
Infinite Photorealistic Worlds using Procedural Generation

Alexander Raistrick∗, Lahav Lipson∗, Zeyu Ma∗, (∗equal contribution; alphabetical order)

Lingjie Mei, Mingzhe Wang, Yiming Zuo, Karhan Kayan, Hongyu Wen, Beining Han,
Yihan Wang, Alejandro Newell†, Hei Law†, Ankit Goyal†, Kaiyu Yang†, Jia Deng

Department of Computer Science, Princeton University

Abstract

We introduce Infinigen, a procedural generator of photo-
realistic 3D scenes of the natural world. Infinigen is entirely
procedural: every asset, from shape to texture, is generated
from scratch via randomized mathematical rules, using no
external source and allowing infinite variation and composi-
tion. Infinigen offers broad coverage of objects and scenes
in the natural world including plants, animals, terrains, and
natural phenomena such as fire, cloud, rain, and snow. In-
finigen can be used to generate unlimited, diverse training
data for a wide range of computer vision tasks including
object detection, semantic segmentation, optical flow, and
3D reconstruction. We expect Infinigen to be a useful re-
source for computer vision research and beyond. Please visit
infinigen.org for videos, code and pre-generated data.

1. Introduction
Data, especially large-scale labeled data [13, 53], has

been a critical driver of progress in computer vision. At the
same time, data has also been a major challenge, as many
important vision tasks remain starved of high-quality data.
This is especially true for 3D vision, where accurate 3D
ground truth is difficult to acquire for real images.

Synthetic data from computer graphics is a promising so-
lution to this data challenge. Synthetic data can be generated
in unlimited quantity with high-quality labels. Synthetic data
has been used in a wide range of tasks [4,12,46,48,55,58,71],
with notable successes in 3D vision, where models trained
on synthetic data can perform well on real images zero-
shot [28, 54, 82–85, 89].

Despite its great promise, the use of synthetic data in
computer vision remains much less common than real
images. We hypothesize that a key reason is the limited
diversity of 3D assets: for synthetic data to be maximally
useful, it needs to capture the diversity and complexity of the
real world, but existing freely available synthetic datasets
are mostly restricted to a fairly narrow set of objects and
shapes, often driving scenes (e.g. [32, 71]) or human-made

†work done while a student at Princeton University

objects in indoor environments (e.g. [21, 56]).
In this work, we seek to substantially expand the cover-

age of synthetic data, particularly objects and scenes from
the natural world. We introduce Infinigen, a procedural
generator of photorealistic 3D scenes of the natural world.
Compared to existing sources of synthetic data, Infinigen is
unique due to the combination of the following properties:

• Procedural: Infinigen is not a finite collection of 3D
assets or synthetic images; instead, it is a generator
that can create infinitely many distinct shapes, textures,
materials, and scene compositions. Every asset, from
shape to texture, is entirely procedural, generated from
scratch via randomized mathematical rules that allow
infinite variation and composition. This sets it apart
from datasets or dataset generators that rely on external
assets.

• Diverse: Infinigen offers a broad coverage of objects
and scenes in the natural world, including plants,
animals, terrains, and natural phenomena such as fire,
cloud, rain, and snow.

• Photorealistic: Infinigen creates highly photorealistic
3D scenes. It achieves high photorealism by procedu-
rally generating not only coarse structures but also fine
details in geometry and texture.

• Real geometry: unlike in video game assets, which
often use texture maps to fake geometrical details (e.g.
a surface appears rugged but is in fact flat), all geomet-
ric details in Infinigen are real. This ensures accurate
geometric ground truth for 3D reconstruction tasks.

• Free and open-source: Infinigen builds on top of
Blender [11], a free and open-source graphics tool.
Infinigen’s code is released for free under the BSD‡

license. Anyone can freely use Infinigen to obtain
unlimited assets and renders.

‡See https : / / opensource . org / license / bsd - 3 -
clause/

ar
X

iv
:2

30
6.

09
31

0v
2

 [
cs

.C
V

]
 2

6
Ju

n
20

23

https://infinigen.org
https://opensource.org/license/bsd-3-clause/
https://opensource.org/license/bsd-3-clause/

Figure 1. Randomly generated, non cherry-picked images produced by our system. From top left to bottom right: Forest, River, Underwater,
Caves, Coast, Desert, Mountain and Plains. See Appendix for more samples.

Infinigen focuses on the natural world for two reasons.
First, accurate perception of natural objects is demanded
by many applications, including geological survey, drone
navigation, ecological monitoring, rescue robots, agriculture
automation, but existing synthetic datasets have limited cov-
erage of the natural world. Second, we hypothesize that the
natural world alone can be sufficient for pretraining powerful
“foundation models”—the human visual system was evolved
entirely in the natural world; exposure to human-made ob-
jects was likely unnecessary.

Infinigen is useful in many ways. It can serve as a genera-
tor of unlimited training data for a wide range of computer
vision tasks, including object detection, semantic segmen-
tation, pose estimation, 3D reconstruction, view synthesis,
and video generation. Because users have access to all the
procedural rules and parameters underlying each 3D scene,
Infinigen can be easily customized to generate a large variety
of task-specific ground truth. Infinigen can also serve as a
generator of 3D assets, which can be used to build simulated
environments for training physical robots as well as virtual
embodied agents. The same 3D assets are also useful for 3D
printing, game development, virtual reality, film production,
and content creation in general.

We construct Infinigen on top of Blender [11], a graphics
system that provides many useful primitives for procedural
generation. Utilizing these primitives we design and imple-
ment a library of procedural rules to cover a wide range of
natural objects and scenes. In addition, we develop utili-
ties that facilitate creation of procedural rules and enable
all Blender users including non-programmers to contribute;
the utilities include a transpiler that automatically converts

Blender node graphs (intuitive visual representation of pro-
cedural rules often used by Blender artists) to Python code.
We also develop utilities to render synthetic images and ex-
tract common ground truth labels including depth, occlusion
boundaries, surface normals, optical flow, object category,
bounding boxes, and instance segmentation. Constructing
Infinigen involves substantial software engineering: the lat-
est main branch of the Infinigen codebase consists of 40,485
lines of code.

In this paper, we provide a detailed description of our
procedural system. We also perform experiments to validate
the quality of the generated synthetic data; our experiments
suggest that data from Infinigen is indeed useful, especially
for bridging gaps in the coverage of natural objects. Finally,
we provide an analysis on computational costs including a
detailed profiling of the generation pipeline.

We expect Infinigen to be a useful resource for computer
vision research and beyond. In future work, we intend to
make Infinigen a living project that, through open-source
collaboration with the whole community, will expand to
cover virtually everything in the visual world.

2. Related Work
Synthetic data from computer graphics have been used in

computer vision for a wide range of tasks [56, 71]. We refer
the reader to [65] for a comprehensive survey. Below we
categorize existing work in terms of application domain, gen-
eration method, and accessibility. Tab. 1 provides detailed
comparisons.
Application Domain. Synthetic datasets or dataset genera-
tors have been developed to cover a variety of domains. The

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. For each image (a), we have a high-res mesh (b), which readily yields Depth (c), Surface Normals (d), Occlusion Boundaries (e),
Instance Segmentation masks (f), and 2D / 3D bounding boxes (g/h). From rendering metadata, we obtain Optical Flow (i), and material
parameters such as Albedo (j), Lighting Intensity (k) and Specular Reflection (l).

Synthetic Dataset Domain # Triangles # Scenes # Assets Free Procedural Procedural Provides External Asset SourcePer-Scene in Total in Total Assets Arrangement Assets Procedural Code

GTA-V [71] Driving, Urban - - - No No No N/A Grand Theft Auto
MOTSynth [18] Urban - - - No No No N/A Grand Theft Auto
MVS-Synth [32] Driving, Urban - - - No No No N/A Grand Theft Auto
DeformingThings4D [50] Animals/Humanoids - 2K 2K Yes No No N/A Adobe Mixamo [34]
DeepFurniture [56] Indoor - 20K - No No No N/A Professional Designers
Robotrix [21] Indoor - 16 - No No No N/A UE4Arch, UnrealEngine Marketplace [36]
SUNCG [76] (+ [51, 75, 95]) Indoor - 46K 2.6K No No No N/A Planner5D [1]
TartanAir [90] In/Outdoor, Natural/Urban - 30 - No No No N/A UnrealEngine Marketplace [36]
Hypersim [72] Indoor 100K-11M 461 59K No ($6000) No No N/A Evermotion Architectures [17]
OpenRooms [52] Indoor 1M 1.3K 3K No ($500) No No N/A Scan2CAD [3], ShapeNet [10], Adobe Stock [35]
Sintel [9] Medieval, Natural 300K 27 - No ($12) No No N/A Blender Foundation [11]
Spring [63] Natural - 47 - No ($12) No No N/A Blender Foundation [11]
Structured3D [96] Indoor - 22K 472K No No No N/A Professional Designers
SceneNet-RGBD [61] Indoor 420K 57 5.1K Yes No No N/A ShapeNet [10], SceneNet [26]
3D-Front [19] Indoor 60K 19K 13K Yes No No N/A 3D-FUTURE [20]
Jiang et al. [39] Indoor - ∞ 54K No Yes No No ShapeNet [10], Planner 5D [1]
InteriorNet [49] Indoor - 22M 1M No Yes No No Manufacturers / Kujiale [44]
FaceSynthetics [91] Faces 7.4K - ∞ No N/A Partial No Artist-Created Faces (textures, hair, clothing)
Meta-Sim2 [14] Driving, Urban - ∞ ∞ No Yes Partial No -
Synscapes [87, 92] Driving, Urban - 25K - No Yes Partial No 7D-Labs [45]
ProcSy [41] Driving, Urban - ∞ ∞ Yes Yes Partial No CityEngine, OpenStreetMap [25], Manual Annotation
ProcTHOR [12] Indoor - ∞ 1.6K Yes Yes No Yes AI2-THOR [43], Professional Designers
Kubric [24] Scattered Objects 161K ∞ 52K Yes Yes No Yes ShapeNet [10], Google Scanned Objects [16]

Infinigen (Ours) Natural Dynamic ∞ ∞ Yes Yes Yes Yes None(16M @ 1080p)

Table 1. Comparison to existing synthetic datasets or generators. Ours is entirely procedural, relying on no external assets, and can produce
infinite original assets and scenes. Many existing datasets use external, static asset libraries. Procedural generation is often limited to object
placement or a subset of objects. The vast majority of datasets are also restricted to the built environment, especially indoor scenes. In
terms of accessibility, many do not provide free assets or make code available. Many works do not report average triangles per scene; where
possible, we calculate this using generous assumptions from the numbers they do report. Dashes represent numbers we were not able to
obtain or estimate. In counting the number of assets, we exclude trivial modifications like re-lighting and re-scaling.

built environment has been covered by the largest amount
of existing work [9, 18, 24, 48, 50, 60, 86, 90] especially
indoor scenes [12, 21, 39, 47, 51, 52, 56, 72, 75, 76, 80, 95, 96]
and urban scenes [14, 18, 32, 41, 71, 87, 92]. A significant
source of synthetic data for the built environment comes
from simulated platforms for embodied AI, such as AI2-
THOR [43], Habitat [81], BEHAVIOR [78], SAPIEN [93],
RLBench [37], CARLA [15]. Some datasets, such as

TartanAir [90] and Sintel [9], include a mix of built and
natural environments. There also exist datasets such as
FlyingThings [60], FallingThings [86] and Kubric [24]
that do not render realistic scenes and instead scatter
(mostly artificial) objects against simple backgrounds.
Synthetic humans are another important application domain,
where high-quality synthetic data have been generated for
understanding faces [91], pose [2, 88], and activity [40, 77].

flower.py

Petal Parameters
Density = uniform(20,5)
Curl = uniform(0,50°)
Length =
normal(.03,.01)
Wrinkle = normal(1 -2,2-3)
...

def make_asset (*params):
...

Figure 3. Our Node Transpiler converts artist-friendly Node-Graphs
(left) to procedural code (middle) which produces assets (right).

Fake Geometry Real Geometry

Figure 4. Real-time optimized assets (left) often use low res. ge-
ometry in conjunction with shading tricks and alpha-masked image
textures to give the illusion of geometric detail. Infinigen assets
(right) instead model objects in full geometric detail. Bottom left
triangles show a random color per mesh face.

Figure 5. Examples of a subset of our material generators. Columns
1-4 are for terrain, 5-7 are for creatures, and 8 is miscellaneous.

Some datasets focus on objects, not full scenes, to serve
object-centric tasks such as non-rigid reconstruction [50],
view synthesis [64], and 6D pose [31].

We focus on natural objects and natural scenes, which
have had limited coverage in existing work. Even though
natural objects do occur in many existing datasets such as
urban driving, they are mostly on the periphery and have
limited diversity.
Generation Method. Most synthetic datasets are con-
structed by using a static library of 3D assets, either ex-
ternally sourced or made in house. The downside of a static
library is that the synthetic data would be easier to overfit.
Procedural generation has been involved in some existing
datasets or generators [12, 24, 29, 39, 49], but is limited in
scope. Procedural generation is only applied to either object
arrangement or a subset of objects, e.g. only buildings and
roads but not cars [41, 92]. In contrast, Infinigen is entirely

Asset Type Num. Generators Interpretable DOF

Terrain 26 17
Materials 50 271
Weather, Fluid 19 61
Rocks 4 12
Small Plants 30 258
Trees 3 26
Creatures 39 315
Scattering 11 110

Total 182 1070

Table 2. Approximate degrees of freedom, as a proxy of overall
diversity. We count only distinct human-understandable parameters
with useful ranges of interpolation, with the caveat that this could
be an overestimate as not all parameters are fully independent.
Some asset classes (e.g terrain) are based on physics simulation
and have many more internal degrees of freedom not counted here.
See Appendix D for a full list of named parameters.

procedural, from shape to texture, from macro structures to
micro details, without relying on any external asset.
Accessibility. A synthetic dataset or generator is most
useful if it is maximally accessible, i.e. it provides free
access to assets and code with minimum use restrictions.
However, few existing works are maximally accessible.
Often the rendered images are provided, but underlying
3D assets are unavailable, not free, or have significant use
restrictions. Moreover, the code for procedural generation,
if any, is often unavailable.

Infinigen is maximally accessible. Its code is available
under the BSD license. Anyone can freely use Infinigen to
generate unlimited assets.

3. Method
Procedural Generation. Procedural generation refers to the
creation of data through generalized rules and simulators.
Where an artist might manually create the structure of a sin-
gle tree by eye, a procedural system creates infinite trees by
coding their structure and growth in generality. Developing
procedural rules is a form of world modeling using compact
mathematical language.
Blender Preliminaries. We develop procedural rules pri-
marily using Blender, an open-source 3D modelling software
that provides various primitives and utilities. Blender repre-
sents scenes as a hierarchy of posed objects. Users modify
this representation by transforming objects, adding primi-
tives, and editing meshes. Blender provides import/export
for most common 3D file-formats. Finally, all operations
in Blender can be automated using its Python API, or by
inspecting its open-source code.

For more complex operations, Blender provides an intu-
itive node-graph interface. Rather than directly edit shader
code to define materials, artists edit Shader Nodes to com-
pose primitives into a photo-realistic material. Similarly,
Geometry Nodes define a mesh using nodes representing

Figure 6. Random, non cherry-picked terrain-only scenes. We sample 13 images for various natural scene types. From top left to bottom
right; Mountains, Rainy river, Snowy mountains, Coastal sunrise, Underwater, Arctic icebergs, Desert, Caves, Canyons and Floating islands.
See Appendix for more samples.

Figure 7. Random, non cherry-picked images of simulated fire,
smoke, waterfalls, and volcano eruptions.

operators such as Poisson disk sampling, mesh boolean, ex-
trusion etc. A finalized Geometry Node Tree is a generalized
parametric CAD model, which produces a unique 3D object
for each combination of its input parameters. These tools
are intuitive and widely adopted by 3D artists.

Although we use Blender heavily, not all of our procedu-
ral modeling is done using node-graphs; a significant portion
of our procedural generation is done outside Blender and
only loosely interacts with Blender.
Node Transpiler. As part of Infinigen, we develop a suite
of new tools to speed up our procedural modeling. A no-
table example is our Node Transpiler, which automates the
process of converting node-graphs to Python code, as shown
in Fig. 3. The resulting code is more general, and allows

Figure 8. Random, non cherry-picked leaves, flowers, mushrooms
and pinecones.

us to randomize graph structure not just input parameters.
This tool makes node-graphs more expressive and allows
easy integration with other procedural rules developed di-
rectly in Python or C++. It also allows non-programmers to
contribute Python code to Infinigen by making node-graphs.
See Appendix E for more details.

Generator Subsystems. Infinigen is organized into gener-
ators, which are probabilistic programs each specialized to
produce one subclass of assets (e.g. mountains or fish). Each
has a set of high-level parameters (e.g. the overall height of
a mountain), which reflect the external degrees of freedom
controllable by the user. By default, we randomly sample
these parameters according to distributions tuned to mirror
the natural world, with no input from the user. However,

Figure 9. Random, non cherry-picked procedural trees (left), cacti (top right) and bushes (bottom right).

Figure 10. Random, non cherry-picked underwater objects.

Figure 11. Random, non cherry-picked surface scatters. Dense
coverage with procedural assets turns any surface into a convincing
grassland, sea floor or forest floor environment.

users can also override any parameter using our Python API
to achieve fine grained control of data generation.

Each probabilistic program involves many additional in-
ternal, low-level degrees of freedom (e.g. the heights of every
point on a mountain). Randomizing over both the internal
and external degrees of freedom leads to a distribution of as-
sets which we sample from for unlimited generation. Tab. 2
summarizes the number of human-interpretable degrees of
freedom in Infinigen, with the caveat that the numbers could
be an over-estimation because not all parameters are fully

independent. Note that it is hard to quantify the internal de-
grees of freedom, so the external degrees of freedom serve as
a lower bound of the total degrees of freedom for our system.
Material Generators. We provide 50 procedural material
generators (Fig. 5). Each is composed of a randomized
shader, specifying color and reflectance, and a local
geometry generator, which generates corresponding fine
geometric details.

The ability to produce accurate ground-truth geometry is
a key feature of our system. This precludes the use of many
common graphics techniques such as Bump Mapping and
Phong Interpolation [7, 70]. Both manipulate face normals
to give the illusion of detailed geometric textures, but do so
in a way that cannot be represented as a mesh. Similarly,
artists often rely on image textures or alpha channel masking
to give the illusion of high res. meshes where none exist. All
such shortcuts are excluded from our system. See Fig. 4 for
an illustrative example of this distinction.
Terrain Generators. We generate terrain (Fig. 6) using
SDF elements derived from fractal noise [68] and simulators
[6,30,33,62,68]. We evaluate these to a mesh using marching
cubes [57]. We generate boulders via repeated extrusion, and
small stones using Blender’s built-in addon. We simulate
dynamic fluids (Fig. 7) using FLIP [8], sun/sky light using
the Nishita sky model [66], and weather with Blender’s
particle system.
Plants & Underwater Object Generators. We model tree
growth with random walks and space colonization [73], re-
sulting in a system with diverse coverage of various trees,
bushes and even some cacti (Fig. 9). We provide generators
for a variety of corals (Fig. 10) using Differential Growth
[67], Laplacian Growth [42], and Reaction-Diffusion [23].
We produce Leaves (Fig. 8), Flowers [38], Seaweed, Kelp,
Mollusks and Jellyfish using geometry node-graphs.
Surface Scatter Generators. Some natural environments
are characterized by a dense coverage of smaller objects.
To this end, we provide several scatter generators, which

a) Genome Datastructure

c) Fused Parts e) Rig & Posed) Hair & Material

b) Individual Parts

Body

LegTail Head

EarFoot

Jaw

Eye

Nose

Leg

Foot

Leg

Foot

Leg

Foot

Figure 12. Creature Generation. Our system automatically generates genomes (a), parts (b), assembly (c), materials (d) and animation rigs
(e). On the right, we show random, non cherry-picked samples from our Carnivore, Herbivore, Bird, Beetle, and Fish generators.

(a) (b) (c) (d)

Figure 13. Data Generation Pipeline. We procedurally compose a scene layout (a) with random camera poses. We generate all necessary
assets (b, showing a color per mesh face), and apply procedural materials and displacement (c). Finally, we render a photo-real image (d).

10m 30m 85m

Figure 14. Dynamic Resolution Scaling. We show close-up mesh
visualizations (top) of the same content for three different camera
distances. Despite differing mesh resolution, no changes are visible
in the final images (bottom).

combine one or more existing assets in a dense layer (Fig.
11). In the forest floor example, we generate fallen tree logs
by procedurally fracturing entire trees from our tree system.

Due to space constraints, all specific implementation de-
tails of the above are available in Appendix G.
Creature Generators. The genome of each creature is
represented as a tree data-structure (Fig. 12 a). This reflects
the topology of real creatures, whose limbs don’t form closed
loops. Nodes contain part parameters, and edges specify part

attachment. We provide generators for 5 classes of realistic
creature genomes, shown in Fig. 12. We can also combine
creature parts at random, or interpolate similar genomes. See
Appendix G.6 for details.

Each part generator is either a transpiled node-graph,
or a non-uniform rational basis spline (NURBS). NURBS
parameter-space is high-dimensional, so we randomize
NURBS parameters under a factorization inspired by lofting,
composed of deviations from a center curve. To tune the
random distribution, we modelled 30 example heads and
bodies, and ensured that our distribution supports them.

Our system produces high-quality animation rigs, and
optionally simulates realistic surface folding, sagging and
motion of creature skin using cloth simulation. For hair, we
use the transpiler to automate the process of grooming hairs,
as usually performed by human character artists.
Dynamic Resolution Scaling. With the camera location
fixed, we evaluate our procedural assets at precisely the level
of detail such that each face is < 1px in size when ren-
dered. This process is visualized in Fig. 14. For most assets,
this entails evaluating a parametric curve at the given pixel
size, or using Blender’s built-in subdivision or re-meshing.
For terrain, we perform Marching Cubes on SDF points in
spherical coordinates. For densely scattered assets (incl. all
assets in Fig. 11) we use instancing - that is, we generate
a fixed number of assets of each type, and reuse them with
random transforms within a scene. Even with this effort in
optimization, the average complete scene has 16M polygons.

(a) Wall Time (Hours) (b) Memory (GB) (c) CPU Hours (d) GPU Hours (e) # Triangles per scene

Figure 15. Resource requirements to create a pair of stereo 1080p images using Infinigen.

Training Dataset Adirondack Jadeplant Motorcycle Piano Pipes Playroom Playtable Recycle Shelves Vintage Avg

FallingThings [86] 8.3 43.3 12.3 18.2 25.3 29.7 50.0 10.4 43.3 45.6 28.6
Sintel-Stereo [9] 35.7 62.9 31.1 24.1 31.9 41.7 60.1 30.8 55.8 76.1 45.0
HR-VS [94] 43.5 43.2 17.0 29.6 32.1 34.6 68.4 24.7 57.4 34.9 38.5
Li et al. [48] 23.9 80.2 40.7 32.0 40.3 49.1 67.5 36.6 51.7 42.3 46.4
SceneFlow [60] 7.4 41.3 14.9 16.2 33.3 18.8 38.6 10.2 39.1 29.9 25.0
TartanAir [90] 15.5 45.1 18.1 12.9 28.4 25.6 51.0 20.9 49.1 28.2 29.5
InStereo2K [5] 17.1 59.7 21.3 23.8 35.8 33.9 36.4 20.0 33.4 44.1 32.5
Ours (Infinigen 30K) 7.4 35.2 15.2 20.7 24.7 29.3 50.0 12.6 55.1 46.9 29.7

Table 3. Bad 3.0 (%) ↓ error on the Middlebury [74] validation
set. Infinigen generalizes well to natural objects (e.g. Jadeplant).
However, natural objects contain very few planar or textureless
surfaces; models trained exclusively on natural objects generalize
less well on Middlebury’s indoor scenes.

Image Rendering & Ground Truth Extraction. We ren-
der images using Cycles, Blender’s physically-based path
tracing renderer. We provide code to extract ground truth for
common tasks, visualized in Fig. 2.

Cycles individually traces photons of light to accurately
simulate diffuse and specular reflection, transparent refrac-
tion and volumetric effects. We render at 1920× 1080 res-
olution using 10, 000 random samples per-pixel, which is
standard for blender artists and ensures almost no sampling
noise in the final image.

Prior datasets [9, 24, 27, 29, 48] rely on blender’s built-in
render-passes to obtain dense ground truth. However, these
rendering passes are a byproduct of the rendering pipeline
and not intended for training neural networks. Specifically,
they are often incorrect due to translucent surfaces, volumet-
ric effects, motion blur, focus blur or sampling noise. See
Appendix C.2 for examples of these issues.

Instead, we provide OpenGL code to extract surface nor-
mals, depth and occlusion boundaries from the mesh directly
without relying on blender. This solution has many benefits
in addition to its accuracy. Users can exclude objects not
relevant to their task (e.g. water, clouds, or any other object)
independently of whether they are rendered. Many annota-
tions like occlusion boundaries are also plainly not supported
by Blender. Finally, our implementation is modular, and we
anticipate that users will generate task-specific ground truth
not covered above via simple extensions to our codebase.
Runtime. We benchmark our Infinigen on 2 Intel(R) Xeon(R)
Silver 4114 @ 2.20GHz CPUs and 1 NVidia-GPU across
1000 independent trials. The wall time to produce a pair of
1080p images is 3.5 hours. Statistics are shown in Fig. 15.

Image Ours Li et al. [48] Sceneflow [60] TartanAir [90] FallingThings [86]

Figure 16. Qualitative results on the Plant and Australia Mid-
dlebury [74] test images. RAFT-Stereo trained using Infinigen
generalizes well to images with natural objects.

4. Experiments

To evaluate Infinigen, we produced 30K image pairs with
ground truth for rectified stereo matching. We train RAFT-
Stereo [54] on these images from scratch and compare results
on the Middlebury validation (Tab. 3) and test sets (Fig. 16).
See Appendix for qualitative results on in-the-wild natural
photographs.

5. Contributions & Acknowledgements

Alexander Raistrick, Lahav Lipson and Zeyu Ma con-
tributed equally, and are ordered alphabetically by first name;
each has the right to list their name first in their CV. Alexan-
der Raistrick performed team coordination, and developed
the creature system, transpiler and scene composition. La-
hav Lipson trained models and implemented dense annota-
tions and rendering. Zeyu Ma developed the terrain system
and camera selection. Lingjie Mei created coral, sea inver-
tebrates, small plants, boulders & moss. Mingzhe Wang
developed materials for creatures, plants and terrain. Yim-
ing Zuo developed trees and leaves. Karhan Kayan created
liquids and fire. Hongyu Wen & Yihan Wang developed
creature parts and materials. Beining Han created ferns and
small plants. Alejandro Newell designed the tree & bush
system. Hei Law created weather and clouds. Ankit Goyal
developed terrain materials. Kaiyu Yang developed an initial
prototype with randomized shapes. Jia Deng conceptualized
the project, led the team, and set the directions.

We thank Zachary Teed for helping with the early pro-
totypes. This work was partially supported by the Office
of Naval Research under Grant N00014-20-1-2634 and the
National Science Foundation under Award IIS-1942981.

References
[1] Planner 5D. Planner 5d. https://planner5d.com/. 3
[2] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and

Bernt Schiele. 2D human pose estimation: New benchmark
and state of the art analysis. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3686–3693,
2014. 3

[3] Armen Avetisyan, Manuel Dahnert, Angela Dai, Manolis
Savva, Angel X Chang, and Matthias Nießner. Scan2CAD:
Learning CAD model alignment in RGB-D scans. In Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2019. 3

[4] Shaojie Bai, Zhengyang Geng, Yash Savani, and J Zico Kolter.
Deep equilibrium optical flow estimation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 620–630, 2022. 1

[5] Wei Bao, Wei Wang, Yuhua Xu, Yulan Guo, Siyu Hong, and
Xiaohu Zhang. Instereo2k: A large real dataset for stereo
matching in indoor scenes. Science China Information Sci-
ences, 63(11):1–11, 2020. 8, 13, 18

[6] Katherine R Barnhart, Eric WH Hutton, Gregory E Tucker,
Nicole M Gasparini, Erkan Istanbulluoglu, Daniel EJ Hobley,
Nathan J Lyons, Margaux Mouchene, Sai Siddhartha Nudu-
rupati, Jordan M Adams, et al. Landlab v2. 0: a software
package for earth surface dynamics. Earth Surface Dynamics,
8(2):379–397, 2020. 6, 22

[7] James F. Blinn. Simulation of wrinkled surfaces. ACM SIG-
GRAPH Computer Graphics, 12(3):286–292, aug 1978. 6

[8] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. Flip: A low-
dissipation, particle-in-cell method for fluid flow. Computer
Physics Communications, 48(1):25–38, Jan. 1988. 6, 22

[9] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation. In
European Conference on Computer Vision (ECCV), pages
611–625, 2012. 3, 8, 13, 18, 36

[10] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. ShapeNet:
An information-rich 3D model repository. arXiv preprint
arXiv:1512.03012, 2015. 3

[11] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 1, 2, 3, 22

[12] Matt Deitke, Eli VanderBilt, Alvaro Herrasti, Luca Weihs,
Jordi Salvador, Kiana Ehsani, Winson Han, Eric Kolve, Ali
Farhadi, Aniruddha Kembhavi, et al. ProcTHOR: Large-scale
embodied AI using procedural generation. arXiv preprint
arXiv:2206.06994, 2022. 1, 3, 4

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009. 1

[14] Jeevan Devaranjan, Amlan Kar, and Sanja Fidler. Meta-Sim2:
Unsupervised learning of scene structure for synthetic data
generation. In European Conference on Computer Vision
(ECCV), pages 715–733. Springer, 2020. 3

[15] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Conference on Robot Learning (CoRL), pages
1–16, 2017. 3

[16] Laura Downs, Anthony Francis, Nate Koenig, Brandon Kin-
man, Ryan Hickman, Krista Reymann, Thomas B McHugh,
and Vincent Vanhoucke. Google Scanned Objects: A high-
quality dataset of 3d scanned household items. arXiv preprint
arXiv:2204.11918, 2022. 3

[17] Evermotion. Evermotion architectures. https://
evermotion.org/shop. 3

[18] Matteo Fabbri, Guillem Brasó, Gianluca Maugeri, Orcun
Cetintas, Riccardo Gasparini, Aljoša Ošep, Simone Calderara,
Laura Leal-Taixé, and Rita Cucchiara. MOTSynth: How can
synthetic data help pedestrian detection and tracking? In
International Conference on Computer Vision (ICCV), 2021.
3

[19] Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming
Wang, Cao Li, Qixun Zeng, Chengyue Sun, Rongfei Jia, Bin-
qiang Zhao, et al. 3D-FRONT: 3D furnished rooms with
layouts and semantics. In International Conference on Com-
puter Vision (ICCV), pages 10933–10942, 2021. 3

[20] Huan Fu, Rongfei Jia, Lin Gao, Mingming Gong, Binqiang
Zhao, Steve Maybank, and Dacheng Tao. 3D-FUTURE:
3D furniture shape with texture. International Journal of
Computer Vision (IJCV), 129(12):3313–3337, 2021. 3

[21] Alberto Garcia-Garcia, Pablo Martinez-Gonzalez, Sergiu
Oprea, John Alejandro Castro-Vargas, Sergio Orts-Escolano,
Jose Garcia-Rodriguez, and Alvaro Jover-Alvarez. The
robotrix: An extremely photorealistic and very-large-scale
indoor dataset of sequences with robot trajectories and inter-
actions. In International Conference on Intelligent Robots
and Systems (IROS), 2018. 1, 3

[22] Ryan Geiss. Generating complex procedural terrains using
the gpu. GPU gems, 3(7):37, 2007. 22

[23] Peter. Gray and Stephen K. Scott. Chemical Oscillations and
Instabilities: Non-linear Chemical Kinetics. International
series of monographs on chemistry. Clarendon Press, 1994.
6, 26

[24] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A
scalable dataset generator. In Conference on Computer Vision
and Pattern Recognition (CVPR), 2022. 3, 4, 8, 18, 36

[25] Mordechai Haklay and Patrick Weber. Openstreetmap: User-
generated street maps. IEEE Pervasive Computing, 7(4):12–
18, 2008. 3

[26] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Si-
mon Stent, and Roberto Cipolla. Understanding real world
indoor scenes with synthetic data. In Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4077–4085,
2016. 3

[27] Yana Hasson, Gül Varol, Dimitris Tzionas, Igor Kalevatykh,
Michael J. Black, Ivan Laptev, and Cordelia Schmid. Learn-
ing joint reconstruction of hands and manipulated objects.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 8, 18, 36

https://planner5d.com/
https://evermotion.org/shop
https://evermotion.org/shop

[28] Rasmus Laurvig Haugaard and Anders Glent Buch. Surfemb:
Dense and continuous correspondence distributions for object
pose estimation with learnt surface embeddings. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6749–6758, 2022. 1

[29] Ju He, Enyu Zhou, Liusheng Sun, Fei Lei, Chenyang Liu, and
Wenxiu Sun. Semi-synthesis: A fast way to produce effective
datasets for stereo matching. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2021. 4, 8, 18, 36

[30] Daniel EJ Hobley, Jordan M Adams, Sai Siddhartha Nudu-
rupati, Eric WH Hutton, Nicole M Gasparini, Erkan Istan-
bulluoglu, and Gregory E Tucker. Creative computing with
landlab: an open-source toolkit for building, coupling, and
exploring two-dimensional numerical models of earth-surface
dynamics. Earth Surface Dynamics, 5(1):21–46, 2017. 6, 22

[31] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann
Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and
Jiřı́ Matas. BOP challenge 2020 on 6D object localization. Eu-
ropean Conference on Computer Vision Workshops (ECCVW),
2020. 4

[32] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. DeepMVS: Learning multi-view
stereopsis. In Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2821–2830, 2018. 1, 3

[33] Eric Hutton, Katy Barnhart, Dan Hobley, Greg Tucker, Sai
Nudurupati, Jordan Adams, Nicole Gasparini, Charlie Shobe,
Ronda Strauch, Jenny Knuth, Margaux Mouchene, Nathan
Lyons, David Litwin, Rachel Glade, Giuseppecipolla95,
Amanda Manaster, Langston Abby, Kristen Thyng, and Fran-
cis Rengers. landlab, 4 2020. 6, 22

[34] Adobe Inc. Adobe mixamo. https://www.mixamo.
com. 3

[35] Adobe Inc. Adobe stock. https://stock.adobe.
com/3d-assets. 3

[36] Epic Games Inc. Unreal engine marketplace. https://
www.unrealengine.com/marketplace/en-US/
store. 3

[37] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J Davison. RLBench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters,
5(2):3019–3026, 2020. 3

[38] Roger V Jean. Introductory review: Mathematical modeling
in phyllotaxis: The state of the art. Mathematical Biosciences,
64(1):1–27, 1983. 6

[39] Chenfanfu Jiang, Siyuan Qi, Yixin Zhu, Siyuan Huang, Jenny
Lin, Lap-Fai Yu, Demetri Terzopoulos, and Song-Chun Zhu.
Configurable 3D scene synthesis and 2D image rendering
with per-pixel ground truth using stochastic grammars. Inter-
national Journal of Computer Vision (IJCV), 126(9):920–941,
2018. 3, 4

[40] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 3

[41] Samin Khan, Puu Phan, Rick Salay, and Krzysztof Czarnecki.
ProcSy: Procedural synthetic dataset generation towards in-

fluence factor studies of semantic segmentation networks. In
CVPR Workshops, 2019. 3, 4

[42] Ryo Kobayashi. Modeling and numerical simulations of
dendritic crystal growth. Physica D: Nonlinear Phenomena,
63:410–423, 3 1993. 6, 26

[43] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-
hinav Gupta, and Ali Farhadi. AI2-THOR: An interactive 3D
environment for visual AI. arXiv preprint arXiv:1712.05474,
2017. 3

[44] Kujiale. Kujiale.com. https://www.kujiale.com/.
3

[45] 7D Labs. 7d labs. https://www.7dlabs.com/. 3
[46] Hei Law and Jia Deng. Label-free synthetic pretraining of

object detectors. arXiv preprint arXiv:2208.04268, 2022. 1
[47] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lin-

gelbach, Sanjana Srivastava, Bokui Shen, Kent Vainio, Cem
Gokmen, Gokul Dharan, Tanish Jain, et al. IGibson 2.0:
Object-centric simulation for robot learning of everyday
household tasks. arXiv preprint arXiv:2108.03272, 2021.
3

[48] Jiankun Li, Peisen Wang, Pengfei Xiong, Tao Cai, Ziwei Yan,
Lei Yang, Jiangyu Liu, Haoqiang Fan, and Shuaicheng Liu.
Practical stereo matching via cascaded recurrent network with
adaptive correlation. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2022. 1, 3, 8, 13, 18, 33, 34, 36

[49] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,
and Stefan Leutenegger. InteriorNet: Mega-scale multi-
sensor photo-realistic indoor scenes dataset. arXiv preprint
arXiv:1809.00716, 2018. 3, 4

[50] Yang Li, Hikari Takehara, Takafumi Taketomi, Bo Zheng, and
Matthias Nießner. 4DComplete: Non-rigid motion estimation
beyond the observable surface. In International Conference
on Computer Vision (ICCV), pages 12706–12716, 2021. 3, 4

[51] Zhengqi Li and Noah Snavely. Cgintrinsics: Better intrinsic
image decomposition through physically-based rendering. In
Proceedings of the European conference on computer vision
(ECCV), pages 371–387, 2018. 3

[52] Zhengqin Li, Ting-Wei Yu, Shen Sang, Sarah Wang, Meng
Song, Yuhan Liu, Yu-Ying Yeh, Rui Zhu, Nitesh Gun-
davarapu, Jia Shi, et al. OpenRooms: An open framework
for photorealistic indoor scene datasets. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2021. 3

[53] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
V 13, pages 740–755. Springer, 2014. 1

[54] Lahav Lipson, Zachary Teed, and Jia Deng. RAFT-Stereo:
Multilevel recurrent field transforms for stereo matching. In
International Conference on 3D Vision (3DV), 2021. 1, 8, 13

[55] Lahav Lipson, Zachary Teed, Ankit Goyal, and Jia Deng. Cou-
pled iterative refinement for 6d multi-object pose estimation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 6728–6737, 2022. 1

https://www.mixamo.com
https://www.mixamo.com
https://stock.adobe.com/3d-assets
https://stock.adobe.com/3d-assets
https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://www.kujiale.com/
https://www.7dlabs.com/

[56] Bingyuan Liu, Jiantao Zhang, Xiaoting Zhang, Wei Zhang,
Chuanhui Yu, and Yuan Zhou. Furnishing your room by
what you see: An end-to-end furniture set retrieval frame-
work with rich annotated benchmark dataset. arXiv preprint
arXiv:1911.09299, 2019. 1, 2, 3

[57] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
SIGGRAPH Computer Graphics, 21(4):163–169, 1987. 6

[58] Zeyu Ma, Zachary Teed, and Jia Deng. Multiview stereo with
cascaded epipolar raft. In Computer Vision–ECCV 2022: 17th
European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXI, pages 734–750. Springer, 2022. 1

[59] Benjamin Mark, Tudor Berechet, Tobias Mahlmann, and Ju-
lian Togelius. Procedural generation of 3d caves for games
on the gpu. In FDG, 2015. 22

[60] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Doso-
vitskiy, and T. Brox. A large dataset to train convolutional
networks for disparity, optical flow, and scene flow estimation.
In Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. arXiv:1512.02134. 3, 8, 13, 18, 33, 34

[61] John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J Davison. SceneNet RGB-D: Can 5m synthetic
images beat generic imagenet pre-training on indoor segmen-
tation? In International Conference on Computer Vision
(ICCV), pages 2678–2687, 2017. 3

[62] Nick McDonald. Soilmachine. https://github.com/
weigert/SoilMachine, 2022. 6, 22

[63] Lukas Mehl, Jenny Schmalfuss, Azin Jahedi, Yaroslava Nali-
vayko, and Andrés Bruhn. Spring: A high-resolution high-
detail dataset and benchmark for scene flow, optical flow
and stereo. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4981–4991,
2023. 3

[64] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. NeRF:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
4

[65] Sergey I Nikolenko. Synthetic data for deep learning, volume
174. Springer, 2021. 2

[66] Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Ei-
hachiro Nakamae. Display of the earth taking into account at-
mospheric scattering. In Proceedings of the 20th Annual Con-
ference on Computer Graphics and Interactive Techniques,
SIGGRAPH ’93, page 175–182, New York, NY, USA, 1993.
Association for Computing Machinery. 6, 23

[67] Boris Okunskiy. Introducing differential growth addon for
blender. https://boris.okunskiy.name/posts/
blender-differential-growth. 6, 25

[68] Jordan Peck. Fastnoise lite. https://github.com/
Auburn/FastNoiseLite, 2022. 6, 22

[69] Ken Perlin. An image synthesizer. ACM Siggraph Computer
Graphics, 19(3):287–296, 1985. 22

[70] Bui Tuong Phong. Illumination for computer generated pic-
tures. Communications of the ACM, 18(6):311–317, jun 1975.
6

[71] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen
Koltun. Playing for data: Ground truth from computer games.
In European Conference on Computer Vision (ECCV), pages
102–118. Springer, 2016. 1, 2, 3

[72] Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Ku-
mar, Miguel Angel Bautista, Nathan Paczan, Russ Webb, and
Joshua M. Susskind. Hypersim: A photorealistic synthetic
dataset for holistic indoor scene understanding. In Interna-
tional Conference on Computer Vision (ICCV), 2021. 3

[73] Adam Runions, Brendan Lane, and Przemyslaw
Prusinkiewicz. Modeling trees with a space coloniza-
tion algorithm. NPH, 7(63-70):6, 2007. 6, 24

[74] Daniel Scharstein, Heiko Hirschmüller, York Kitajima, Greg
Krathwohl, Nera Nesic, Xi Wang, and Porter Westling. High-
resolution stereo datasets with subpixel-accurate ground truth.
In GCPR, 2014. 8, 13, 18, 34

[75] Soumyadip Sengupta, Jinwei Gu, Kihwan Kim, Guilin Liu,
David W Jacobs, and Jan Kautz. Neural inverse rendering
of an indoor scene from a single image. In International
Conference on Computer Vision (ICCV), pages 8598–8607,
2019. 3

[76] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Mano-
lis Savva, and Thomas Funkhouser. Semantic scene comple-
tion from a single depth image. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 3

[77] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 3

[78] Sanjana Srivastava, Chengshu Li, Michael Lingelbach,
Roberto Martı́n-Martı́n, Fei Xia, Kent Elliott Vainio, Zheng
Lian, Cem Gokmen, Shyamal Buch, Karen Liu, et al. Behav-
ior: Benchmark for everyday household activities in virtual,
interactive, and ecological environments. In Conference on
Robot Learning (CoRL), pages 477–490, 2022. 3

[79] Stereolabs. Zed 2. https://www.stereolabs.com/
zed-2/. 13, 33

[80] Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik
Wijmans, Simon Green, Jakob J Engel, Raul Mur-Artal, Carl
Ren, Shobhit Verma, et al. The Replica dataset: A digital
replica of indoor spaces. arXiv preprint arXiv:1906.05797,
2019. 3

[81] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans,
Yili Zhao, John Turner, Noah Maestre, Mustafa Mukadam,
Devendra Chaplot, Oleksandr Maksymets, Aaron Gokaslan,
Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech
Galuba, Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra
Malik, Manolis Savva, and Dhruv Batra. Habitat 2.0: Training
home assistants to rearrange their habitat. In Conference on
Neural Information Processing Systems (NeurIPS), 2021. 3

[82] Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field
transforms for optical flow. In European Conference on Com-
puter Vision (ECCV), pages 402–419. Springer, 2020. 1

[83] Zachary Teed and Jia Deng. DROID-SLAM: Deep visual
SLAM for monocular, stereo, and RGB-D cameras. In Con-
ference on Neural Information Processing Systems (NeurIPS),
2021. 1

https://github.com/weigert/SoilMachine
https://github.com/weigert/SoilMachine
https://boris.okunskiy.name/posts/blender-differential-growth
https://boris.okunskiy.name/posts/blender-differential-growth
https://github.com/Auburn/FastNoiseLite
https://github.com/Auburn/FastNoiseLite
https://www.stereolabs.com/zed-2/
https://www.stereolabs.com/zed-2/

[84] Zachary Teed and Jia Deng. Raft-3d: Scene flow using rigid-
motion embeddings. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8375–8384, 2021. 1

[85] Zachary Teed, Lahav Lipson, and Jia Deng. Deep patch visual
odometry. arXiv preprint arXiv:2208.04726, 2022. 1

[86] Jonathan Tremblay, Thang To, and Stan Birchfield. Falling
Things: A synthetic dataset for 3D object detection and pose
estimation. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2018. 3, 8, 13, 18, 33, 34

[87] Apostolia Tsirikoglou, Joel Kronander, Magnus Wrenninge,
and Jonas Unger. Procedural modeling and physically based
rendering for synthetic data generation in automotive applica-
tions. arXiv preprint arXiv:1710.06270, 2017. 3

[88] Timo Von Marcard, Roberto Henschel, Michael J Black, Bodo
Rosenhahn, and Gerard Pons-Moll. Recovering accurate 3D
human pose in the wild using imus and a moving camera. In
Proceedings of the European Conference on Computer Vision
(ECCV), pages 601–617, 2018. 3

[89] Wenshan Wang, Yaoyu Hu, and Sebastian Scherer. Tartanvo:
A generalizable learning-based vo. In Conference on Robot
Learning, pages 1761–1772. PMLR, 2021. 1

[90] Wenshan Wang, Delong Zhu, Xiangwei Wang, Yaoyu Hu,
Yuheng Qiu, Chen Wang, Yafei Hu, Ashish Kapoor, and
Sebastian Scherer. TartanAir: A dataset to push the limits
of visual SLAM. In International Conference on Intelligent
Robots and Systems (IROS), 2020. 3, 8, 13, 18, 33, 34

[91] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J Cashman, and Jamie Shotton. Fake it
till you make it: face analysis in the wild using synthetic
data alone. In International Conference on Computer Vision
(ICCV), pages 3681–3691, 2021. 3

[92] Magnus Wrenninge and Jonas Unger. Synscapes: A pho-
torealistic synthetic dataset for street scene parsing. arXiv
preprint arXiv:1810.08705, 2018. 3, 4

[93] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu,
Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan, He
Wang, et al. SAPIEN: A simulated part-based interactive
environment. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 3

[94] Gengshan Yang, Joshua Manela, Michael Happold, and
Deva Ramanan. Hierarchical deep stereo matching on high-
resolution images. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 8, 13, 18

[95] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva,
Joon-Young Lee, Hailin Jin, and Thomas Funkhouser.
Physically-based rendering for indoor scene understanding
using convolutional neural networks. In Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5287–
5295, 2017. 3

[96] Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao,
and Zihan Zhou. Structured3D: A large photo-realistic dataset
for structured 3D modeling. In European Conference on
Computer Vision (ECCV), 2020. 3

Appendix

A. Figures Extended

First, we provide a large sample of random, non-cherry-
picked RGB images from our dataset generator (Figs. A,
B, C, D). Both this sample and Fig. 1 in the main paper are
randomly selected, however unlike in Fig. 1, here we do
not group the images by scene type. We limit the sample to
576 JPEG images of resolution 960x540 only due to space
constraints - in practice we can generate infinitely many such
images as 1080P PNGs, with a full suite of accompanying
ground truth data.

Second, we show an extended random sample of our
terrain system (Fig. E F), grouped by scene type as in Fig. 6
of the main paper.

Please visit infinigen.org for videos, code, and extended
hi-res. random samples.

B. Experiments

To validate the usefulness of the generated data, we pro-
duce 30K image pairs for training rectified stereo matching.
We train RAFT-Stereo [54] on these images from scratch
and compare against the same architecture trained on other
synthetic datasets. Models are trained for 200k steps using
the same hyper-parameters from [54].
Real Images of Natural Scenes. Because images from
Infinigen consist of entirely of natural scenes and are de-
void of any human-made objects, we expect models trained
on Infinigen data to perform better on images with natural
environments and worse on images without (e.g. indoor
scenes). However, quantitative evaluation on real-world nat-
ural scenes is currently infeasible because there does not
exist a real-world benchmark that evaluates depth estima-
tion for natural scenes. Existing real-world benchmarks
consist almost entirely of images of indoor environments
dominated by artificial objects. In addition, it is challeng-
ing to obtain 3D ground truth for real-world natural scenes,
because real-world natural scenes are often highly complex
and non-static (e.g. moving tree leaves and animals), making
high-resolution laser-based 3D scanning impractical.

Due to the difficulty of obtaining 3D ground truth for real
images of natural scenes, we perform qualitative evaluation
instead. We collected high-resolution rectified stereo im-
ages of real-world natural scenes using the ZED 2 Stereo
Camera [79] and visualize the predicted disparity maps from
RAFT-Stereo [54] in Fig. G. Our results show that a model
trained entirely on synthetic scenes from Infinigen can per-
form well on real images of natural scenes zero-shot. The
model trained on Infinigen data produces noticeably better
results than models trained on existing datasets, suggesting
that Infinigen is useful in that it provides training data for a
domain that is poorly covered by existing datasets.

Middlebury Dataset. We evaluate our trained model on
the Middlebury Dataset [74], which is a standard evaluation
benchmark for stereo matching. It consists of megapixel
image-pairs of cluttered indoor spaces, 10 with public
ground-truth and 10 without. This benchmark is challenging
due to its abundance of objects, textureless surfaces, and
thin structures. In Tab. B, we see that our Infinigen-trained
model struggles on images with exclusively artificial objects
but performs well on the only image with natural objects
(Jadeplant). In Fig H, we qualitatively evaluate our model on
Middlebury images without public ground-truth and observe
that our model generalizes well to the natural scenes.

Training Dataset Bad 3.0 (%) ↓ # Image Pairs

InStereo2K [5] 25.282 2K
FallingThings [86] 12.199 62K
Sintel-Stereo [9] 10.253 2K
HR-VS [94] 9.296 780
Li et al. [48] 9.271 177K
SceneFlow [60] 7.837 35K
TartanAir [90] 6.504 296K
Ours (Infinigen 30K) 5.527 31K

Table A. Performance on 400 independent Infinigen evaluation
scenes. No assets are shared between our Infinigen training and
evaluation scenes.

Synthetic Images of Natural Scenes. Although quantita-
tive evaluation is not currently feasible on real-world natural
scenes, it can be done using synthetic natural scenes from
Infinigen, with the caveat that we rely on the assumption
that performance on Infinigen images is a good proxy to real-
world performance, as suggested by the qualitative results in
Fig. G. In Tab. A, we evaluate our Infinigen-trained model
on an independent set of 400 image pairs from Infinigen.
No assets are shared between our training and evaluation
sets. Tab. A also compares the model trained on Infinigen
to models trained on other datasets. We see that the model
trained on Infinigen data has a significant lower error than
those trained on other datasets. These quantitative results
suggest that the distribution of Infinigen images is signifi-
cantly different from existing datasets and that Infinigen can
serve as a useful supplement to existing datasets.

C. Dataset Generation

C.1. Image Rendering

We render images using Cycles, Blender’s physically-
based path tracing renderer. Cycles individually traces pho-
tons of light to accurately simulate diffuse and specular
reflection, transparent refraction and volumetric effects. We
render at 1920× 1080 resolution using 10, 000 random sam-
ples per-pixel.

https://infinigen.org

Figure A. 576 randomly generated, non-cherry-picked images produced by our system (Part 1 of 4). Images are compressed due to space
constraints - please see infinigen.org

https://infinigen.org

Figure B. 576 randomly generated, non-cherry-picked images produced by our system (Part 2 of 4). Images are compressed due to space
constraints - please see infinigen.org

https://infinigen.org

Figure C. 576 randomly generated, non-cherry-picked images produced by our system (Part 3 of 4). Images are compressed due to space
constraints - please see infinigen.org

https://infinigen.org

Figure D. 576 randomly generated, non-cherry-picked images produced by our system (Part 4 of 4). Images are compressed due to space
constraints - please see infinigen.org

https://infinigen.org

Training Dataset Adirondack Jadeplant Motorcycle Piano Pipes Playroom Playtable Recycle Shelves Vintage Avg

FallingThings [86] 8.3 43.3 12.3 18.2 25.3 29.7 50.0 10.4 43.3 45.6 28.6
Sintel-Stereo [9] 35.7 62.9 31.1 24.1 31.9 41.7 60.1 30.8 55.8 76.1 45.0
HR-VS [94] 43.5 43.2 17.0 29.6 32.1 34.6 68.4 24.7 57.4 34.9 38.5
Li et al. [48] 23.9 80.2 40.7 32.0 40.3 49.1 67.5 36.6 51.7 42.3 46.4
SceneFlow [60] 7.4 41.3 14.9 16.2 33.3 18.8 38.6 10.2 39.1 29.9 25.0
TartanAir [90] 15.5 45.1 18.1 12.9 28.4 25.6 51.0 20.9 49.1 28.2 29.5
InStereo2K [5] 17.1 59.7 21.3 23.8 35.8 33.9 36.4 20.0 33.4 44.1 32.5
Ours (Infinigen 30K) 7.4 35.2 15.2 20.7 24.7 29.3 50.0 12.6 55.1 46.9 29.7

Table B. Bad 3.0 (%) ↓ error on the Middlebury [74] validation set. Infinigen helps models generalize to images with natural objects (e.g.
Jadeplant). On the other hand, natural objects contain very few planar or texture-less surfaces; models trained exclusively on natural objects
can generalize less well on indoor datasets like Middlebury.

C.2. Ground Truth Extraction

We develop custom code for extracting ground-truth di-
rectly from the geometry. Prior datasets [9,24,27,29,48] rely
on blender’s built-in render-passes to obtain dense ground
truth. However, these rendering passes are a byproduct of the
rendering pipeline and not intended for training ML models.
Specifically, they are incorrect for translucent surfaces, volu-
metric effects, or when motion blur, focus blur or sampling
noise are present.

We contribute OpenGL code to extract surface normals,
depth, segmentation masks, and occlusion boundaries from
the mesh directly without relying on blender.
Depth. We show several examples of our depth maps in
Fig. I. In Fig. K, we visualize the alternative approach
of naively producing depth using blender’s built-in render
passes.
Occlusion Boundaries. We compute occlusion boundaries
using the mesh geometry. Blender does not natively produce
occlusion boundaries, and we are not aware of any other
synthetic dataset or generator which provides exact occlusion
boundaries.
Surface Normals. We compute surface normals by fitting a
plane to the local depth map around each pixel. Sampling
the geometry directly instead can lead to aliasing on high-
frequency surfaces (e.g. grass).

The size of the plane used to fit the local depth map
is configurable, effectively changing the resolution of the
surface normals. We can also configure our sampling
operation to exclude values which cannot be reached from
the center of each plane without crossing an occlusion
boundary; planes with fewer than 3 samples are marked
as invalid. We show these occlusion-augmented surface
normals in Fig. I. These surface normals appear only
surfaces with sparse occlusion boundaries, and exclude
surfaces like grass, moss, lichen, etc.
Segmentation Masks. We compute instance segmentation
masks for all objects in the scene, shown in Fig. I. Object
meta-data can be used to group certain objects together arbi-
trarily (e.g. all grass gets the same label, a single tree gets
one label, etc).
Customizable. Since our system is controllable and fully

open-source, we anticipate that users will generate count-
less task-specific ground truth not covered above via simple
extensions to our codebase.

C.3. Runtime

We benchmark Infinigen on 2 Intel(R) Xeon(R) Silver
4114 @ 2.20GHz CPUs and 1 NVidia-GPU (one of GTX-
1080, RTX-[2080, 6000, a6000] or a40) across 1000 indepen-
dent trials. We show the distribution in Fig. L. The average
wall time to produce a pair of 1080p images is 3.5 hours.
About one hour of this uses a GPU, for rendering specifically.
More CPUs per-image-pair will decrease the wall-time sig-
nificantly as will faster CPUs. Our system also uses about
24Gb of memory on average.
Pre-generated Infinigen Data. To maximize the accessi-
bility of our system we will provide a large number of pre-
generated assets, videos, and images from Infinigen upon
acceptance.

D. Interpretable Degrees of Freedom

We attempted to estimate the complexity of our procedu-
ral system by counting the number of human-interpretable
parameters, as shown in the per-category totals in Table 2
of the main paper. Here, we provide a more granular break
down of what named parameters contributed to these results.

Counting Method We seek to provide a conservative es-
timate of the expressive capacity of our system. We only
count distinct human-understandable parameters. We also
only include parameters that are useful, that is if it can be
randomized within some neighborhood and produce notice-
ably different but still photorealistic assets. Each row of
Tabs. C–J gives the names of all Intepretable DOF that are
relevant to some set of Generators.

We exclude trivial transformations such as scaling, rotat-
ing and translating an asset. We include absolute sizes such
as ’Length’ or ’Radius’ as parameters only when their ratio
to some other part of the scene is significant, such as the
leg to body ratio of a creature, or the ratio of a sand dune’s
height to width.

Many of our material generators involve randomly gener-
ating colors using random HSV coordinates. This has three
degrees of freedom, but out of caution we treat each color as
one parameter. Usually, one or more HSV coordinates are
restricted to a relatively narrow range, so this one parameter
represents the value of the remaining axis. Equivalently, it
can be imagined as a discrete parameter specifying some
named color-palette to draw the color from. Some genera-
tors also contain compact functions or parametric mapping
curves, each usually with 3-5 control points. We treat each
curve as one parameter, as the effect of adjusting any one
handle is subtle.

Results In total, we counted 182 procedural asset genera-
tors with a sum of 1070 distinct interpretable parameters /
Degrees-of-Freedom. We provide the full list of these named
parameters as Tables C–J, placed at the end of this document
as they fill several pages.

E. Transpiler
Code Generation In the simplest case, the transpiler is a
recursive operation which performs a post-order traversal
of Blender’s internal representation of a node-graph, and
produces a python statement defining each as a function call
of it’s children. We automatically handle and abstract away
many edge cases present in the underlying node tree, such as
enabled/disabled inputs, multi-input sockets and more. This
procedure also supports all forms of blender nodes, including
shader nodes, geometry nodes, light nodes and compositor
nodes.

Doubly-recursive parsing Blender’s node-graphs support
many systems by which node-graphs can contain and de-
pend on one another. Most often this is in the form of a
node-group, such as the dark green boxes titled Sunflow-
erSeedCenter and PhylloPoints in Fig. M. Node-groups are
user-defined nodes, containing an independent node-tree as
an implementation. These are equivalent to functions in
a typical programming languages, so whenever one is en-
countered, the transpiler will invoke itself on the node-graph
implementation and package the result as a python func-
tion, before calling that function in the parent node-graph.
In a similar fashion, we often use SetMaterial nodes that
reference a shader node-graph to be transpiled as a function.

Probability Distribution Annotation Node-graphs con-
tain many internal parameters, which are artistically tuned by
the user to produce a desired result. We provide a minimal
interface for users to also specify the distribution of these pa-
rameters by writing small strings in the node name. See, for
example, the red nodes in Fig. M. When annotations of this
format are detected, the transpiler automatically inserts calls

to appropriate random number generators into the resulting
code.

F. Scene Composition Details
Our scenes are not individually staged images - for

each image, we produce a map of an expansive and view-
consistent world. One can select any camera pose or se-
quence of poses, which allows for video and other multi-view
data generation.

To allow this, we start by sampling a full-scene ground
surface. This is low-resolution, but is sufficient to approx-
imate the surface of the terrain for the purpose of placing
objects. We determine surface points using Poisson-Disc
Sampling. This avoids the majority of asset-asset intersec-
tions. We modulate point density using procedural masks
based on surface normals, Perlin noise and terrain attributes.
Asset rotations are determined uniformly at random. Our fi-
nal coarse global map is represented as a lightweight blender
file with intuitive editable placeholders to represent where
assets will be spawned in later steps of the pipeline.

We provide a library of 11 optional configuration files to
modify scene composition, namely Arctic, Coast, Canyon,
Cave, Cliff, Desert, Forest, Mountain, Plains, River and
Underwater. Each encodes simple natural priors such as
”Cacti often grow in deserts” or ”Trees are less dense on
mountains”, expressed as modifications to these mask and
density parameters. More complex relations, like predators
and prey avoiding each other, or plants not growing in shaded
areas, are not currently captured.

F.1. Camera Selection

We select camera viewpoints with simple heuristics de-
signed to match the perspective of a creature or person,
which are as follow:

Height above Ground In order to match the perspective
of a creature or person, we sample the camera height above
ground from a Gaussian distribution. (with the exception
that in terrain-only scenes sometimes this height is higher to
highlight some landscape features)

Minimum Distance To avoid being blocked by a close-up
object and over-subdividing the geometry (which is expen-
sive), we select camera views with a minimum distance
threshold to all objects.

Coverage In order to avoid overly barren images and to
highlight interesting features, we may select views such
that a certain terrain component, e.g. a river, is visible.
Specifically, we may require that the camera view has pixels
from a specific terrain component or object type within a
certain range.

Standard Deviation of Depth We compute the variance
of pixel-wise depth values, and choose the viewpoint out of
ten random samples with the largest variance to favor more
interesting content.

F.2. Dynamic Resolution

In Fig. J, we show a visualization of triangle sizes in cm2

and in pixels as viewed from the camera. Face size in meters
increases proportionally to depth, whereas face size in pixels
remains approximately constant.

F.2.1 Spherical Marching Cubes

To generate a mesh for a specific camera view, we must
extract a mesh representation of the terrain which contains
dense pixel-size faces. Classical Marching Cubes struggles
to achieve this, as it evaluates the SDF at fixed intervals,
which results in too-sparse geometry near the camera and
too-dense geometry in the far distance. Spherical Marching
Cubes is our novel adaptation of this classic algorithm to
operate in spherical coordinates, which automatically creates
dense geometry near the camera where it is most needed,
thereby preventing waste and drastically improving perfor-
mance.

Spherical Marching Cube algorithm works as follows:

Low Resolution Step We divide the visible 3D space
(within the frustrum camera and a certain distance range
(dmin, dmax)) into M × N × R blocks in spherical coor-
dinates, uniform in θ and ϕ and logarithmically in r. We
convert these to cartesian coordinates and evaluate the SDF
as usual. This yields a tensor of SDF values where grid cells
near dmax represent larger regions of space than those close
to the camera, thereby saving space.

Visible Block Search Step We use this SDF tensor to find
the closest block for each pixel with an SDF zero crossing,
resulting in an approximate terrain-only depth-map. These
blocks are low-resolution and may contain holes, so we
check them again with dense SDF queries to determine any
farther away visible blocks.

High Resolution Step Finally, we evaluate dense pixel-
size SDF queries for all visible blocks, and produce a final-
ized mesh with Marching Cubes. Theoretically the final size
of this mesh can still be proportional to cube of the resolu-
tion, but in practice we find it is proportional to square. This
step and the previous step can be performed iteratively to
prevent all potential holes.

Out-of-view Part The out-of-view part of the terrain is
needed for lighting effects but done with low resolution.

F.2.2 Parametric Surface Resolution Scaling

NURBS and other parametric surfaces support evaluation at
any mesh resolution. This is achieved by specifying some
du, dv as step sizes in parameter space. We provide heuris-
tics to compute appropriate values for these step sizes such
that the resulting mesh achieves a given max pixel size.

F.2.3 Subdivision and Remeshing

All other assets rely on established Subdivision and Voxel-
Remeshing algorithms to create dense pixel-size geometry.
We provide heuristics to compute appropriate subdivision
levels. Voxel Remeshing is time intensive but is especially
useful for creatures and trees whose geometry can otherwise
self-intersect or contain stretched faces.

G. Asset Implementation Details
G.1. Materials

Our materials are composed of a shader and a local ge-
ometry template. The shader procedurally generates realistic
color, roughness, specularity, metallicity, subsurface scat-
tering, and translucence parameters. The local geometry
template generates corresponding geometric detail. Most
often, the local geometry template simply computes a scalar
field over the underlying mesh vertices, and displaces them
along their normals to form a rough texture.

G.1.1 Terrain Materials

The majority of our terrain materials (including Mountain,
Granite, Snow, Stone, Ice) operate by combining many oc-
taves of Perlin Noise to form geometric texture, before ap-
plying a mostly flat color. Some, such as some random
variations of Mountain, create layered color masks as a func-
tion of the world Z coordinate. Others such as Sand follow a
similar scheme, but with a procedural Wave texture instead
of Perlin Noise.

Our Mud and Sandstone materials are particular expres-
sive. Mud procedurally generates puddles and slick ground
by altering color, displacement and roughness jointly. Sand-
stone generates realistic layered sedimentary rock using
noise functions and modular arithmetic based on the world
Z coordinate.

Lava uses displacement from Perlin noise, F1-smooth
Voronoi texture, and wave texture with varying scales. The
shader uses Perlin noise, Voronoi texture to model hot and
rocky parts, mixed with blackbody emission and a principled
BSDF.

Fire and Smoke are comprised of multiple volumetric
shaders. The first shader uses a principled volume shader
with blackbody radiation whose intensity is sampled based
on the amount of flame and smoke density. The smoke

density is randomly sampled. The second shader imitates a
high detail image captured with fast shutter speed and low
exposure. The detail is brought out based on contrasting
different regions of temperature and adding Perlin noise.
The colors are shades of orange.

All our water materials feature glass-like surfaces with
physically accurate Index-of-Refraction, combined with a
volumetric scattering shader to simulate realistic underwa-
ter light bounces. The Water shader uses these effects with
geometry untouched (for use with simulators), wherase Wa-
ter Surface assumes the base geometry is a plane and adds
geometric ripples.

G.1.2 Plant Materials

Our plant materials feature geometric and color variation
using procedural Stucci, Marble and Shot Noise textures.
We provide color pallettes for realistic plant and coral col-
ors, and produce variations on these using Musgrave noise.
All leafy plants feature realistic transmission and roughness
properties, to simulate light filtering through translucent
waxy leaves. Our Bark and Bark Birch simulate bark ex-
pansion and fracturing using voronoi and perlin noise to
generate displacements.

G.1.3 Creature Material

Fish We create two fish materials, a goldfish material and
a regular fish material. Each material consists of two parts,
a fish body material and a fish fin material. The fish body
material creates the displacement of fish scales. To build
the pattern of fish scales, we create a grid and fill every two
adjacent grids in one column with a half circle. Then we
move up the half circles in the even columns by one grid.
The colors of regular fish are guided by one wave texture
and two noise textures. The colors of goldfish are guided
by two noise textures and sampled between red and yellow.
The colors of fish bellies are usually white. A fish fin is
created by adding periodical bumps to round planes. The
weights of bump displacement are decreasing away from the
fish body. Dorsal fins are sometimes serrated. The goldfish
fins are translucent by mixing a principled BSDF shader, a
transparent shader and a translucent shader.

Bird Since our generated birds have particle fur, the bird
material need only create a colormap. We create masks that
highlight different body parts, including heads, necks, upper
bodies, lower bodies and wings. Each part is assigned two
similar colors guided by a noise texture. Our Bird material
generator has two modes of colors, one with light colored
heads and dark color bodies (emulating bald eagles and
falcons), one with dark color heads and light color bodies
(emulating ducks and common birds).

Carnivore and Herbivore Carnivores and Herbivores are
also equipped with particle fur and therefore color-only mate-
rials. We provide a Tiger material, which makes short stripes
by cutting a small-scale wave texture with another larger-
scale wave texture. Our Giraffe material builds spots by
subtracting a F1-smooth voronoi texture from a F1 voronoi
texture with the same scale. Three other spot materials build
scattered and sometimes overlapped spots using noise tex-
tures and voronoi textures. Our three reptile materials build
colormaps inspired by different kinds of reptiles. We pick
their colors to mimic the reference reptile images, and then
randomize in a small neighborhood.

Beetle We provide a Chitin material emulating the mate-
rial of real beetles and other insects. It uses a computed
”Pointiness” attribute to highlight the boundaries with sharp
curvature. We color the insect head and sharp boundaries
black, and other areas dark red or brown.

Bone, Beak & Horns Bone is most often used for animal
claws and teeth. It starts wit a white to light gray color,
before creating small pits in two different scales using noise
and voronoi textures. Our Horn material samples light brown
to dark brown colors, with a similar mechanism for pits and
scratches. Our Beak material replicates realistic bird beaks
by sampling a random yellow/orange/black color gradient
along. Noise textures are used to add some small pits on it.
Principled BSDF shaders are added to make the beaks more
shiny.

Slime We provide a material titled Slimy, which replicates
folded shiny flesh similar to a ”Blobfish”. It builds thin and
distorted stripe displacement using a noise texture followed
by a wave texture. We create the shiny appearance by assign-
ing high specularity and subsurface scattering parameters.

G.1.4 Other material

Metal We build a silver material and an aluminium ma-
terial. These use Blender’s Principled BSDF shader with
Metallic set to 1. They also have sparse sunken displacement
from a noise texture.

G.2. Terrain

a) b) c)

d) e) f)

Figure N. Terrain elements, including a) wind-eroded rocks, b)
Voronoi rocks, c) Tiled landscapes, d/e) Caves, and f) Floating
Islands.

G.2.1 Terrain Elements

The main part of terrain (Ground Surface) is composed of
a set of terrain elements represented by Signed Distance
Functions (SDF). Using SDF has the following advantages:

• SDF is written in C/C++ language and can be compiled
either in CPU (with OpenMP speedup) or CUDA to
achieve parallelization.

• SDF can be evaluated at arbitrary precision and range,
producing a mesh with arbitrary details and extent.

• SDF is flexible for composition. Boolean operations are
just minimum and maximum of SDF. To put cellular
rocks onto a mountain, we just query whether each
corresponding Voronoi center has positive SDF of the
mountain.

Terrain elements include:

Wind Eroded Rocks They are made out of Perlin
noise [69] from FastNoise Lite [68] with domain warping
adapted from an article [22]. See Fig. N(a) for an example.

Voronoi Rocks These are made from Cellular Noise
(Voronoi Noise) from FastNoise Lite. They take another
terrain element as input and generate cells that are on the
surface of the given terrain element and add noisy gaps to the
cells. See Fig. N(b) for an example. We utilize this element
to replicate fragmented rubble, small rocks and even tiny
sand grains.

Tiled Landscape Complementary to above, we generate
heterogeneous terrain elements as finite domain tiles. First,
we generate a primitive tile using the A.N.T. Landscape
Add-on in Blender [11], or a function from FastNoise Lite.
This tile has a finite size, so we can simulate various natural
process on it, e.g., erosion by SoilMachine [62], snowfall
by diffusion algorithm in Landlab [33] [6] [30]. Finally,

various types of tiles can be used alone or in combination to
generate infinite scenes including mountains, rivers, coastal
beaches, volcanos, cliffs, and icebergs. Fig. N(c) shows an
example of a iceberg tile. Tiles are combined by repeating
them with random rotations and smoothing any boundaries.
The resulting terrain element is still represented as an SDF.

Caves Our terrain includes extensive cave systems. These
are cut out from other SDF elements before the mesh is
created. The cave passages are generated procedurally us-
ing an Lindenmayer-System with probabilistic rules, where
each rule controls the direction and movement of a virtual
turtle [59]. These rules include turns, elevation changes,
forks, and others. These passages have varying cross section
shapes and are unioned with each other, leading to compli-
cated cave systems with features from small gaps to large
caverns. One can intuitively tune the cavern size, tunnel
frequency and fork frequency by adjusting the likelihoods of
various random rules. See Fig. N(d) for an interior view of a
cave and Fig. N(e) for how it cut from mountains.

Floating islands Besides natural scenes, we also have
fantastical terrain elements, e.g., floating islands (Fig. N(f))
by gluing mountains and upside down mountains together.

G.2.2 Boulders

We start off with a mesh built from convex hull of around
32 vertices. We randomly select some faces that are large
enough, so that they can be extruded and scaled. We repeat
this process for two levels of extrusions: large and small.
Finally we bevel the mesh, and add a displacement based on
high- and low-frequency Voronoi textures. After generating
the base mesh, boulders are given a rock surface and option-
ally a rock cover surface. See Sec. G.1 for details. Boulders
are placed on the terrain mesh as placeholders.

G.2.3 Fluid

Most water and lava in our scenes form relatively static pools
and lakes — these are handled by generating a flat plane and
applying a Surface Water or Lava material from Sec. G.1.

Ocean We simulate dyhnamic oceans Blender’s built-in
modifier to generate displacements on top of a water plane.
This simulation is finite domain, so we tile it as described in
Tiled Landscape above.

Dynamic Fluid Simulation We generate dynamic water
and lava simulations using Blender’s built-in Fluid-Implicit-
Particle (FLIP) plugin [8]. They can either simulated on
a small region of the terrain or work together with Tiled
Landscape, e.g., Volcanos to be reused as instances. The

simulations are parameterized by sampled values of vortic-
ity, viscosity, surface tension, flow amount, and other liquid
parameters. We simulate fire and smoke simulations us-
ing Blender’s particle simulator. Our system allows for 1)
Simulating fire and smoke on small random regions on the
terrain or 2) Choosing arbitrary meshed assets on the scene
to be set on fire or emit smoke. The simulations interact
with turbulent and laminar wind flows added on the scene.
While these simulators are provided with Blender, we con-
tribute significant engineering effort to automate their use.
Typically, users manually set up individual simulations and
execute them through the UI - we do so programmatically
and at large scale.

G.2.4 Weather

We provide procedural SDF functions for 4 realistic cate-
gories of clouds, each implemented as node-graphs. We
implement rain and snow using Blender’s particle system
and wind simulation. We also apply atmospheric volume
scattering to the entire scene to create haze, fog etc.

G.2.5 Lighting

The majority of scenes are lit only by the sun and sky. We
simulate these using the built in Nishita [66] sky model, with
randomized parameters for the Sun’s position and brightness,
as well as atmospheric parameters. In cave scenes, we place
glowing gemstones as natural proxies for point lights. In
underwater scenes, ray-traced refractive caustics are too
costly at render-time, so we substitute textured spot lights.
Finally, we provide an option to attach a virtual flash light or
area light to the camera, to simulate a human or robot with
an attached light.

G.3. Plants

G.3.1 Leaves, Flowers & Pinecones

Pinecones Pinecones are the woody seed-bearing organs
for conifers, which features scales and bracts arranged
around a central axis, as shown in Fig. U b). Pinecones
are made from individual buds. Each buds are sculpted from
a mesh circle, with its left most point chosen as the origin.
The vertices are displaced along the axis to the origin as well
as along the Z axis, with scale designated by the direction
from the origin to that point. We then create a mesh line
along the Z-axis to form the stem of the pinecone. Pinecone
buds are distributed on the axis from bottom to up with a
decreasing scale and changing rotation. The rotation is com-
posed of two parts: one along the Z axis that spread the buds
around the pinecone, another along the X axis the gradually
point the buds upwards. Pine shaders are made from Princi-
pled BSDF of a single color. Pinecones are scatters on the
terrain mesh surfaces.

Leaves Our leaf generation system covers common leaf
types including oval-shaped (which covers most of the broad-
leaved trees), maple, ginkgo, and pine twigs.

For oval-shaped leaves, we start by subdividing a 2D
plane mesh finely into grids, and evaluate each grid location
with various noise functions. The leaf boundary defined by a
set of control points of a Blender curve node, which specifies
the width of the leaf at each location along the main stem.
We then delete the unused geometry to get a rough shape of
the leaf. To create veins, we use a 1D Voronoi Texture node
on a rotated coordinate system, to model the angle between
the veins and the main stem. We extrude the veins and pass
the height values into the Shader Node Tree to assign them
different colors. We then add jigsaw-like patterns on the
boundaries of the leaf, and create the cell structures using a
2D Voronoi Texture node. We finally add wrapping effect to
the leaf with another curve node.

The maple leaves and ginkgo leaves are created in a very
similar way as the oval-shaped leaves, except that we use
polar coordinates to model rotational symmetric patterns,
and the shape of the leaves is defined by a curve node in the
polar coordinates.

Pine twigs are created by placing pine needles on a main
stem, whose curvature and length are randomized.

We use a mixture of translucent, diffuse, glossy BSDF to
represent the leaf materials. The base colors are randomly
sampled in the HSV space, and the distribution is tuned for
each season (e.g., more yellow and red colors for autumn).

FlowerPlant We create the stem of a flower plant with
a curve line together with an cylindrical geometry. The
radius of the stem gradually shrinks from the bottom to the
top. Leaves are randomly attached to resampled points on
the curve line with random orientations and scales within
a reasonable range. Each leaf is sampled from a pool of
leaf-like meshes. Additionally, we add extra branches to
the main stem to mimic the forked shape of flower plants.
Flowers are attached at the top of the stem and the top of the
branches. Additionally, the stem is randomly rotated w.r.t
the top point along all axes to generate curly looks of natural
flower plants.

G.3.2 Trees & Bushes

We create a tree with the following steps: 1) Skeleton Cre-
ation 2) Skinning 3) Leaves Placement.
Skeleton Creation. This step creates a directed tree-graph
to represent the skeleton of a tree. Starting from a graph
containing a single root node, we apply Recursive Paths to
grow the tree. Specifically, in each growing step, a new node
is added as the child of the current leaf node. We computed
the growing direction of the new node as the weighted sum
of the previous direction (representing the momentum) and

a random unit vector (representing the randomness). We
further add an optional pulling direction as a bias to the
growing direction, to model effects such as gravity. We also
specify the nodes where the tree should be branching, where
we add several child nodes and apply Recursive Paths for
all of them. Finally, given the skeleton created by Recursive
Paths, we use the space colonization algorithm [73] to create
dense and natural-looking branches. We scatter attraction
points uniformly in a cube around the generated skeleton,
and run the space colonization for a fixed amount of steps.
Skinning. We convert the skeleton into a Blender curve
object, and put cylinders around the edges, whose radius
grows exponentially from the leaf node to the root node. We
then apply a procedural tree bark material to the surface of
the cylinders. Instead of using a UV, we directly evaluate
the values of the bark material in the 3D coordinate space to
avoid seams. Since the bark patterns are usually anisotropic
(e.g., strip-like patterns along the principal direction of the
tree trunks), we use the local coordinate of the cylinders, up
to some translation to avoid seams in the boundaries.
Leaves Placement. We place leaves on twigs, and then
twigs on trees. Twigs are created using the same skele-
ton creation and skinning methods, with smaller radius and
more branches. Leaves are placed on the leaf nodes of the
twig skeleton, with random rotation and possibly multiple
instances on the same node. We use the same strategy to
place the twigs on the trees, again with multiple instances
to make the leaves very dense. For each tree we create 5
twig templates and reuse them all over the tree by doing
instancing in Blender, to strike a balance between diversity
and memory cost.

Compared to existing tree generation systems such as
the Sapling-Tree-Gen* addon in Blender and Speed-Tree† in
UE4, our tree generation system creates leaves and barks
using real geometry with much denser polygons, and thus
provides high-quality ground-truth labels for segmentation
and depth estimation tasks. We find this generation proce-
dural very general and flexible, whose parameter space can
cover a large number of tree species in the real world.
Bushes We also use this system to create other plants such as
bushes, which have smaller heights and more branching com-
pared to trees. Our system models the landscaping bushes
that are pruned to different shapes by specifying the distribu-
tions of the attraction points in the space colonization step.
Our bushes can be of either cone, cube or ball shaped, as
shown in Fig. O.

G.3.3 Cactus

Globular Cactus is modeled after cactus from genus Fe-
rocactus, as shown in Fig. Pa). It features a barrel-like base

*https://docs.blender.org/manual/en/latest/addons/add curve/sapling.html
†https://store.speedtree.com

shape and tentacles growing from the pointy vertices of the
cactus body. We implement globular cactus by first creating
a star-like 2D mesh as its cross section. We then use geome-
try nodes to rotate, translate and scale it along the Z-axis at
the same time, converting it to a 3D mesh. The rotation of
the cross section mesh contributes to the desired tilt of the
cactus body, and the scale determines the general shape of
cactus. Finally the cactus is deformed and scale along the X
and Y axis. For Globular Cactus, spikes are distributed on
the the pointy vertices generated from the star and on the top
most part of the cactus.

Columnar Cactus is modeled after cactus from genus
Cereus, as shown in Fig. Pb). It features an elongated body
with a torch-like shape. We first generate the skeleton using
our tree skeleton generation method. This time we choose
a configuration with only two levels, both with a smaller
momentum in path generation and a large drag towards the
positive Z-axis that finally makes the cactus pointing up.
From the cactus skeleton, we convert it into a 3D mesh with
geometry nodes that moves a star mesh along all the splines
in the tree-like skeleton, with the top end of each path having
a smaller radius. For Columnar Cactus, spikes are distributed
on the the pointy vertices generated from the star and on the
top most part of the cactus.

Pricky pear Cactus is modeled after cactus from genus
Opuntia, as shown in Fig. Pc). It features pear-like cactus
part extruded from another one. We create individual cactus
parts similar to the one in Globular cactus. We it down in
Y-direction and rotated it along the Z-axis so that it becomes
almost planar and pear-shaped. These individual cactus parts
are stacked on top of each other with an angle recursively
to make the whole cactus branching like a tree. For Pricky
Pear Cactus, we distribute spikes on both the front and the
back faces of the cactus.

Cactus spikes After the main body of a cactus is created,
we apply medium-frequency displacement on its surface
and add the spike according to specifications. The low-poly
spikes are made from several straight skeletons generated by
the tree generation system, and are distributed on the selected
areas of the cactus with some minimal distance between two
instances.

G.3.4 Fern

We create 2-pinnate fern (fern) in Infinigen, as it is common
in nature. Each fern is composed of a random number of
pinnae with random orientations above the ground. Several
instances of fern pinnae are illustrated in Fig.Q.

Pinnae Composition Each pinnae consists of a main stem
and a random number of pinna attached on each side of the
stem. The length of the pinnae (main stem) is controlled by
a parameter age. The main stem is first created with a mesh
line with its points set along the z-axis. Then, the mesh line
is randomly rotated w.r.t x, y axis around the top point to
generate the curly look of a fern pinnae. The pinnae’s z-axis
rotation is slightly different with x, y axis rotation, as we use
its curvature to represent the age of the fern. In nature, young
fern pinnae has more curly stem and grown-up fern pinnae
is usually more stretched and flat. Therefore, we choose the
scale of the pinnae’s z-axis rotation inverse proportion to the
age of the pinnae. The external geometry of the main stem
is a cylindar with its radius gradually shrinks to 0 at the top.
Noticing that the bottom point is always set to world origin
despite of the random rotations of the mesh line.

Before merging multiple pinnae into a fern, each pinnae is
further curved along the z-axis towards the ground according
to the desired orientation of the pinnae. We refer this as
the gravitational rotation induced on the geomtery of pinnae.
The scale of the gravitational rotation at each mesh line point
is also proportion to its distance to the world origin, i.e., the
longer the larger.

For 2-pinnate fern, the geometry of each pinna is similar
to pinnae, i.e., a stem and leaves attached on each side.
Similar to the main stem, we also curve the pinna stem
randomly w.r.t x, y axis and inverse proportion to the age
w.r.t the z-axis. In our fern, the leaves are created with simple
leaves-like geometry.

The whole pinnae is generated by adding leaf instances
on pinna stem and then adding pinna instances on the main
stem. The scale of each leaf instance is scaled to form a
desired contour shape of the pinna, which is defined to grow
linearly from tip to bottom with additional random noise.
For pinna instances on the pinnae, we generate multiple
distinct pinna versions and then randomly select one for
each mesh line point. In this way, we can enough irregularity
and asymmetricity on the pinnae. Furthermore, the pinna
instances are also scaled according to the desired pinnae
contour. In our asset, two contour modes are use. One grows
linearly from top to bottom with additional random noise
and the other grows linearly from top to 1

6 from the bottom
and then decrease linearly till the bottom of the pinnae.

Moreover, after all components are joined together, ad-
ditional texture noise is added on the mesh to create more
irregularities.

Fern Composition Each fern is a mixture of pinnae with
random orientations. In nature, these fern pinnae typically
bend down towards the ground. We also add young fern
pinnae standing rigidly in the center.

G.3.5 Mushroom

Mushrooms are modeled after real mushrooms from genus
Agaricus and Phallus, as shown in Fig. U a). A mushroom
is composed of its cap, its stem that supports the cap and
optionally the skirt that grows from underneath the cap. The
cap is made from moving a star-like mesh along the Z-axis
with radius specified by multiple Bezier curves. The star-like
mesh forms the pleats on the cap surface and gills underneath
the caps. The stem is made from a Bezier curve skeleton
and converted to a 3D mesh via geometry nodes, with its
top end sticking to the cap at an angle. For the mushroom
skirt, we create an invisible mesh P underneath the cap
that have a similar cross section as the cap. Following the
same technique in the Brain Coral (See Appendix G.3.6), we
shrinkwrap a reaction-diffusion pattern from a icosphere S
onto P , which also mapped the A field onto P . This time,
we remove the vertices whose A field is below a certain
threshold from the mesh P , so P would have honeycomb-
like holes. The skirt is placed underneath the cap. Mushroom
have similar material as corals, but have more white spots
and lower roughness on its surface. Mushrooms are scattered
on the terrain surface.

G.3.6 Corals

Corals are marine invertebrates that live mostly on the
seafloor, and are prevalent in underwater scenes. In Infinigen,
we provide a library of 8 templates for generating different
classes of corals. Examples of individual coral classes are
provided in Fig. R. We elaborate these templates for the main
coral bodies as follows:

Leather Coral is modeled after corals from genus Sinu-
laria, as shown in Fig. Ra). It features curvy surfaces that
folds on it self. We implement Leather Coral using a itera-
tive mesh generation technique named Differential Growth
from [67]. The mesh starts off as a mesh circle. At each
iteration, a force is applied to all of its points. The force at
each point is composed of an attraction force from its graph
neighbors, a repulsive force from vertices that are close in
3D position, a global growth direction, and a noise vector.
All of these forces can be specified by a set of parameters.
Such force is applied on all vertices, and the vertices would
be displaced by a distance proportional to the force. More
concretely, for all vertices v

∆xv = x′
v − xv ∝ fattr + frep + fgrow + fnoise

If the displacement has moved two vertices so that the
edge connecting these two vertices has its length above a
certain threshold, such edge would subdivided so that their
lengths would fall below the threshold, creating new vertices
on the edges. The aforementioned process defines a growing

mesh when it is repeated for multiple iterations. In specific,
for Leather Corals, we choose the parameters so that the
noise force function and growth force function are large,
and the growth iterations stop when there’s 1k faces. To
convert this mesh to the final coral mesh, we apply smooth
and subsurface operation on the mesh, followed by a solidify
operation that gives the planar mesh some width, converting
it into a 3D mesh.

Table Coral is modeled after corals from genus Acropora,
as shown in Fig. Rb). It features a flat table with curvy sur-
faces near the boundary. For Table Corals, we use the same
Differential Growth method as the Leather Coral. However,
we choose a different set of parameters for force application.
More concretely, we use a larger repulsion force, apply less
displacement on boundary vertices, and stop the process
after there is 400 faces in the mesh.

Cauliflower Coral is modeled after corals from genus
Pocillopora, as shown in Fig. Rc). It features wart-like
growth on its surface. We implement Cauliflower Coral
after [42]’s simulation of dendritic crystal growth. In this
growth simulation setup, we have two density fields A and
B over 3D space. The simulation follows the following PDE:

m = α arctan (γ(T − b)/π)

∂A

∂t
= ε2∇A+A(1−A)(A− 1/2 +m)/τ

∂B

∂t
= ∇B + k

∂A

∂t

where α, γ, T, ε, τ, k are pre-specified parameters. We run
this PDE simulation on a 3D grid space with forward Euler
method for 800 iterations. The resulting density map A, is
used to generate the 3D mesh for the coral via the marching
cube mesh conversion method.

Brain Coral is modeled after corals from genus Diploria,
as shown in Fig. Rd). It features groovy surface and intricate
patterns on the surface of the coral. We first create the
surface texture with reaction-diffusion system simulation. In
particular, we start off from a mesh icosphere, and run Gray-
Scott reaction-diffusion model on its vertex graph, where
edges in the mesh are the edges of the graph. This simulation
has two fields A,B on individual vertices, following the
equation of:

∂A

∂t
= rA∇A−A2B + f(1−A)

∂B

∂t
= rB∇B −A2B − (f + k)B

where rA, rB , f, k are pre-specified parameters. After 1k
iterations, the field A is stored to the mesh sphere S. Then
we build another polygon mesh P , which follows simple
deformation by geometry nodes. We apply shrinkwrap object
modifier from S to P , which also maps the field A onto mesh
P . The shrinkwrap object modifiers ‘wraps’ the surface of A
onto P by finding the projected points of A along A’s normal
direction. We displace P ’s surface using the projected field
A, which forms the grooves on the mesh surface. For Brain
Corals, we choose the parameters so that f =

√
k/2− k for

some specific k, i.e. the kill rate and feed rate of system are
on the saddle-node bifurcation boundary, so that the surface
is groovy.

Honeycomb Coral is modeled after corals from genus
Favia or Mussismilia, as shown in Fig. Re). It features
honeycomb-shaped holes on the surface of the coral. We
use the same Gray-Scott reaction-diffusion model [23] as
the Brain Corals. We choose the parameters so that f =√
k/2 − k − 0.001 for some specific k, i.e. the kill rate

and the feed rate of the system are between the saddle-node
bifurcation boundary and the Hopf bifurcation boundary,
which yields the honeycomb-shaped holes.

Bush Coral is modeled after corals from genus Acropora,
which includes the Staghorn coral, as shown in Fig. Rf). We
implement bush coral using our tree skeleton generator as
discussed. In particular, the skeleton of tree coral has three
levels of configuration, with each level of configuration spec-
ifying how a branch would grow in terms of directions and
length, as well as where new branches would emerge. After
the tree skeleton is generated, we convert the 1D skeleton to
3D mesh by specifying radius at each vertex of the skeleton,
with the vertices closer to endpoints having a smaller radius.

Twig Coral is modeled after corals from genus Oculina, as
shown in Fig. Rg). We use the same tree skeleton generator
as in Bush Corals. We choose a separate set of parameters
so that Twig Corals are more low-lying and less directional
than Bush Corals.

Tube Coral is modeled after not corals, but sponges from
genus Aplysina, which none-the-less lives in the same habitat
as corals, as shown in Fig. Rh). We first generate the base
mesh as the dual mesh of a deformed icosphere, whose faces

have between 5-6 vertices. The optionally extrude some its
upward facing faces along the direction that is approximately
along the positive Z-axis. This types of extrusion happens
multiple times with different multiple extrusion length. The
extruded mesh will have its topmost face removed and will
be applied with the solidify object modifier so that the mesh
would become a hollow tube.

Coral tentacles After the main body of a coral is created,
we add a high frequency noise onto the coral surface. We
then add tentacles to the coral mesh. Each tentacle has a
low-poly mesh generated from the tree generator system that
sprawls outside the coral body. Tentacles are distributed on
certain parts of the coral body, like on top-facing surfaces or
outermost surfaces.

G.3.7 Other sea plants

Besides corals, we also provide assets of other sea plants,
like kelps and seaweeds. Both kelps and seaweeds observe
the global oceanic current, which is unique for the entire
scene. We show examples of kelps and seaweeds in Fig. S.

Kelps Kelps are large brown algae that lives in shallow
waters, as shown in Fig. Sa). To build kelps, we first build
meshes for individual kelp leaves. To do so, we first create
a planar mesh which is bounded by two sinusoid functions
from two sides. It is then deformed along the Z axis an
subsurfaced and make a wavy shape. For the kelp stem, we
first plot a Bezier curve with its control points following a
Brownian process with drift towards the sum of the posi-
tive Z direction and the oceanic current drift. The curve is
turned into a mesh with a small radius, and this becomes
the mesh of the kelp stem. Along the stem we scatter points
with fixed intervals, where we place kelp leaves along its
normal direction. Finally, we rotate the kelp leaves towards
somewhere lower than the oceanic current vector, so that
they are affected by both the oceanic current and gravity.

Seaweeds Seaweeds are another class of marine algae that
are shorter than kelps, as shown in Fig. Sb). We create sea-
weed assets using the Differential Growth model as in the
Leather Coral assets (See Section Appendix G.3.6). In par-
ticular, we choose the parameters so that it has a large growth
force towards the positive Z axis. We apply smoothing and
subsurfacing to the 2D mesh and solidify it into a 3D mesh.
Then the seaweed is bent towards the direction of the oceanic
current by a varying degree using the simple deform object
modifier. Seaweeds are scattered on the surface of the terrain
mesh.

G.4. Surface Scatters

Moss forms dense green clumps or mats on a flat surface.
We create individual moss using Bezier curves as skeletons,
and then turning them into 3D mesh. We distribute individ-
ual moss instance on the boulder surfaces with the Z axis
aligned at an angle with the surface normal. Such angle of
rotation is guided by a Musgrave texture so that mosses in a
neighbourhood have similar rotations. Moss instances have
shaders that is built from a mixture of several yellowish to
greenish colors, with the color variation determined by a
Musgrave texture. Moss can grow on three different places
of the boulder, from the faces with a higher Z coordinate
than a threshold, or those whose face normal is within a
threshold of the positive Z axis, or near edges where there
are concave edges.

Lichen is a composite organism that arises from algae that
forms a mat on rock surfaces. Individual lichens are made
from Differential Growth specified in Appendix G.3.6. The
color of lichens comes from a mixture of yellowish-greenish
color and white colors, with the mixing ratio guided by a
Musgrave texture. Lichen can grow on either boulders or on
tree trunks. On boulders, lichens are distributed on all faces
of the boulder, or the lower portions of tree trunks with a
minimal distance between two instances.

Slime mold are organisms shaped like gelatinous slime
that lives on decaying plant materials. We first designate
around 20 initial seedling vertices where the slime mold can
grow from, and assign a random weight proportional to the
local convexity to all edges in the chosen area of the mesh.
Then we use geometry nodes to compute the shortest path
from each vertex to any of the seedling vertices, and connect
these shortest path. These shortest paths from the skeleton of
the slime mold. Slime mold only grows on the lower portion
of tree trunks

Pine needles Pine needles are the leaves of the pine tree
that have fallen onto the ground, as shown in Fig. V. Pine
needles are made from a segment of a ellipsoid and are
typically of brownish and greenish colors. Pine needles are
scattered on certain parts of the terrain surface based on
noise texture. Pine needles are scattered on different heights
so that pine needles of a certain color are above pine needles
of another color.

G.5. Marine Invertebrates

G.5.1 Mollusk

Mollusk is the collection of animals that includes most snails
and shells, as shown in Fig. W.

Snails is modeled after animals mostly from the class Gas-
tropoda. It features snails of following shape: Conch (Fig. W
a), from family Strombidae, Auger (Fig. W b), from family
Terebridae), Volute (Fig. W c),from family Volutidae) and
Nautilus (Fig. W d),from a different class Cephalopod). All
these class of animals share the commonality that they live
in a shell that grows and rotates at a constant angle as the
soft body of the animal grows, which can be modeled using
the array object modifier in Blender. We first build the cross
section of these snails from the interpolation of a start and a
ellipsoid, which gives the space for the soft body to live in,
as well as the pointy spikes on some snails’ surface. Then
we apply the array object modifier onto the cross section so
that it is rotated with a constant angle, scaled at a constant
ratio, and displaced at a constant interval. These series of
cross section can uniquely define the cross section at each
stage of the growth, with which we can bridge the edge loops
to finally form a 3D mesh for the whole snail. Parameters in
this process includes the displacement of cross section along
and orthogonal to the axis, the total number cycles of rota-
tions, the ratio that the scale of cross section shrinks, and the
other parameters with regard to the shape of the base cross
section. The parameters are set differently for individual
class of snails: Conch and Auger have large displacement
along their axis while Volute and Nautilus have almost none;
Conch is made from more spiky cross section mesh, and
has less overlapping chambers than Auger; Nautilus has a
faster-shrinking cross section, almost no displacement along
the axis, and have less over lapping chambers than Volute.

Shells is modeled after animals mostly from the class Bi-
valvia. It features shells of the following shape: Scallop
(Fig. W e), from family Pectinidae), Clam (Fig. W f), from
family Veneridae and Mussel (Fig. W g), from family Mytil-
idae). These animals share the commonality that they are
covered by two symmetrical shells joining at a point that
folds around the soft body of the individual, with both shells
growing gradually from inside the shell. To build assets
for these shells, we first generate individual shells. We first
create a mesh circle and select one point on the circle as
its origin. For all points on the circle, we scale its distance
from the origin, with the ratio determined by the direction
from the origin to the target point. Then we choose a point
above the XY-plane, and interpolate between the previous
mesh and the newly selected point. The interpolation ratio is
determined by a point’s distance to the boundary, so that the
boundary points are the XY plane, which creates the convex
shape of an individual shell. We mirror the shell at an angle,
and now we have the 3D mesh of the shell. We have different
designs for distinct class of shells: Scallops are given a wavy
pattern depending on vertices’ direction to the origin, and
have girdles near the origin; Clams are the most basic shells
with no alternations; Mussels are made from shells that are

similar to ellipsoids with large eccentricities.

Mollusk material Both snails and shells grows along a
certain direction and leaves a changing color pattern along
its growing direction. We define a 2D coordinate (U, V)
the mollusks surface for mapping textures, whether U is the
growth direction and V is orthogonal to it. For snails, U is
the direction of displacement for its cross section mesh, and
V is along the boundary of the cross section mesh. For shells,
U is the direction from the center of the shell to the boundary
of shell, and V is along the boundary of the shell. We design
a saw-like wavy texture that progresses along either U or V
directions, which creates interchanging color patterns along
or orthogonal to the direction of growth. Both snails and
shells are given a low-frequency surface displacement, and
scatter on the terrain mesh.

G.5.2 Other marine invertebrates

Jellyfish is composed of its cap and tentacles. For the cap,
we first generate two mesh uv spheres with one above an-
other, then scale and deform both spheres. Then we subtract
the sphere below from the the sphere above, creating the cap
with two surfaces, one facing towards the positive Z axis
and another facing towards the negative Z axis. Tentacles
are made from ribbons along the Z axis, which are later
deformed along the X axis and tapered, and finally rotated
around the Z axis. Tentacles of varying sizes are placed
around the lower surface of the cap. The jellyfish shader
is made from a mixture of colored emission, a principled
BSDF with transmission, and a colored transparent shader,
whose mixing ratio is guided by Fresnel coefficients. We
use a more transparent material for outer surface of the cap
and shorter tentacles, which are more peripheral parts of the
body, and a more opaque material for inner surface of the
cap and longer tentacles, which are core organs of a jellyfish.
Jellyfish are scattered with a random offset above the ground
mesh.

Urchin is a spiny, globular animal living on the sea floor.
For modeling urchin assets, we first start with an icosphere.
For each face of the icosphere, we extrude it outwards by
a small distance, scale it down, and extrude it inwards to
form the girdle. We then extrude the faces outwards by a
varying but large distance, and scale it down to zero so that
they form the spikes that ground on the urchin. The bases
of an urchin are from a darker color and the spikes are from
a lighter color between purple and yellow, with the girdle’s
color somewhere in between.

G.6. Creatures

G.6.1 Creature Construction

Each creature genome is a tree of parameters, with nodes
specifying parts and edges specifying attachment.

Each node contains a dictionary of named input parame-
ters for one of our part templates (Sec. G.6.4). We compute
all parts in isolation before proceeding to attach them. This
part template must produce 1) a mesh and 2) a skeleton line.
The skeleton line is a 3D parametric curve specifying the
center line of the part, and is used for attachment and rig-
ging. Requiring part templates to produce a center line is
not a limitation - for NURBS and most node-graph parts it
is trivial to obtain. Additionally, this output can be omitted
for any part not intended to have further children attached to
it. Each part template may also produce additional metadata
for use in the animation and material stages.

Each edge contains a coordinate (u, v, r) to determine
the attachment location. (u, v) ∈ [0, 1]2 specifies a location
on the parent mesh’s surface. For arbitrary meshes, this
is computed by travelling u percent of the way along the
parent’s skeleton and raycasting orthogonally to it, with
angle 360◦ ∗ v. If the parent part is a NURBS, one can
instead query (u, v) on it’s parametric surface. Finally, we
use r to interpolate between the found surface point, and
the corresponding skeleton point, which has the effect of
controlling how close to the surface the part is mounted.

Finally, each edge specifies a relative rotation used to pose
the part. Optionally, this rotation can be specified relative to
the parent part’s skeleton tangent, or the attachment surface
normal.

G.6.2 Creature Animation

As an optional extra output, each part template may specify
where and how it articulates, by specifying some number of
joints. Each joint provides specifies rotation constraints as
min/max euler angles, and a parameter t ∈ [0, 1], specifying
how far along the skeleton curve it lies. If a part template
specifies no joints, it’s skeleton is assumed to be rigid, with
only a single joint at t = 0. We then create animation bones
spanning between all the joints, and insert additional bones
to span between parts.

Any joint may also be tagged as a named inverse kinemat-
ics (IK) target, which are automatically instantiated. These
targets provide intuitive control of creature pose - a user or
program can translate / rotate them to specify the pose of
any tagged bones (typically the head, feet, shoulders, hips
and tail), and inverse kinematics will solve for all remaining
rotations to produce a good pose.

We provide simple walk, run and swim animations for
each creature. We procedurally generate these by construct-
ing parametric curves for each IK target. These looped

curves specify the position of each foot as a function of
time. They can be elongated or scaled in height to achieve a
gallop or trot, or even rotated to achieve a crab walk or walk-
ing in reverse. Once the paths are determined, we further
adjust gait by choosing overall RPM, and offsets for how
synchronized each foot will be in it’s revolution.

G.6.3 Genome Templates

In the main paper, we show the results of our realistic Car-
nivore, Herbivore, Bird, Beetle and Fish templates. These
templates contain procedural rules to determine tree structure
by adding legs, feet, head and appropriate details to create a
realistic creature. Each template specifies distributions over
all attachment parameters specified above, which provides
additional diversity ontop of that of the parts themselves.
Tree topology is mostly fixed for each template, although
some elements like the quantity of insect legs and presence
of horns or fish fins are random.

Our creature system is modular by design, and supports
infinite combinations besides the realistic ones provided
above. For example, we can randomly combine various crea-
ture bodies, heads and locomotion types to form a diverse
array of creatures shown in Fig X. As we continue to im-
plement more independent creature parts and templates, the
possible combinations of these random creature genomes
will exponentially increase.

Creature genomes also support a semi-continuous inter-
polation operation. Interpolation is trivial for creatures with
identical tree structure and part types - one can perform
part-wise linear interpolation of node and edge parameters.
When tree topology or part types don’t match, we recursively
compute a matching for each node’s children which mini-
mizes the difference of edge attachment parameters, then
perform linear interpolation on any node parameters with
matching names. To interpolate between a present and miss-
ing genome node, we scale the part down from its original
size to 0, which results in small vestigial arms or tails on the
intermediate creatures. When part types do not align exactly,
there is a discrete transition halfway through interpolation,
so interpolation is not continuous in all cases.

G.6.4 Creature Parts

NURBS Parameterization Many of our creature body
and head templates are comprised of non-uniform rational
B-splines (NURBS). NURBS are the generalized 3D analog
of a Bézier curve. In order to form a closed shape, we
pinch each NURBS surface closed at its ends, and loop it’s
handles in the V direction to form a closed cylinder as a
starting point. We set the U and V knot-vectors to be Pinned
Uniform, and instead rely on densely-spaced or coincident
handles to create sharp edges where necessary.

By default, a NURBS cylinder is represented as an N×M
array of 3D handle locations. We find the space of all
NURBS handle configurations too high dimensional and
unstructured to randomize directly. Adding Gaussian noise
to handle locations produces lumpy, unrealistic creatures,
and is unlikely to coordinate to create phenomena like bent
limbs or widened midsections. Instead, we randomize under
a factored representation. Specifically, we start with a Nx3
array of radii and relative angles, which stores a center line
for the part as polar-coordinate offsets. Accumulating these
produces an Nx3 skeleton line. We arrange N profile shapes
around this center line, each stored as M 3D points centered
about the origin. This representation has just as many pa-
rameters as the original, but randomizing it produces better
results. Adding noise to the polar skeleton angles and radii
produces macro-scale changes in body or head shape, and
multiplying the profiles by random scalars can easily change
the radius or cross section, independent of where along the
skeleton that profile is located.

As a starting point for this randomization, we determined
skeleton and profile values which visually match a large
number of reference animal photos, including Ducks, Gulls,
Robins, Cheetahs, Housecats, Tigers, Wolves, Bluefish, Crap-
pie Fish, Eels, Pickernel Fish, Pufferfish, Spadefish, Cows,
Giraffe, Llama and Goats. Rather than make a discrete
choice of which mean values to use, we take a random con-
vex combination of all values of a certain category, before
applying the extensive randomization described above.

Horns are modeled by a transpiled Blender node graph.
The 2D shapes of horns are based on spiral geometry node,
supporting adjustable rotation, start radius, end radius and
height. The 3D meshes then are constructed from 2D shapes
by curve-to-mesh node, along with density-adjustable depth-
adjustable ridges. Along with the model, we provide three
parameter sets to create goats, gazelles and bulls’ horn tem-
plates.

Hooves are modeled by NURBS. We start with a cylinder,
distributing control points on the side surface evenly. For
the upper part of the cylinder, we scale it down and make it
tilted to the negative X axis, which makes its shape closed
to the horseshoe. The model also has an option to move
some control points toward the origin, in order to create
cloven hooves for goats and bison. Along with the model,
we provide two parameter sets to create horses’ and goats’
horns templates.

Beaks are modeled by NURBS. Bird beaks are composed
of two jaws, generally known as the upper mandible and
lower mandible. The upper part starts with a half cone. We
use the exponential curve instead of the linear curve of the
side surface of the cone to obtain the natural beak shape.

The model also has parameters that control how much the
tip of the beak hooks and how much the middle and bottom
of the beak bulge, to cover different types of beaks. The
lower part is modeled by the same model of the upper part
with reversed Z coordinates. Along with the model, we
provide four parameter sets to create eagles, herons, ducks
and sparrows’ beaks templates.

Node-Graph Creature Parts All part templates besides
those mentioned above are implemented as node-graphs.
We provide an extensive library of node-groups to ease the
construction of creature parts. The majority of these involve
placement and querying of parameterized tubes, which we
use to build muscular legs, arms and head parts. For example,
our Tiger Head and Quadruped Leg templates contain nodes
to construct the main central form of each part, followed
by placement of several tubes along their length to create
muscles and detailed forms. This results in a randomizable
representation of face and arm musculature, which produces
the detailed carnivore heads and legs shown in the main
paper. These node-graph tools can also be layered ontop of
NURBS as a base representation.

Figure E. 144 randomly generated, non-cherry-picked images of terrain produced by our system (Part 1 of 2). Images are compressed due to
space constraints - please see infinigen.org

https://infinigen.org

Figure F. 144 randomly generated, non-cherry-picked images of terrain produced by our system (Part 2 of 2). Images are compressed due to
space constraints - please see infinigen.org

https://infinigen.org

Image Ours Li et al. [48] Sceneflow [60] TartanAir [90] Falling Things [86]

Figure G. Qualitative results on natural stereo photographs. Rectified input images are captured at 2208× 2484 resolution using a calibrated
ZED 2 stereo camera [79]. Our data generator helps RAFT-Stereo generalize well to real images of natural objects.

Image Ours Li et al. [48] Sceneflow [60] TartanAir [90] FallingThings [86]

Figure H. Qualitative results on the Plant and Australia Middlebury [74] test images. RAFT-Stereo trained using Infinigen generalizes well
to images with natural objects.

RGB Depth
Surface Normals + Instance

Occlusion Boundaries Segmentation

Figure I. High-Resolution Ground Truth Samples. We show select ground truth maps for 8 example Infinigen images. For space reasons, we
show only Depth, Surface Normals / Occlusion and Instance Segmentation. Our instance segmentation is highly granular, but classes can be
grouped arbitrarily using object metadata. See Sec.C.2 for a full explanation.

(a) The area of mesh faces in cm2. Our dynamic-resolution scaling causes
faces closer to the camera to be smaller.

(b) Distance of faces from the camera (i.e. depth). Distance is propor-
tional to the area of faces.

(c) Face area measured in pixels. Our dynamic resolution scaling causes
individual mesh faces to appear approximately one pixel across.

Figure J. Dynamic Resolution Scaling. Faces further from the
camera are made smaller (a) such that they appear to be the same
size from the camera’s perspective (c). We show the depth map for
reference (b).

(a) Input Image for reference.

(b) Depth from Blender’s built-in render passes.

Figure K. Our ground truth is computed directly from the underly-
ing geometry and is always exact. Prior methods [9, 24, 27, 29, 48]
generate ground-truth from Blender’s render-passes, which leads to
noisy depth for volumetric effects such as water, fog, smoke, and
semi-transparent objects.

(a) Wall Time (Hours) (b) Memory (GB) (c) CPU Hours (d) GPU Hours (e) # Triangles per scene

Figure L. Resource requirements for creating a pair of stereo 1080p images using Infinigen. Our mesh resolutions scale with the output
image resolution, such that individual mesh faces are barely visible. As a result, these statistics will change for different image resolutions.

Figure M. An example node-graph, as shown as input to the tran-
spiler in Fig. 3 of the main paper. Dark green nodes are node
groups, containing user-defined node-graphs as their implementa-
tions. Red nodes show tuned constants, with annotations for their
distribution.

Figure O. We control the shape of bushes by by specifying the
distributions of the attraction points. Each row are the same bush
species with different shapes (left to right: ball, cone, cube).

a)

b)

c)

Figure P. All classes of cacti included in Infinigen. Each row contains one class of cactus: a) Globular Cactus; b) Columnar Cactus; c)
Pricky pear Cactus.

Figure Q. Assets of fern pinnae included in Infinigen. A fern consists of a random number of pinnae in the same color with random
orientations.

a) b)

c) d)

e) f)

g) h)

Figure R. All classes of corals included in Infinigen. Each block contains one class of coral: a) Leather Coral; b) Table Coral; c) Cauliflower
Coral; d) Brain Coral; e) Honeycomb Coral; f) Bush Coral; g) Twig Coral; h) Tube Coral.

a)

b)

Figure S. Kelps a) and seaweeds b) examples, each occupying one row.

a)

b)

c)

Figure T. Boulder assets with different rock cover surfaces. In particular, each row of boulders are under a) no surface; b) moss surface;)̧
lichen surface.

a)

b)

Figure U. Mushrooms a) and pinecones b).

Figure V. Pine needles scattered onto the ground with varying density.

a) b)

c) d)

e) f)

g)

Figure W. Different classes of mollusks, with each block representing a class of mollusk: a) Conch, b) Auger, c) Volute, d) Nautilus, e)
Scallop, f) Clam, g) Mussel.

Figure X. We provide procedural rules to combine all available creature parts, resulting in diverse fantastical combinations. Here we show a
random, non-cherry-picked sample of 80 creatures. Despite diverse limb and body plans, all creatures are functionally plausible and possess
realistic fur and materials.

Material Generators Interpretable Named ParametersDOF

Mountain 2 Noise Scale, Cracks Scale
Sand 5 Color Brightness, Wave Scale, Wave Distortion, Noise Scale, Noise Detail
Cobblestone 13 Stone Scale, Uniformity, Depth, Crack Width, Stone Colors (5), Mapping Positions (2), Roughness
Dirt 9 Low Freq. Bump Size, Low Freq Bump Height, Crack Density, Crack Scale, Crack Width, Color1, Color2,

Noise Detail, Noise Dimension
Chunky Rock 4 Chunk Scale, Chunk Detail, Color1, Color2
Glowing 1 Color1
Granite 6 Speckle Scale, Color1, Color2, Speckle Color1, Speckle Color2, Speckle Color 3
Ice 7 Color, Roughness, Distortion, Detail, Uneven Percent, Transmission, IOR
Mud 12 Wetness, Large Bump Scale, Small Bump Scale, Puddle Depth, Percent water, Puddle Noise Distortion, Puddle

Noise Detail, Color1, Color2, Color3, WaterColor1, WaterColor2
Rock 0
Sandstone 18 Ridge Polynomial (2), Ridge Density, Ridge High Freq., Ridge Noise Mag., Ridge Noise Scale, Ridge

Disp:Offset Magnitude, Roughness, Crack Magnitude (2), Crack Scale, Color1, Color2, Dark Patch Percentages
(3), Micro Bump Scale, Micro Bump Magnitude

Snow 3 Average Roughness, Grain Scale, Subsurface Scattering
Soil 10 Pebble Sizes (2), Pebble Noise Magnitudes, Pebble Roundness, Pebble Amounts, Voronoi Scale, Voronoi

Mag., Base Colors (2), Darkness Ratio
Stone 10 Rock Scale, Rock Deepness (2), Noise Detail, Noise Roughness, Crack Scale, Crack Width, Color1, Color2,

Roughness
Aluminium 2 Bump Offset, XY Ratio

Fire 2 Blackbody Intensity, Smoke Density
Smoke 2 Color, Density
Ocean 5 Wave Scale, Choppiness, Foam, Main Color, Cloudiness
Lava 10 Color, Rock Roughness, Amount of Rock, Lava Emission, Min Lava Temp., Max Lava Temp., Voronoi Noise,

Turbulence, Wave Scale, Perlin Noise
Surface water 5 Color, Scale, Detail, Lacunarity, Height
Water 6 Ripple Scale, Detail, Ripple Height, Noise Dimension, Lacunarity, Color
Waterfall 3 Color, Foam Color, Foam Density

Bark 9 Displacement Scale, Z Noise Scale, Z Noise Amount, Z Multiplier, Primary Voronoi Scale, Primary Voronoi
Randomness, Secondary Voronoi Mix Weight, Secondary Voronoi Scale, Color

Bark Birch 5 Noise Scale (2), Noise Detail (2), Displacement Scale,
Greenery 13 Color Noise (3), Roughness Noise (3), Roughness Min/Max (2), Translucence Noise (3), Translucence

Min/Max (2)
Wood 3 Scale, XY Ratio, Offset
Grass 6 Wave Scale, Wave Distortion, Musgrave Scale, Musgrave Distortion, Roughness Min/Max (2), Translucence
Leaf 2 Base Color, Vein Color
Flower 5 Diffuse Color, Translucent Color, Translucence, Center Colors (2), Center Color Coeff.
Coral Shader 5 Bright Color, Dark Color, Light Color, Fresnel Color, Musgrave Scale
Slime Mold 7 Edge Weight, Spline Parameter Cutoff, Seedlings Count, Min Distance, Bright Color, Dark Color, Musgrave

Scale
Lichen, Moss 6 Bright Color, Dark Color, Musgrave Scale, Density, Min Distance, Instance Scale

Bird 7 Bird Type, Head Ratio, Stripe Width, Stripe Noise, Neck Ratio, Color1, Color2.
Bone 3 Bump Scale, Bump Frequency, Bump Offset.
Chitin 3 Boundary Width, Noise Weight, Thorax Size.
Horn 8 Noise Scales (2), Noise Details (2), Mapping Control Points (4)
Reptile Brown 3 Circle Scale, Circle Boundary, Noise
Fish Body 7 Scale Size, Scale Noise, Fish Type, Scale Offset, Color1 Ratio, Color2 Ratio, Noise
Fish Fin 7 Offset Z, Offset Y, Shape, Bump Noise, Fin Type, Bump Weight, Transparency
Giraffe 4 Scale, Noise, Circle Width, Belly
Reptile 3 Scale, Offset, Noise
Reptile Gray 2 Noise1, Noise2
Reptile 2-Color 2 Color1, Color2
Scale 3 Scale Size, Scale Noise, Scale Rotation
Slimy 2 Scale, Offset
Spot Sparse 3 Spot Scale, Color1, Color2
3-Color Spots 2 Spot1 Ratio, Spot2 Ratio
Tiger 4 Belly, Stripe Distortion, Stripe Frequency, Stripe Shape
2-Color Spots 4 Offset, Spot Scale, Ratio, Noise
Mollusk 8 UV Pattern Ratio, Scale, Distortion, Pattern Type, Hue Range, Saturation Range, Value Range, Colors Per

Pattern

Num. Generators: 50 Total: 271

Table C. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our
Material Generators.

Terrain Generators Interpretable Named ParametersDOF

3D Noise, Wind-Eroded Rocks 0
Caves 3 Cavern Size, Tunnel Frequency, Fork Frequency
Voronoi Rocks, Grains 2 Rock Frequency, Warping Frequency
Sand Dunes 2 Dune Frequency, Warping Frequency
Mountains, Floating Islands 2 Mountain Frequency, Num. Scales
Coast line 2 Coast curve frequency, Height mapping function
Ground Slope 0
Still Water, Ocean 0
Atmosphere 0
Tiled Landscape 0

Scene Types (Arctic, Canyon,
Cave, Cliff, Waterfall, Coast,
Desert, Mountain, Plain, River,
Underwater, Volcano)

6 Tile Types, Tile Heights, Tile Frequency, Element Probabilities, Water Level, Snow

Num. Generators: 26 DOF: 17

Table D. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Terrain
Generators. Terrain is heavily simulation and noise-based, so has few interpretable DOF but uncountable internal complexity.

Lighting, Weather Interpretable Named Parameters& Fluid Generators DOF

Dust, Rain, Snow, Windy
Leaves

6 Density, Mass, Lifetime, Size, Damping, Drag,

Cumulus, Cumulonimbus, Stra-
tocumulus, Altocumulus

13 Density, Anisotropy, Noise Scale, Noise Detail, Voronoi Scale, Mix Factor, Increased Emission, Angular
Density, Mapping Curve (6)

Atmospheric Fog, Dust 5 Density Min, Density Max, Color, Noise Scale, Anisotropy
Lava/Water 6 Viscocity, Viscocity Exponent, Surface Tension, Velocity Coord, Spray Particle Scale, Flip Ratio
Fire/Smoke 12 Max Temp, Gas Heat, Bouyancy, Burn Rate, Flame Vorticity, Smoke Vorticity, Dissolve Speed, Noise Scale,

Noise Strength, Surface Emission, Turbulence Scale, Turbulence Strength
Sky Light 8 Overall Intensity, Sun Size, Sun Intensity, Sun Elevation, Altitude, Air Density, Dust Density, Ozone Density
Caustics 5 Scale, Sharpness, Coordinate Warping, Power, Spotlight Blending
Glowing Rocks 3 Wattage, Colors, Shape Distortion
Camera Lighting (Flashlight,
Area Light)

3 Wattage, Light Size, Blending

Num. Generators: 19 DOF: 61

Table E. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our
Lighting, Weather and Fluid Generators

.

Rock Generators Interpretable Named ParametersDOF

Rocks 3 Aspect Ratio, Deform, Roughness
Stalagmite / Stalactite 3 Num. Extrusions, Length, Z Offset Variance
Boulder 6 Initial Vertices Count, Is Slab, Large Extrusion Probability, Small Extrusion Probability, Large Extrusion

Distance, Small Extrusion Distance

Num. Generators: 4 DOF: 12

Table F. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Rock
Generators.

Plant & Underwater Interpretable Named ParametersGenerators DOF

Flower 8 Center Radius, Petal Dimensions (2), Seed Size, Petal Angle Range (2), Wrinkle, Curl
Maple 7 Stem Curve Control Points, Stem Rot. Angle, Polar Mult. X, X Wave Control Points, Y Wave

Control Points, Warp End Rad., Warp Angle
Pine 4 Midpoint (2), Length, X Angle Mean
Broadleaf 14 Midrib Length, Midrib Width, Stem Length, Vein Asymmetry, Vein Angle, Vein Density,

Subvein Scale, Jigsaw Scale, Jigsaw Depth, Midrib Control Points, Shape Control Points, Vein
Control Points, Wave X, Wave Y

Ginko 11 Stem Control Points, Shape Curve Control Points, Vein Length, Blade Angle, Polar Multiplier,
Vein Scale, Wave, Scale, Margin Scale, X Wave Control Points, Y Wave Control Points

Pinecone 13 Bud Float Curve Angles, Bud Float Curve Scales, Bud Float Curve Z Displacements, Bud
Instance Rotation Perturbation, Bud Instance Probability, Bud Instance Count, Profile Curve
Radius, Max Bud Rotation, Rotation Frequency, Stem Height, Bright Color, Dark Color ,
Musgrave Scale

Urchin 12 Subdivision, Z Scale, Bevel Percentage, Spike Probability, Girdle Height, Extrude Height,
Spike Scale, Base Color, Girdle Color, Spike Color, Transmission, Subsurface Ratio

Seaweed 7 Ocean Current, Deform Angle, Translation Scale, Expansion Scale, Bright Color, Dark Color,
Musgrave Scale

Jellyfish 16 Cap Height, Cap Scale, Cap Perturbation Scale, Long Opaque Tentacles Count, Short Trans-
parent Tentacles Count, Arm Screw Angle, Arm Screw Offset, Arm Taper Factor, Arm Dis-
placement Strength, Arm Min Distance, Arm Placement Angle Threshold, Bright Color, Dark
Color, Transparent Color, Fresnel Color, Musgrave Scale

Kelp 14 Ocean Current, Axis Shift, Axis Length, Axis Noise Stddev, Leaf Scale, Leaf Float Curve
Length, Leaf Float Curve Width, Leaf Float Curve Z Displacement, Leaf Rotation Perturb,
Leaf Tilt, Leaf Instance Probability, Leaf Instance Rotation Stride, Leaf Instance Rotation
Interpolation Factor, Leaf Instance Count

Shells (Scallop, Clam, Mussel) 9 Top Control Point, Shell Interpolation Ratio, Shell Float Curve Angles, Shell Float Curve
Scales, Radial Groove Scale, Radial Groove Frequency, Hinge Length, Hinge Width, Angle
Between Shells

Snail (Volute, Nautlius, Conch) 8 Cross Section Affine Ratio, Cross Section Spiky Perturbation, Cross Section Concavity, Lateral
Movement, Longitudinal Movement, Rotation Frequency, Scaling Ratio, Loop Count

Reaction Diffusion Coral 10 Intialization Bump Count, Initialization Bump Stride, Timesteps, Step size, Diffusion Rate A,
Diffusion Rate B, Feed Rate, Kill Rate, Perturbation Scale, Smooth Scale

Tube Coral 6 Face Perturbation, Short Extrude Length Range, Long Extrude Length Range, Extrusion
Direction Perturbation, Drag Direction, Extrusion Probability

Laplacian Coral 8 Timesteps, Kill Rate, Step size, Tau, Eps, Alpha, Gamma, Equilibrium Temperature
Tree Coral 9 Branch Count, Secondary Branch Count, Tertiary Branch Count, Horizontal Span, Length,

Secondary Length, Tertiary Length, Base Radius, Radius Decay Ratio
Diff. Growth Coral 8 Colony Count, Max Polygons, Noise Factor, Step Size, Growth Scale, Drag Vector, Replusion

Radius, Inhibit Shell Factor
Coral Tentacles 7 Min Distance, Z Angle Threshold, Radius Threshold, Density, Branch Count, Branch Length,

Color
Grass Tuft 10 Num. Blades, Length Std., Curl Mean, Curl Std., Curl Power, Blade Width Variance, Taper

Mean, Taper Variance, Base Spread, Base Angle Variance
Fern 15 Pinna Rotation (2), Pinnae Rotation (2), Pinnae Gravity, Age, Age Variety, Num Pinna, Pinnae

Contour, Num Pinnae Varieties, Num Leaves, Leaf Width Randomness, Num Pinnae, Pinnae
Rotation Randomness (2),

Mushroom 17 Cross Section Float Curve Angles, Cross Section Float Curve Scales, Cross Section Center
Offset, Cross Section Z Rotation, Stem Length, Stem Radius, Cap Groove Ratio, Cap Scale
Ratio, Cap Radius Float Curve Height, Cap Radius Float Curve Radius, Has Web, Umbrella
Radius, Umbrella Height, Bright Color, Dark Color , Light Color, Musgrave Scale

Flower Stem 15 Branch Leaf Rotation, Branch Leaf Instance, Branch Stem Radius, Branch Rotation Coeff,
Branch Leaf Density, Stem Branch Density, Stem Branch Scale, Stem Branch Range, Stem
Leaf Instance, Stem Leaf Rotation, Stem Flower Instance, Stem Flower Scale, Stem Rotation
Coeff. STem Radius, Num Versions, Rotation Z

Cactus Spikes 6 Branches Count, Secondary Branches Count, Min Distance, Top Cap Percentage, Density,
Color

Globular Cactus 5 Groove Scale, Groove Count, Rotation Frequency, Profile Curve Height, Profile Curve Radius
Columnar Cactus 9 Radius Decay Branch, Radius Decay Root, Radius Smoothness Leaf, Branch Count, Nodes

Per Branch, Nodes Per Second Level Branch, Base Radius, Perturbation Scale, Groove Scale
Pricky Pear Cactus 5 Leaf Profile Curve Width, Leaf Profile Curve Height, Leaf Instance Scale Ratio, Leaf Instance

Placement Angles, Leaf Instance Count

Num. Generators: 30 DOF: 258

Table G. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Plant
and Underwater Invertebrate Generators.

Creature Generators Interpretable Named ParametersDOF

Geonodes Quadruped Body 12 Start Rad., End Rad., Ribcage Proportions (3), Flank Proportions (3), Spine Coeffs (3), Aspect Ratio
Geonodes Bird Body 3 Start Rad., End Rad. Aspect Ratio, Fullness
Geonodes Carnivore Head 15 Start Rad., End Rad., Snout Proportions (3), Aspect Ratio, Lip Muscle Coeff. (3) Jaw Muscle Coeff. (3),

Forehead Muscle Coeff (3)
Geonodes Neck 5 Start Rad. End Rad., Neck Muscle Coeffs. (3)
NURBS Bodies/Heads (Carni-
vore, Herbivore, Fish, Beetle
and Bird)

8 Start/End Dims (4), Proportions, Angle Offsets, Profile Offset, Bump Offset,

Jaw 9 Rad1, Rad2, Width Shaping, Canine Size, Incisor Size, Tooth Density, Tooth Crookedness, Tongue Shaping,
Tongue X Scale

QuadrupedBackLeg 15 Start Rad., End Rad., Aspect Ratio, Thigh Coeffs (6), Calf Coeffs (6),
QuadrupedFrontLeg 21 Start Rad., End Rad., Aspect Ratio, Shoulder Coeffs. (6), Forearm Coeffs (6), Elbow Coeffs (6)
Bird Leg 9 Start Rad., End Rad., Aspect Ratio, Thigh Coeffs (3), Shin Coeffs (3)
Insect Leg 9 Start Rad., End Rad., Carapace Rad. Spike Length, Spike Start Rad., Spike End Rad., Spike Range (2), Spike

Density
Ridged Fin 10 Width, Roundness, Ridge Frequency, Offset Weight (2), Ridge Rot., Affine (2), Noise Ratio (2)
Feather Tail 9 Feather Dims (3), Max Rotation (3), Rotation Randomness (3)
Feather Wing 7 Start Rad., End Rad., Feather Density, Feather Form Sculpting, Wing Extendedness, Feather Rot. Randomness

(2)
Beak 17 Curve Y, Curve Z, Hook Coeff. (2), Hook scale (2), Hook Pos. (2), Hook Thickness (2), Crown Scale, Crown

Coeff. (2), Bump Scale, Bump L, Bump R, Sharpness
MammalEye 9 Radius, Eyelid Thickness, Eyelid Fullness, Tear Duct Placement (3), Eye Corner Placement (3)
Ear 5 Start Rad., End Rad., Depth, Thickness, Curl Angle
Insect Mandible 4 Start Rad, End Rad, Curl, Aspect Ratio
Nose 3 Radius, Nostril Size, Smoothness
Hoof 8 Claw Y Scale, Claw Z Scale, Claw Sag, Angle Length, Angle Rad. Start, Ankle Rad. End, Upper Shape,

Lower Shape
Horn 6 Rad. Start, Rad. End, Ridge Thickness, Ridge Density, Ridge Depth, Height
Foot 12 Start Rad., End Rad., Toe Density, Toe Dimensions (3), Toe Splay, Footpad Radius, Claw Curl, Claw

Dimensions (3)
Tail 4 Start Rad., End Rad., Curl, Aspect Ratio
Cotton, Skin, Rubber Simula-
tion

8 Max Bending Stiffness, Max Compression Stiffness, Goal Spring Force, Pin Stiffness, Shear Stiffness (2),
Tension Stiffness, Pressure

Running Animation 6 Steps Per Second, Stride Length, Gait spread, Stride Height, Upturn, Downstroke
Short Hair, Fluffy Hair, Feath-
ers

18 Clump Num., Avoid Eyes Dist., Avg. Length, Avg. Puff, Length Noise (2), Puff Noise (2), Combing, Strand
Noise (3), Tuft Spread, Tuft Clumping, Hair Radius, Intra-clump Noise, Length Falloff, Roughness

Carnivore Genome 15 Head Ratio, Head Attachment, Jaw Ratio, Jaw Attachment, Eye Attachment (3), Nose Attachment, Ear
Attachment (3), Shoulder Dist., Shoulder Splay, Leg Ratio

Herbivore Genome 22 Neck Start T., Hoof Angle, Foot Angle, Head Interp Temp., Jaw Ratio, Jaw Attachment, Eye Attachment
(3), Nose Attachment, Ear Attachment (3), Shoulder Dist., Shoulder Splay, Leg Ratio, Include Nose, Include
Horns, Horn Attachment (3), Body Interp Temp

Bird Genome 17 Head Ratio, Head Attachment, Tail Attachment (2), Leg Length Ratio, Foot Size Ratio, Leg Attachment (3),
Wing Length Ratio, Wing Attachment (3), Head Ratio, Eye Attacment (3)

Insect Genome 8 Leg Density, Leg Splay, Leg Length Ratio, Include Mandibles, Mandible Attachment (3), Has Hair
Fish Genome 11 Dorsal Fin Ratio, Pelvic Fin Ratio, Pectoral Fin Ratio, Hind Fin Ratio, Fin Attachment (3), Eye Attachment (3)

Body Interp Temp.
Random Genome 10 Has Wings, Locomotion Type, Hair Type, Interp Temperature, Head Type, Has Eyes, Nose Type, Has Jaw, Has

Ears, Has Horns

Num. Generators: 39 DOF: 315

Table H. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our
Creature Generators.

Tree Generators Interpretable Named ParametersDOF

Random Tree, Pine Tree, Bush 26 Growth Height, Trunk Warp, Num. Trunks, Branching Start, Branching Angle, Branching Density, Branch
Length, Branch Warp, Pull Dir. Vertical, Pull Dir. Horizontal, Outgrowth, Branch Thickness, Twig Density,
Twig Scale, Twig Pts, Twig Branching Start, Twig Rot. Randomness, Twig Branching Density, Twig Init
Z,Twig Z Randomness, Twig Subtwig Size, Twig Subtwig Momentum, Twig Subtwig Std., Twig Size Decay,
Twig Pull Factor, Space Colonization Shape

Num. Generators: 3 DOF: 26

Table I. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Tree
Generators.

Scene Composition Generators Interpretable Named ParametersDOF

Scene Generators (Arctic,
Canyon, Cave, Cliff, Coast,
Desert, Forest, Mountain, Plain,
River, Under Water)

110 Asset/Scatter inclusion probabilties (39), Num. Creature/Plant Subspecies (4), Noise Mask Scales (30), Mask
Tapering Coeff. (12), Normal Mask Thresholds (14), Placement Densities (5), Placement Habitats (6)

Num. Generators: 11 DOF: 110

Table J. Our full system contains 182 procedural asset generators and 1070 interpretable DOF. Here we show parameters for just our Scene
Composition Configs. Each config references a terrain composition generator from Fig. D, and specifies a realistic distribution of other
assets to create a fully realistic natural environment.

	. Introduction
	. Related Work
	. Method-0.05in
	. Experiments
	. Contributions & Acknowledgements
	. Figures Extended
	. Experiments
	. Dataset Generation
	. Image Rendering
	. Ground Truth Extraction
	. Runtime

	. Interpretable Degrees of Freedom
	. Transpiler
	. Scene Composition Details
	. Camera Selection
	. Dynamic Resolution
	Spherical Marching Cubes
	Parametric Surface Resolution Scaling
	Subdivision and Remeshing

	. Asset Implementation Details
	. Materials
	Terrain Materials
	Plant Materials
	Creature Material
	Other material

	. Terrain
	Terrain Elements
	Boulders
	Fluid
	Weather
	Lighting

	. Plants
	Leaves, Flowers & Pinecones
	Trees & Bushes
	Cactus
	Fern
	Mushroom
	Corals
	Other sea plants

	. Surface Scatters
	. Marine Invertebrates
	Mollusk
	Other marine invertebrates

	. Creatures
	Creature Construction
	Creature Animation
	Genome Templates
	Creature Parts

