latent features 
(categorical and directional) in the latent space of DconnNet, are 
visualized by T-SNE [13]. They were first disentangled (Sec 3.2) 
and then effectively fused in a projected shared manifold (Sec 
3.3). The colors are rendered based on the results of clustering. 
however, very few studies have been conducted on the 
problem modeling side of the networks. A typical 
segmentation network models the problem as a pure pixel-
wise classification task and uses a segmentation mask as 
the only label. Yet, this pixel-wise modeling scheme is 
suboptimal as it does not directly exploit inter-pixel 
relationships and geometrical properties [14, 15]. Thus, 
these models may result in low spatial coherence (i.e., 
inconsistent predictions for neighboring pixels that share 
similar spatial features) in their prediction [16]. Especially, 
when applied to high noise/artifacts medical data, the lower 
spatial consistency may lead to topological issues [17]. 

The concept of pixel connectivity has long been used to 
ensure the basic topological duality of separation and 
connectedness in digital images [18]. More recently, in the 
context of deep learning, the connectivity masks, reviewed  
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Figure 3. Illustration of generating the connectivity mask from the 
segmentation mask by traversing 8-neighbor pixel connectivity. 
For each pixel, channel 𝑪𝒊 ’s binary value in the converted 
connectivity vector carries the categorical information (connected 
or not connected) while 𝒊  encodes the directional information 
(direction of connection). 

in Section 2.1, have been introduced as a topological 
extension of the segmentation mask [15]. Using 
connectivity masks as training labels has several 
advantages over segmentation masks. In terms of problem 
modeling, using a connectivity mask inherently changes 
the problem from pixel-wise classification to connectivity 
prediction, which models and enhances the topological 
representation between pixels of interest. In terms of label 
representation, a connectivity mask is more informative in 
three ways: first, a connectivity mask stores the categorical 
information among the connections of pixels and it is inter-
pixel relation-aware; second, it sparsely represents edge 
pixels [16]; third, it contains rich directional information 
channel-wisely. Thus, a network trained with connectivity 
masks has both categorical (reflected by connectivity) and 
directional features in its latent space, each of which forms 
a specific sub-latent space, as shown in Fig. 1. 

In previous studies [15, 16, 19-22], these two groups of 
features were learned simultaneously through a shared 
network path which may result in highly coupled latent 
space and introduce redundancy [23]. Further, effectively 
disentangling meaningful subspaces from the shared latent 
space has been shown effective in accounting for the 
dependencies/independencies between features [24, 25].  

Inspired by the idea of latent space disentanglement, in 
this paper, we propose a novel directional connectivity-
based segmentation network (DconnNet) to disentangle the 
directional subspace from the shared latent space and 
utilize the extracted directional features to enhance the 
overall data representation, as in Fig. 2. The disentangling 
process is conducted by a sub-path slicing-based module 
called Sub-path Direction Excitation (SDE). The 
directional-based feature enhancement is applied in a 
coarse-to-fine manner using an Interactive Feature-space 
Decoder (IFD) with two top-down interactive decoding 
flows. Finally, we propose a novel Size Density loss (SDL) 
that alleviates the common data imbalance problem in 
medical datasets with a label size distribution-based 
weighting scheme. With experiments on different public 
medical image analysis benchmarks, we demonstrate the 
superiority of DconnNet against other state-of-art methods. 

2. Related Work 
2.1. Deep connectivity modeling 

In topology, pixel connectivity describes how 
neighboring pixels are related to each other [4]. Following 
broad utilization in characterizing topological properties in 
classic image processing methods [26, 27], connectivity 
has found new applications in deep learning-based image 
segmentation [15, 16, 19-22]. The connectivity-based 
segmentation networks use the connectivity mask (Fig. 3) 
as the label, defined as an 8-channel mask with each 
channel representing if a pixel on the original image 
belongs to the same class of interest with one of its 
neighboring pixels at a specific direction. The connectivity 
mask was first introduced and applied to image 
segmentation in [15]. This idea was later extended by other 
works, including [16] which showed the bilateral property 
of pixel connectivity in saliency detection, and [28] which 
modeled the cross-modality connectivity for radar-video 
data fusion. Meanwhile, the effectiveness of connectivity 
modeling has been demonstrated in different applications 
such as remote sensing segmentation [19], path planning 
[20], and medical image segmentation [21, 22, 29]. 
Although significant progress has been made in this field, 
we demonstrate that the rich directional information in the 
connectivity masks has not yet been fully utilized. 

2.2. Interpretation of latent space  
Latent space is an embedding of a set of features in a 

deep network. Interpretation, alignment, and 
disentanglement of latent spaces are important in different 
computer vision techniques such as unsupervised learning 
[30], multi-modal information fusion [24, 31], generative 
models [32, 33], knowledge distillation [34, 35], and 
transfer learning [36]. However, the interpretation of latent 
space is challenging because it usually requires implicit 
domain knowledge based on human judgment [37].  

To interpret the latent space, researchers either apply 
dimension reduction tools such as PCA [38], T-SNE [13], 
or develop interactive analysis tools [39]. To manipulate 
latent space, a variation autoencoder (VAE) can be used to 
map the input to latent space and disentangle/match the 
different latent spaces [40, 41]. In this work, we utilize the 
intrinsic property of the connectivity mask and propose a 
simple yet effective sub-path slicing-based method to 
disentangle the directional subspace from the shared latent 
space, followed by a visual demonstration of the 
effectiveness of our disentanglement process with T-SNE. 

2.3. Self-attention mechanism 
Self-attention is widely used in computer vision as it can 

capture the dependencies between latent features. The self-
attention mechanism is defined as: 

y = 	𝑓(𝛼,𝑔(x)), (1) 



 

 

where 𝑥 is the input feature map, 𝑔 is a unary function that 
computes the embedding of input, and 𝑓 is usually a matrix 
multiplication [10, 42] or a simple dot product [11, 43, 44], 
depending on the definition of 𝛼. 𝛼 is the attention/relation 
map which can be a mutual relation map by spatial- or 
channel-wisely computing the similarity between one pixel 
with other pixels in a feature map, or between two related 
feature maps from the same feature space [10, 42]; it can 
be a contextual-spatial relation map generated by similarity 
estimation between a feature map and a latent vector with 
abstract contextual meaning [44, 45]. Broadly speaking, 𝛼 
can also be a single map [11] or a vector [43, 46] containing 
special contextual meaning. 

3. Method 

3.1. Directional space in connectivity modeling 
Due to connectivity between different pixel classes and 

directions, there are two groups of features in the latent 
space of a connectivity-based network: categorical 
directional. Each group of features forms its specific 
subspace in the latent space. In a single-path connectivity 
network, these two subspaces are highly coupled (Fig. 2), 
resulting in low-discriminative features. We demonstrate 
that the efficient disentangling and effective utilization of 
the direction space can enhance the overall feature 
representation in the connectivity model. 

In a connectivity mask, different channels represent 
different directions of the pixel connection. Thus, as the 
network goes deeper, it naturally stores directional 
information among channels. Based on this property, the 
directional features can be captured and manipulated 
through channel-wise operations. Specifically, we propose 
SDE to disentangle channel-wise directional features from 
the latent space, followed by IFD to extract the directional 
embeddings at different layers and use them to enhance the 
overall feature representation in a self-attention manner. 
The overall DconnNet structure is shown in Fig. 4. 

3.2. Sub-path Direction Excitation Module 
Directional prior extraction. Taking advantage of the 

channel-wise directional information in the connectivity 
mask, a direct way to get distinctive directional embedding 
is to coarsely supervise the intermediate features and 
squeeze the channels of the auxiliary connectivity output. 
We denote the encoder’s outputs as 𝑒!, where 𝑛 is the 𝑛"# 
encoder layer. As shown in Fig. 5, we upsample 𝑒$, the last 
encoder output, to the input size and get a preliminary 
output called 𝑋%&'(&, which will be supervised to learn the 
connectivity mask in the loss calculation. Therefore, rich, 
distinctive directional information can be obtained from 
the channels of 𝑋%&'(& . Then, we squeeze [43] 𝑋%&'(& 
through a global average pooling (GAP) and map the 
vector to the same dimension as the latent feature map 𝑒$ ∈
𝑅)!"×+!"×,!"  with a 1×1 convolutional kernel 𝑊- [44]: 

𝐺𝐴𝑃(𝑋) = 	
1

𝐻 ×𝑊//𝑋
"

#$%

&

'$%

(𝑖, 𝑗)	, (2) 

𝑣%&'(& = 	𝛿 5𝑊-𝐺𝐴𝑃9𝑋%&'(&:; , (3) 

where H and W are the height and the width of a feature 
map, 𝑊- ∈ 𝑅)!"×)# , 𝐶.  is the channel of 𝑋%&'(& , and 𝛿 is 
the ReLu activation. The resulting 𝑣%&'(& ∈ 𝑅)!"  has the 
directional information of a specific direction embedded in 
each entry. Next, we re-encode 𝑣%&'(&  with a 1×1 
convolution 𝑊/ ∈ 𝑅)!"×)!" and apply a sigmoid gating 
function 𝜎 to normalize the projected vector: 

𝛼%&'(& = 	𝜎9𝑊/𝑣%&'(&:	. (4)
Since 𝛼%&'(&  contains rich element-wise directional 
information, we call it the directional prior.  
Channel-wise slicing. To early disentangle the categorical 
and directional subspaces in the hidden layers, we split the 
latent features (𝑒$) and the directional prior (𝛼%&'(&) into 
eight parts by channel-wise slicing. We denote the 𝑖"# 
slices as 𝑒$'  and 𝛼%&'(&' .  
Sub-path excitation (SPE). We construct a sub-path for  

Figure 4. The overview of the proposed DconnNet. It contains three parts: a pretrained ResNet encoder, a Sub-path Direction Excitation 
Module, and an Interactive Feature-space Decoder. The term “𝑢𝑝 𝑁×” means upsampling with a stride of 𝑁. 
 



 

 

 

 
Figure 6. The Interactive Feature-space Decoder (IFD). 

each pair of these feature-embedding slices. In each sub-
path, we pass the feature slice 𝑒$'  through spatial and 
channel attention modules [10] to capture the long-range 
and inter-channel dependencies, resulting in 𝑒$'0. Next, we 
channel-wisely multiply the 𝛼%&'(&' with 𝑒$'0  to selectivity 
highlight or suppress features with specific directional 
information. Then, we recode the output with a 1×1 
convolution kernel 𝑊1

' and residually output it as: 
𝑒234' =	𝑊1

'(𝛼%&'(&' ∙ 𝑒$'
$) + 𝑒$' . (5) 

Finally, we stack all sub-paths outputs (𝑒234' ) into one and 
recode it, resulting in a new feature map, 𝑒234. 

Due to the slicing operation, each group of slices will 
only contain part of the full features. However, the shrink 
of discriminative contextual information in directional and 
categorical features differs. Specifically, 𝛼%&'(&	is a highly 
discriminative directional embedding as it is a low-level 
linear combination of unique directional features. Thus, 
channel-wise slicing will cause significant shrinkage of 
directional information in each slice. However, 𝑒$ contains 
a group of high-level but less-discriminative categorical 
features which usually have low variations with others 
[47]. As a result, high channel-wise categorical correlation 
and redundancy [48] exist in 𝑒$. Therefore, a channel-wise 
slicing will result in less shrinkage [49] of high-
discriminative categorical features in 𝑒$' . By doing this, we 

contextual-unevenly divide the directional and categorical 
features in each sub-path and make each sub-path shift its 
focus to the dominant features. Specifically, inside each 
sub-path, the network learns how to focus on the dominant 
class-specific information with less distinctive directional 
information emphasized in the channels. Between sub-
paths, the network learns different distinctive directional 
information. Then, once we stack the sub-paths back, the 
direction information will be naturally disentangled from 
the original latent space and embedded into the channels. 

3.3. Interactive Feature-space Decoder 
To ensure that the direction-dependent information can 

be effectively fused into feature maps in each layer, we 
propose an Interactive Feature-space Decoder with two 
top-down dynamically interactive flows, i.e., space flow 
and feature flow, as in Fig. 6.  
Feature maps. There are two types of feature maps in each 
layer of IFD: the main feature map 𝑑' and the direction-
enhanced map 𝑟'. At the first decoder layer (𝑖 = 5), they 
are both initialized as the outputs of SDE: 

𝑟$ 	= 	𝑑$ = 𝑒234 , (6) 
and are updated separately in the space and feature flows. 
Space flow. In each space flow, a Space Block (S), which 
contains the embedding squeezing (ES) module and the 
manifold projection and enhancement (MPE) module, is 
used to enhance the directional representation. The ES 
module takes 𝑟'  as the input and outputs a directional 
embedding 𝑛', a high-level directional representation as: 

𝑛' = 	𝐺𝐴𝑃(𝑟'). (7) 
Then, we use 𝑛'  as the input of MPE to enhance the 

directional representation in the main feature map 𝑑' . In 
MPE, we first project both the main feature map 𝑑'  ∈
𝑅)%&×+%&×,%& 	and directional embedding 𝑛' ∈ 𝑅

)%&//	onto 
a shared manifold 𝑅)%& 	at the current resolution with two 
1×1 convolutional projectors: 

𝑑'0 = 𝑊6&𝑑' , 𝑛'
0 = 𝑊!&𝑛' , (8) 

Figure 5. The SDE module, including three steps: direction prior extraction, channel-wise slicing, and sub-path excitation. 



 

 

where 𝑊6& ∈ 𝑅
)%&×)%& 	  and 𝑊!& ∈ 𝑅

)%&×)%&// . Next, we 
model the category-direction relation by calculating the 
similarity between the projected directional embedding 𝑛'0 
and feature map 𝑑'0	with a channel-wise dot product and a 
sigmoid activation: 

𝛼!6 = 	𝜎(𝑑'0 ∙ 𝑛'0), (9) 
where 𝛼!6  is the normalized category-direction attention 
map in which the direction-relevant features are enhanced 
and the irrelevant features are suppressed across channels. 
Next, we enhance the directional information in the re-
encoded original feature map 	𝑑′′' with the attention map 
𝛼!6 using a point-wise inner multiplication: 

𝑟'7- =	𝛼!6 ∙ 	𝑑′′' . (10) 
By doing this, we effectively fuse the directional 
information into the feature map, resulting in a new 
direction-enhanced map 𝑟'7-, which will be further used as 
the input of feature flow and to generate the directional 
embedding 𝑛'7- for the next layer. 
Feature flow. Each feature flow contains a Feature Block 
(F), including two convolutional layers and an upsampling 
layer with a skip connection. It takes 𝑟'  as the input and 
outputs the upsampled main feature map 𝑑'. 

This top-down design and dynamic interactions between 
the two flows are mutually beneficial. Specifically, the 
embedding 𝑛' extracted by space flow effectively fuses the 
directional information into the feature map 𝑑'  from the 
feature flow. On the other hand, the 𝑑' generated by feature 
flow refines the directional representation 𝑛'7- by adding 
supplementary directional information at a higher 
resolution to the space flow via MPE and ES. 

3.4. Connectivity output 
We integrate the main feature maps 𝑑-	to	𝑑8 to get the 

final connectivity output 𝑋 . Every eight channels of 𝑋 
represent the connectivity of one class. In line with [16], 
we use the Bilateral Voting (BV) module in (11) and the 
Region-guided Channel Aggregation (RCA) module in 
(12) to get the final segmentation map. 

𝑋N9(𝑥, 𝑦) = 	𝑋N:79(𝑥 + 𝑎, 𝑦 + 𝑏)												
																									= 𝑋9(𝑥, 𝑦) × 𝑋:79(𝑥 + 𝑎, 𝑦 + 𝑏), (11) 

𝑆S(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑋N'(𝑥, 𝑦)}';-< , (12) 
where j is the 𝑗"#  channel, 𝑎, 𝑏 ∈ {0,±1} represent the 
location of neighboring pixel, 𝑋N is the Bicon map,	𝑆S	is the 
final segmentation prediction	[16]. 

3.5. Loss function 
The total loss function of our work is: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿(𝑚𝑎𝑖𝑛) + 0.3 ∗ 𝐿(𝑝𝑟𝑖𝑜𝑟), (13) 
where 𝑚𝑎𝑖𝑛  represents the main output and 𝑝𝑟𝑖𝑜𝑟 
represents the auxiliary output from SDE. Each loss 𝐿 
contains two parts, the Size Density Loss 𝐿A6  and the 

original Bicon loss [16] 𝐿B'C(!: 
𝐿	 = 𝐿A6 	+	𝐿B'C(!. (14) 

Size Density Loss. Considering the imbalanced nature of 
the medical data, we propose a novel imbalanced loss 
function based on the label size distribution of the classes 
of interests in the dataset, called Size Density Loss. 

Before training, we sample all the training images and 
calculate the size of the label (total positive pixel number) 
on each image. Based on the extracted size distribution, for 
each class 𝑗, we calculate the probability density function 
of label size 𝑘, i.e., 𝑃𝐷𝐹#(𝑘). Then, in the training phase, 
for each training image, we calculate its label size for each 
class 𝑗 and get its size density weight 𝑃9(𝑘) as: 

𝑃𝑗(𝑘) =	_
			1,																															𝑘 = 0,

−𝑙𝑜𝑔 5𝑃𝐷𝐹𝑗(𝑘); ,			𝑘 ≠ 0. (15) 

We define the 𝐿A6	as a variant of Dice loss [50]: 

𝐿)* =	 / 𝑃#(𝑘) B1 −
2 × ∑(𝑆 × 𝐺)) + 	𝜀
∑𝑆 + ∑𝐺) + 𝜀

G	
+,-))

#

, (16) 

where 𝑆  is the final segmentation prediction, 𝜀  is the 
stabilization term [51] and is usually set as 1. 
Bicon Loss term. We use the Bicon Loss 𝐿B'C(!	 for 
connectivity modeling, as originally defined in [16]: 

𝐿B'C(! = 𝐿6DC(E%FD + 𝐿C(!_C(!A" . (17) 

4. Experiments 

4.1. Datasets and evaluation metrics 
We used three popular and diverse medical benchmark 

datasets in this paper. Specifically, we used Retouch [52] 
and ISIC2018 [53] datasets to evaluate the DconnNet 
performance for large-scale medical segmentation. We 
used CHASEDB1 [54] dataset to assess the topological 
performance of the DconnNet. 

Retouch is an OCT retinal fluids segmentation benchmark 
that has been widely used [55, 56] for assessing computer 
vision methods. It contains three classes of disease 
biomarkers: intraretinal fluid (IRF), subretinal fluid (SRF), 
and pigment epithelial detachment (PED). Retouch 
contains a training set of 70 OCT volumes from three OCT 
scanners, with frame sizes spanning from 512 ×496 to 512 
× 1024 pixels. Retouch is a two-level balanced dataset: at 
the image level, biomarkers do not span the whole volume; 
at the pixel level, each biomarker has a relatively small size 
compared to the background. Since the testing labels are 
unavailable, we implemented the volume-level 3-fold 
cross-validation (CV) for each scanner on the training data 
set. Following the official guidelines [52], we used 
volume-level Dice [65] (𝐷𝑆𝐶H), image-level Dice (𝐷𝑆𝐶), 
absolute volume difference ( 𝐴𝑉𝐷 ), and volume-wise 
balanced accuracy [66] (𝐵𝐴𝐶𝐶) to evaluate the results. 



 

 

Table 1. Results on Retouch dataset. Model size (M) and testing 
speed (FPS) are also reported. The best results are bold. 

Method 𝐷𝑆𝐶. 𝐷𝑆𝐶 𝐴𝑉𝐷 𝐵𝐴𝐶𝐶 Size / 
Speed 

DeepLabv3+ [57] 60.2 82.7 0.023 86.5 59.3 / 38 
U-Net [58] 66.1 84.2 0.021 87.4 13.4 / 38 

Att-UNet [59] 65.3 83.4 0.022 86.6 34.9 / 36 
CE-Net [60] 67.3 84.2 0.026 84.6 29.0 / 37 
nnU-Net [61] 67.2 84.3 0.023 86.4 30.0 / 20 
CPFNet [62] 69.0 85.7 0.022 88.0 43.3 / 37 

Curvature [63] 68.2 84.7 0.024 87.1 43.3 / 37 
MsTGANet [64] 68.9 85.0 0.023 87.1 11.6 / 37 

DconnNet 78.2 87.7 0.020 90.5 36.4 / 40 

ISIC 2018 is a popular medical segmentation benchmark 
[67-70] containing 2594 images of various types of skin 
lesions at different resolutions. Following [71], we used 5-
fold CV and evaluated the results with Dice, IOU, accuracy 
(ACC), and precision (PREC) metrics. 
CHASEDB1 is a vessel segmentation dataset containing 
28 fundus images with a resolution of 999× 960 pixels and 
two sets of manual annotations. The first manual 
annotation is adopted in this work as in [72]. We conducted 
5-fold CV and evaluated the results with two volumetric 
metrics 𝐷𝑖𝑐𝑒  and 𝐼𝑂𝑈 ; and three topology-similarity-
based metric 𝑐𝑙𝐷𝑖𝑐𝑒, 0- and 1-Betti numbers (𝛽I and 𝛽-) 
[73] to measure the topological similarity.  

4.2. Experimental details 
We generated the connectivity mask for each image via 

simple matrix operations [16]. We used the ImageNet [74] 
pretrained ResNet [75] as our encoder. The hyperparameter 
setting differed across datasets. For the Retouch dataset, we 
resized each image to 256×256 with no data augmentation 
and trained DconnNet with a ‘poly’ learning rate strategy. 
For ISIC2018, we resized images to 224×320 and used the 
same data augmentation and the parameter settings in [71]. 
For CHASEDB1, to fully use the limited data, we resized 
to 960×960 pixels and applied the same augmentations as 
in [60]. Since the CHASEDB1 dataset has a limited sample 

size, we did not apply SDL loss to this dataset. We did not 
use any pre-processing for training and no post-processing 
for evaluation. The framework is built on PyTorch 1.7.0 
[76]. All experiments are performed with a GPU NVIDIA 
GeForce GTX 3090 Ti.  

5. Results 
5.1. Retinal fluid segmentation 
Comparison of state-of-the-art methods. We compared 
the proposed DconnNet with eight state-of-the-art models 
for relevant applications, including DeepLab V3+ [57], U-
Net [58], Attention UNet [59], CE-Net [60], nnU-Net [61], 
CPFNet [62], CPFNet-backboned Curvature Loss [63], and 
MsTGANet [64] in Table 1, which shows the superior 
performance of the proposed model. Specifically, the 
improvements on 𝐷𝑆𝐶' 	 and 𝐷𝑆𝐶H  demonstrate that our 
model has a consistent prediction on the small fluid 
regions, while the improvements on AVD and BACC 
demonstrate that our model has an overall more accurate 
prediction on the fluid regions, regardless of the target size.  
Qualitative study. In Fig. 7, we compared DconnNet with 
the top-six baselines. In image (a), all competing methods 
missed the tiny SRF region, while our DconnNet made an 
accurate prediction. In (b), all methods, except DconnNet, 
either made false positive (FP) segmentations of IRF or an 
incomplete segmentation on PED. In (c), only our 
DconnNet made the topologically connected prediction for 
PED and accurately segmented the IRF and SRF regions. 

5.2. Skin lesion segmentation 
Comparison of state-of-the-art methods. In Table 2, we 
compared our method with U-Net [58], BCDU-Net [77], 
CE-Net [60], nnU-Net [61], HiFormer [78], CPFNet [62], 
FATNet [79], and Ms RED [71]. The proposed DconnNet 
outperformed all competitive models. 
Qualitative study. Due to limited space, in Figs. 8 and 9,  

Figure 7. Visual comparison between the proposed DconnNet and other state-of-the-art methods on Retouch dataset. Different colors of 
masks represent different biomarker classes. Green: IRF; blue: SRF; red: PED. 



 

 

Table 2. Results on ISIC2018 dataset. The best results are bold. 
 Method 𝐷𝑆𝐶 𝐼𝑂𝑈 𝐴𝐶𝐶 𝑃𝑅𝐸𝐶  
 U-Net [58] 88.41 81.23 95.53 90.7  
 BCDU-Net [77] 88.33 80.84 95.48 89.68  
 CE-Net [60] 89.23 82.34 95.76 91.51  
 nnU-Net [61] 89.24 82.35 95.79 91.45  
 HiFormer [78] 88.54 81.45 95.59 91.09  
 CPFNet [62] 89.34 82.64 95.89 91.38  
 FATNet [79] 88.84 81.79 95.62 91.18  
 Ms RED [71] 89.48 82.71 95.89 91.83  
 DconnNet 90.43 83.91 96.39 91.54  

 
Figure 8. Visualization on ISIC2018 dataset. 

we only compare the best-performing methods. In Fig. 8, 
DconnNet can accurately segment the lesion even under 
strong clinical confounders (e.g., the hairs in the first 
image). Also, DconnNet could learn the topology of skin 
lesions and make connected predictions in all cases, while 
others showed topological errors. 

5.3. Topological vessel segmentation 
We used this experiment to demonstrate the topology-

preserving ability of DconnNet in vessel segmentation, in 
which anatomical consistency is crucial. Due to the limited 
sampling size, we did not use SDL in this experiment. 
Comparison of state-of-the-art methods. We compared 
the results of DconnNet versus up-to-date leading methods, 
including U-Net [58], Att-UNet [59], GT-DLA [80], CE-
Net [60], clDiceLoss [73], and Graph Cut Loss [72] in 
Table 3. Our method surpassed other methods on all 
metrics. The superior performances of DconnNet on 
clDice, 𝛽I , and 𝛽- , reflect the topological similarity 
between predictions and labels.  
Qualitative study on the vessel topology. In Fig. 9, we 
visually compared different methods. While in part due to 
limited training data DconnNet could not make perfect 
predictions across the whole images, it visually 
outperformed other methods. Our model’s predicted 
vessels are mostly connected and with no significant 
topological errors. Other models showed more topological 
issues, e.g., in the form of non-simply connected regions.  

5.4. Ablation study 
We conducted ablation studies to compare directional 

connectivity modeling with the traditional segmentation- 

Table 3. Results on CHASEDB1. The best results are bold. 
Method 𝑐𝑙𝐷𝑖𝑐𝑒 𝐷𝑆𝐶 𝐼𝑂𝑈 𝛽/ 𝛽% 

U-Net [58] 74.0 74.7 59.3 1.390 2.633 
Att-UNet [59] 75.3 75.7 61.0 1.330 2.531 
GT-DLA [80] 81.0 80.6 67.4 0.790 1.969 
CE-Net [60] 82.0 81.0 68.1 0.383 1.670 

clDiceLoss [73] 82.9 81.0 68.1 0.345 1.656 
GraphCutLoss [72] 82.6 81.4 68.8 0.437 1.692 

DconnNet 83.3 81.8 69.4 0.341 1.630 

 
Figure 9. Visualization on CHASEDB1 dataset. 

Table 4. Ablation study of the Retouch Dataset. Conn stands for 
connectivity modeling with 𝐿0'123. DS stands for dice loss. 

 Conn Module Loss 𝐷𝑆𝐶 𝐷𝑆𝐶. 𝐴𝑉𝐷 𝐵𝐴𝐶𝐶 SDE IFD DS SDL 
1   Ö  83.2 65.0 0.025 87.0 
2      Ö   Ö  85.8 70.3 0.024 87.7 
3      Ö Ö  Ö  86.2 73.7 0.023 87.9 
4      Ö Ö Ö Ö  86.7 75.2 0.023 88.3 
5      Ö Ö Ö  Ö 87.7 78.2 0.020 90.5 

based modeling and the naïve connectivity modeling [16]. 
All experiments in this section are on the Retouch Dataset. 
Overall ablation study. The overall ablation study is 
reported in Table 4. The backbone (Exp. 1), a pretrained 
ResNet [75] encoder with a regular decoder, is from [62]. 
Exp. 2 is identical to [16] with a different backbone. Both 
connectivity modeling (Exp. 2) and directional modeling 
(Exp. 3 and 4) result in significant performance 
improvements. Especially, the considerable increases in 
the 𝐷𝑆𝐶  terms demonstrate that the model is becoming 
stable when dealing with the small fluid regions. Finally, 
by adding SDL (Exp. 5), all metrics got improved showing 
the impact of the distribution-based weighting scheme. 
Directional prior in SDE.  The directional prior in the 
SDE module was designed to provide an initial prior to 
disentangle the directional features which will later be 
utilized across the entire network. Thus, Table 5 compares 
two experiments: the complete DconnNet and the one 
without directional prior, i.e., only PAM and CAM in each 
sub-path of SDE. Even when most of the network structure 
was kept unchanged, the network performed worse without 
the guidance of an initial directional embedding prior. 
Sub-path attention vs. single-path attention. In SDE, we 
applied a sub-path attention unit in each slice to capture the 
dependency between the contextual-unevenly sliced 
directional and categorical features. To demonstrate the 
effectiveness of the sub-path attention, we compared our 
proposed SDE with the alternative single-path attention 
units. We first compared it with a regular dual attention 
unit [10] which is the direct alternative to our SDE since  



 

 

Table 5. Ablation study on directional prior.  
 DconnNet 𝐷𝑆𝐶 𝐷𝑆𝐶. 𝐴𝑉𝐷 𝐵𝐴𝐶𝐶  
 w/o. prior 86.3 72.3 0.023 89.1  
 w/. prior 87.7 76.6 0.020 90.5  

Table 6. Ablation study on Sub-path attention. Backbone_Conn 
is the connectivity-based modeling on backbone [16], DA is the 
dual attention, and NL is the non-local module.  

 Backbone_Conn 𝐷𝑆𝐶 𝐷𝑆𝐶. 𝐴𝑉𝐷 𝐵𝐴𝐶𝐶  
 + DA [10] 84.7 69.5 0.027 86.2  
 + NL [42] 85.1 70.0 0.028 87.2  
 + SDE 87.7 76.6 0.020 90.5  

we used the same module in each sub-path. We also 
conducted an experiment with the non-local unit [42]. The 
results are shown in Table 6, which shows all metrics 
increase after introducing the sub-path mechanism.  
Disentanglement of directional subspace. To show that 
the directional subspace is disentangled from the shared 
latent space with the proposed sub-path slicing method, we 
conducted two experiments on the DconnNet’s latent 
space. First, we used T-SNE to visualize the learned patch-
wise feature maps in the latent spaces before and after the 
SDE module of a trained DconnNet, as shown in Fig. 2. 
Applying SDE decoupled the latent space and changed the 
latent features’ centered distribution to a polarized 
distribution. We interpret this as the decoupling process 
between the directional subspace and categorical subspace. 

Then, to show the well-structured directional subspace 
between channels, we visualize the learned channel 
embeddings in the latent spaces before and after the SDE 
module of a trained DconnNet, as in Fig. 10. After SDE, 
the channel embeddings naturally grouped into several 
distinctive parts, demonstrating the effectiveness of the 
sub-path excitation. 
Comparison of size density loss. Exp. 4 and 5 in Table 4 
demonstrated the superiority of the proposed SDL in 
connectivity modeling. This subsection further analyzes 
SDL in a pixel-classification-based segmentation setting.  

In Table 7, we compared SDL with alternative loss 
functions with a similar idea of weighting the region-based 
Dice loss, including Exponential Logarithmical Loss [81], 
Focal Dice Loss [82], Dice loss [50], and Generalised Dice 
[83] based on two networks: U-Net and CPFNet. Our SDL 
achieves the highest 𝐷𝑆𝐶 both image- and volume-wise. 
Moreover, it shows more stability when dealing with a two-
level imbalanced medical dataset compared to feedback-
based losses (e.g., Focal-like losses) since it is less 
sensitive to FP prediction on the negative training images. 
Model size. Table 1 compares different model sizes. 
DconnNet (36.42M parameters) performed far better than 
the backbone (33.16M) with only ~3M extra parameters. 
In SDE, due to the channel slicing, we quadratically 
reduced the size of each sub-path attention (0.196M) from 
the full-size dual attention [10] (23.35M), resulting in the  

 
Figure 10. Visualization of latent channel embeddings of 
DconnNet before and after SDE module using T-SNE. The colors 
in (b) indicate the unsupervised clustering result. When applied 
to SDE, the channel embeddings naturally grouped into several 
distinctive parts. 

Table 7. Ablation study on loss function on Retouch Dataset.  

Loss U-Net CPFNet  
𝐷𝑆𝐶 𝐷𝑆𝐶. 𝐷𝑆𝐶 𝐷𝑆𝐶.  

 

Exponential [81] 
Focal [82] Not Converged  

Dice [50] 82.9 65.6 83.1 65.2  
Generalised [83] 80.1 54.1 80.9 55.5  

SDL 85.1 69.2 85.4 69.1  

Table 8. The components’ size of DconnNet.  

Module ResNet 
Encoder SDE 

IFD Final 
Decoder 

Connect. 
Modeling Total Feature 

Block 
Space 
Block 

Para. (M) 21.80 1.57 11.35 1.49 0.18 0.03 36.42 
 
small size of the proposed SDE in Table 8. Also, changing 
the network to connectivity modeling only takes extra 
0.03M parameters. Given the relatively small parameter 
increase, 3D connectivity modeling is a potential future 
direction for 3D image segmentation. 

6. Conclusion 
This paper proposed a novel directional connectivity 

modeling network (DconnNet) for medical image 
segmentation. The core idea is to disentangle the 
directional subspace from the shared latent space and use 
the extracted directional features to enhance the overall 
data representation. We demonstrated the effectiveness of 
DconnNet in three ways. First, by statistical comparisons 
to other state-of-the-art methods, we showed the overall 
better performance of DconnNet. Then, we demonstrated 
its topology-preserving ability by qualitatively and 
quantitively comparing DconnNet to other methods on a 
topologically sensitive dataset to other methods. Third, by 
visualizing the latent space of DconnNet, we revealed the 
disentanglement process of the directional subspace. 
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