
Dealing with Cross-Task Class Discrimination in Online Continual Learning

Yiduo Guo1, Bing Liu4, Dongyan Zhao1,2,3

1Wangxuan Institute of Computer Technology, Peking University. 2BIGAI, Beijing, China. 3National Key Laboratory of
General Artificial Intelligence. 4Department of Computer Science, University of Illinois Chicago

yiduo@stu.pku.edu.cn, liub@uic.edu, zhaodongyan@pku.edu.cn

Abstract

Existing continual learning (CL) research regards catas-
trophic forgetting (CF) as almost the only challenge. This
paper argues for another challenge in class-incremental
learning (CIL), which we call cross-task class discrimi-
nation (CTCD), i.e., how to establish decision boundaries
between the classes of the new task and old tasks with no
(or limited) access to the old task data. CTCD is implicitly
and partially dealt with by replay-based methods. A replay
method saves a small amount of data (replay data) from
previous tasks. When a batch of current task data arrives,
the system jointly trains the new data and some sampled re-
play data. The replay data enables the system to partially
learn the decision boundaries between the new classes and
the old classes as the amount of the saved data is small.
However, this paper argues that the replay approach also
has a dynamic training bias issue which reduces the effec-
tiveness of the replay data in solving the CTCD problem. A
novel optimization objective with a gradient-based adaptive
method is proposed to dynamically deal with the problem in
the online CL process. Experimental results show that the
new method achieves much better results in online CL.

1. Introduction
Continual learning (CL) learns a sequence of tasks in-

crementally. This work focuses on the class incremental
learning (CIL) setting [32] in online CL. In CIL, each task
consists of a set of unique classes, the sets of classes of any
two different tasks are disjoint and the system has no access
to the task information in testing. In online CL, the data
comes gradually from a data stream. Whenever the small
batch of data arrives, it is trained in one iteration. Thus, the
data for each task is effectively trained in one epoch.

Existing CL papers almost regard catastrophic forgetting
(CF) as the only issue for CL. In fact, CIL also has another
major challenge. When the system learns a new task, if no
data from previous tasks is available, it has no way to es-
tablish decision boundaries between new classes and old

classes in previous tasks. Even if there is no CF, the classifi-
cation results will still be poor. We call this problem, cross-
task class discrimination (CTCD). Those approaches that
do not save any previous data, e.g., regularization-based
or orthogonal projection-based, do not deal with CTCD.
Replay-based methods implicitly deal with CTCD to some
extent because such a method uses a memory buffer M to
save a small amount of data (replay data) from old tasks.
When a small batch of current task data Xnew arrives, the
system jointly trains Xnew and some sampled replay data
Xbuf from M. Xbuf enables the system to partially learn the
decision boundaries between the new classes and the old
classes because the amount of the saved data is very small.

Due to the limited replay data, the training is biased,
which reduces its ability to solve the CTCD problem. To
make matters worse, the training bias also changes as more
tasks are learned. This paper first shows that the problem is
reflected as gradient imbalance (GI) on logits, i.e., higher
positive gradients than negative gradients on the logits and
vice versa. It further shows that GI is caused by two main is-
sues. The first is data imbalance. Since the memory buffer
size, the batch size of the new data Xnew, and the sampled
data Xbuf from the memory buffer are all fixed, if the system
has learned many tasks, the average number of samples in
each previous class in Xbuf will be much smaller than that of
each class in Xnew. This results in higher positive gradients
than negative gradients on the logits of the previous classes
leading to training bias and poor decision boundaries (or
weak CTCD capability) between the classes of the new and
old tasks. The second is CL imbalance, i.e., CL training fo-
cuses more on the new samples (which are harder to train as
they are new) than the replayed samples (which have been
seen and trained many times before). This causes further
GI. This imbalance is involved (see Sec. 4.2 for details).

Some existing works [2, 42] have tried to deal with data
imbalance in offline CL. For example, SSIL [2] separately
calculates the cross-entropy loss of the new data and the
replay data to mitigate data imbalance. But they are not
from the gradient angle. The second issue of GI is more
complex and has not been attempted before.

ar
X

iv
:2

30
5.

14
65

7v
1

 [
cs

.L
G

]
 2

4
M

ay
 2

02
3

This paper proposes a novel method, called GSA
(Gradient Self-Adaptation), to deal with GI (and CTCD)
in online CL. GSA includes a new training objective and a
gradient-based self-adaptive loss to compensate for the GI.
The loss is dynamically controlled by two gradient rates
which automatically measure and adapt to the dynamic GI
situation. The main contributions of this paper are:

(1) It deals with the CTCD problem in online CL and
proposes a new optimization framework that decomposes
the problem into cross-task classification and within-task
classification (see Section 5). In [22], CTCD is called inter-
task class separation, but it uses an out-of-distribution
based approach to dealing with the problem in offline CL.
The paper uses a replay-based approach for online CL.

(2) It analyzes the CTCD problem from the gradient im-
balance (GI) angle and finds two kinds of gradient imbal-
ance (data imbalance and CL imbalance) (see Section 4).
Based on the analysis, it proposes a gradient-based self-
adaptive loss to compensate for the GI.

(3) Experiments in both the disjoint and long-tail online
CL settings show that GSA outperforms strong baselines by
a large margin (see Section 6).

2. Related Work
There are many existing CL techniques. Regularization-

based approaches penalize changes to important param-
eters of old tasks [23, 50, 52]. Replay-based approaches
save some past data and replay them in new task train-
ing [8, 12, 13, 24, 37, 44, 47, 54]. Generative replay builds
data generators to generate pseudo old data for replay-
ing [18, 21, 34, 38, 41, 45]. Dynamic architectures based
approaches [1, 14, 20, 28, 36, 39, 43, 49] overcomes CF by
expanding or isolating parameters. Data augmentation has
also been used to learn better features for CL recently [55].

Online CL and replay methods: Existing online CL
methods mainly use the replay approach. ER randomly
samples the buffer data [11]. MIR chooses buffer data
whose loss increases the most [3]. Shapley value theory is
applied in ASER for memory update/retrieval [40]. Knowl-
edge distillation is employed in DER++ [6]. NCCL deals
with CF by calibrating the network [48]. Contrastive learn-
ing is used in SCR [30]. GDumb samples and stores class-
balanced data in memory [35]. However, it does not deal
with CL imbalance identified in this paper. GSS diversi-
fies the gradients of the samples in the buffer [4]. ER-
AML [7] avoids CF by shielding the learned representations
from drastic adaptation to accommodate new classes. OCM
is based on mutual information [16]. Our work identifies
two gradient imbalance issues and designed a new training
strategy and a novel loss function to deal with them.

Data imbalance in CL: Several researchers have dealt
with data imbalance in offline CL. SSIL [2] isolates the
computation of softmax on previous and new classes to

update the model. LUCIR [19] uses the cosine normal-
ization to calculate the predicted probability and a margin
ranking loss to separate ground-truth old classes from new
classes. [8] adds an additional fine-tuning stage with a small
learning rate and a balanced subset of samples. BiC [46]
adds a bias correction layer. [53] uses weight alignment to
correct the biased weights. CCIL [33] applies a loss to bal-
ance intra-task and inter-task learning. However, many of
these algorithms [8,53] need the full data of the current task
to be available upfront and/or multiple training epochs to
address the data imbalance issue, which are not suitable for
online CL as online CL does not have the full training data
of a task available when the task arrives in the data stream.

Gradient-based CL methods: GEM [29] and A-GEM
[10] rotate the current gradient when the angle between the
current gradient and the gradient computed on the refer-
ence memory is obtuse. MEGA [17] uses the loss of Xnew

and Xbuf to adjust the relative importance of learning a
new task and maintaining the past knowledge. OWM [51],
OGD [14], and AOP [15] avoid CF by projecting the gra-
dients on the new task onto an orthogonal subspace of old
tasks. These methods do not deal with gradient imbalance
but represent a different family of CL approaches.

3. Preliminary
Problem description. Following [3], we learn a se-

quence of tasks, 1, 2, ..., t, ..., in the online CIL setting.
In online CL, each incrementally arriving data batch is seen
only once by the system. So the system effectively learns
each task in one epoch. For a task t, we denote its dataset as
{(x(t)

k , y
(t)
k)}nt

k=1, where nt is the number of training sam-
ples in task t. L(t) denotes the set of classes of task t.

Model architecture and training setting. Our model F
consists of a feature extractor hθ with the parameter set θ
and a classifier fϕ with the parameter set ϕ. It uses a replay
method with a memory buffer M. Whenever a small batch
of new data Xnew from the data stream is accumulated, it is
trained jointly with a small batch of data Xbuf sampled from
M to update the model in one training iteration. The model
produces the logits F (x; θ, ϕ) = fϕ(hθ(x)), which are used
to calculate the loss or to predict in testing. Reservoir sam-
pling is used for memory update.

Gradient imbalance (GI) on logits. We now introduce
the proposed gradient-based analysis on logits and the con-
cept of GI. In CL, each task is usually learned by minimiz-
ing the softmax cross-entropy loss, Lce:

Lce(o(x; θ, ϕ)) = −
|Cseen|∑
i=1

lci log(p
ci), pci =

eoci∑|Cseen|
s=1 eocs

(1)
where |Cseen| is the number of classes that the model has
seen, lci ∈ {0, 1} is the one-hot label of class ci, and
o(x; θ, ϕ) = [oc1 , oc2 , ..., oc|Cseen|

] is the set of logit values

for input x. Given a training sample x of class ci, the gradi-
ents on logits (cj ̸= ci) are given by

∂Lce(o(x; θ, ϕ))

∂oci
= pci − 1,

∂Lce(o(x; θ, ϕ))

∂ocj
= pcj .

(2)
From Eq. 2, we see that x gives its true logit oci a

negative gradient and the other logits ocj positive gradi-
ents. As the gradient update rule for a parameter w is
w = w− lr ∗∇w, where lr is the learning rate, the negative
gradient (pci − 1) results in an increase in oci for the true
class ci and the positive gradient (pcj) results in a decrease
in ocj for each wrong class cj . Thus, the negative gradient
encourages the model to output a larger probability for the
true class, and positive gradients help output lower proba-
bilities for the wrong classes.

However, in CL, as the model has no access to the train-
ing data of previous tasks when it learns a new task in-
crementally, all gradients on previous classes are positive
during the new task training (there are no negative gradi-
ents) (imbalance of positive and negative gradients). Then
the model tends to output smaller probabilities on previous
classes, biasing the classification towards the new classes.

4. Gradient Imbalance (GI) in Replaying
A replay-based method actually makes the (positive and

negative) gradients more balanced. There are adjustments
of both ups and downs for logits for previous classes. How-
ever, this is insufficient. We discuss two reasons: data im-
balance and CL imbalance. We propose some metrics first.

Metrics: When the model is learning the new task t,
for a seen class ci in any seen task (including the current
task t), we define the mean of positive gradients (pcik) that
the logits of all other classes than ci have and the mean of
negative gradients (pcik − 1) that class ci’s logit has over all
nt,r training samples (including both the data samples seen
so far from the current task t and the corresponding replay
data used) for this task as

P (t, ci) =

∑nt,r

k=1 p
ci
k · I(yk ̸= ci)

nt

N(t, ci) =

∑nt,r

k=1(p
ci
k − 1) · I(yk = ci)

nt

(3)

where yk is the label of the kth sample of task t and I is the
indicator function.

At the task level, for classes in any task t′ (t′ ≤ t), we
define the mean of positive and negative gradients that the
logits of the class set L(t′) receives in training task t respec-
tively as

P (t, L(t′)) =

∑|Cseen|
j=1 P (t, cj) · I(cj ∈ L(t′))∑|Cseen|

j=1 1 · I(cj ∈ L(t′))

N(t, L(t′)) =

∑|Cseen|
j=1 N(t, cj) · I(cj ∈ L(t′))∑|Cseen|

j=1 1 · I(cj ∈ L(t′))

(4)

4.1. Gradient Imbalance due to Data Imbalance
In a replay-based method, the memory buffer size is usu-

ally fixed and small and the batch size N buf for the buffer
batch Xbuf and the batch size N new for the new data batch
Xnew are also fixed. As the number of previous classes
grows with more tasks learned, the number of sampled data
for each previous class N buf⋃t−1

r=1 |L(r)| in Xbuf gets smaller,

but the number of samples for each new class N new

|L(t)| in
Xnew of the new task remains unchanged. Then we have
N new

|L(t)| > N buf⋃t−1
r=1 |L(r)| and the samples from previous classes

and the new data classes can become highly imbalanced.
The positive gradients for the previous classes can surpass
their negative gradients (in absolute values). We can empir-
ically verify this by calculating the positive-negative (PN)
gradient rate with t′ ≤ t:

PN(t, t′) =
P (t, L(t′))

N(t, L(t′))
(5)

Empirical Verification: We introduce the setup first.
Datasets and Tasks: We conduct our experiments using

two dataset settings: (1) Split CIFAR100, where we divide
the CIFAR100 dataset into 10 tasks with 10 unique classes
per task, and (2) Split TinyImagenet, where we divide the
TinyImageNet dataset into 20 tasks with 10 different classes
per task. For online CL, we run each task in one epoch.

Model, Optimizer and Batch Size: We use the full size
ResNet-18 to perform our experiments. To give a more gen-
eral analysis, we run with both SGD and Adam optimizers.
For learning rate, we follow [3] and set it as 0.1 for the SGD
optimizer. To ensure a good performance, we search and set
the learning rate as 0.001 for the Adam optimizer. For batch
size, we also follow [3] and set it to 10 for Xnew and 10 for
the buffer batch Xbuf, which is randomly sampled from the
memory buffer. Since ER (Experience Replay) is a basic
replay method, we conduct our experiments using ER [11].

We show the PN results of the classes of a few tasks
of the two datasets in Fig. 1 as more subsequent tasks are
learned. We can make the following observations from Fig.
1. See plots based on SGD in Appendix 1 (see footnote 2).

(1). Sub-figures (A) and (B) in Fig. 1 show that when
the model is trained with the new task t, the PN rates for
the classes of old tasks get smaller than −1 and tend to de-
crease. This indicates that positive gradients surpass nega-
tive gradients (in absolute values) for the old classes. The
reason is that the new data classes dominate the training,
and the new data give high positive gradients to classes of
the old tasks to ensure the new task data are not classified
to those old classes. As more tasks are learned, the data get
even more imbalanced, resulting in lower negative gradients
on the old classes from the replay data of the old task t′ and
thus the downward trend of the curves in (A) and (B).

(2). Sub-figure (C) in Fig. 1 shows that the tendency

Figure 1. PN rate (rate in the figures) of the CIFAR100 or TinyImageNet experiments with Adam optimizers. The buffer size is 1000. We
choose four different tasks in each experiment and plot their PN rates as subsequent tasks are learned. In (C), we report their accuracy. The
plots based on the SGD optimizer are given in Appendix 1, which show the same trend.

of the test accuracy performance of the previous classes is
similar to the tendency of their PN rates.

Dealing with Data Imbalance. We propose a sampling
strategy that guarantees the same number of training sam-
ples for each class in each training iteration. Specifically,
we fix N new + N buf = 20, where N new and N buf are the
number of samples in Xnew and Xbuf, respectively. We use
the ratio between |L(t)| and

∑t
r=1 |L(r)| to decide the num-

ber of samples from Xnew (the rest are not used here), i.e.,
N new = max(int(20 · |L(t)|∑t

r=1 |L(r)|), 1) where int(·) returns

the nearest integer of a given number and N buf = 20−N new.
We use N buf to sample previous tasks’ data in the memory
buffer. In this way, the number of training data for every
class is approximately equal.

4.2. Gradient Imbalance due to CL Imbalance

GI still occurs even after the number of samples used
in each class is balanced using the technique above. Let us
call the balanced data for training Xmix, which includes both
the replay data from previous tasks and new data from the
current task. We now introduce the second cause of GI, CL
imbalance, which is due to incremental training in CL. To
explore CL imbalance, we define the rate of accumulated
positive and negative gradients (A-PN rate) for a class ci ∈
L(t′) from task t′ to the current task t (t′ ≤ t),

A-PN(t′, t, ci) =
∑t

r=t′ P (r, ci)∑t
r=t′ N(r, ci)

(6)

A-PN(t′, t, ci) gives the accumulated gradient rate of each
class over the learning process to the current task t.

Empirical Verification: We plot the A-PN rate of each
class in Fig. 2(A) for the CIFAR100 dataset and in Fig. 2(B)
for the TinyImageNet dataset after the last task is learned.
We make the following observations from Fig. 2 (A), (B),
(C) and some more details in the experiments:

(1). The A-NP rate accumulated is close to -1 or bal-
anced when we jointly train all classes in the CIFAR100

dataset as a single task (the blue curve and its moving av-
erage yellow curve in Fig. 2 (A)). We also observe bal-
anced gradients from detailed results (not shown here) for
all classes when we learn the first task (no replay data).

(2). We ignore the accumulative part in Eq. 6 for the time
being and focus on the gradient imbalance in the classes of
each task alone. Based on the detailed results (not given
here), we observe that as more tasks are learned, the GI for
the classes of the current task being learned gets worse and
worse. This explains why the classes of the last task in sub-
figures (A) and (B) have the highest GI. Note, the last task
has no accumulation as t′ = t. Let us explain why.

As an example, we consider class ci from the current
task t. As more and more tasks are learned, the replay data
from previous tasks in Xmix will contribute less and less
positive gradients to ci because the replay data may have
been trained many times in the past and are well overfitted
to their own classes in the past and their probability of being
classified to the new class ci is very small and hence they
contribute very low positive gradients to ci. In our experi-
ments, we observed this and also decreased negative gradi-
ent on ci. We plot the average cross-entropy loss of the new
data batch and the replay data batch when the model learns
the second task of CIFAR100 in Appendix 2. The figure
shows that the average cross-entropy loss of the new data
batch is much higher than that of the replay data batch in
the whole training process. This is because the system has
learned good features from previous tasks that makes the
learning of the new class ci easier resulting in less negative
gradients. But positive gradients drop more significantly.

We now consider the accumulation part (the summations
in Eq. 6). The next section will show that A-PN is used
to dynamically adjust the loss for each class in learning to
balance the gradients. By right, when we learn the current
task, we only need to consider the current GI situation to
adjust the loss. However, considering only one case (the
current situation) is risky due to random fluctuations. That

Figure 2. A-PN rate (rate) for each class (x-axis) after the last task is trained. The classes are ordered by their sequence of appearances in
the original data. The buffer size is 1000 and the optimizer is Adam. (C) shows the test performances (see the formula in the legion) of all
learned classes. The results based on the SGD optimizer are given in Appendix 3.

is why we consider the impact on a class ci from all subse-
quent tasks, which gives us a more robust gradient rate for
adjusting the loss in dealing with GI in learning.

(3). Fig. 2(C) shows that higher A-PN rates (imbalanced
gradients) result in lower test accuracy. The fact that the ac-
cumulated negative gradient being greater than the accumu-
lated positive gradients in absolute values (i.e., A-PN > −1)
makes the model biased towards the new classes.

5. The Proposed GSA Method
Our method GSA consists of two parts: (1) a new op-

timization framework that separately optimizes cross-task
classification and within-task classification. (2) A gradient-
based self-adaptive loss to alleviate the gradient imbalance
(CL imbalance) in our framework.

5.1. Optimizing Within-class Classification and
Cross-task Classification

Assume that the system has seen n − 1 previous classes
(c1, ..., cn−1) and there m− n+ 1 new classes (cn, ..., cm)
in the current batch Xnew, for a class, say cn, in the batch
of new data, we decompose its learning into two parts: (1)
learning the decision boundaries between cn and the other
classes in the current batch Xnew and (2) learning the deci-
sion boundaries between cn and all previous n − 1 classes
of old tasks in Xbuf. For example, for a sample xcn of new
class cn from Xnew, its original cross-entropy loss is:

Lce(xcn) = − log(
eocn∑m
s=1 e

ocs
) (7)

where ocs is the logit value of xcn for class cs. We decom-
pose the loss (denoted by Ldecom(xcn)) into two parts:

Ldecom(xcn) = − log(
eocn∑m
s=n e

ocs
)−log(

eocn∑n−1
s=1 eocs + eocn

)

(8)
The first part of Ldecom distinguishes cn and other new
classes with respect to xcn . Their gradient rates are similar.

The second part distinguishes cn and the previous classes
with respect to xcn . The negative interference from new
classes to previous classes is limited in the second part. For
the relationship of loss Ldecom and loss Lce, we have the
following proposition:

Proposition 1. For a sample xcn from the new class cn
in Xnew, the following holds

Ldecom(xcn) ≥ Lce(xcn) (9)

The proof is in Appendix 4. Similarly, for a sampled data
point xcj of class cj(j < n) from the buffer data Xbuf, we
define its new loss as:

Ldecom(xcj) = − log(
eocj∑n−1
s=1 eocs

)−log(
eocj∑m

s=n e
ocs + eocj

)

(10)
In this loss, we put the previous classes (similar gradient
rates) in the first term to maintain the established decision
boundaries between previous classes and put the logit of
the true class and the logits of the classes in the current task
in the second term to establish the decision boundaries be-
tween class cj and the new classes. The negative transfer
from the new classes to previous classes is limited to the
second term. We prove that Ldecom(xcj) is the upper bound
of Lce(xcj) in Appendix 4.

Considering data balance. To estimate the first term in
Eq. 8 for class cn, we use Xnew as the data of new classes
as Xnew is usually class-balanced.1 For a similar reason, we
use Xbuf to estimate the first term in Eq. 10 for the previous
class cj . However, for the second term in Eq. 8, using Xnew

causes prediction bias towards new classes as Xnew lacks
samples of previous classes. Also, using Xbuf to estimate
the second term in Eq. 10 is not appropriate as the number
of new classes samples in the buffer increases gradually and
for a long time, the new classes are the minor classes in the
buffer. To solve both problems, we use the sampling strat-
egy proposed in the last section under “Dealing with Data

1If this is not the case, we can sample some data of the same class from
the memory buffer or directly duplicate the samples to guarantee it.

Imbalance.” Then we obtain a mixed set of new data and old
data sampled from the memory buffer, called Xmix. Xmix

can be regarded as samples from the uniform joint distribu-
tion for all classes, including both the new and old classes.
Then our final optimization goal is:

min
F∈F

− E
x∼Xnew

log(
eoyx∑m
s=n eocs

)− E
x∼Xbuf

log(
eoyx∑n−1
s=1 eocs

)

− E
x∼Xmix

(I(yx ∩ S(Xnew) ̸= ∅) · log(eoyx∑n−1
s=1 eocs + eoyx

)+

I(yx ∩ S(Xnew) = ∅) · log(eoyx∑m
s=n eocs + eoyx

))

(11)
where yx is the label of sample x and S(Xnew) is the set of
classes appeared in the Xnew and I is the indicator function
and F is the function space. The first term and second terms
focus on the within-task classification goal and the last term
focus on the cross-task classification goal.

5.2. Self-Adaptive Loss for CL Imbalance
Based on the analysis in Section 4, we know that even

though the data balance is guaranteed, GI still exists as
the gradient rate is different for different classes, which
is caused by CL imbalance. We note that CL imbalance
(measured by the gradient rate of each class) not only oc-
curs between new and previous classes but also occurs
among previous classes. To mitigate it, we propose GSA-
CE (Gradient-based Self-Adaptive CE) loss LGSA-CE. The
loss function is dynamically adjusted based on the gradient
rates, which change as more tasks and batches are learned.
Let {xk, yk}N

mix

k=1 be the samples in Xmix, their LGSA-CE is:

LGSA-CE({xk, yk}N
mix

k=1 = − 1

Nmix

Nmix∑
k=1

wyk · (I(yk ∩ S(Xnew) ̸= ∅)·

log(
eoyk∑n−1

s=1 eocs + eoyk
) + I(yk ∩ S(Xnew) = ∅)·

log(
eoyk∑m

s=n vcse
ocs + eoyk

))

(12)
where

wyk =
2

1 + eA-PN(t′,t,yk)
, vcs =

1

−PN(t, cs)
(13)

where t′ is the task in which class cs appears. When
the model is training task t, we incrementally update the
A-PN(t′, t, yk) and PN(t, yk) by adding the new gradients
into the current sums of all previous gradients. LGSA-CE has
three advantages:

(1). When the new task arrives, we do not need to assume
that we have the entire training set for calculating some
statistics or an exemplar set like CCIL [33]. Our method
is thus suitable for online CL.

(2). The model sets the values of wyk
and vcs based on

A-PN rates and PN rates automatically as they vary dynam-
ically with the current gradient imbalance situation.

(3). A-PN and PN rates are class-based metrics that re-
flect the discriminative power of the model for all seen
classes. Our loss then gives class-based weights for sam-
ples from different classes. The new loss thus automatically
adjust the loss weight wyk

to balance the accumulated nega-
tive gradient and the accumulated positive gradient for each
class. We justify the new loss in Appendix 5.

(4) No new hyperparameter is introduced in the process.

Similarly, as the gradient rate imbalance occurs also
within previous classes, for samples {xk, yk}N

buf

k=1 from
Xbuf, their LGSA-CE loss is:

LGSA-CE({xk, yk}N
buf

k=1) = −

∑Nbuf

k=1 wyk log(e
oyk∑n−1

s=1 eocs
)

N buf

(14)
Considering the gradient imbalance, we replace the second
term and the third term in Eq. 11 with our LGSA-CE losses
Eq. 14 and Eq. 12 in the expectation form respectively. The
final optimization objective in Eq. 11 is turned into:

min
F∈F

− E
x∼Xnew

log(
eoyx∑m
s=n eocs

)− E
x∼Xbuf

wyx · log(eoyx∑n−1
s=1 eocs

)

− E
x∼Xmix

wyx · (I(yx ∩ S(Xnew) ̸= ∅) · log(eoyx∑n−1
s=1 eocs + eoyx

)

+I(yx ∩ S(Xnew) = ∅) · log(eoyx∑m
s=n vcse

ocs + eoyx
))

(15)

6. Experiments
Evaluation data. Four image classification datasets are

used. 1) MNIST [27] has 10 classes with 60,000/10,000
training/test examples. We created 5 disjoint tasks with
2 classes per task. 2) CIFAR10 [25] has 10 classes with
50,000/10,000 training/test samples. We created 5 disjoint
tasks with 2 classes per task. 3) CIFAR100 [25] has 100
classes with 50,000/10,000 training/test samples. 10 dis-
joint tasks are created with 10 classes per task. 4) TinyIm-
ageNet [26] has 200 classes. We created 100 disjoint tasks
with 2 classes per task. Each class has 500 training exam-
ples and 50 test examples.

Compared Baselines. GSA2 is compared with 16 re-
cent baselines: 9 online CL baselines, AGEM, ER, MIR,
GSS, ASER, RainBow-rt, ER-AML, GDumb, and SCR
and 7 offline CL baselines, DER++, IL2A, Co2L, LUCIR,
CCIL, BiC and SSIL, as they deal with data/class imbal-
ance and can be run in the online CL mode, i.e., training in
one epoch without requiring the full data of each task to be
available when the task arrives. The citations of these sys-
tems are given in Table 1 associated with their results. Note
that Rainbow [5] is not a standard online CL method as it re-
trains all replay-data with data augmentation for 256 epochs
after each task, which is not suitable for online CL because

2Code and Appendix: https://github.com/gydpku/GSA

Method MNIST (5 tasks) CIFAR10 (5 tasks) CIFAR100 (10 tasks) TinyImageNet (100 tasks)
M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k

AGEM [10] 56.9±5.2 57.7±8.8 61.6±3.2 22.7±1.8 22.7±1.9 22.6±0.7 5.8±0.2 6.5±0.3 5.8±0.2 0.9±0.1 2.1±0.1 3.9±0.2

ER [11] 78.7±0.4 88.0±0.2 90.3±0.1 49.7±0.6 55.2±0.6 59.3±0.2 15.7±0.3 22.4±0.5 29.5±0.9 4.7±0.5 10.1±0.7 11.7±0.2

MIR [3] 79.0±0.5 88.3±0.1 91.3±1.9 37.3±0.3 40.0±0.6 41.0±0.6 15.7±0.2 19.1±0.1 24.1±0.2 6.1±0.5 11.7±0.2 13.5±0.2

GSS [4] 70.4±1.5 80.7±5.8 87.5±5.9 26.9±1.2 30.7±1.3 40.1±1.4 11.1±0.2 13.3±0.5 17.4±0.1 3.3±0.5 10.0±0.2 10.5±0.2

ASER [40] 61.6±2.1 71.0±0.6 82.1±5.9 27.8±1.0 36.2±1.2 44.7±1.2 16.4±0.3 12.2±1.9 27.1±0.3 5.3±0.3 8.2±0.2 10.3±0.4

Rainbow-rt [5] 89.1±0.3 92.1±0.1 95.0±0.3 45.2±0.4 50.6±0.3 51.5±0.8 15.4±0.5 15.9±0.3 20.4±0.3 6.6±0.3 10.1±0.3 13.1±0.5

ER-AML [7] 76.5±0.1 86.0±0.2 91.5±0.1 40.5±0.7 48.7±0.5 50.1±0.4 16.1±0.4 17.6±0.5 22.6±0.1 5.4±0.2 7.1±0.5 10.1±0.4

GDumb [35] 81.2±0.5 91.0±0.2 94.5±0.1 35.9±1.1 50.7±0.7 63.5±0.5 17.1±0.4 25.1±0.2 38.6±0.5 12.6±0.1 12.7±0.3 15.7±0.2

SCR [31] 86.2±0.5 92.8±0.3 94.6±0.1 47.2±1.7 58.2±0.5 64.1±1.2 26.5±0.2 31.6±0.5 36.5±0.2 10.6±1.1 17.2±0.1 20.4±1.1

DER++ [6] 74.4±1.1 91.5±0.2 92.1±0.2 44.2±1.1 47.9±1.5 54.7±2.2 15.3±0.2 19.7±1.5 27.0±0.7 4.5±0.3 10.1±0.3 17.6±0.5

IL2A [55] 90.2±0.1 92.7±0.1 93.9±0.1 54.7±0.5 56.0±0.4 58.2±1.2 18.2±1.2 19.7±0.5 22.4±0.2 5.5±0.7 8.1±1.2 11.6±0.4

Co2L [9] 83.1±0.1 91.5±0.1 94.7±0.1 42.1±1.2 51.0±0.7 58.8±0.4 17.1±0.4 24.2±0.2 32.2±0.5 10.1±0.2 15.8±0.4 22.5±1.2

LUCIR [19] 73.2±0.1 87.2±0.2 90.1±0.1 27.9±1.2 33.5±0.7 37.8±0.5 8.6±1.3 19.5±0.7 16.9±0.5 7.6±0.5 9.6±0.7 12.5±0.7

CCIL [33] 86.4±0.1 92.8±0.2 94.0±0.1 50.5±0.2 55.3±0.5 59.8±0.3 18.5±0.3 19.1±0.4 20.5±0.3 5.6±0.9 7.0±0.5 15.2±0.5

BiC [46] 90.4±0.1 93.0±0.2 94.8±0.1 48.2±0.7 57.5±1.4 63.8±0.2 21.2±0.3 36.1±1.3 42.5±1.2 10.2±0.9 18.9±0.3 25.2±0.6

SSIL [2] 88.2±0.1 93.0±0.2 95.1±0.1 49.5±0.2 59.2±0.4 64.0±0.5 26.0±0.1 33.1±0.5 39.5±0.4 9.6±0.7 15.2±1.5 21.1±0.1

GSA 91.4±0.1 93.2±0.1 96.5±0.1 58.0±0.4 64.6±0.2 69.1±0.3 31.4±0.2 39.7±0.6 49.7±0.2 18.4±0.4 26.0±0.2 33.2±0.4

Table 1. Accuracy on the four experiment datasets with different memory buffer sizes M. All values are averages of 15 runs.
Method MNIST (5 tasks) CIFAR10 (5 tasks) CIFAR100 (10 tasks) TinyImageNet (100 tasks)

M M=0.1k M=0.5k M=1k M=0.2k M=0.5k M=1k M=1k M=2k M=5k M=2k M=4k M=10k
AGEM 32.5±5.9 30.1±4.2 32.0±2.9 36.1±3.8 43.2±4.3 48.1±3.4 78.6±2.1 77.5±1.3 78.3±1.2 73.9±0.2 78.9±0.2 74.1±0.3

ER 22.7±0.5 9.7±0.4 6.7±0.5 42.0±0.3 26.7±0.7 20.7±0.7 65.1±1.3 59.3±0.9 60.0±1.6 68.2±2.8 66.2±0.8 67.2±0.2

MIR [3] 22.3±0.5 9.0±0.5 5.7±0.9 40.0±1.6 25.9±0.7 24.5±0.5 24.5±0.3 21.4±0.3 21.0±0.1 61.1±3.2 60.9±0.3 59.5±0.3

GSS 26.1±2.2 17.8±5.22 10.5±6.7 75.5±1.5 65.9±1.6 54.9±2.0 73.4±4.2 69.3±3.1 70.9±2.9 72.8±1.2 72.6±0.4 71.5±0.2

ASER [40] 33.8±1.1 24.8±0.5 13.8±0.4 71.1±1.8 59.1±1.5 50.4±1.5 25.0±0.2 12.2±1.9 13.2±0.1 65.7±0.7 64.2±0.2 62.2±0.1

Rainbow-rt 10.1±0.1 4.7±0.4 2.4±0.5 20.4±0.3 18.1±0.4 15.3±0.8 25.5±0.5 19.3±0.4 13.3±0.5 25.5±0.6 23.2±0.3 20.0±0.4

ER-AML 23.1±0.1 9.7±0.4 6.4±0.5 50.9±0.3 40.1±0.5 34.2±0.8 51.5±0.8 49.2±0.5 38.7±0.6 47.4±0.5 43.2±0.3 41.0±0.5

GDumb 10.3±0.1 6.2±0.1 4.8±0.2 26.5±0.5 24.5±0.2 18.9±0.4 16.7±0.5 17.6±0.2 16.8±0.4 15.9±0.5 14.6±0.3 11.7±0.2

SCR 10.7±0.1 4.7±0.1 4.0±0.2 41.3±0.1 31.5±0.2 24.7±0.4 17.5±0.2 11.6±0.5 5.6±0.4 19.4±0.3 15.4±0.3 14.9±0.7

DER++ [6] 25.0±0.3 7.3±0.3 6.6±1.2 30.1±0.8 31.8±2.5 18.7±3.4 43.4±0.2 44.0±1.9 25.8±3.5 67.2±1.7 63.6±0.3 55.2±0.7

IL2A [55] 8.7±0.1 7.2±0.1 4.1±0.1 36.0±0.2 32.1±0.4 29.1±0.4 24.6±0.6 12.5±0.7 20.0±0.5 65.5±0.7 60.1±0.5 57.6±1.1

Co2L [9] 14.7±0.2 7.1±0.1 3.1±0.1 32.0±0.1 21.0±0.3 16.9±0.2 16.9±0.4 16.6±0.6 9.9±0.7 60.5±0.5 52.5±0.9 42.5±0.8

LUCIR 20.3±0.1 8.5±0.1 7.8±0.1 63.5±0.5 55.3±0.2 46.5±1.2 60.0±0.1 47.5±0.9 44.3±0.7 46.4±0.7 42.2±0.9 37.6±0.7

CCIL 14.1±0.1 7.7±0.1 4.8±0.1 18.6±0.1 16.5±0.4 12.5±0.8 16.7±0.5 16.1±0.3 17.5±0.2 59.4±0.3 56.2±1.3 48.9±0.6

BiC 11.1±0.1 3.7±0.1 2.5±0.1 35.4±0.7 25.3±0.4 14.5±0.7 40.2±0.4 30.9±0.7 18.7±0.5 43.5±0.5 32.9±0.5 24.9±0.4

SSIL 11.3±0.1 2.7±0.1 2.8±0.1 36.0±0.7 29.6±0.4 13.5±0.4 40.1±0.5 33.9±1.2 21.7±0.8 44.4±0.7 36.6±0.7 29.0±0.7

GSA 8.1±0.1 2.5±0.1 1.4±0.1 23.5±0.2 12.6±0.4 10.0±0.3 33.2±0.6 22.8±0.4 8.7±0.3 35.5±0.3 25.8±0.4 16.9±0.6

Table 2. Average forgetting rate. All numbers are the averages of 15 runs.

Dataset no new loss no previous loss no cross loss no Xmix no CL imbalance
CIFAR100 30.1±0.6 12.7±0.2 29.9±0.4 30.1±0.1 29.7±0.3

TinyImageNet 17.5±0.2 4.7±0.5 17.2±0.4 17.5±0.5 16.9±0.2

Table 3. Ablation accuracy - average of 5 runs. Memory size M is
1k for CIFAR100 and 2k for TinyImageNet.

it cannot be used for any-time inference. We thus removed
this retraining operation and denote it as Rainbow-rt.

6.1. Architecture, Data Augmentation, Training De-
tails and Evaluation Protocol

Architecture. For MNIST, GSA and baselines employ a
fully-connected network with two hidden layers as the fea-
ture extractor hθ, each comprising of 400 ReLU units. A
linear layer of size [400, 10] is used as the classifier fϕ. For
CIFAR10, CIFAR100, and TinyImageNet, we follow [6]
and use ResNet18 (not pre-trained) as the feature extractor
hθ with around 11 million trainable parameters for GSA and
all baselines. Denoting Cnum as the number of all classes,
we employ a linear layer of size [dimh, Cnum] as the classi-
fier fϕ. For an input x, we use F (x) to compute Lce.

Data Augmentation. To learn better features, we ap-

ply two data augmentations to each image in Xnew and
Xmix: random-resized-crop and random-gray-scale. For
fair comparison, the same data augmentations are applied to
all baselines (Xnew and Xbuf) to improve their performance,
which results in an average of about 2% of improvement for
all methods with no drop in performance for any baseline.

Training and hyperparameter settings. Like ER and
many other online CL systems, GSA uses reservoir sam-
pling for memory update. We follow [16] and train GSA
with the Adam optimizer. We set the learning rate as 0.001
and fix the weight decay as 0.0001 for all settings. We fol-
low [16] and set the batch size of Xnew as 10 for all methods
and Xmix as 64 for our GSA and Xbuf also as 64 for base-
lines. We list other hyper-parameters in Appendix 6.

We use the official codes of baselines. Their source links
and default hyper-parameters are listed in Appendix 6. We
run all methods with one epoch for each task.

Evaluation protocol. We first learn all tasks from the
data stream for each dataset, and then test the final model
using the test data of all tasks. We report the average accu-

racy of 15 random runs.

6.2. Results Analysis and Ablation Experiments

The results in Table 1 show that the best online CL base-
line is SCR and the best class-imbalance baseline is BiC.
Although BiC and SSIL were not originally designed for
online CL, they perform well for online CL, better than all
online CL baselines, which do not deal with data imbalance.
This indicates that the data-balanced approaches in BiC and
SSIL help. Our method GSA consistently outperforms them
by very large margins as we also deal with the proposed CL
imbalance. Note that OCM is not compared in the tables
as it is not a competitor of GSA. GSA is actually comple-
mentary to OCM. For example, with the largest memory
size for each dataset, OCM+GSA gives 96.5% on MNIST,
77.5% on CIFAR10, 53.7% on CIFAR100, and 35.7% on
TinyImageNet and also outperforms OCM [16].

Forgetting rate. Table 2 shows that our GSA has
substantially lower forgetting rates than baselines except
for GDumb, Rainbow-rt, and SCR (in two datasets), but
GDumb, Rainbow-rt, and SCR’s accuracy values are sub-
stantially lower than that of GSA (see Table 1). The calcu-
lation method of the average forgetting rate and Training
times are given in Appendix 7.

Ablation. We conducted ablation experiments on GSA
using two datasets, CIFAR100 and TinyImageNet. The re-
sults are given in Table 3.

(1). Ablation study of training loss in GSA. In the exper-
iments “no new loss”, ”no previous loss”, and ”no cross
loss”, we do not consider the first term (establishing the
boundaries between new classes), the second term (main-
taining the decision boundaries between previous classes),
and the last term (establishing the cross-task boundaries) in
Eq. 15 respectively. Table 3 shows that their performances
are all poorer than GSA (Table 1). This is because in the first
case, the model forgets the knowledge of previous classes,
which causes a drastic drop in performance. The second ex-
periment shows that our method benefits from considering
all the new data in Xnew. The third experiment shows that
establishing cross-task boundaries is an important problem
for CIL and can improve the overall performance further.

(2). Ablation study of data imbalance and CL imbalance.
In the experiments “no balanced sampling,” we replace the
sampling strategy for Xmix with random sampling from the
memory buffer Xbuf. In the experiment “no CL imbalance,”
we do not use the LGSA-CE losses proposed in Eq. 12 and
Eq. 14 and introduced into the final optimization objective
in Eq. 15, but replace them with the simple cross-entropy
loss. Table 3 shows that all these incomplete GSA systems
are poorer than the full GSA in Table 1. The poorer per-
formance of “no balanced-sampling” is mainly due to data
imbalance between new classes and previous classes in the
buffer. Specifically, in the initial training process of the new

Figure 3. The gradient rate after the model has learned all classes
of CIFAR100. A-PN is the gradient rate. The memory buffer size
is 1000. Joint training means the model learns all classes together
as one task in one epoch.

task, the stored training data of the new task classes are usu-
ally fewer than that of the previous classes in the buffer and
the cross-task class boundaries are not established well. The
poorer performance of “no CL imbalance” is because the
method does not consider different gradient rates across dif-
ferent classes, which again results in poorer performances.

GSA-CE loss mitigates the gradient imbalance. Fig. 3
shows that the GSA-CE loss clearly reduces the A-PN gra-
dient rate imbalance than the method without it by dropping
the A-NP rate that is bigger than -1 and improving the A-
NP rate that is smaller than -1. And it makes the curve of
A-PN rate more similar to the joint training curve.

Long-tail online CL experiments. See Appendix 8,
where we will show that our method also outperforms the
baselines.

7. Conclusion
This paper discussed the challenge of cross-task class

discrimination (CTCD) and showed that the replay ap-
proach partially deals with the problem. However, the re-
play approach has a major bias in training, which is mani-
fested by gradient imbalance on the logits and significantly
limits the online CL performance and the ability to solve
the CTCD problem. The paper then analyzed gradient im-
balance from two perspectives: data imbalance introduced
by replay and CL imbalance due to CL itself. After that,
it proposed a new learning strategy and a new self-adaptive
loss function to deal with the problems. Empirical evalua-
tion demonstrated that the new approach GSA improves the
baselines by large margins.

References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Babak Ehteshami Bejnordi.
Conditional channel gated networks for task-aware contin-

ual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3931–
3940, 2020. 2

[2] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang,
Hyojun Kim, and Taesup Moon. Ss-il: Separated softmax
for incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 844–
853, 2021. 1, 2, 7

[3] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo
Caccia, Min Lin, Laurent Charlin, and Tinne Tuytelaars. On-
line continual learning with maximally interfered retrieval.
arXiv preprint arXiv:1908.04742, 2019. 2, 3, 7

[4] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. arXiv preprint arXiv:1903.08671, 2019. 2, 7

[5] Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha,
and Jonghyun Choi. Rainbow memory: Continual learn-
ing with a memory of diverse samples. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8218–8227, 2021. 6, 7

[6] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. arXiv preprint
arXiv:2004.07211, 2020. 2, 7

[7] Lucas Caccia, Rahaf Aljundi, Nader Asadi, Tinne Tuyte-
laars, Joelle Pineau, and Eugene Belilovsky. Reducing rep-
resentation drift in online continual learning. arXiv preprint
arXiv:2104.05025, 2021. 2, 7

[8] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incre-
mental learning. In ECCV, 2018. 2

[9] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Con-
trastive continual learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
9516–9525, October 2021. 7

[10] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with a-
gem. arXiv preprint arXiv:1812.00420, 2018. 2, 7

[11] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and M Ranzato. Continual learning with tiny episodic
memories. In ICML-2019, 2019. 2, 3, 7

[12] Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny,
Thalaiyasingam Ajanthan, Puneet K Dokania, Philip HS
Torr, and Marc’Aurelio Ranzato. On tiny episodic memo-
ries in continual learning. arXiv preprint arXiv:1902.10486,
2019. 2

[13] Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng
Kong, and Dani Yogatama. Episodic memory in lifelong lan-
guage learning. In NeurIPS, 2019. 2

[14] Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.
Orthogonal gradient descent for continual learning. In Inter-
national Conference on Artificial Intelligence and Statistics,
pages 3762–3773. PMLR, 2020. 2

[15] Yiduo Guo, Wenpeng Hu, Dongyan Zhao, and Bing Liu.
Adaptive orthogonal projection for batch and online contin-
ual learning. In Proceedings of AAAI-2021, 2022. 2

[16] Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual
learning through mutual information maximization. In In-
ternational Conference on Machine Learning, pages 8109–
8126. PMLR, 2022. 2, 7, 8

[17] Yunhui Guo, Mingrui Liu, Tianbao Yang, and Tajana Ros-
ing. Improved schemes for episodic memory-based lifelong
learning. Advances in Neural Information Processing Sys-
tems, 33:1023–1035, 2020. 2

[18] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj
Acharya, and Christopher Kanan. Remind your neural
network to prevent catastrophic forgetting. arXiv preprint
arXiv:1910.02509, 2019. 2

[19] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 2, 7

[20] Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-
Hung Chen, Yi-Ming Chan, and Chu-Song Chen. Compact-
ing, picking and growing for unforgetting continual learning.
In NeurIPS, 2019. 2

[21] Ronald Kemker and Christopher Kanan. FearNet: Brain-
Inspired Model for Incremental Learning. In ICLR, 2018.
2

[22] Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke,
and Bing Liu. A theoretical study on solving continual learn-
ing. In Advances in Neural Information Processing Systems,
2022. 2

[23] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 2

[24] Łukasz Korycki and Bartosz Krawczyk. Class-incremental
experience replay for continual learning under concept drift.
arXiv preprint arXiv:2104.11861, 2021. 2

[25] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report TR-
2009, University of Toronto, Toronto., 2009. 6

[26] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7:7, 2015. 6

[27] Yann LeCun, Corinna Cortes, and Christopher JC
Burges. The mnist database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998. 6

[28] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and
Caiming Xiong. Learn to grow: A continual structure learn-
ing framework for overcoming catastrophic forgetting. In
ICML, 2019. 2

[29] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. In NIPS, pages
6470–6479, 2017. 2

[30] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 3589–3599,
2021. 2

[31] Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner.
Supervised contrastive replay: Revisiting the nearest class
mean classifier in online class-incremental continual learn-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops,
pages 3589–3599, 2021. 7

[32] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel
Menta, Andrew D Bagdanov, and Joost van de Weijer. Class-
incremental learning: survey and performance evaluation
on image classification. arXiv preprint arXiv:2010.15277,
2020. 1

[33] Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Es-
sentials for class incremental learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3513–3522, 2021. 2, 6, 7

[34] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-
nichen, and Moin Nabi. Learning to remember: A synaptic
plasticity driven framework for continual learning. In CVPR,
pages 11321–11329, 2019. 2

[35] Ameya Prabhu, Philip HS Torr, and Puneet K Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In EECV, pages 524–540, 2020. 2, 7

[36] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fa-
had Shahbaz, and Khan Ling Shao. Random path selection
for incremental learning. In NeurIPS, 2019. 2

[37] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classi-
fier and representation learning. In CVPR, pages 2001–2010,
2017. 2

[38] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Contin-
ual learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395, 2017. 2

[39] Joan Serrà, Dı́dac Surı́s, Marius Miron, and Alexandros
Karatzoglou. Overcoming catastrophic forgetting with hard
attention to the task. In ICML, 2018. 2

[40] Dongsub Shim, Zheda Mai, Jihwan Jeong, Scott San-
ner, Hyunwoo Kim, and Jongseong Jang. Online class-
incremental continual learning with adversarial shapley
value. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 9630–9638, 2021. 2, 7

[41] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NIPS,
pages 2994–3003, 2017. 2

[42] Albin Soutif-Cormerais, Marc Masana, Joost Van de Weijer,
and Bartlømiej Twardowski. On the importance of cross-task
features for class-incremental learning. arXiv: 2106.11930,
2021. 1

[43] Johannes von Oswald, Christian Henning, João Sacramento,
and Benjamin F Grewe. Continual learning with hypernet-
works. ICLR, 2020. 2

[44] Liyuan Wang, Xingxing Zhang, Kuo Yang, Longhui Yu,
Chongxuan Li, Lanqing Hong, Shifeng Zhang, Zhenguo Li,
Yi Zhong, and Jun Zhu. Memory replay with data compres-
sion for continual learning. ICLR-2022, 2022. 2

[45] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer,
Bogdan Raducanu, et al. Memory replay gans: Learning to
generate new categories without forgetting. In NIPS, pages
5962–5972, 2018. 2

[46] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In Proceedings ofthe IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 2, 7

[47] Shipeng Yan, Jiale Zhou, Jiangwei Xie, Songyang Zhang,
and Xuming He. An em framework for online incremental
learning of semantic segmentation. In Proceedings of the
29th ACM International Conference on Multimedia, pages
3052–3060, 2021. 2

[48] Haiyan Yin, Ping Li, et al. Mitigating forgetting in online
continual learning with neuron calibration. Advances in Neu-
ral Information Processing Systems, 34, 2021. 2

[49] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. Lifelong Learning with Dynamically Expandable
Networks. In ICLR, 2018. 2

[50] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6982–
6991, 2020. 2

[51] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Contin-
ual learning of context-dependent processing in neural net-
works. Nature Machine Intelligence, 1(8):364–372, 2019.
2

[52] Junting Zhang, Jie Zhang, Shalin Ghosh, Dawei Li, Serafet-
tin Tasci, Larry Heck, Heming Zhang, and C.-C. Jay Kuo.
Class-incremental learning via deep model consolidation. In
CVPR, 2020. 2

[53] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13208–13217, 2020. 2

[54] Hanbin Zhao, Hui Wang, Yongjian Fu, Fei Wu, and Xi
Li. Memory efficient class-incremental learning for image
classification. IEEE Transactions on Neural Networks and
Learning Systems, 2021. 2

[55] Fei Zhu, Zhen Cheng, Xu-yao Zhang, and Cheng-lin Liu.
Class-incremental learning via dual augmentation. Advances
in Neural Information Processing Systems, 34, 2021. 2, 7

	. Introduction
	. Related Work
	. Preliminary
	. Gradient Imbalance (GI) in Replaying
	. Gradient Imbalance due to Data Imbalance
	. Gradient Imbalance due to CL Imbalance

	. The Proposed GSA Method
	. Optimizing Within-class Classification and Cross-task Classification
	. Self-Adaptive Loss for CL Imbalance

	. Experiments
	. Architecture, Data Augmentation, Training Details and Evaluation Protocol
	. Results Analysis and Ablation Experiments

	. Conclusion

