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Figure 1. Given a single portrait image, we first convert it to an intermediate representation HairStep consisting of a strand map and a
depth map (shown in the bottom left and right for each example), and then recover the corresponding 3D hair model at the strand level.
Our HairStep is capable to bridge the domain gap between synthetic and real data and achieves high-fidelity hair modeling results.

Abstract

In this work, we tackle the challenging problem of
learning-based single-view 3D hair modeling. Due to the
great difficulty of collecting paired real image and 3D hair
data, using synthetic data to provide prior knowledge for
real domain becomes a leading solution. This unfortunately
introduces the challenge of domain gap. Due to the inherent
difficulty of realistic hair rendering, existing methods typi-
cally use orientation maps instead of hair images as input
to bridge the gap. We firmly think an intermediate represen-
tation is essential, but we argue that orientation map using
the dominant filtering-based methods is sensitive to uncer-
tain noise and far from a competent representation. Thus,
we first raise this issue up and propose a novel intermedi-
ate representation, termed as HairStep, which consists of a
strand map and a depth map. It is found that HairStep not
only provides sufficient information for accurate 3D hair
modeling, but also is feasible to be inferred from real im-
ages. Specifically, we collect a dataset of 1,250 portrait im-
ages with two types of annotations. A learning framework
is further designed to transfer real images to the strand map
and depth map. It is noted that, an extra bonus of our new
dataset is the first quantitative metric for 3D hair modeling.

*Corresponding author: hanxiaoguang@cuhk.edu.cn

Our experiments show that HairStep narrows the domain
gap between synthetic and real and achieves state-of-the-
art performance on single-view 3D hair reconstruction.

1. Introduction
High-fidelity 3D hair modeling is a critical part in the

creation of digital human. A hairstyle of a person typically
consists of about 100,000 strands [1]. Due to the complex-
ity, high-quality 3D hair model is expensive to obtain. Al-
though high-end capture systems [9, 19] are relatively ma-
ture, it is still difficult to reconstruct satisfactory 3D hair
with complex geometries.

Chai et al. [3,4] first present simple hair modeling meth-
ods from single-view images, which enable the acquisition
of 3D hair more user-friendly. But these early systems re-
quire extra input such as user strokes. Moreover, they only
work for visible parts of the hair and fail to recover in-
visible geometries faithfully. Recently, retrieval-based ap-
proaches [2, 10] reduce the dependency of user input and
improve the quality of reconstructed 3D hair model. How-
ever, the accuracy and efficiency of these approaches are
directly influenced by the size and diversity of the 3D hair
database.

Inspired by the advances of learning-based shape recon-
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struction, 3D strand models are generated by neural net-
works as explicit point sequences [46], volumetric orien-
tation field [26, 30, 41], and implicit orientation field [37]
from single-view input. With the above evolution of 3D hair
representations, the quality of recovered shape has been im-
proved significantly. As populating pairs of 3D hair and real
images is challenging [46], existing learning-based meth-
ods [26, 30, 37, 40, 46] are just trained on synthetic data be-
fore applying on real portraits. However, the domain gap
between rendered images (from synthetic hair models) and
real images has a great and negative impact on the quality
of reconstructed results. 3D hairstyles recovered by these
approaches often mismatch the given images in some im-
portant details (e.g., orientation, curliness, and occlusion).

To narrow the domain gap between the synthetic data
and real images, most existing methods [37, 38, 41, 46] take
2D orientation map [23] as an intermediate representation
between the input image and 3D hair model. However, this
undirected 2D orientation map is ambiguous in growing di-
rection and loses 3D hints given in the image. More impor-
tantly, it relies on image filters, which leads to noisy orien-
tation maps. In this work, we re-consider the current issues
in single-view 3D hair modeling and believe that it is neces-
sary to find a more appropriate intermediate representation
to bridge the domain gap between real and synthetic data.
This representation should provide enough information for
3D hair reconstruction. Also, it should be domain invariant
and can be easily obtained from real image.

To address the above issues, we propose HairStep, a
strand-aware and depth-enhanced hybrid representation for
single-view 3D hair modeling. Motivated by how to gener-
ate clean orientation maps from real images, we annotate
strand maps (i.e., directed 2D orientation maps) for real
images via drawing well-aligned dense 2D vector curves
along the hair. With this help, we can predict directed and
clean 2D orientation maps from input single-view images
directly. We also need an extra component of the inter-
mediate representation to provide 3D information for hair
reconstruction. Inspired by depth-in-the-wild [5], we an-
notate relative depth information for the hair region of real
portraits. But depth learned from sparse and ordinal an-
notations has a non-negligible domain gap against the syn-
thetic depth. To solve this, we propose a weakly-supervised
domain adaptive solution based on the borrowed synthetic
domain knowledge. Once we obtain the strand map and
depth map, we combine them together to form HairStep.
Then this hybrid representation will be fed into a network
to learn 3D orientation field and 3D occupancy field of 3D
hair models in implicit way. Finally, the 3D strand models
can be synthesized from these two fields. The high-fidelity
results are shown in Fig. 1. We name our dataset of hair im-
ages with strand annotation as HiSa and the one with depth
annotation as HiDa for convenience.

Previous methods are mainly evaluated on real inputs
through the comparison of the visual quality of recon-
structed 3D hair and well-prepared user study. This subjec-
tive measurement may lead to unfair evaluation and biased
conclusion. NeuralHDHair [37] projects the growth direc-
tion of reconstructed 3D strands, and compares with the 2D
orientation map filtered from real image. This is a notewor-
thy progress, but the extracted orientation map is noisy and
inaccurate. Moreover, only 2D growing direction is evalu-
ated and 3D information is ignored. Based on our annota-
tions, we propose novel and objective metrics for the eval-
uation of single-view 3D hair modeling on realistic images.
We render the recovered 3D hair model to obtain strand and
depth map, then compare them with our ground-truth anno-
tations. Extensive experiments on our real dataset and the
synthetic 3D hair dataset USC-HairSalon [10] demonstrate
the superiority of our novel representation.

The main contributions of our work are as follows:
• We first re-think the issue of the significant domain gap

between synthetic and real data in single-view 3D hair
modeling, and propose a novel representation HairStep.
Based on it, we provide a fully-automatic system for
single-view hair strands reconstruction which achieves
state-of-the-art performance.

• We contribute two datasets, namely HiSa and HiDa, to
annotate strand maps and depth for 1,250 hairstyles of
real portrait images. This opens a door for future research
about hair understanding, reconstruction and editing.

• We carefully design a framework to generate HairStep
from real images. More importantly, we propose a
weakly-supervised domain adaptive solution for hair
depth estimation.

• Based on our annotations, we introduce novel and fair
metrics to evaluate the performance of single-view 3D
hair modeling methods on real images.

2. Related Work
Single-view 3D hair modeling. It remains an open prob-
lem in computer vision and graphics to reconstruct 3D hair
from a single-view input. Compared with multi-view hair
modeling [19, 21, 40], single-view methods [4, 10, 37, 46]
are more efficient and practical as multi-view approaches
require carefully regulated environments and complex hard-
ware setups. The pioneering single-view based meth-
ods [2–4, 10] typically generate a coarse hair model based
on a database first, and then use geometric optimization to
approximate the target hairstyles. The effectiveness of these
approaches relies on the quality of priors and the perfor-
mance is less satisfactory for challenging input.

Recently, with the rapid development of deep learning,
several methods [26, 30, 37, 46] based on generative mod-
els have been proposed. HairNet [46] takes the orientation
map as the input to narrow the domain gap between real
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Figure 2. Overview of our approach. (a) The pipeline of single-view 3D hair modeling with our novel representation HairStep. We collect
two datasets HiSa and HiDa, and propose effective approaches for HairStep extraction from real images and finally realize high-fidelity
3D hair strand reconstruction. (b) Domain-adaptive depth estimation. We first pre-train the Hourglass on synthetic dataset, then generate
depth priors as pseudo labels and finally obtain reasonable hair depth weakly-supervised by depth prior and annotated relative depth.

images and synthetic data, which enables the network to be
trained with large-scale synthetic dataset. Hair-VAE [26]
adopts a variational autoencoder to generate hair models
from single-view input. Hair-GAN [41] introduces GAN
based methods to the hair generation process. However,
the hair models reconstructed by these methods tend to be
coarse and over-smoothed, mainly due to the limited capac-
ity of 3D neural network. To address this issue, Neural-
HDHair [37] proposes a coarse-to-fine manner to obtain the
high resolution 3D orientation fields and occupancy fields,
enabling the GrowingNet to generate decent hair models.

Orientation maps for hair modeling. Due to the intrin-
sic elongated shapes of hair strands, it is intuitive to use 2D
orientation maps and/or 3D orientation fields as intermedi-
ate representations to guide the modeling process. Existing
image-based hair modeling methods typically apply Gabor
filters of different directions to the input portrait and com-
pute the local 2D orientation to follow the direction with
the maximum filtering response [23, 24]. These 2D orien-
tation maps are then converted into 3D orientation fields
based on multi-view calibration information [9, 19, 20] or
fed into neural network directly as auxiliary input for pre-
diction of the 3D target hairstyle [37, 38, 41, 46]. How-
ever, 2D orientation maps based on image filtering opera-
tions suffer from input noise, which can be mitigated via
additional smoothing or diffusion process at the expense of
reduced accuracy [19, 20]. More importantly, these 2D ori-
entation maps and 3D orientation fields do not distinguish
between hair roots and tips from structure point of view.
Addressing this kind of directional ambiguity requires ad-
ditional input, such as user sketches [30] and physics based
examples [9], which can be tedious or may not generalize
well. Some methods [35] for 2D hair image generation are
also based on orientation map.

Depth map estimation. Many data-driven methods [8,
12, 17, 29] using advanced techniques have achieved con-
vincing performance on depth estimation. However, these
approaches rely on dense depth labeling [6, 13, 14, 31],
which is inaccessible for hair strands. Chen et al. [5] ob-
viate the necessity of dense depth labeling by annotation of
relative depth between sparse point pairs to help estimate
depth map in the wild. However, there is no existing work
to estimate depth map specifically for hair strands. Most
3D face or body reconstruction methods [28, 34, 36] only
produce a coarse depth map of the hair region, which is far
from enough for high-fidelity hair modeling.

3. HairStep Representation

The ideal way to recover 3D hair from single images via
learning-based technique is to train a network which can
map real images to the ground-truth 3D hair strands. But
it is difficult and expensive to obtain ground-truth 3D hair
geometries for real hair images [46]. [26] can only utilize a
retrieval-based method [10] to create pseudo 3D hair mod-
els. Networks trained on such data can not produce 3D
hairstyles aligned with given images, because it is hard to
guarantee the alignment of retrieved hair with the input im-
age. Due to the inherent difficulty of realistic hair render-
ing, existing methods [37, 38, 41, 46] take orientation maps
instead of hair images as input to narrow the domain gap
between real and synthetic data. However, orientation map
obtained by image filters suffers from uncertain noise and is
far from a competent intermediate representation. Hence, a
better one is needed to bridge the significant gap.

We now formally introduce our novel representation
HairStep for single-view 3D hair modeling. The overview
of our method is shown in Fig. 2. We first give the definition
of HairStep in Sec. 3.1, then describe how to obtain it from
real images in Sec. 3.2 and Sec. 3.3. We describe how to
use HairStep for single-view 3D hair modeling in Sec. 4.



3.1. Definition

Given a target image, we define the corresponding rep-
resentation HairStep as H = {O,D}, where O and D are
the strand map and the depth map, respectively. The strand
map O is formulated as an RGB image with a dimension of
W ×H×3, whereW andH are the width and the height of
the target image. The color at a certain pixel x on the strand
map is defined as

O(x) = (M(x),O2D/2 + 0.5). (1)

We use the red channel to indicate the hair mask with a bi-
nary map M. We normalize the unit vector of projected 2D
orientation O2D of hair growth at pixel x and represent this
growing direction in green and blue channels. The depth
map D can be easily defined as a W ×H × 1 map where it
represents the nearest distance of hair and the camera center
in the camera coordinate at each pixel of hair region. Visual
examples of HairStep are shown in Fig. 1.

Difference with existing representations. The existing
2D orientation map uses un-directed lines with two ambigu-
ous directions [23] to describe the pixel-level hair growing
in the degree of 180 while our strand map can represent the
direction in the degree of 360 (see Fig. 3 (d-e)). NeuralHD-
Hair [37] attempts to introduce an extra luminance map to
supplement the lost local details in the real image. Unfor-
tunately, there is a non-negligible domain gap between the
luminance of synthetic and real images. Because it is highly
related to the rendering scenarios such as lighting and ma-
terial. Compared to the luminance map, our hair depth map
only contains geometric information, which helps to narrow
the domain gap of the synthetic and real images.

3.2. Extraction of Strand Map

To enable learning-based single-view 3D hair modeling,
HairStep needs to be firstly extracted from both synthetic
3D hair data and real images for training and testing. For the
synthetic data, we can easily obtain strand maps and depth
maps from 3D strand models assisted by mature rendering
techniques [18]. But it is infeasible to extract strand maps
from real images via existing approaches. Thus, we use
a learning-based approach and annotate a dataset HiSa to
provide supervision.

HiSa dataset. We collect 1,250 clear portrait images with
various hairstyles from the Internet. The statistics of the
hairstyles, gender and race are given in the supplementary
material. We first hire artists to annotate dense 2D direc-
tional vector curves from the hair roots to the hair ends
along the hair on the image (see the example in Fig. 3 (b)).
On average, every hair image needs to cost about 1 hour
of a skillful artist to draw about 300 vector curves. Once

(a) (b) (c)

(d) (e)

[0, 180] [0, 360]

Figure 3. Obtaining strand map from vector strokes. (a) Portrait
image. (b) Annotated vector strokes. (c) Colored strokes. (d)
Orientation map extracted by Gabor filters. (e) Our strand map.

we obtain the dense strokes of the hair region, we convert
them to a stroke map colored by the definition of Eq. (1),
as shown in Fig. 3 (c). At last, we interpolate the colorized
strokes within the mask of hair to obtain the ground-truth
strand map (Fig. 3 (e)) of a given image. Thanks to the
dense annotation, the holes are simple to be filled with ig-
norable loss of details. Compared with the undirectional
orientation map extracted by Gabor filters (Fig. 3 (d)), our
strand map is clean and can represent the growing direction
without ambiguity.

Strand map prediction. We consider the extraction of a
strand map from a real image as an image-to-image trans-
lation task. We find that simply using an U-Net [25] can
already achieve satisfactory results. Following standard set-
tings, we use a pixel-wise L1 loss and a perceptual loss
against the ground-truth strand map O, which is formulated
as

Lstrand =
1

C ·
∑

M

∥∥∥Ô−O
∥∥∥
1

+

α · 1

WjHjCj

∥∥∥φj(Ô)− φj(O)
∥∥∥2
2
,

(2)

where Ô represents the predicted strand map and C rep-
resents the channel number of orientation map. The func-
tion φj(·) represents the former j layers of pretrained VGG-
19 [32] and we set j to be 35. Wj , Hj and Cj represent the
shapes of output feature from φj(·).

3.3. Domain-Adaptive Depth Estimation

It is not trivial to obtain the depth of hair from real im-
ages, because we cannot directly acquire the ground-truth



depth annotation. Inspired by depth-in-the-wild [5], we
annotate relative depth for the hair region of real images
as weak labels. However, only constrained by the ordi-
nal depth information, networks tend to generate unnatu-
ral depth maps. There is an obvious domain gap between
learned depth from weak label and the synthetic depth used
in the training, which leads to poor generalization when ap-
plying the trained model on real domain. Following the
popular framework of domain adaptation based on pseudo
labels [7, 15, 33, 42, 44, 45], we propose a domain-adaptive
depth estimation method to reduce the gap of depth maps
from real and synthetic data (see Fig. 2).

HiDa dataset. We annotate depth relations for randomly
selected pixel pairs in the hair region of each image among
1,250 portraits in HiSa. Different from depth-in-the-wild
that only selects one pair per image, we annotate more than
140 pairs on average for each portrait which can give a more
accurate and dense prediction. We first generate super-
pixels within the hair region according to the ratio of the
area of hair and face. We then randomly sample pixel pairs
from all adjacent super-pixels and finally generate 177,074
pixel pairs in total for 1,250 real images. Two points in a
pair are colored to red and blue, respectively. A QA pro-
gram is designed to annotate the ordinal depth by showing
one pair on the image each time and ask “which point in a
pair of sampled pixels looks like closer to you, Red Point,
Blue Point, or Hard to Tell?”, following [5]. 12 well-trained
workers are invited to annotate, which are split into three
groups to ensure that every selected pair has been annotated
three times by different groups. Finally 129,079 valid an-
swers are collected (all groups give a certain relative depth,
i.e. red or blue, and agree with each other). Our samplings
takes a median of 4.6 seconds for a worker to decide, and
three groups agree on the relative depth 72.9% of the time.

Learning depth map. We follow [5] to directly learn the
mapping between the input image I and the output dense
depth map Dr of the hair region through a Hourglass net-
work [22], which is weakly supervised by our annotations.
To train the network using ordinal labels of depth, we need
a loss function that encourages the predicted depth map to
agree with the ground-truth relations. We have found that
the margin-ranking loss used in [16, 39, 43] works well in
our task:

Lrank =
1

N

N∑
i=1

max(0,−(Dr(pi1)−Dr(pi2))·ri+ε), (3)

where pi1 and pi2 are pixels of the ith annotated pair pi, ri

is the ground-truth label which is set to 1 if pi1 is closer
otherwise -1. N represents the total number of sampled
pairs in an image. ε is set to be 0.05, which gives a control
to the difference of the depth values in pi1 and pi2.

Domain adaptation. Although the ordinal label can pro-
vide local depth variation, it is a weak constraint which in-
troduces ambiguity and leads to uneven solutions. The pre-
dicted depth map is usually unnatural and full of jagged ar-
tifacts (see the side views in Fig. 5). Applying this kind
of depth to hair modeling often leads to coarse and noisy
3D shapes. To address above issues, we propose a weakly
supervised domain-adaptive solution for hair depth estima-
tion. We believe the knowledge borrowed from synthetic
domain can help improve the quality of the learned depth.

Network trained with ordinal labels can not sense the
absolute location, size and range of depth. The predicted
depth has a major domain gap comparing to the synthetic
depth map used in the training of 3D hair modeling. To
give a constraint of the synthetic domain, we first train a
network Depthsyn to predict depth maps from strand maps
on synthetic dataset by minimizing the L1 distance between
the prediction and the synthetic ground-truth. Then we in-
put ground-truth strand maps of real images to Depthsyn
to query pseudo labels D̄ as depth priors. Note that directly
applying this pseudo depth map to 3D hair modeling is not
reasonable, because taking strand map as input can not pro-
vide adequate 3D information to the network. Jointly super-
vised by the depth prior and the weak-label of relative depth
annotation, we predict decent depth maps which is not only
natural-looking but preserves local relations of depth rank-
ing. The loss function of the domain adaptive depth estima-
tion is consisting of two parts, i.e., an L1 loss against the
pseudo label and the ranking loss defined in Eq. (3):

Ldepth = β ·
∥∥Dr − D̄

∥∥
1

+ Lrank. (4)

4. Single-View 3D Hair Modeling
Given the HairStep representation of a single-view por-

trait image, we further recover it to a strand-level 3D hair
model. In this section, we first illustrate the 3D implicit
hair representation, then describe the procedure of the re-
construction for hair strands.

4.1. 3D Hair Representation

Following NeuralHDHair [37], which is considered to
be state-of-the-art in single-view hair modeling, we use im-
plicit occupancy field and orientation field to represent 3D
hair model in the canonical space of a standard scalp. The
value of a point within the occupancy field is assigned to 1 if
it is inside of the hair volume and is set to 0 otherwise. The
attribute of a point in orientation field is defined as the unit
3D direction of the hair growth. The orientations of points
outside of the hair volume are defined as zero vectors.

We use the same approach as [26] to extract the hair sur-
face. During training, we sample large amount of points to
form a discrete occupancy field. The sampling strategy fol-
lows [27] which samples around the mesh surface randomly



and within the bounding box uniformly with a ratio of 1:1.
For the orientation field, we calculate unit 3D orientations
for dense points along more than 10k strands each model.

4.2. Strand Generation

To generate 3D stands from HairStep, we first train a
neural network NeuralHDHair* following the method de-
scribed by Wu et al. [37]. Taking our HairStep as input, the
network can predict the implicit occupancy field and ori-
entation field representing the target 3D hair model. Then
we synthesis the hair strands adopting the growing method
in [30] from the hair roots of the standard scalp.

The code of NeuralHDHair [37] has not been released
yet and our own implementation NeuralHDHair* preserves
the main pipeline and the full loss functions of NeuralHD-
Hair, but has two main differences from the original Neu-
ralHDHair. First, we do not use the sub-module of lumi-
nance map. The luminance has the potential to provide
more hints for hair reconstruction, but suffers from the ap-
parent domain gap between synthetic and real images, since
it is highly related to the lighting. We attempt to apply the
luminance map to the NeuralHDHair*, but it can only bring
minor improvement. Second, we discard the GrowingNet of
NeuralHDHair, since our work focuses on the quality of the
reconstruction results instead of efficiency, while the Grow-
ingNet is designed to accelerate the conversion from 3D im-
plicit fields to hair strands. It maintains the same growth
performance comparing to the traditional hair growth algo-
rithm of [30], which is reported in [37].

5. Experiments

5.1. Datasets

We train the proposed method on USC-HairSalon [10]
which is a publicly accessible 3D hairstyle database con-
sisting of 343 synthetic hair models in various styles. We
follow [46] to augment 3D hair data and select 3 random
views each hair to generate corresponding strand maps and
depth maps to form our HairStep. As for our real datasets
HiSa and HiDa, we use 1,054 images with the resolution of
512× 512 for training and 196 for testing. During training,
we augment images and annotations by random rotating,
scaling, translating and horizontally flipping.

5.2. Evaluation Metrics

Based on HiSa and HiDa, we propose two novel and
fair metrics, i.e., HairSale and HairRida, to evaluate single-
view 3D hair modeling results. We render the reconstructed
3D hair model to obtain strand map Or and depth map Dr,
then compare them with our ground-truth annotations Ogt

and Dgt. Also, these two metrics can be applied to the eval-
uation on HairStep extraction.

HairSale. We first compute the mean angle error of grow-
ing direction called HairSale on rendered strand map,
which ranges from 0 to 180. We define the HairSale as

HairSale =
1

K

∑
xi∈U

arccos(V(Or(xi)) · V(Ogt(xi))),

(5)
where U is the intersected region of rendered mask and
the ground-truth. K is the total number of pixels in U .
V(Or(xi)) converts the color at pixel xi of strand map Or

to an unit vector representing the growing direction.

HairRida. The HairSale only test the degree of matching
in 2D. We also need a metric HairRida to measure the rela-
tive depth accuracy on HiDa, which is defined as

HairRida =
1

Q

Q∑
i=1

max(0, ri · sign(Dr(pi1)− Dr(pi2))).

(6)
Note that we also calculate HairRida in the intersected re-
gion of rendered mask and the ground-truth. In addition, we
provide the statistics of IoU for reference.

As for the evaluation of synthetic data, we follow [37] to
compute the precision for occupancy field while using the
L2 error for orientation field.

5.3. Evaluation on HairStep Extraction

We first evaluate the effectiveness of our HairStep ex-
traction method from real images. We found that simply
applying a U-Net can already generate clean strand maps
while Gabor filters suffer from uncertain noises (see Fig. 4).
The HairSale computed on our predicted strand map is 12.3.
As Gabor filters can only produce undirected orientation
map, we convert the strand map to undirected map to calcu-
late HairSale quantitatively for fair comparison. The Hair-
Sale on our results and Gabor’s are 14.2 and 18.4 in undi-
rected way, where our method performs 22.8% better. It’s
worth mentioning, the errors in undirected way are larger
than in directed way, since the ambiguous bi-directed orien-
tation leads to a worse measurement.

We evaluate the depth estimation using two metrics: the
HairRida and a L1 error against pseudo label (w/ or w/o
normalization) to measure the difference between predicted
depth and the synthetic prior. We compare the results of
our domain-adaptive method DepthDA with the pseudo la-
bel Depthpseudo from synthetic domain, as well as the re-
sults of method only weakly supervised by ordinal label
Depthweak. The HairRida for Depthpseudo, Depthweak

and DepthDA are 80.47%, 85.17% and 85.20%, respec-
tively. L1 error against pseudo label (w/ ot w/o normal-
ization) for Depthweak and DepthDA are 0.2470/3.125
and 0.1768/0.1188. Qualitative comparisons with different
views of point cloud converted from depth maps are also



(a) (b) (c) (d)

Figure 4. Qualitative comparisons on orientation/strand maps. (a)
Input images; (b) undirected orientation maps from Gabor filters;
(c) strand maps from our method; (d) ground-truth strand maps.

𝐷epth𝐷𝐴𝐷epth𝑤𝑒𝑎𝑘𝐷epth𝑝𝑠𝑒𝑢𝑑𝑜Input Image

Figure 5. Qualitative comparisons on depth estimation.

shown in Fig. 5. The quantitative and qualitative give the
same conclusion that our DepthDA is more competent to
balance the local details of depth and the similarity of global
shape to the synthetic prior. But the Depthweak is unnatu-
ral and full of serration-like artifacts. Depthpseudo suffers
from the flat geometry, because the strand map can not pro-
vide strong 3D hints.

5.4. Comparisons

Comparisons on single-view hair modeling. We first
compare the reconstruction results of NuralHDHair* (with
the input of undirected orientation map), NuralHDHair*
with our HairStep, HairNet [46], DynamicHair [38] and the
original NeuralHDHair [37] in Fig. 6. We re-train HairNet
and DynamicHair on our synthetic split, as they have not
released pre-trained models. Based on a global latent code,
HairNet and DynamicHair tend to generate coarse shapes
while are not capable to reconstruct complex hairstyles.
With the aid of the voxel-aligned feature and the implicit
3D representation, NeuralHDHair and NeuralHDHair* can
produce decent results generally. However, it fails in the
region with sharp variation of depth and the region with
complicated pattern of hair growth (see Fig. 6). The reason
could be that the undirected orientation map from Gabor
filters can not provide clean and enough information for 3D
hair modeling. Thanks to the novel representation HairStep,
our results achieve the best.

Input Image NeuralHDHair HairNet DynamicHair OursNeuralHDHair*

Figure 6. Comparisons with previous methods [37, 38, 46].

NeuralHDHair*
(Orientation Map)

NeuralHDHair*
(Strand Map)

NeuralHDHair*
(HairStep)

Input Image 

Figure 7. Qualitative evaluation results. From left to right: input
images, results of NeuralHDHair*, results using our strand map
based representation, and results of our full method, respectively.

Comparisons on representation. To evaluate the effec-
tiveness of our HairStep, we compare it with strand map
and existing orientation map [46] on three different frame-
works, i.e. NeuralHDHair*, DynamicHair [38] and Hair-
Net [46]. Quantitative comparisons on synthetic and real
data are illustrated in Tab. 1 and Tab. 2, respectively. As
shown in Tab. 1, our representation benefits all of these
three methods on synthetic data. Since HairNet can only
output explicit hair strands, we follow [46] to report mean
square distance error in Tab. 1. In the evaluations on HiSa
and HiDa of Tab. 2, it is proved that using our strand map
achieves better alignment of hair growth than using previous
orientation map [46] which suffers from ambiguous direc-
tion and image noise. The generalization ability of HairNet
and DynamicHair is limited by the usage of global feature.
Hence, directly concatenating depth information to the in-
put does not seem helpful. Boosting by the full HairStep,
there is an obvious improvement in depth accuracy on Neu-
ralHDHair*. Qualitative comparisons shown in Fig. 7 yield
the same conclusion, where HairStep performs the best in
depth and preserves fine alignment of hair growth as same
as strand map. Only applying orientation map leads to un-
desirable artifacts. Note that the depth accuracy of Hair-
Net and DynamicHair in Tab. 2 is based on the low IoU,



Method Orien. err. ↓ Occ. acc. ↑
NeuralHDHair* (Orientation map) 0.1324 82.59%
NeuralHDHair* (Strand map) 0.0722 (-41.7%) 84.18%
NeuralHDHair* (HairStep) 0.0658 (-50.3%) 86.77%
DynamicHair (Orientation map) 0.1352 78.19%
DynamicHair (Strand map) 0.1185 (-12.4%) 79.62%
DynamicHair (HairStep) 0.1174 (-13.2%) 79.78%

HairNet (Orientation map) 0.02349 /
HairNet (Strand map) 0.02206 (-6.1%) /
HairNet (HairStep) 0.02184 (-7.0%) /

Table 1. Quantitative comparisons on the USC-HairSalon dataset
using different intermediate representations for NeuralHDHair*,
DynamicHair [38] and HairNet [46].

Method IoU ↑ HairSale ↓ HairRida ↑
NeuralHDHair* (Orientation map) 77.56% 19.6 70.67%
NeuralHDHair* (Strand map) 77.6% 16 (-18.4%) 72.37%
NeuralHDHair* (HairStep) 77.22% 16.36 (-16.5%) 76.79%
DynamicHair (Orientation map) 56.39% 32.66 74.08%
DynamicHair (Strand map) 59.51% 26.53 (-18.8%) 73.42%
DynamicHair (HairStep) 59.14% 27.51 (-15.8%) 73.58%
HairNet (Orientation map) 57.15% 31.97 75.65%
HairNet (Strand map) 57.48% 28.6 (-10.5%) 74.81%
HairNet (HairStep) 57.01% 27.68 (-13.4%) 74.97%

Table 2. Quantitative comparisons on HiSa and HiDa of
different intermediate representations for NeuralHDHair*, Dy-
namicHair [38] and HairNet [46].

which is not comparable to NeuralHDHair*. In addition,
we made a user study on 10 randomly selected examples
involving 39 users for reconstructed results of NeuralHD-
Hair* from three representations. 64.87% chose results
from our HairStep as the best, while 21.28% and 13.85%
for strand map and undirected orientation map.

5.5. Ablation Study

To better study the effect of each design in depth estima-
tion on the final results, our representation is ablated with
three configurations:
• C0: strand map + Depthpseudo.
• C1: strand map + Depthweak.
• Full: strand map + DepthDA.

Quantitative comparisons are reported in Tab. 3 and qual-
itative results are shown in Fig. 8. Our Full representation
achieves the best result in depth accuracy and the decent
alignment of hair growth. C0 suffers from the flat geometry
of depth. Meanwhile, C1 can produce results with decent
depth accuracy, but obtain a relatively larger difference on
the alignment of hair growth than the Full representation.

6. Conclusion
In this work, we rethink the overall solution of single-

view 3D hair modeling and argue that an appropriate inter-

Method IoU ↑ HairSale ↓ HairRida ↑
C0 77.75% 16.03 (-18.2%) 73.57%
C1 77.11% 16.54 (-15.6%) 75.8%
Full 77.22% 16.36 (-16.5%) 76.79%

Table 3. Quantitative ablation study about depth estimation.
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Figure 8. Qualitative ablation study results. Each pair from left
to right: input image with the visualization of HairRida, where
green/red line indicates right/wrong prediction of relative depth
of two end point and the reconstructed 3D hair strand model (see
Sec. 5.5 for detailed explanations).

mediate representation for bridging the domain gap between
synthetic and real data is essential. To this end, we propose
a novel 3D hair representation HairStep, which consists of
a strand map and a depth map, to narrow the existing do-
main gap. We also collect two datasets, i.e., HiSa and HiDa,
with manually annotated strand maps and depth from real
portrait images. These datasets not only allow the train-
ing of our learning based approach but also introduce fair
and objective metrics to evaluate the performance of single-
view 3D hair modeling. Extensive experiments on diverse
examples demonstrate the effectiveness of our novel repre-
sentation. Our method may fail on some rare and complex
hairstyles, because the 3D network is basically overfitted on
current synthetic datasets with limited amount and diversity.
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– Supplementary Material –
A. Dataset
Statistics of data distribution. To construct HiSa and
HiDa, we collect 1,250 clear portrait images with various
hairstyles from the Internet, where 80% are female and 20%
are male. We classify the collected hairstyles into three
classes, i.e., Short, Middle and Long, according to the posi-
tion of their hair ends. If hair ends are above the mouth, the
hairstyle will be classified as Short. If hair ends are below
the shoulder, the hairstyle belongs to Long class. Other-
wise, it is Middle. We collect 300 Short hair, 300 Middle
hair and 650 Long hair. As for the curl type, the number of
straight, wavy and curly are 210, 620, 420, respectively.

More examples about strand map annotation and depth
pair sampling are shown in Fig. S9.

B. Implementation Details
We describe the details of our networks and training for

HairStep extraction and 3D hair reconstruction in this sec-
tion.

HairStep extraction. We use the same U-Net in [11] to
extract strand maps from real images with the resolution
of 512 × 512. The network consists of an eight-layer en-
coder and an eight-layer decoder, where each layer down-
samples/upsamples by a factor of 2 and skip connections
are adopted between symmetric layers. We refer the read-
ers to [11] for detailed designs. Training is conducted using
a batch size of 16 for 50 epochs on 1 NVIDIA RTX3090Ti
card for about 12 hours. The learning rate is 0.0003. During
training, the loss weight α is set to 0.1.

We use the same Hourglass network in [5] to estimate
depth maps for real images with the resolution of 512×512.
The hourglass network is formed with four stacks, which
consists of a series of convolutions, downsampling, upsam-
pling and skip connections. Please refer to [5] for details.
The network is trained with a batch size of 8 for 100 epochs
on 2 NVIDIA RTX3090Ti cards for about 6 hours. The
learning rate is 0.0003 and the loss weight β is set to 0.1.

3D Hair Reconstruction. We use the same structure as
the IRHairNet in [37], where we first extract a 96 × 128 ×
128 × 64 feature volume from the input representation re-
sized to 256 × 256 via a U-Net combined with VIFu, then
query coarse 3D occupancy field and orientation field with
two MLPs. As for the fine module, we substitute the lumi-
nance map to the input representation resized to 1024×1024
and extract high-resolution occupancy field and orientation
field via an hourglass network and two MLPs. Please refer
to [37] for the details of network design. We follow [46] to
combine the body mask to the mask channel of the strand

map/orientation map rather than introducing a new channel.
Note that our HairStep has one more depth channel than
orientation map and strand map. Thus, the first layers of
the encoders have 4 channels when using HairStep, while 3
channels when taking the strand map or orientation map as
the input. Training is conducted using a batch size of 2 for
100 epochs on one NVIDIA RTX3090Ti cards for roughly
5-6 day. The learning rate is initialized set to be 0.0001, and
decayed by a factor of 0.1 in the 60th epoch.

C. Back views
Two examples of the back view are shown in Fig. S10

where the invisible parts tend to be smooth but still reason-
able. This is because the 3D hair dataset provides shape
priors.

D. Failure cases
As mentioned in the Conclusion, our method may fail on

some rare and complex hairstyles, because the existing 3D
hair datasets are with limited amount and diversity. For ex-
ample, as shown in Fig. S12, our method does not work on
hairstyles with braid (left) and complex curly pattern (right).

E. More Comparisons
Perceptual loss. We think the perceptual loss is necessary
in strand map prediction. Although it cannot provide ob-
vious quantitative improvement (w/ 14.2 v.s. w/o 14.1), it
brings visually sharper local features (Fig. S11). Also, we
made an extra experiment of 3D hair reconstruction on our
method without perceptual loss. We found its HairSale and
HairRida (16.51 and 75.3%) are worse than using percep-
tual loss (16.36 and 76.79%).

Qualitative comparisons for different representations.
More qualitative comparisons for different representations
are shown in Fig. S13 where using HairStep achieves the
best results.

Qualitative comparisons for depth ablation. More
qualitative comparisons for depth ablation are shown
in Fig. S14 where our full model achieves the best accuracy
in depth.

F. User Study
We made a user study on 10 randomly selected exam-

ples involving 39 users for reconstructed results of Neural-
HDHair* from three representations. 64.87% chose results
from our HairStep as the best, while 21.28% and 13.85%
for strand map and undirected orientation map. Fig. S15
and Fig. S16 provide the statistics of 3 different represen-
tations for each example.



(a) (b) (c) (d) (e) (f)

Figure S9. More examples for strand map annotation and depth pair sampling. From left to right: (a) collected images, (b) strokes drawn by
artists, (c) colored strokes, (d) undirected orientation maps from Gabor filters, (e) strand maps and (f) super-pixels for depth pair sampling.



Figure S10. Examples with front and back view.

Input Image
Orientation map

(Gabor filters)
Strand map

(w/o perceptual loss)
Strand map

(w/ perceptual loss)
Strand map

(ground truth)

Figure S11. Qualitative comparisons on orientation/strand maps.

Figure S12. Failure cases.
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Figure S13. More qualitative comparisons for different representations. From left to right: input images, results of NeuralHDHair*, results
using our strand map based representation, and results of our full method, respectively. Orientation maps from Gabor filters, predicted
strand maps and depth maps are also shown under the reconstructed results.
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Figure S14. More qualitative comparisons for depth ablation. From left to right: input images, results of C0, C1 and our full method. We
also visualize the HairRida below each reconstructed result, where green/red lines indicate right/wrong predictions.



Input Image NeuralHDHair* Strand Map HairStep

10/39 25.64% 8/39 20.51% 21/39 53.85%

3/39 7.69% 1/39 2.56% 35/39 89.74%

3/39 7.69% 17/39 43.59% 19/39 48.72%

2/39 5.13% 3/39 7.69% 34/39 87.18%

12/39 30.77% 1/39 2.56% 26/39 66.67%

Figure S15. Examples for user study. From left to right: input images, results of NeuralHDHair*, results using our strand map based
representation, and results of our full method, respectively. We also provide the statistics of 3 different representations for each example.



Input Image NeuralHDHair* Strand Map HairStep

10/39 25.64% 19/39 48.72% 10/39 25.64%

0/39 0.00% 17/39 43.59% 22/39 56.41%

8/39 20.51% 8/39 20.51% 23/39 58.97%

5/39 12.82% 5/39 12.82% 29/39 74.36%

1/39 2.56% 4/39 10.26% 34/39 87.18%

Figure S16. Examples for user study. From left to right: input images, results of NeuralHDHair*, results using our strand map based
representation, and results of our full method, respectively. We also provide the statistics of 3 different representations for each example.


	1 . Introduction
	2 . Related Work
	3 . HairStep Representation
	3.1 . Definition
	3.2 . Extraction of Strand Map
	3.3 . Domain-Adaptive Depth Estimation

	4 . Single-View 3D Hair Modeling
	4.1 . 3D Hair Representation
	4.2 . Strand Generation

	5 . Experiments
	5.1 . Datasets
	5.2 . Evaluation Metrics
	5.3 . Evaluation on HairStep Extraction
	5.4 . Comparisons
	5.5 . Ablation Study

	6 . Conclusion
	A . Dataset
	B . Implementation Details
	C . Back views
	D . Failure cases
	E . More Comparisons
	F . User Study

