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Abstract

Indirect time-of-flight (iToF) imaging allows us to capture
dense depth information at a low cost. However, iToF imag-
ing often suffers from multipath interference (MPI) arti-
facts in the presence of scattering media, resulting in se-
vere depth-accuracy degradation. For instance, iToF cam-
eras cannot measure depth accurately through fog because
ToF active illumination scatters back to the sensor before
reaching the farther target surface. In this work, we pro-
pose a polarimetric iToF imaging method that can capture
depth information robustly through scattering media. Our
observations on the principle of indirect ToF imaging and
polarization of light allow us to formulate a novel computa-
tional model of scattering-aware polarimetric phase mea-
surements that enables us to correct MPI errors. We first
devise a scattering-aware polarimetric iToF model that can
estimate the phase of unpolarized backscattered light. We
then combine the optical filtering of polarization and our
computational modeling of unpolarized backscattered light
via scattering analysis of phase and amplitude. This allows
us to tackle the MPI problem by estimating the scattering
energy through the participating media. We validate our
method on an experimental setup using a customized off-
the-shelf iToF camera. Our method outperforms baseline
methods by a significant margin by means of our scattering
model and polarimetric phase measurements.

1. Introduction
Time-of-Flight (ToF) imaging is the cornerstone of mod-
ern 3D imaging technology that has received great attention
across diverse fields, including computer graphics and vi-
sion. Its notable applications include autonomous driving,
3D motion capture, digital-human reconstruction, human-
computer interfaces, robotics, etc. Modern ToF cameras
can be broadly categorized into direct and indirect sys-
tems. Direct ToF measures the round-trip time of pho-
tons emitted from an illumination source until they travel
back to the ToF detector. Indirect ToF, referred to as
amplitude-modulated continuous-wave ToF, utilizes a tem-
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(b) GT depth without fog

(e) iToF’s depth with cross pol. (f) Our method’s depth with fog

(d) Conventional iToF’s depth

(a) Input scene photo without fog

60
 (c) Input amplitude with fog

Figure 1. We introduce a polarimetric iToF imaging method that
can estimate depth robustly through scattering media. (a) A pho-
tograph of the input scene without fog. (b) Ground-truth depth
measure without fog. (c) Input iToF amplitude map captured with
fog. (d) Depth estimated by a conventional iToF camera with fog.
(e) Depth improved by naı̈ve cross-polarization filtering. (f) Our
iToF depth measurement result is fairly close to the GT depth.

porally modulated illumination source and computationally
estimates the round-trip time of photons from modulation
phase changes [21]. The indirect acquisition principle low-
ers the system-building cost by departing from the neces-
sity of the picosecond-accurate illumination, detector, and
synchronization module used in direct ToF. Furthermore,
indirect ToF achieves low-cost instant 3D imaging of the
entire field of view with flood-fill illumination. As a re-
sult, indirect ToF cameras have achieved remarkable suc-
cess in commercial markets, e.g., Microsoft Azure Kinect
and PMD sensors.

However, it is also the indirect-imaging scheme that
poses critical limitations on robust 3D imaging. One of
the notable resulting challenges is multi-path interference
(MPI). Light emitted from the ToF illumination module
travels through a scene and reaches the ToF sensor. During
light transport, some photons interact with only one scene
point via direct reflection, thus providing accurate depth in-
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formation of that point. However, other photons undergo
multiple reflections on different scene points because of in-
direct reflection. If a pixel on the ToF sensor receives a
mixture of direct and indirect photons, the measured phase
shift does not correspond to the analytical phase shift of the
target scene depth anymore. Thus, it degrades the accuracy
of the reconstructed depth.

The MPI problem becomes more severe in the presence
of scattering media such as fog (Figure 1(a) for example)
because light photons experience numerous indirect reflec-
tions with the scattering particles. In this case, the scattered
light energy often exceeds that of light interacting with a
target scene point, resulting in extremely inaccurate scene
depth estimation as shown in Figure 1(c), i.e., the measured
distance through fog tends to be closer than the actual dis-
tance. This acts as a critical hurdle for indirect ToF cameras
to be deployed in the wild, e.g., fire-rescuing robots, au-
tonomous driving under fog, and underwater navigation.

In this paper, we propose a polarimetric iToF imaging
method robust to scattering environments. Our key idea is
to revisit the polarization of light and the scattering theory
about intensity attenuation and depolarization. Our method
allows for accurate scene depth estimation even in the pres-
ence of severe scattering media, as shown in Figure 1(d).

We leverage the polarization property of light that the
backscattered light from scattering particles better main-
tains the polarization state of the emitted photons than the
light that travels farther to a surface [6]. We first configure
the orthogonal polarization modulation of ToF illumination
and detection to initially filter out the polarized backscat-
tered light optically. While existing methods [7, 13, 36, 39]
also demonstrate the effectiveness of this cross-polarization
setup, one critical problem of cross-polarization setup is
that the assumption on the polarized state of backscattered
light does not hold in practice because backscattered light
undergoes a change of polarization throughout scattering
events toward an unpolarized state [37]. This results in lim-
ited depth accuracy.

To handle this, we devise a computational method that
can eliminate the remaining unpolarized backscattered light
based on the indirect ToF’s signal representation: phase
and amplitude. First, we estimate the phase of unpolar-
ized backscattered light by revisiting the scattering model
of intensity attenuation and depolarization [33]. Second, the
amplitude of unpolarized backscattered light is estimated
based on the observation that the amplitude-offset ratio is
consistent for non-scattered light. Then, our method sub-
tracts the unpolarized backscattered light from the initial
cross-polarization measurements, resulting in the estimates
of scattering-free indirect ToF measurements. Our polari-
metric iToF imaging method can enhance depth accuracy
significantly, outperforming existing baselines for depth es-
timation through scattering media, as shown in Figure 1(d).

In summary, our contributions are:

• A scattering-aware polarimetric phasor model specifi-
cally designed for polarimetric iToF imaging, based on
the scattering theory of light intensity attenuation and
depolarization.

• An efficient scattering phasor optimization that can es-
timate the phase of unpolarized backscattered light via
scattering analysis of phase and amplitude in iToF.

2. Related Work

Multi-path interference. Indirect ToF cameras measure
the round-trip time of light emitted from an amplitude-
modulated illumination source until it travels through a
scene and is captured by a ToF detector. While being
a practical depth-imaging technology, indirect ToF imag-
ing suffers from MPI artifacts. As we capture the sum of
directly-reflected light from a scene and indirectly-reflected
light through multiple reflections, iToF often results in dis-
torted phase measurements. The MPI problem can be mit-
igated by extracting direct-only reflection from such inter-
graded measurements. One effective approach is to cap-
ture iToF measurements with multiple modulation frequen-
cies [8,9,15,17,30]. Another direction is to utilize the data-
driven depth prior of natural scenes to estimate the direct-
only reflection from the mixture of direct/indirect reflec-
tions [1, 14, 24, 34]. While these methods can deal with
scenes containing second-bounce reflections of light, they
often fail to handle more extreme scenarios, such as scenes
with scattering media, where scattering events make the
number of reflections substantially higher than two.

Using an analytical scattering model of intensity attenu-
ation is an effective solution in ToF imaging [26]. Fujimura
et al. [10] extend the scattering-model approach by utilizing
segmented background pixels that are only contributed by
backscattered light without any light from scene reflection.
However, capturing natural scenes often violates this as-
sumption. One can overcome this background-dependency
problem by using relatively short-pulse ToF imaging [19]
at an increased cost for building a picosecond-accurate syn-
chronized ToF camera like direct TOF.

Polarization and scattering. Polarization of light de-
scribes how its electric field oscillates in space [18]. As
a wave property of light, polarization has been extensively
utilized for many graphics and vision problems including
shape from polarization [4, 11], appearance from polariza-
tion [5], light transport [2], direct ToF imaging [3], and re-
flection removal [22, 29].

Most relevant to us, polarization helps us see through
scattering media by optically filtering out the backscattered
light and only capturing light that has interacted with the
target surface using polarization.
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Figure 2. Phasor representation of iToF imaging. (a) Amplitude-
modulated light returns to the iToF sensor after traveling a scene.
Phasor representation includes amplitude a, phase φ, and offset s
to describe the continuous signal. Indirect ToF imaging measures
four samples at different phases indicated by the red dots. (b) We
visualize the amplitude and phase of the continuous signal in the
polar coordinates, where the length and direction of a vector are
used to represent amplitude and phase.

As a common practice for achieving this goal, one can
use two linear polarizers at a perpendicular configuration
in front of an illumination module and a camera [39].
This setup, so-called cross-polarization, optically rejects
backscattered light, which tends to maintain the polariza-
tion state of illumination, thus filtered out by the perpen-
dicular polarizer on the detector [20]. In contrast, light that
has traveled to a target surface mostly loses the polarization
state of the original illumination, therefore, can be detected
by the camera passing through the perpendicular polarizer.

An extension to cross-polarization imaging is
polarization-difference imaging (PDI) which takes an
additional image with a parallel orientation of the two po-
larizers instead of the perpendicular configuration [28, 31].
Subtracting the cross-polarization measurements from
the parallel-polarization measurements helps us estimate
the backscattered light [35]. PDI offers a better imaging
capability in the presence of scattering media than cross-
polarization imaging, which can be further improved using
the segmented MPI-free background pixels [40, 41]. How-
ever, they still suffer from limited depth-imaging capability
because of the unmet assumption on the spatially-uniform
polarization state of backscattered light. Real-world scat-
tered light exhibits spatially-varying polarization states [10]
especially when an active illumination is used as in ToF
imaging. Our polarimetric iToF method does not make
such assumptions and thus enables accurate 3D imaging
even under severe scattering media.

3. Background
Indirect ToF cameras emit and capture continuously
amplitude-modulated light, which can be characterized with
three parameters, called phasor representation [15]: ampli-
tude a, phase φ, and offset s. Figure 2 shows a polar-
coordinate visualization of the phasor representation, where
the length and angle of the vector correspond to the ampli-
tude and phase of the signal.

In iToF imaging, we obtain the phasor representation by
capturing multiple samples of the returning light at different

(b)(a)

0o
45o
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135o

0o
45o
90o
135o

Horizontal/vertical
linear polarizer

Horizontal
linear polarizer

ToF detector ToF illumination

Cross polarization

Parallel polarization

Figure 3. (a) Our polarimetric iToF imaging setup. (b) We cap-
ture four-tap phase samples with cross and parallel polarization,
respectively, as input.

phases. A common choice is to use four-phase samples at
ϕ = {0◦, 45◦, 90◦, 135◦}, resulting in the sampled intensi-
ties of light as {Iϕ}. Once measured, the phasor represen-
tation is expressed as:

Amplitude: a =
1

2

√
(I135◦ − I45◦)2 + (I90◦ − I0◦)2,

Phase: φ =arctan2 (I135◦ − I45◦ , I90◦ − I0◦) ,

Offset: s =(I0◦ + I45◦ + I90◦ + I135◦) /4. (1)

4. Method
We first model how the backscattered light distorts the true
phasor of a scene point in consideration of light polariza-
tion. Our analytical model then enables us to remove the un-
desired phasor distortion from polarimetric iToF measure-
ments for accurate 3D imaging.
Imaging setup. We equip an off-the-shelf ToF module
with two linear polarizers: one for the light source and an-
other for the detector. While the linear polarizer on the light
source is set to the horizontal orientation, the linear polar-
izer in front of the detector is mounted on a motorized ro-
tation stage to provide two orthogonal angles. As input, we
use two sets of four-tap ϕ phase measurements of the par-
allel and perpendicular orientations of the detector’s linear
polarizer, respectively. See Figure 3.

4.1. Input

We describe the captured light Iϕ from the customized iToF
camera as the sum of scattered light Sϕ and target light Tϕ

that has interacted with scene objects:

Iϕ = Sϕ + Tϕ =
(
Su
ϕ + Sp

ϕ

)
+
(
Tu
ϕ + T p

ϕ

)
, (2)

where {S/T}uϕ and {S/T}pϕ are the unpolarized and polar-
ized components for each case.
Unpolarized input. When a perpendicular orientation of
the polarizers is set, i.e., cross-polarization configuration,
the measurement is not affected by the light polarized in the
same direction as the illumination, resulting in the follow-
ing image formation: I⊥ϕ = 1

2S
u
ϕ + 1

2T
u
ϕ , where I⊥ϕ is the

captured light intensity of cross-polarization.
The unpolarized backscattered light Su

ϕ is often ignored
(Su

ϕ ≈ 0) in conventional cross-polarization imaging, en-
abling a straightforward computation of the target-only sig-
nal Tu

ϕ ≈ I⊥ϕ . However, this assumption does not practi-
cally hold. In fact, only a fraction of backscattered light
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Figure 4. Phasor of the target, polarized backscatter, unpolarized
backscatter, and measurements for (a) the parallel-polarization set-
ting and (b) the cross-polarization setting. The phase of the target
light stays the same and only the amplitude is different between
the two captures. In contrast, both phase and amplitude change for
the total backscattered light due to the contribution of polarized
backscatter. Note that the polarized backscatter disappears in the
cross-polarization setting.

from a very near distance meets this requirement. Light
photons that undergo multiple scattering events lose the po-
larization state of the original illumination, turning into un-
polarized light Su

ϕ [16, 23]. The unmet assumption results
in inaccurate 3D imaging under scattering media.

Polarized input. To avoid the previous assumption, we
capture another polarimetric phase image with the parallel
orientation of the illumination-detection linear polarizers by
rotating the linear polarizer on the detector side. Note that
the parallel-polarization configuration does not reject the
polarized component {S/T}pϕ as in the cross-polarization
setup because the returning light with the same polarization
state as the illumination still passes through the parallel-
oriented polarizer on the detector. Hence, we model the
captured light intensity I

∥
ϕ as I∥ϕ = Sp

ϕ +
1
2S

u
ϕ +T p

ϕ + 1
2T

u
ϕ .

4.2. Phasor Model

Figure 4 depicts our phasor image formation model. With
the ultimate goal of estimating the phase information of the
target point (blue arrows) from given (a) parallel-polarized
and (b) cross-polarized phasor measurements (green ar-
rows), we want to estimate the phasor information of the
backscattered light first. To this end, our method should
know two additional phasor representations: (1) the polar-
ized backscattered light (yellow arrow) and (2) the unpolar-
ized backscattered light (red arrow).

Phasor of polarized scattering. The first one is the phasor
representation of the polarized backscattered light (yellow
arrow) which can be easily obtained following the princi-
ple of PDI [31]. We subtract the cross-polarization mea-
surement I⊥ϕ from the parallel measurement I

∥
ϕ: I−ϕ =

I
∥
ϕ − I⊥ϕ = Sp

ϕ + T p
ϕ ≈ Sp

ϕ. The target light reflected from
a scene point is unlikely to have the same polarization state
as the original illumination due to the numerous scattering
events during its light transport. Since most light from the
target surfaces is the diffuse reflection and has interacted
with many scattering particles, it is unpolarized: T p

ϕ ≈ 0.

Unpolarized amplitude auS(φ)
Polarized amplitude apS(φ)
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Figure 5. (a) Exponentially-decaying scattering model describes
the amplitude changes of polarized and unpolarized backscattered
light with respect to depth. For a far depth, the contribution of the
unpolarized light becomes larger than that of the polarized light.
(b) Phasor representation of unpolarized light and polarized light
along depth, here only shown the first quadrant. The phasor is the
sum of continuously varying phasors along depth.

As a result, we can obtain the phasor information of po-
larized backscattered light Sp

ϕ from the PDI measurements
I−ϕ using using Equation (1), yielding phase shift φp

S , am-
plitude apS , and offset spS .

Phasor of unpolarized scattering. Second, given the pha-
sor information of the polarized backscattered light (or-
ange arrow), we need to know the phasor representation
of unpolarized backscattered light (red arrow in Figure 4):
phase shift φu

S , amplitude auS , and offset suS to obtain the tar-
get phase information (blue arrow). The following section
provides details of our solution.

4.3. Phasor of Unpolarized Backscattered Light

We estimate the phasor of unpolarized backscattered light.
Phasor consists of phase and amplitude, which are opti-
mized in two folds. We first estimate the scattering decay
parameter of backscattered light according to the volumet-
ric scattering theory. We then obtain phase and amplitude
from unpolarized backscattered light.

4.3.1 Scattering Decay

To estimate the phase of the unpolarized backscattered light,
we obtain the integrated phase shift of polarized multiple
backscattered light φp

S based on volumetric integration over
the entire range of phase shift φ:

φp
S =

∫∞
φ0

φapS(φ)dφ∫∞
φ0

apS(φ)dφ
, (3)

where apS(φ) is a phase-conditioned amplitude function,
and φ0 is the phase shift corresponding to the nearest travel
distance of ToF light. We can interpret Equation (3) as a
weighted average of phase shift φ with the weight of the
amplitude function apS(φ).

As shown in Figure 5, we formulate the amplitude func-
tion apS(φ) based on the exponential decay of amplitude and
degree-of-polarization (DoP) in scattering media [32,33,38]



as follows:

apS (φ) ∝ 1

φ2
exp(−σiφ︸ ︷︷ ︸
intensity

) exp(−σpφ)︸ ︷︷ ︸
DoP

, (4)

where σi and σp are the extinction coefficients of intensity
and DoP attenuation. The first term 1

φ2 comes from the
inverse-square law of emitted light into a scene. The second
and third terms describe the exponential decay of polarized
light amplitude and DoP.

After substituting apS in Equation (3) with Equation (4),
we integrate the numerator and the denominator of Equa-
tion (3) using the exponential integral formula:

φp
S = f(σ) =

Ei (σφ0)

−σEi (σφ0) +
1
φ0

exp(−σφ0)
, (5)

where σ is the total decay rate, the sum of intensity σi and
DOP σp, and Ei(·) is the exponential-integral function. The
initial phase φ0 can be obtained by geometric calibration of
the system. As a result, we have established our model f(·)
on the phase shift of polarized backscatter φp

S as a function
of the decay parameter σ.

We estimate the best scattering decay parameter σ that
produces the prediction of f(σ) most similar to the experi-
mental data φp

S obtained in Section 4.2:

minimize
σ

∥φp
S − f(σ)∥22. (6)

We solve this using the Adam gradient-descent optimiza-
tion. We obtain the decay rate σ as a median value from its
per-pixel estimates.

4.3.2 Phase Estimation

Once the decay parameter σ is estimated, we turn to esti-
mate the phase of unpolarized backscattered light. To this
end, we develop an unpolarized version of Equations (3)
and (4). The integrated phase shift φu

S of unpolarized
backscattered light is defined as

φu
S =

∫∞
φ0

φauS (φ) dφ∫∞
φ0

auS (φ) dφ
, (7)

where we use the amplitude of unpolarized backscattered
light auS(φ) as a weight. We then define the amplitude func-
tion by considering the unpolarized ratio as

auS (φ) ∝ 1

φ2
exp(−σiφ)︸ ︷︷ ︸

intensity

(1− exp(−σpφ))︸ ︷︷ ︸
1−DoP

. (8)

Note that the third term attenuates the amplitude with the
ratio of unpolarized light.

Similarly with the polarized case, we rewrite Equa-
tion (7) by substituting auS (φ) with Equation (8):

φu
S = (9)

Ei(σiφ0)−Ei(σφ0)

−σiEi(σiφ0)+σEi(σφ0)+
1

φ0
exp(−σiφ0)− 1

φ0
exp(−σφ0)

.

Since we have estimated the sum of decay rates σ from
Equation (6) already, we can exclude σ from the function
parameter.

Lastly, Equation (9) is the analytical model of the phase
of unpolarized backscattered light and allows us to com-
pute the phase distortion if the decay rate of intensity σi

is known. To this end, we utilize the previously estimated
integrated decay rate σ from Equation (6). Both intensity
and DoP decrease exponentially under the same scattering
media with respect to travel distance. Thus, the total decay
rate σ = σi+σp can be related to the intensity decay rate as
σi = ασ, where α is a global scalar. We calibrate the scalar
α using a fog chamber, the details of which are included
in the supplemental document. With the calibrated scalar
α and the previously estimated σ, we compute σi which is
then used to compute the phase of unpolarized backscat-
tered light using Equation (9).

4.3.3 Amplitude Estimation

Amplitude-to-offset ratio. Before estimating the scat-
tered amplitude of unpolarized light, we first define the
amplitude-to-offset ratio. Suppose a scene has no scatter-
ing media and interreflection. An indirect ToF camera then
captures direct reflection T only. In this scenario, the ratio
of phasor amplitude and offset is constant:

aT /sT = k0, (10)

where k0 is the amplitude-to-offset ratio that only depends
on the power range of the ToF illumination module. Note
that the ratio is independent of scene reflectance. We cali-
brate k0, which is 0.71 in our setup, by capturing a reference
target in a darkroom.
Amplitude modeling. Our main goal is to estimate the
unknown scattered amplitude auS of unpolarized light from
the given information: (a) the calibrated amplitude-offset
constant k0, (b) the analytical phasor representation of the
polarized/unpolarized/PDI measurements and (c) our phase
estimate of unpolarized backscattering φu

S in Section 4.3.2.
We first formulate the phasor of unpolarized target light as:

auT =
∥∥a⊥exp(iφ⊥)− auSexp(iφ

u
S)
∥∥ , (11)

suT = s⊥ − suS , (12)

where a⊥, φ⊥, and s⊥ are the phasor of the cross-
polarization measurements obtained by Equation (1). Note



that we aim to estimate the amplitude auS in this equation.
auS , φu

S , and suS are the integrated amplitude, phase, and off-
set of unpolarized multiple backscattered light, which will
be modeled in the following.
Amplitude modeling with amplitude-to-offset ratio. We
now apply the constant amplitude-to-offset ratio of Equa-
tion (10) to the unpolarized target light and the unpolarized
backscattered with a specific phase shift φ:

auT /s
u
T = k0, (13)

auS(φ)/s
u
S(φ) = k0. (14)

For the integrated backscattered light over the phase shift
φ, the constant amplitude-to-offset ratio does not hold any-
more. In fact, the ratio k

u

S decreases lower than k0, depend-
ing on the thickness of the scattering media and interreflec-
tion:

auS
suS

= k
u

S (15)

=

∥∥∥∫ ∞
φ0

au
S(φ)exp(iφ)dφ

∥∥∥∫ ∞
φ0

suS(φ)dφ
= k0

∥∥∥∫ ∞
φ0

au
S(φ)exp(iφ)dφ

∥∥∥∫ ∞
φ0

au
S(φ)dφ

,

where k
u

S can be rewritten as a function of auS(φ) using
Equation (14) as shown on the right-hand-side of Equa-
tion (15). Note that ks is the ratio of amplitude to offset,
and ks is smaller than k0 because the amplitude of the in-
tegrated phasor is smaller than the integration of the ampli-
tudes themselves.

Lastly, since the target amplitude model auT in Equa-
tion (11) includes the amplitude of unpolarized backscat-
tered light auS that we want to find out, we first combine
Equations (11) and (12) by substituting auS and suS in Equa-
tion (13). We then write an equation by substituting suS with
Equation (15) in the combined equation:

k0s
⊥ =

∥∥a⊥exp(iφ⊥)− auSexp(iφ
u
S)
∥∥+

auS
∫∞
φ0

auS(φ)dφ∥∥∥∫∞
φ0

auS(φ)exp(iφ)dφ
∥∥∥ . (16)

Amplitude estimation. All other variables in Equa-
tion (19) are already known: a⊥, φ⊥, s⊥ from the cross-
polarization measurements, φu

S from Section 4.3.2, and k0
from calibration. Hence, Equation (19) can be reformulated
to find amplitude auS in a closed-form solution. We refer to
the supplemental document for its analytic solution.

4.4. Scattering Removal

Now that we have obtained both phase φu
S and ampli-

tude auS of unpolarized backscattered light, we are ready
to estimate the target depth by computational removing the
distortion from backscattered light. We simply subtract

(a) Scene (c) Fog phase ( �𝜑𝜑𝑆𝑆𝑢𝑢)(b) Fog amplitude (�𝑎𝑎𝑆𝑆𝑢𝑢)

(d) Conventional ToF
w/ cross-pol.

(e) Depth from our method (f) Ground truth depth
without fog
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Figure 6. We estimate the amplitude and phase caused by un-
polarized backscattered light due to fog. (a) For a challenging
scene with dense fog, we show our estimated fog (b) amplitude
au
S and (c) phase φu

S . (d) While conventional depth estimation
from cross-polarization setting fails due to the strong scattering ef-
fect, subtracting our estimated backscattered light from the cross-
polarization measurements allows us to achieve (e) high-quality
depth imaging.

the phase-amplitude distortion auSexp(iφ
u
S) from the cross-

polarization measurements a⊥exp(iφ⊥), resulting in the es-
timate of unpolarized target light:

auT exp(iφ
u
T) = a⊥exp(iφ⊥)− auSexp(iφ

u
S). (17)

We can recover the target phase shift, corresponding to its
depth, without backscattered distortion as

φu
T = angle (auT exp(iφ

u
T)) , (18)

where angle(·) is the phase-extraction operator.

5. Results

Experiment details. Figure 3 shows our experimental
setup. We use an indirect ToF camera, Melexis VGA
ToF sensor (MLX75027), of which modulation frequency
is 80 MHz and the original spatial resolution of 640× 480.
We use film-based near-infrared (NIR) linear polarizers in
front of the ToF illumination and the detector. The detector-
side polarizer is installed on a rotation mount of Thorlabs
K10CR1. Due to the rotation stage’s occlusion, we use
380× 240 center crops of the captured images. To test
imaging through scattering media, we install an experimen-
tal setup consisting of a 70 cm× 38 cm dark chamber, in
which we place scene objects. We generate artificial fog
using an off-the-shelf fog generator. This stable scattering
media allows apple-to-apple comparisons between different
methods. For target scenes, we placed objects of diverse
shape and appearance in the chamber and material exam-
ples include plastic, acrylic paint, wood, ceramic, or fabric.

3D imaging through fog. Figure 6 shows that our polari-
metric imaging allows us to see through dense fog and esti-
mate an accurate depth map. Our method directly estimates
the amplitude and phase distortion caused by unpolarized
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Figure 7. Our method achieves accurate 3D imaging under scat-
tering media compared to conventional ToF imaging with parallel-
polarization and cross-polarization configurations.

Table 1. Depth accuracy for diverse fog densities. We outperform
conventional ToF imaging with cross polarization for all tested en-
vironments.

Fog density
RMSE [cm] Thin Medium Thick

Conventional ToF 2.78 5.46 9.11
Ours 1.71 1.65 2.59

backscattered light. Figures 6(b) and (c) show that the esti-
mated fog amplitude and phase match with our capture en-
vironment: amplitude is high (brighter in the figure) for far
pixels and phase is small for left pixels. Note that our ToF
illumination is located on the left side of the sensor, making
the left pixels have smaller phases than the right pixels.

Depth accuracy. We evaluate the effectiveness of our
method by measuring depth-estimation error. We first ob-
tain the ground-truth depth without generating any fog as
shown in Figure 7. We capture six scenes each with three
fog densities. Our quantitative results shown in Table 1 are
averaged over the dataset. While conventional ToF imaging
using parallel-polarization and cross-polarization configu-
rations fails to handle the dense scattering environment, our
method enables accurate depth reconstruction.

Impact of ambient light. Our method captures an am-
bient light image without ToF illumination and filters out
the ambient contribution to the four-phase correlation mea-
surements like other conventional TOF cameras such as
PMD sensors. Figure 8 shows reconstruction results. The
RMSE of conventional ToF without ambient light is high as
11.62 cm. In contrast, the RMSEs of our results are 1.88 cm
and 2.08 cm without and with ambient light.

Decaying factor. We validate the amplitude decay model
Equation (4) by capturing the energy of light through differ-
ent distances, as shown in Figure 9. Intensity decay without
fog follows the inverse-square law of emitted light. As our
system has a linear polarizer in front of the light source, we
measure intensity with/without a linear polarizer parallel to
the sensor’s polarizer in front of the camera. Our exponen-
tial decay model correctly represents the measured data.

Robustness against fog density. We analyze the robust-
ness of our method against fog density by capturing depth
maps with different fog densities. We adjust the fog gener-
ator to realize three different fog densities: thin, medium,
and thick. See Figure 10 for qualitative results and Table 1

Ground truth depth without fog Our method without ambient light

Our method with ambient lightConventional ToF Depth
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Figure 8. Impact of ambient illumination. Our method can es-
timate high-accuracy depth information through scattering media
as it accounts for ambient illumination when calculating phase. In-
sets show depth errors.
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Figure 9. Measured and fitted intensity decay with respect to dis-
tance without and with the fog. We also measure intensity decay
with/without a linear polarizer through the fog. Dots represent
measurements and lines describe fitting with our decay model.
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Figure 10. Our method reconstructs accurate depth for thin,
medium, and thick fog environments. Conventional ToF imaging
(with cross-polarization input) suffers from limited scene visibil-
ity. The estimated amplitude of backscattered unpolarized light
becomes higher for denser fog aligned with the environment.

for quantitative results. Our method achieves accurate depth
imaging across diverse fog densities, whereas conventional
cross-polarization ToF imaging degrades its performance
for the medium fog and completely fails in dense fog.

Comparison. We compare our method with state-of-
the-art ToF imaging methods designed for foggy envi-
ronments [10, 25, 40]. We capture ToF measurements at
parallel- and cross-polarization configurations with mul-
tiple ToF modulation frequencies of 40MHz, 50MHz,
60MHz, 70MHz, and 80MHz, in order to provide inputs for
the compared methods. We also compute the depth errors
for all the tested scenes and methods by capturing ground-
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Figure 11. We compare our method to state-of-the-art scattering-aware ToF methods. Our method outperforms the previous approaches by
a large margin thanks to our polarimetric-ToF image formation.

truth scenes without fog. Figure 11 shows the estimated
depth maps and their corresponding depth errors are shown
in Table 2. Fujimura et al. [10] and Zhang et al. [40] re-
quires a background region without any object in the cap-
tured, resulting in missing depth estimates for the back-
ground pixels. Moreover, while Zhang et al. [40] assumes
that the DOP phasor is uniformly constant over the scene
and reflected light is unpolarized, which often does not hold
in practice [4]. In contrast, our method unlocks the previ-
ous assumptions, resulting in accurate depth estimation un-
der the scattering medium. Muraji et al. [25] uses multiple
ToF modulation frequencies to reduce the impact of scatter-
ing media on scene visibility. Unfortunately, they assume
that scene geometry is flat, which does not hold in practice
including our tested scenes. Our method outperforms all
the baseline methods both qualitatively and quantitatively.
Compared to a structured-light-based method [27], our pro-
posed method had benefits in that structured light suffers
from large scattering volume such as fog and should cap-
ture more than dozens of images, e.g., 25 captures in [27].

6. Conclusion
We have presented a polarimetric iToF imaging method that
enables robust depth estimation even in the presence of scat-
tering media. Our approach relies on a novel computational
model that incorporates scattering-aware polarimetric phase

Table 2. We evaluate the depth-estimation accuracy by computing
the relative depth error [12] and the RMSE values. Our method
outperforms the state-of-the-art ToF imaging methods [10,25,40].

Method Muraji et al. Fujimura et al. Zhang et al. Ours
Rel. error 0.087 0.658 0.140 0.021
Std. dev. 5.10 31.92 7.52 1.10

RMSE [cm] 5.73 18.64 8.17 1.31

measurements. Through experimentation, we showcase ac-
curate 3D imaging in dense fog using a polarimetric iToF
camera, surpassing the capabilities of other iToF methods.
In the future, we aim to leverage micro-polarizer pixel ar-
rays on iToF imaging for dynamic scene capture and to de-
vise an efficient denoising algorithm for the reduced pho-
tons.
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Supplemental Document

In this Supplemental Document, we provide details of the analytic solution about the amplitude estimation of unpolarized
backscattered light. We also additional discussion, results and comparisons.

A. Amplitude Estimation

For completeness, we start by rewriting Equation (16) in the main paper here:

∥∥a⊥exp(iφ⊥)− auSexp(iφ
u
S)
∥∥− k0s

⊥ +
auS
∫∞
φ0

auS(φ)dφ∥∥∥∫∞
φ0

auS(φ)exp(iφ)dφ
∥∥∥ = 0. (19)

We can further expand this using the Euler equation as:

(
a⊥ cos

(
φ⊥)− auS cos (φu

S)
)2

+
(
a⊥ sin

(
φ⊥)− auS sin (φu

S)
)2 −(k0s⊥ − auS

k0

k
u

S

)2

= 0. (20)

We then rearrange the formation with respect to the amplitude auS as

(auS)
2

1−

(
k0

k
u

S

)2
− 2auS

[
a⊥
(
cos
(
φ⊥) cos (φu

S) + sin
(
φ⊥) sin (φu

S)
)
− (k0)

2

k
u

S

s⊥

]
+
(
a⊥
)2 − (k0s⊥)2. (21)

Note that Equation (21) is the quadratic equation for the amplitude auS . The solution for the quadratic equation is given as

auS =
c2 +

√
c22 − c1c3
c1

,where

c1 =

1−

(
k0

k
u

S

)2
 ,

c2 =

[
a⊥
(
cos
(
φ⊥) cos (φu

S) + sin
(
φ⊥) sin (φu

S)
)
− (k0)

2

k
u

S

s⊥

]
,

c3 =
(
a⊥
)2 − (k0s⊥)2. (22)

B. Calibration of Scalar α

While the extinction coefficients σ, σi, and σp in our model depend on the fog density, the scalar α is independent of the
density. Rather, the scalar α has a dependency in terms of spatial locations, resulting in per-pixel α. To obtain the spatially-
varying α, we built a closed chamber where a fog generator creates fog. We then wait for the fog to stabilize within the box
physically and capture the foggy scene without objects in order to calibrate the scalar α.

C. Discussions

C.1. Optically-thin Scattering Media

There are a couple of assumptions that our method is based on. First, we assume that diffuse polarization from the surface
is weak enough to be negligible T p

ϕ ≈ 0 through multiple scattering. Second, we assume that light transport occurs through
optically thin scattering media, i.e., light scattering reflected from the target surfaces is negligible.



C.2. Fog Homogeneity Assumption

In the real-world imaging scenario, a participating medium may consist of heterogeneous particles. However, it is too
challenging to formulate the entire interaction among heterogeneous participating particles in an analytical form. To keep the
fog estimation problem tractable, we assume the homogeneity of the participating medium, focusing on depth estimation.

C.3. 2π Ambiguity

Indirect ToF can estimate with a phase range from 0 to 2π. A phase over 2π is wrapped by 2π, which limits the depth
estimation range. The depth limit within a single wrapping count is defined as c

2f , where c is the speed of light in the
operating medium, and f is the modulation frequency. Hence, the depth limit can be extended by choosing a lower frequency
f for light modulation as long as the sensor’s dynamic range allows. In practice, for active i-ToF imaging, the maximum depth
range is usually limited by the power of the light source rather than the wrapping distance, so we assume that the wrapping
problem is not critical for our application. Moreover, the MHz modulation frequencies used in typical iToF cameras present
a small number of phase wraps which can be estimated in a robust manner using a variant of the Chinese remainder theorem.

C.4. Spatial Regularization

Our main scope is to devise a polarized phasor model for the indirect ToF in scattering media and solve the model analytically
to estimate the depth from each pixel’s phasor observation. This method is directly applicable to each pixel independently.
Our estimated depth may present noise, which could be improved by plugging in an additional process, such as adding a
regularization term when computing the extinction coefficient for each pixel or applying smoothing algorithms such as a
guided filter. Developing an efficient depth denoising algorithm and phase-reconstruction method would be interesting for
future work.

C.5. Assumption of random polarization

As the skylight is partially polarized depending on the angle between the sun and the observer, i.e., near grazing angles,
polarized scattering occurs in nature. Also, it can be modeled using a deterministic scattering model of polarization. However,
in our experimental setup, the camera and the active illumination are placed next to each other, looking in the same direction.
In this coaxial optics setup, such deterministic scattering rarely occurs. Random polarization tends to occur through retro-
reflection. To our knowledge, the proposed model may not be applicable to the deterministic scattering of polarized light.

D. Additional Results
Here, we provide additional qualitative results, comparison, and evaluations.

D.1. Subsurface scattering and sparse k-bounce interference

We aim to capture opaque objects under scattering media, which commonly occurs in practical applications such as au-
tonomous driving under fog and underwater navigation. We thus design our method with an assumption that the TOF phase
continuously decreases within the environment. It would be an interesting future work to extend our method to handle sparse
k-bounce multi-path and diffuse subsurface scattering. This is revealed in our experiment of capturing a convex V-groove
object under fog. Our method achieves higher depth accuracy compared to the naive ToF imaging from the RMSE depth
error of 2.39 cm to 0.61 cm, the estimated inner angle of the V-groove is 97.56◦, which deviates from the ground-truth 90◦,
due to sparse k-bounce multipath interference.

D.2. Comparison

Figures 12, 13, and 14 show our results on varying fog densities compared to parallel- and cross-polarization imaging, where
our method outperforms the baselines. Figures 15, 16, 17, 18, and 19 demonstrate that our method outperforms the state-of-
the-art ToF imaging methods developed for scattering environments.
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Figure 12. Scene: Bear and Owl. Our method successfully estimates accurate depth for varying degrees of fog density. Note that
conventional ToF methods with parallel- and cross-polarization configurations fail to handle the scattering effect.
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Figure 13. Scene: Ball and Earth. Our method successfully estimates accurate depth for varying degrees of fog density. Note that
conventional ToF methods with parallel- and cross-polarization configurations fail to handle the scattering effect.
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Figure 14. Scene: Doll and Block. Our method successfully estimates accurate depth for varying degrees of fog density. Note that
conventional ToF methods with parallel- and cross-polarization configurations fail to handle the scattering effect.
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Figure 15. Scene: Flower and Orange. We compare our method to state-of-the-art ToF methods for scattering environments. We outper-
form all the compared methods.
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Figure 16. Scene: Duck. We additionally compare our method to state-of-the-art ToF methods for scattering environments.



G
T

 d
ep

th
In

pu
t s

ce
ne

D
ep

th
 m

ap
Er

ro
r 

m
ap

G
T

 d
ep

th
In

pu
t s

ce
ne

D
ep

th
 m

ap
Er

ro
r 

m
ap

G
T

 d
ep

th
In

pu
t s

ce
ne

D
ep

th
 m

ap
Er

ro
r 

m
ap

Conventional ToF
with cross polarization

Muraji et al. [2019] Fujimura et al. [2020] Zhang et al. [2022] Our method

60
[c

m
]

20
30

[c
m

]
0

T
hi

ck
 fo

g
M

ed
iu

m
 fo

g
T

hi
n 

fo
g

Figure 17. Scene: Bus and Earth. We additionally compare our method to state-of-the-art ToF methods for scattering environments.
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Figure 18. Scene: Box and Can. We additionally compare our method to state-of-the-art ToF methods for scattering environments.
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Figure 19. Scene: Cloth and Statue. We additionally compare our method to state-of-the-art ToF methods for scattering environments.
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Figure 20. Scene: Filament and Cloth. We additionally compare our method to state-of-the-art ToF methods for scattering environments.
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Figure 21. Scene: Cups. We additionally compare our method to state-of-the-art ToF methods for scattering environments.
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