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Abstract

We extend neural radiance fields (NeRFs) to dynamic
large-scale urban scenes. Prior work tends to reconstruct
single video clips of short durations (up to 10 seconds). Two
reasons are that such methods (a) tend to scale linearly with
the number of moving objects and input videos because a
separate model is built for each and (b) tend to require su-
pervision via 3D bounding boxes and panoptic labels, ob-
tained manually or via category-specific models. As a step
towards truly open-world reconstructions of dynamic cities,
we introduce two key innovations: (a) we factorize the scene
into three separate hash table data structures to efficiently
encode static, dynamic, and far-field radiance fields, and
(b) we make use of unlabeled target signals consisting of
RGB images, sparse LiDAR, off-the-shelf self-supervised
2D descriptors, and most importantly, 2D optical flow. Op-
erationalizing such inputs via photometric, geometric, and
feature-metric reconstruction losses enables SUDS to de-
compose dynamic scenes into the static background, indi-
vidual objects, and their motions. When combined with our
multi-branch table representation, such reconstructions can
be scaled to tens of thousands of objects across 1.2 million
frames from 1700 videos spanning geospatial footprints of
hundreds of kilometers, (to our knowledge) the largest dy-
namic NeRF built to date. We present qualitative initial re-
sults on a variety of tasks enabled by our representations,
including novel-view synthesis of dynamic urban scenes,
unsupervised 3D instance segmentation, and unsupervised
3D cuboid detection. To compare to prior work, we also
evaluate on KITTI and Virtual KITTI 2, surpassing state-of-
the-art methods that rely on ground truth 3D bounding box
annotations while being 10x quicker to train.

1. Introduction

Scalable geometric reconstructions of cities have trans-
formed our daily lives, with tools such as Google Maps and
Streetview [60] becoming fundamental to how we navigate
and interact with our environments. A watershed moment
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Figure 1. SUDS. We scale neural reconstructions to city scale by
dividing the area into multiple cells and training hash table rep-
resentations for each. We show our full city-scale reconstruction
above and the derived representations below. Unlike prior meth-
ods, our approach handles dynamism across multiple videos, dis-
entangling dynamic objects from static background and modeling
shadow effects. We use unlabeled inputs to learn scene flow and
semantic predictions, enabling category- and object-level scene
manipulation.

in the development of such technology was the ability to
scale structure-from-motion (SfM) algorithms to city-scale
footprints [4]. Since then, the advent of Neural Radiance
Fields (NeRFs) [33] has transformed this domain by allow-
ing for photorealistic interaction with a reconstructed scene
via view synthesis.

Recent works have attempted to scale such represen-
tations to neighborhood-scale reconstructions for virtual
drive-throughs [47] and photorealistic fly-throughs [52].
However, these maps remain static and frozen in time.
This makes capturing bustling human environments—



complete with moving vehicles, pedestrians, and objects—
impossible, limiting the usefulness of the representation.

Challenges. One possible solution is a dynamic NeRF
that conditions on time or warps a canonical space with a
time-dependent deformation [38]. However, reconstruct-
ing dynamic scenes is notoriously challenging because the
problem is inherently under-constrained, particularly when
input data is constrained to limited viewpoints, as is typi-
cal from egocentric video capture [20]. One attractive so-
lution is to scale up reconstructions to many videos, per-
haps collected at different days (e.g., by an autonomous ve-
hicle fleet). However, this creates additional challenges in
jointly modeling fixed geometry that holds for all time (such
as buildings), geometry that is locally static but transient
across the videos (such as a parked car), and geometry that
is truly dynamic (such as a moving person).

SUDS. In this paper, we propose SUDS: Scalable Ur-
ban Dynamic Scenes, a 4D representation that targets both
scale and dynamism. Our key insight is twofold; (1) SUDS
makes use of a rich suite of informative but freely avail-
able input signals, such as LiDAR depth measurements and
optical flow. Other dynamic scene representations [27, 37]
require supervised inputs such as panoptic segmentation la-
bels or bounding boxes, which are difficult to acquire with
high accuracy for our in-the-wild captures. (2) SUDS de-
composes the world into 3 components: a static branch
that models stationary topography that is consistent across
videos, a dynamic branch that handles both transient (e.g.,
parked cars) and truly dynamic objects (e.g., pedestrians),
and an environment map that handles far-field objects and
sky. We model each branch using a multi-resolution hash
table with scene partitioning, allowing SUDS to scale to an
entire city spanning over 100 km?.

Contributions. We make the following contributions:
(1) to our knowledge, we build the first large-scale dynamic
NeREF, (2) we introduce a scalable three-branch hash table
representation for 4D reconstruction, (3) we present state-
of-the-art reconstruction on 3 different datasets. Finally,
(4) we showcase a variety of downstream tasks enabled by
our representation, including free-viewpoint synthesis, 3D
scene flow estimation, and even unsupervised instance seg-
mentation and 3D cuboid detection.

2. Related Work

The original Neural Radiance Fields (NeRF) paper [33]
inspired a wide body of follow-up work based on the orig-
inal approach. Below, we describe a non-exhaustive list of
such approaches along axes relevant to our work.

Scale. The original NeRF operated with bounded scenes.
NeRF++ [63] and mip-NeRF 360 [7] use non-linear scene
parameterization to model unbounded scenes. However,
scaling up the size of the scene with a fixed size MLP leads
to blurry details and training instability while the cost of

naively increasing the size of the MLP quickly becomes in-
tractable. BungeeNeRF [58] introduced a coarse-to-fine ap-
proach that progressively adds more capacity to the network
representation. Block-NeRF [47] and Mega-NeRF [52] par-
tition the scene spatially and train separate NeRFs for each
partition. To model appearance variation, they incorporate
per-image embeddings like NeRF-W [31]. Our approach
similarly partitions the scene into sub-NeRFs, making use
of depth to improve partition efficiency and scaling over an
area 200x larger than Block-NeRF’s Alamo Square Dataset.
Both of these methods work only on static scenes.

Dynamics. Neural 3D Video Synthesis [28] and Space-
time Neural Irradiance Fields [57] add time as an input to
handle dynamic scenes. Similar to our work, NSFF [29],
NeRFlow [15], and DyNeRF [19] incorporate 2D op-
tical flow input and warping-based regularization losses
to enforce plausible transitions between observed frames.
Multiple methods [38—40, 50] instead disentangle scenes
into a canonical template and per-frame deformation field.
BANMo [60] further incorporates deformable shape mod-
els and canonical embeddings to train articulated 3D models
from multiple videos. These methods focus on single-object
scenes, and all but [28] and [60] use single video sequences.

While many of the previous works use segmentation data
to factorize dynamic from static objects, D?2NeRF [56] does
this automatically through regularization and explicitly han-
dling shadows. Neural Groundplans [44] uses synthetic data
to do this decomposition from a single image. We borrow
some of these ideas and scale beyond synthetic and indoor
scenes.

Object-centric approaches. Several approaches [24,30,

,61,062] represent scenes as the composition of per-
Ob]CCt NeRF models and a background model. NSG [37] is
most similar to us as it also targets automotive data but can-
not handle ego-motion as our approach can. None of these
methods target multi-video representations and are funda-
mentally constrained by the memory required to represent
each object, with NSG needing over 1TB of memory to rep-
resent a 30 second video in our experience.

Semantics. Follow-up works have explored additional
semantic outputs in addition to predicting color. Semantic-
NeRF [65] adds an extra head to NeRF that predicts ex-
tra semantic category logits for any 3D position. Panoptic-
NeRF [16] and Panoptic Neural Fields [27] extend this to
produce panoptic segmentations and the latter uses a simi-
lar bounding-box based object and background decomposi-
tion as NSG. NeSF [53] generalizes the notion of a semantic
field to unobserved scenes. As these methods are highly re-
liant on accurate annotations which are difficult to reliably
obtain in the wild at our scale, we instead use a similar ap-
proach to recent works [26,51] that distill the outputs of 2D
self-supervised feature descriptors into 3D radiance fields
to enable semantic understanding without the use of human
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Figure 2. Model Architecture. (a) For a given input coordinate, we find the surrounding voxels at L resolution levels for both the static
and dynamic branches (far-field branch omitted for clarity). (b) We assign indices to their corners by hashing based on position in the static
branch and position, time, and video id in the dynamic branch. We look up the feature vectors corresponding to the corners and interpolate
according to the relative position of the input coordinate within the voxel. (c) We concatenate the result of each level, along with auxiliary
inputs such as viewing direction, and pass the resulting vector into an MLP to obtain per-branch color, density, and feature logits along
with scene flow and the shadow ratio. (d) We blend scolor, opacity, and feature logits as the weighted sum of the branches.

labels and extend them to larger dynamic settings.

Fast training. The original NeRF took 1-2 days to train.
Plenoxels [43] and DVGO [46] directly optimize a voxel
representation instead of an MLP to train in minutes or
even seconds. TensoRF [1 1] stores its representation as the
outer product of low-rank tensors, reducing memory usage.
Instant-NGP [35] takes this further by encoding features in a
multi-resolution hash table, allowing training and rendering
to happen in real-time. We use these tables as the base block
of our three-branch representation and use our own hashing
method to support dynamics across multiple videos.

Depth. Depth provides a valuable supervisory signal for
learning high-quality geometry. DS-NeRF [14] and Dense
Depth Priors [42] incorporate noisy point clouds obtained
by structure from motion (SfM) in the loss function during
optimization. Urban Radiance Fields [41] supervises with
collected LiDAR data. We also use LiDAR but demonstrate
results on dynamic environments.

3. Approach
3.1. Inputs

Our goal is to learn a global representation that facilitates
free-viewpoint rendering, semantic decomposition, and 3D
scene flow at arbitrary poses and time steps. Our method
takes as input ordered RGB images from NV videos (taken at
different days with diverse weather and lighting conditions)
and their associated camera poses. Crucially, we make use
of additional data as “free” sources of supervision given
contemporary sensor rigs and feature descriptors. Specif-
ically, we use (1) aligned sparse LiDAR depth measure-
ments, (2) 2D self-supervised pixel (DINO [10]) descriptors
to enable semantic manipulation, and (3) 2D optical flow
predictions to model scene dynamics. All model inputs are
generated without any human labeling or intervention.

3.2. Representation

Preliminaries. We build upon NeRF [33], which repre-
sents a scene within a continuous volumetric radiance field
that captures both geometry and view-dependent appear-
ance. It encodes the scene within the weights of a multi-
layer perceptron (MLP). At render time, NeRF projects a
camera ray r for each image pixel and samples along the
ray, querying the MLP at sample position X; and ray view-
ing direction d to obtain opacity and color values o; and
¢;. It then composites a color prediction C(r) for the ray
using numerical quadrature Zijigl T;(1 — exp(—08;)) ¢,
where T; = exp(— Z;;}J 0;0;) and ¢; is the distance be-
tween samples. The training process optimizes the model
by sampling batches R of image pixels and minimizing the
loss function 3", [|C(r) — C(r) H2 NeRF samples rays
through a two-stage hierarchical sampling process and uses
frequency encoding to capture high-frequency details. We
refer the reader to [33] for more details.

Scene composition. To model large-scale dynamic en-
vironments, SUDS factorizes the scene into three branches:
(a) a static branch containing non-moving topography con-
sistent across videos, (b) a dynamic branch to disentangle
video-specific objects [19,29,56], moving or otherwise, and
(c) a far-field environment map to represent far-away ob-
jects and the sky, which we found important to separately
model in large-scale urban scenes [41,52,63].

However, conventional NeRF training with MLPs is
computationally prohibitive at our target scales. Inspired by
Instant-NGP [35], we implement each branch using mul-
tiresolution hash tables of F'-dimensional feature vectors
followed by a small MLP, along with our own hash func-
tions to index across videos.

Hash tables (Fig. 2). For a given input coordinate
(x,d, t, vid) denoting the position x € R?, viewing direc-
tion d € R3, frame index F € {1,...,T}, and video id



vid € {1,..., N}, we find the surrounding voxels in each
table at [ € L resolution levels, doubling the resolution
between levels, which we denote as v; s, v 4, v, for the
static, dynamic, and far-field. The static branch makes use
of 3D spatial voxels v; s, while the dynamic branch makes
use of 4D spacetime voxels v; 4. Finally, the far-field branch
makes use of 3D voxels v; . (implemented via normalized
3D direction vectors) that index an environment map. Simi-
lar to Instant-NGP [35], rather than storing features at voxel
corners, we compute hash indices i; ; (or i; 4 ori; o) for each
corner with the following hash functions:

i s = static_hash(space(v;;)) 1)
ig= dynamichash(space(vz,d% tim@(Vl,d)v vid) (2
ije = env_hash(dir(v;.), vid) )

We linearly interpolate features up to the nearest voxel
vertices (but now relying on guadlinear interpolation for the
dynamic 4D branch) and rely on gradient averaging to han-
dle hash collisions. Finally, to model the fact that different
videos likely contain distinct moving objects and illumina-
tion conditions, we add vid as an auxiliary input to the hash,
but do not use it for interpolation (since averaging across
distinct movers is unnatural). From this perspective, we
leverage hashing to effectively index separate interpolating
functions for each video, without a linear growth in mem-
ory with the number of videos. We concatenate the result of
each level into a feature vector [ € RELF, along with auxil-
iary inputs such as viewing direction, and pass the resulting
vector into an MLP to obtain per-branch outputs.

Static branch. We generate RGB images by combining
the outputs of our three branches. The static branch maps
the feature vector obtained from the hash table into a view-
dependent color ¢, and a view-independent density o,. To
model lighting variations which could be dramatic across
videos but smooth within a video, we condition on a latent
embedding computed as a product of a video-specific ma-
trix A,;q and a fourier-encoded time index F (¢) (as in [60]):

os(x) €R (4)
c(x,d, Ay F(t)) € R3. 6)

Dynamic branch. While the static branch assumes the
density o is static, the dynamic branch allows both the den-
sity o4 and color ¢4 to depend on time (and video). We
therefore omit the latent code when computing the dynamic
radiance. Because we find shadows to play a crucial role
in the appearance of urban scenes (Fig. 3), we explicitly
model a shadow field of scalar values pg € [0, 1], used to
scale down the static color ¢, (as done in [56]):

O‘d(X,t, Vid) eR (6)
pd(xa t, Vid) € [07 1] @)
cq(x,t,vid,d) € R? (8)
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Figure 3. Shadows. We learn an explicit shadow field (a) as a

pointwise reduction on static color, enabling better depth recon-
struction and static/dynamic factorization than without (b).

Far-field branch. Because the sky requires reasoning
about far-field radiance and because it can change dramat-
ically across videos, we model far-field radiance with an
environment map ¢, (d, vid) € R? that depends on viewing
direction d [22,41] and a video id vid.

Rendering. We derive a single density and radiance
value for any position by computing the weighted sum of
the static and dynamic components, combined with the
pointwise shadow reduction:

o(x,t,vid) = o4(x) + o4(x, t, vid) )
e(x,t,vid,d) = Z2(1 — pa)es(x,d, AuiaF(t)

o
+ Zde,(x, ¢, vid, d) (10)

o
We then calculate the color C' for a camera ray r with
direction d at a given frame t and video vid by accumulating
the transmittance along sampled points r(¢) along the ray,

forcing the ray to intersect the far-field environment map if
it does not hit geometry within the foreground:

“+o0
é@¢mmy:/ T(t)o (x(t), t, vid)e(r(t), t, vid, d)dt
0
+ T(+00)e.(d, vid), (11)

t
where T'(t) = exp (—/ o(r(s),t, Vid)ds). (12)
0



Feature distillation. We build semantic awareness into
SUDS to enable the open-world tasks described in Sec. 4.2.
Similar to recent work [26, 51], we distill the outputs of a
self-supervised 2D feature extractor, namely DINO [10], as
a teacher model into our network. For a feature extractor
that transforms an image into a dense R”7*W*C feature
grid, we add a C'-dimensional output head to each of our
branches:

d,(x) € R (13)
Dy(x,t,vid) € RC (14)
®,(d, vid) € R, (15)

which are combined into a single value ® at any 3D lo-
cation and rendered into F' (r) per camera ray, following the
equations for color (10, 11).

Scene flow. We train our model to predict 3D scene flow
and model scene dynamics. Inspired by previous work [ 15,
19,29], we augment our dynamic branch to predict forward
and backward 3D scene flow vectors sy ¢ 1)(X, t, vid) €
R3. We make use of these vectors to enforce consistency
between observed time steps through multiple loss terms
(Sec. 3.3), which we find crucial to generating plausible ren-
derings at novel time steps (Table 4).

Spatial partitioning. We scale our representation to
arbitrarily large environments by decomposing the scene
into individually trained models [47, 52], each with its own
static, dynamic, and far-field branch. Intuitively, the re-
construction for neighborhood X can be done largely in-
dependantly of the reconstruction in neighborhood Y, pro-
vided one can assign the relevant input data to each re-
construction. To do so, we follow the approach of Mega-
NeRF [52] and split the scene into K spatial cells with
centroids £ € R3. Crucially, we generate separate train-
ing datasets for each spatial cell by making use of visibil-
ity reasoning [17]. Mega-NeRF includes only those dat-
apoints whose associated camera rays intersect the spatial
cell. However, this may still include datapoints that are
not visible due to an intervening occluder (e.g., a particu-
lar camera in neighborhood X can be pointed at neighbor-
hood Y, but may not see anything there due to occluding
buildings). To remedy this, we make use of depth measure-
ments to prune irrelevant pixel rays that do not terminate
within the spatial cell of interest (making use of nearest-
neighbor interpolation to impute depth for pixels without a
LiDAR depth measurement). This further reduces the size
of each trainset by 2x relative to Mega-NeRF. Finally, given
such separate reconstructions, one can still produce a glob-
ally consistent rendering by querying the appropriate spatial
cell when sampling points along new-view rays (as in [52]).

3.3. Optimization

We jointly optimize all three of our model branches
along with the per-video weight matrices A,;4 by sampling

ward Flow (Input) ward Flow (Input)

Béék’ward Flow (I;redicted)

Forward Flow (Predicted)

Figure 4. Scene Flow. We minimize the photometric and feature-
metric loss of warped renderings relative to ground truth inputs
(top). We use 2D optical flow from off-the-shelf estimators or
sparse correspondences computed directly from 2D DINO fea-
tures [5] (middle) to supervise our flow predictions (bottom).

random batches of rays across our [V input videos and min-
imizing the following loss:

L= (ﬁc + ALy + Aaly + )\oﬁo) + (LZ:U + )‘fﬁqf)

reconstruction losses

Mo (Ey Y Lo+ .cslo) n (Aeﬁe + Adﬁd) F AL,

warping losses

flow losses static-dynamic factorization

(16)
Reconstruction losses. We minimize the L2 photomet-
ric loss L(r) = [|C(r) — CA'(r)H2 as in the original NeRF
equation [33]. We similarly minimize the L1 difference
Ls(r) = ||F(r) - F(r)H1 between the feature outputs of
the teacher model and that of our network.
To make use of our depth measurements, we project the
LiDAR sweeps onto the camera plane and compare the ex-
pected depth D(r) with the measurement D(r) [14,41]:

La(r) = || D(r) - D(v)||” (17)

“+o0
where D(r) = /0 T(s)o(e(s)ds (I8

Flow. We supervise our 3D scene flow predictions based
on 2D optical flow (Sec. 4.1). We generate a 2D displace-
ment vector for each camera ray by first predicting its po-
sition in 3D space as the weighted sum of the scene flow
neighbors along the ray:

A +OO
X (1) = / T (r()(r(t) + s (((O))dt (19)

which we then “render” into 2D using the camera ma-
trix of the neighboring frame index. We minimize its
distance from the observed optical flow via L,(r) =



dovel-11] [| X (0) — Xy (r)H1 We anneal \, over time as
these estimates are noisy.

3D warping. The above loss ensures that rendered 3D
flow will be consistent with the observed 2D flow. We
also found it useful to enforce 3D color (and feature) con-
stancy; i.e., colors remain constant even when moving. To
do so, we use the predicted forward and backward 3D flow
St+1 and s¢_1 to advect each sample along the ray into the
next/previous frame:

o (X + sy, t+t',vid) € R (20)
cY(x + sy, t+t',vid,d) € R3 1)
DY (x + sy, t + 1/, vid) € RE (22)

The warped radiance ¢ and density ¢ are rendered
into warped color C*(r) and feature £ (r) (10, 11). We
add a loss to ensure that the warped color (and feature)
match the ground-truth input for the current frame, simi-
lar to [19,29]. As in NSFF [29], we found it important to
downweight this loss in ambiguous regions that may contain
occlusions. However, instead of learning explicit occlusion
weights, we take inspiration from Kwea’s method [1] and
use the difference between the dynamic geometry and the
warped dynamic geometry to downweight the loss:
oq 04

wy (X, t, vid) =
o o

(23)

+oo
Wy (r) = / T(t)o(r(t)wy (r(t))dt (24)
0
resulting in the following warping loss terms:

LYr)= Y (1-Wu)r)|Cr) -

t'e[—1,1]

> A=Wu)m)||F(r) - Ff )], 6)

t'e[—1,1]

wm)|” @)

LF(r) =

Flow regularization. As in prior work [19,29] we use
a 3D scene flow cycle term to encourage consistency be-
tween forward and backward scene flow predictions, down-
weighing the loss in areas ambiguous due to occlusions:

Leye(r) = Z Zwt/ X, t) || sy (x,

-1,1] X

t) + s¢(x + sy, t — )],

@n
with vid omitted for brevity. We also encourage spa-
tial and temporal smoothness through L., (r) as described
in Sec. C. We finally regularize the magnitude of pre-
dicted scene flow vectors to encourage the scene to be static
through Lio(r) = 3¢ o1 1) 2oy |51 (X, 1) -
Static-dynamic factorization. As physically plausible
solutions should have any point in space occupied by either
a static or dynamic object, we encourage the spatial ratio
of static vs dynamic density to either be 0 or 1 through a

skewed binary entropy loss that favors static explanations
of the scene [56]:

_ [ oulr(t)) "
cw= [ H<os<r<t>>+ad<r<t>> ) @

where H(z) = + (1 =) -log(1 — x)),

—(z - log(x)

and with & set to 1.75, and further penalize the maximum
dynamic ratio L4(r) = max(@) along each ray.

Shadow loss. We penahze the squared magnitude of the
shadow ratio £, fo 2 dt along each ray to
prevent it from 0ver-expla1n1ng dark regions [56].

4. Experiments

We demonstrate SUDS’s city-scale reconstruction capa-
bilities by presenting quantitative results against baseline
methods (Table 1). We also show initial qualitative results
for a variety of downstream tasks (Sec. 4.2). Even though
we focus on reconstructing dynamic scenes at city scale,
to faciliate comparisons with prior work, we also show re-
sults on small-scale but highly-benchmarked datasets such
as KITTI and Virtual KITTI 2 (Sec. 4.3). We evaluate the
various components of our method in Sec. 4.4.

4.1. Experimental Setup

2D feature extraction. We use Amir et al’s feature ex-
tractor implementation [5] based on the dino_vits8 model.
We downsample our images to fit into GPU memory and
then upsample with nearest neighbor interpolation. We L2-
normalize the features at the 11th layer of the model and re-
duce the dimensionality to 64 through incremental PCA [3].
Flow supervision. We explored using an estimator
trained on synthetic data [49] in addition to directly com-
puting 2D correspondences from DINO itself [5]. Although
the correspondences are sparse (less than 5% of pixels) and
expensive to compute, we found its estimates more robust
and use it for our experiments unless otherwise stated.
Training. We train SUDS for 250,000 iterations with
4098 rays per batch and use a proposal sampling strategy
similar to Mip-NeRF 360 [7] (Sec. B). We use Adam [25]
with a learning rate of 5 x 1072 decaying to 5 x 1074,
Metrics. We report quantitative results based on PSNR,
SSIM [54], and the AlexNet implementation of LPIPS [64].

4.2. City-Scale Reconstruction

City-1M dataset. We evaluate SUDS’s large-scale re-
construction abilities on our collection of 1.28 million im-
ages across 1700 videos gathered across a 105 km? urban
area using a vehicle-mounted platform with seven ring cam-
eras and two LiDAR sensors. Due to the scale, we supervise
optical flow with an off-the-shelf estimator trained on syn-
thetic data [49] instead of DINO for efficiency.
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Figure 5. City-1M. We demonstrate SUDS’s capabilities on multiple downstream tasks, including instance segmentation and 3D bounding
box estimation without any labeled data (by just making use of geometric clustering). In the last column, we show category-level semantic
classification by matching 3D (DINO) descriptors to a held-out video annotated with semantic labels. Please see text for more details.

Mega-NeRF [52] Mega-NeRF-T Mega-NeRF-A SUDS

PSNR 1 16.42 16.46 16.70 21.67
SSIM 1 0.493 0.493 0.493 0.562
LPIPS | 0.879 0.877 0.850 0.554

Table 1. City-scale view synthesis on City-1M. SUDS outper-
forms all baselines by a wide margin.

Baselines. We compare SUDS to the official Mega-
NeRF [52] implementation alongside two variants: Mega-
NeRF-T which directly adds time as an input parameter to
compute density and radiance, and Mega-NeRF-A which
instead uses the latent embedding A,;4F (t) used by SUDS.

Results. We train both SUDS and the baselines using
48 cells and summarize our results in Table 1. SUDS out-
performs all Mega-NeRF variants by a large margin. We
provide qualitative results on view synthesis, static/dynamic
factorization, unsupervised 3D instance segmentation and
unsupervised 3D cuboid detection in Fig. 5. We present ad-
ditional qualititive tracking results in Fig. 7.

Instance segmentation. We derive the instance count as
in prior work [44] by sampling dynamic density values o,
projecting those above a given threshold onto a discretized
ground plane before applying connected component label-
ing. We apply k-means to obtain 3D centroids and volume
render instance predictions as for semantic segmentation.

3D cuboid detection. After computing point-wise in-
stance assignments in 3D, we derive oriented bounding
boxes based on the PCA of the convex hull of points be-
longing to each instance [2].

Semantic segmentation. Note the above tasks of in-
stance segmentation and 3D cuboid detection do not require
any additional labels as they make use of geometric cluster-
ing. We now show that the representation learned by SUDS
can also enable downstream semantic tasks, by making use

of a small number of 2D segmentation labels provided on
a held-out video sequence. We compute the average 2D
DINO descriptor for each semantic class from the held out
frames and derive 3D semantic labels for all reconstructions
by matching each 3D descriptor to the closest class cen-
troid. This allows to produce 3D semantic label fields that
can then be rendered in 2D as shown in Fig. 5.

4.3. KITTI Benchmarks

Baselines. We compare SUDS to SRN [45], the original
NeRF implementation [33], a variant of NeRF taking time
as an additional input, NSG [37], and PNF [27]. Both NSG
and PNF are trained and evaluated using ground truth object
bounding box and category-level annotations.

Image reconstruction. We compare SUDS’s recon-
struction capabilities using the same KITTI [21] subse-
quences and experimental setup as prior work [27,37]. We
present results in Table 3. As PNF’s implementation is
not publicly available, we rely on their reported numbers.
SUDS surpasses the state-of-the-art in PSNR and SSIM.

Novel view synthesis. We demonstrate SUDS’s capa-
bilities to generate plausible renderings at time steps un-
seen during training. As NSG does not handle scenes with
ego-motion, we use subsequences of KITTI and Virtual
KITTI 2 [18] with little camera movement. We evaluate
the methods using different train/test splits, holding out ev-
ery 4th time step, every other time step, and finally training
with only one in every four time steps. We summarize our
findings in Table 2 along with qualitative results in Fig. 6.
SUDS achieves the best results across all splits and metrics.
Both NeRF variants fail to properly represent the scene, es-
pecially in dynamic areas. Although we provide NSG with
the ground truth object poses at render time, it fails to learn a
clean decomposition between objects and the background,



SUDS (Ours)

Figure 6. KITTI and VKITTI2 view synthesis. Prior work fails to represent the scene and NSG [37] renders ghosting artifacts near areas
of movement. Our method forecasts plausible trajectories and generates higher-quality renderings.

NeRF

NeRF + Time

NSG

Ground Truth

KITTI - 75% KITTI - 50% KITTI - 25%

TPSNR  1SSIM  |LPIPS TPSNR  1SSIM  |LPIPS TPSNR  1SSIM  |LPIPS
NeRF [33 18.56  0.557  0.554 19.12  0.587  0.497 18.61 0.570 0510
NeRF + Time 21.01  0.612  0.492 21.34  0.635  0.448 19.55 0.586  0.505
NSG [37] 21.53  0.673  0.254 2126 0.659  0.266 20.00 0.632  0.281
SUDS 22.77 0797  0.171 2312 0.821  0.135 20.76  0.747  0.198

VKITTI2 - 75% VKITTI2 - 50% VKITTI2 - 25%

TPSNR  1SSIM  |LPIPS TPSNR  1SSIM  |LPIPS TPSNR  1SSIM  |LPIPS
NeRF [33] 18.67 0.548  0.634 18.58  0.544  0.635 18.17  0.537  0.644
NeRF + Time 19.03  0.574  0.587 1890  0.565 0.610 18.04  0.545  0.626
NSG [37] 2341  0.689  0.317 2323 0.679  0.325 2129  0.666  0.317
SUDS 23.87 0.846  0.150 23.78 0851  0.142 2218  0.829  0.160

Table 2. Novel View Synthesis. As the fraction of training views decreases, accuracy drops for all methods. However, SUDS consistently
outperforms prior work, presumably due to more accurate representations learned by our diverse input signals (such as depth and flow).

SRN [45] NeRF[33] NeRF+Time NSG[37] PNF[27] Ours
PSNR1  18.83 23.34 24.18 26.66 2748 2831
SSIM+  0.590 0.662 0.677 0.806 0.870  0.876

Table 3. KITTI image reconstruction. We outperform past work
on image reconstruction accuracy, following their experimental
protocol and self-reported accuracies [27,37].

1PSNR  1SSIM  |LPIPS

w/o Depth loss 22.74 0.715 0.292
w/o Optical flow loss 22.18 0.708 0.302
w/o Warping loss 17.53 0.622 0.478
w/o Appearance embedding 22.54 0.704 0.296
w/o Occlusion weights 22.56 0.711 0.297
w/o Separate branches 19.73 0.570 0.475
Full Method 22.95 0.718 0.289

Table 4. Diagnostics. Flow-based warping is the single-most im-
portant input, while depth is the least crucial input.

especially as the number of training view decreases, and
generates ghosting artifacts near areas of movement.

4.4. Diagnostics

We ablate the importance of major SUDS components by
removing their respective loss terms along with occlusion
weights, the latent embedding A,;4F (t) used to compute

static color ¢g, and separate model branches (Sec. D). We
run all approaches for 125,000 iterations across our datasets
and summarize the results in Table 4. Although all compo-
nents help performance, flow-based warping is by far the
single most important input. Interestingly, depth is the least
crucial input, suggesting that SUDS can generalize to set-
tings where depth measurements are not available.

5. Conclusion

We present a modular approach towards building dy-
namic neural representations at previously unexplored
scale. Our multi-branch hash table structure enables us to
disentangle and efficiently encode static geometry and tran-
sient objects across thousands of videos. SUDS makes use
of unlabeled inputs to learn semantic awareness and scene
flow, allowing it to perform several downstream tasks while
surpassing state-of-the-art methods that rely on human la-
beling. Although we present a first attempt at building city-
scale dynamic environments, many open challenges remain
ahead of building truly photorealistic representations.
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Supplemental Materials

A. Tracking

We can compute mask and keypoint-level correspon-
dences across frames after detecting instances (Sec. 4.2) by
using Best-Buddies similarity [13] on features ¢ within or
between instances. As a 3D representation, SUDS can track
correspondences through 2D occluders. We show an exam-
ple in Fig. 7.

B. Proposal Sampling

We use a proposal sampling strategy similar to Mip-
NeRF 360 [7] that first queries a lightweight occupancy pro-
posal network at uniform intervals along each camera ray
and then picks additional samples based on the initial sam-
ples. We model our proposal network with separate hash
table-backed static and dynamic branches as in Sec. 3.2. We
train each branch of the proposal network with histogram
loss [7] using the weights of the respective branch of our
main model and regularize the resulting sample distances
and weights using distortion loss [7]. We find that proposal
sampling gives a 2-4x speedup.

C. Smoothness Priors

We use the same spatial and temporal smoothness priors
as NSFF [29] to regularize our scene flow. We specifically
denote:

£sm(r) = Z Z

e
X te[—1,1]

T Z [se-1(x,) + 5t+1(X,t)H1,
X

2l s 1) — s

(29)

where x and x’ indicate neighboring points along the camera
ray r.

D. Ablation Details

w/o Depth loss. We remove depth from the reconstruc-

tion loss term:
Lrec = L.+ )\f[:f + XoLo 30)

w/o Optical flow loss. We remove optical flow from the

reconstruction loss term:
£7'ec = ‘Cc+/\f£f +)\d['d (€1}

w/o Warping loss. We remove all warping and flow-
related loss terms:

£= (Lot MLy +Xala) + (ALt AaLa) +AL.

reconstruction losses static-dynamic factorization

(32)

12

w/o Appearance embedding. We compute static color
without the latent embedding vector A,;q.F (t):

c.(x,d) € R? (33)

w/o Occlusion weights. We do not use occlusion
weights (24) to downweight the warping loss terms (25, 26):

ceey= Y o - CEm)|’ (34)
t'e[—1,1]

Ly = Y ||Fr) - Erm)l, (35)
t'e[—1,1]

w/o Separate branches. We generate all model outputs
using a single time-dependent branch:

o(x,t,vid) € R (36)
c(x, t,vid, d) € R? (37)
®(x,t,vid) € R (38)
spe(-1,1](x, t, vid) € R (39)

We accordingly remove factorization-related loss terms:

L= (ﬁc +ArLy+ Aala + Aoﬁo) + (zg +A fﬁyx)

reconstruction losses

Aflo (Ecyc + Lom + 5310)

warping losses

flow losses

(40)

E. Additional Training Details

We divide City-1M into 48 cells using camera-based k-
means clustering. Each cell covers 2.9 km? and 32k frames
across 98 videos on average. We evaluate the effect of geo-
graphic coverage and number of frames/videos on cell qual-
ity in Table 5. We train with 1 A100 (40 GB) GPU per cell
for 2 days (same for each KITTI scene). We can fit all cells
on a single A100 at inference time.

F. Assets

City-1M. Our dataset is constructed from street-level
videos collected across a vehicle fleet with seven ring cam-
eras that collect 2048x1550 resolution images at 20 Hz with
a combined 360° field of view. Both VLP-32C LiDAR sen-
sors are synchronized with the cameras and produce point
clouds with 100,000 points at 10 Hz on average. We lo-
calize camera poses using a combination of GPS-based and
sensor-based methods.
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Figure 7. Tracking. We track keypoints (above) and instance masks (below) across several frames. As a 3D representation, SUDS can

track correspondences through 2D occluders.

<15k 1530k 30-45k > 45k

<60 60-90 90-120 >120

TPSNR  22.86 21.99 21.35 20.75
1SSIM 0.583 0.569 0.557 0.538
JLPIPS 0516 0.545 0.564 0.578

TPSNR 2247 21.72 21.68 21.11
1SSIM  0.587  0.556 0.559 0.555
JLPIPS  0.526  0.557 0.557 0.565

Images Videos
<2km? 23km2?  3-4km? >4km?
TPSNR 22.73 21.47 21.53 22.18
1SSIM 0.609 0.556 0.561 0.557
JLPIPS 0.512 0.564 0.555 0.536

Area

Table 5. City-1M scaling. We evaluate the effect of geographic coverage and the number of images and videos on cell quality. Although
performance degrades sublinearly across all metrics, image and video counts have the largest impact.

Third-party assets. We primarily base the SUDS imple-
mentation on Nerfstudio [48] and tiny-cuda-nn [34] along
with various utilities from OpenCV [§8], Scikit [9], and Amir
et al’s feature extractor implementation [5], all of which
are freely available for noncommercial use. KITTI [21]
is similarly available under an Apache license, whereas
VKITTI2 [18] uses the noncommercial CC BY-NC-SA 3.0
license.

G. Limitations

Video boundaries. Although our global representa-
tion of static geometry is consistent across all videos used
for reconstruction, all dynamic objects are video-specific.
Put otherwise, our method does not allow us to extrapo-
late the movement of objects outside of the boundaries of
videos from which they were captured, nor does it provide a
straightforward way of rendering dynamic visuals at bound-
aries where camera rays intersect regions with training data
originating from disjoint video sequences.

Camera accuracy. Accurate camera extrinsics and in-
trinsics are arguably the largest contributors to high NeRF
rendering quality. Although multiple efforts [12,23, 30,32,
55] attempt to jointly optimize camera parameters during

13

NeRF optimization, we found the results lacking relative to
using offline structure-from-motion based approaches as a
preprocessing step.

Flow quality. Although our method tolerates some de-
gree of noisiness in the supervisory optical flow input, high-
quality flow still has a measurable impact on model per-
formance (and completely incorrect supervision degrades
quality). We also assume that flow is linear between ob-
served timestamps to simplify our scene flow representa-
tion.

Resources. Modeling city scale requires a large amount
of dataset preprocessing, including, but not limited to:
extracting DINO features, computing optical flow, deriv-
ing normalized coordinate bounds, and storing randomized
batches of training data to disk. Collectively, our intermedi-
ate representation required more than 20TB of storage even
after compression.

Shadows. SUDS attempts to disentangle shadows un-
derneath transient objects. However, if a shadow is present
in all observations for a given location (eg: a parking spot
that is always occupied, even by different cars), SUDS may
attribute the darkness to the static topology, as evidenced
in several of our videos, even if the origin of the shadow is



correctly assigned to the dynamic branch.

Instance-level tasks. Although we provide initial qual-
itative results on instance-level tasks as a first step towards
true 3D segmentation backed by neural radiance field,
SUDSIis not competitive with conventional approaches.

H. Societal Impact

As SUDS attempts to model dynamic urban scenes with
pedestrians and vehicles, our approach carries surveillance
and privacy concerns related to the intentional or inadver-
tent capture or privacy-sensitive information such as human
faces and vehicle license plate numbers. As we distill se-
mantic knowledge into SUDS, we are able to (imperfectly)
filter out either entire categories (people) or components
(faces) at render time. However this information would still
reside in the model itself. This could in turn be mitigated
by preprocessing the input data used to train the model.
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