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Figure 1. DiffusionRig takes in coarse physical rendering as the condition to “rig” the input image with learned personal priors. The edited
images respect the rendering conditions, preserve the identity, and exhibit high-frequency facial details.

Abstract
We address the problem of learning person-specific facial

priors from a small number (e.g., 20) of portrait photos of the
same person. This enables us to edit this specific person’s fa-
cial appearance, such as expression and lighting, while pre-
serving their identity and high-frequency facial details. Key
to our approach, which we dub DiffusionRig, is a diffusion
model conditioned on, or “rigged by,” crude 3D face models
estimated from single in-the-wild images by an off-the-shelf
estimator. On a high level, DiffusionRig learns to map sim-
plistic renderings of 3D face models to realistic photos of
a given person. Specifically, DiffusionRig is trained in two
stages: It first learns generic facial priors from a large-scale
face dataset and then person-specific priors from a small
portrait photo collection of the person of interest. By learn-
ing the CGI-to-photo mapping with such personalized priors,

† Work done during an internship at Adobe.

DiffusionRig can “rig” the lighting, facial expression, head
pose, etc. of a portrait photo, conditioned only on coarse
3D models while preserving this person’s identity and other
high-frequency characteristics. Qualitative and quantitative
experiments show that DiffusionRig outperforms existing
approaches in both identity preservation and photorealism.
Please see the project website: https://diffusionrig.github.io
for the supplemental material, video, code, and data.

1. Introduction
It is a longstanding problem in computer vision and graph-

ics to photorealistically change the lighting, expression, head
pose, etc. of a portrait photo while preserving the person’s
identity and high-frequency facial characteristics. The dif-
ficulty of this problem stems from its fundamentally under-
constrained nature, and prior work typically addresses this
with zero-shot learning, where neural networks were trained
on a large-scale dataset of different identities and tested on
a new identity. These methods ignore the fact that such
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generic facial priors often fail to capture the test identity’s
high-frequency facial characteristics, and multiple photos of
the same person are often readily available in the person’s
personal photo albums, e.g., on a mobile phone. In this work,
we demonstrate that one can convincingly edit a person’s fa-
cial appearance, such as lighting, expression, and head pose,
while preserving their identity and other high-frequency fa-
cial details. Our key insight is that we can first learn generic
facial priors from a large-scale face dataset [19] and then
finetune these generic priors into personalized ones using
around 20 photos capturing the test identity.

When it comes to facial appearance editing, the natural
question is what representation one uses to change lighting,
expression, head pose, hairstyle, accessories, etc. Off-the-
shelf 3D face estimators such as DECA [9] can already ex-
tract, from an in-the-wild image, a parametric 3D face model
that comprises parameters for lighting (spherical harmonics),
expression, and head pose. However, directly rendering these
physical properties back into images yields CGI-looking re-
sults, as shown in the output columns of Figure 1. The
reasons are at least three-fold: (a) The 3D face shape esti-
mated is coarse, with mismatched face contours and misses
high-frequency geometric details, (b) the assumptions on
reflectance (Lambertian) and lighting (spherical harmonics)
are restrictive and insufficient for reproducing the reality, and
(c) 3D morphable models (3DMMs) simply cannot model
all appearance aspects including hairstyle and accessories.
Nonetheless, such 3DMMs provide us with a useful rep-
resentation that is amenable to “appearance rigging” since
we can modify the facial expression and head pose by sim-
ply changing the 3DMM parameters as well as lighting by
varying the spherical harmonics (SH) coefficients.

On the other hand, diffusion models [15] have recently
gained popularity as an alternative to Generative Adversarial
Networks (GANs) [11] for image generation. Diff-AE [33]
further shows that when trained on the autoencoding task,
diffusion models can provide a latent space for appearance
editing. In addition, diffusion models are able to map pixel-
aligned features (such as noise maps in the vanilla diffusion
model) to photorealistic images. Although Diff-AE is capa-
ble of interpolating from, e.g., smile to no smile, after seman-
tic labels are used to find the direction to move towards, it is
unable to perform edits that require 3D understanding and
that cannot be expressed by simple binary semantic labels.
Such 3D edits, including relighting and head pose change,
are the focus of our work.

To combine the best of both worlds, we propose Diffusion-
Rig, a model that allows us to edit or “rig” the appearance
(such as lighting and head pose) of a 3DMM and then pro-
duce a photorealistic edited image conditioned on our 3D
edits. Specifically, DiffusionRig first extracts rough physical
properties from single portrait photos using an off-the-shelf
method [9], performs desired 3D edits in the 3DMM space,

and finally uses a diffusion model [15] to map the edited
“physical buffers” (surface normals, albedo, and Lambertian
rendering) to photorealistic images. Since the edited im-
ages should preserve the identity and high-frequency facial
characteristics, we first train DiffusionRig on the CelebA
dataset [27] to learn generic facial priors so that Diffusion-
Rig knows how to map surface normals and the Lambertian
rendering to a photorealistic image. Note that because the
physical buffers are coarse and do not contain sufficient
identity information, this “Stage 1 model” provides no guar-
antee for identity preservation. At the second stage, we
finetune DiffusionRig on a tiny dataset of roughly 20 images
of one person of interest, producing a person-specific diffu-
sion model mapping physical buffers to photos of just this
person. As discussed, there are appearance aspects not mod-
eled by the 3DMM, including but not limited to hairstyle and
accessories. To provide our model with this additional in-
formation, we add an encoder branch that encodes the input
image into a global latent code (“global” in contrast to phys-
ical buffers that are pixel-aligned with the output image and
hence “local”). This code is chosen to be low-dimensional
in the hope of capturing just the aspects not modeled by the
3DMM, such as hairstyle and eyeglasses.

In summary, our contributions are:
• A deep learning model for 3D facial appearance editing

(that modifies lighting, facial expression, head pose,
etc.) trained using just images with no 3D label,

• A method to drive portrait photo generation using dif-
fusion models with 3D morphable face models, and

• A two-stage training strategy that learns personalized
facial priors on top of generic face priors, enabling edit-
ing that preserves identity and high-frequency details.

2. Related Work
Our work is related to generative models, 3D Morphable

Face Models (3DMMs), and personalized priors.

Generative Modeling Since the proposal of early Gener-
ative Adversarial Networks (GANs) [11], researchers have
made significant progress in generating photorealistic images
of constrained classes, such as faces [18, 20, 21]. Recently,
denoising diffusion models [16], which learn to denoise ran-
dom noise images into photorealistic images, have shown
impressive synthesis results and gained popularity as an alter-
native to GANs. Different diffusion models are invented for
faster sampling [41] (used in this work), conditional genera-
tion [7, 31], and later pixel-aligned conditional generation
[37]. Similarly, we use pixel-aligned conditions, specif-
ically surface normal, albedo, and Lambertian rendering
images, as the condition that our diffusion model should sat-
isfy. Closely related to DiffusionRig are Diffusion Autoen-
coders (Diff-AE) that learn a latent space of facial attributes
(e.g., +smiling vs. −smiling) via the autoencoding task [34].
Given binary labels of a certain attribute, the authors find the
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Figure 2. Reconstruction with vs. without personalized priors. Given the input image and its conditions (surface normals, albedo, and
Lambertian rendering) automatically extracted using DECA, Stage 1 learns only generic face priors and fails to reconstruct the identity in
both of the randomly sampled reconstructions. With Stage 2, DiffusionRig is able to faithfully reconstruct the input image using either of the
two stochastically sampled noise maps.

direction, along which the latent code should be pushed, to
manipulate that attribute. 3D-aware generative models are a
recent popular trend to combine 3D controllability with 2D
image generation [3, 4, 10, 13, 43, 45, 46, 54].

Facial Appearance Modeling 3D Morphable Face Mod-
els or 3DMMs provide a valuable parameter space to de-
scribe (and in turn solve for) 3D facial characteristics [2].
The FLAME face model learned from 4D scans is a widely-
used 3DMM that supports shape, pose, and expression
change [24]. We refer the reader to a recent survey paper on
Morphable Face Models [8].

RingNet regresses FLAME parameters from 2D images
[38]. Also a learning-based method, DECA additionally
predicts albedo and lighting in spherical harmonics (SH)
from a single face image [9]. An alternative to using 3DMMs
for “face de-rendering” is directly predicting surface normals,
albedo, and lighting in the image space, as in SfSNet [39].
Although such approaches enjoy the benefit of being able to
represent hair, accessories, etc., image-space representations
do not provide a physically meaningful parameter space for
rigging like 3DMMs do.

The geometry, albedo, and lighting from 3DMM are still
extremely coarse and far from reality. The community has
bridged the realism gap between 3DMM rendering and real
photos through expensive hardware setups to capture fine-
grained facial geometry [48, 50] and reflectance fields [6].
Neural network-based, implicit appearance models have also
been proposed to address the infeasibility of explicitly de-
scribing the appearance with precise reflectance and lighting
[1, 12, 28, 29, 30, 35, 36, 40, 42, 52, 53].

Personalized Priors Learning personal priors has been
more widely discussed in super-resolution, face restoration,
and inpainting, by using examplar imagery [47], personal
supplemental attributes [51], an attention module with iden-
tity penalty [49], or facial component dictionaries [25]. Con-
ditional portrait image editing also shares the objective of
preserving the input identity [26, 44].

However, it remains a challenge how to compute an unbi-
ased identity score, and these approaches do not explicitly
learn personalized priors.

Closer to DiffusionRig that learns a personal prior from a
set of personal album of the person, MyStyle [32] is a method
to finetune a pre-trained StyleGAN model to achieve a gen-
erative model for a specific identity, while preserving the ex-
pressiveness of the latent space. However, it does not support
precise 3D rigging to control the generation and requires a
much larger personal dataset to obtain a smooth personalized
latent space. DiffusionRig, on the other hand, focuses on
controllable image editing and achieves the smooth editing
naturally with the continuous physical space as conditions.

3. Preliminaries

We provide the background knowledge for the two build-
ing blocks—3D Morphable Face Models (3DMMs) and De-
noising Diffusion Probabilistic Models (DDPMs).

3.1. 3D Morphable Face Models

3D Morphable Face Models or 3DMMs are paramet-
ric models that use a compact latent space (handcrafted or
learned from scans) to represent the head pose, face geome-
try, facial expression, etc. [2, 24]. In this paper, we employ
FLAME [24], a popular 3DMM using standard vertex-based
linear blend skinning with corrective blendshapes and repre-
senting a face mesh with pose, shape, and expression param-
eters. Although FLAME provides a compact and physically
meaningful space for face geometry, it does not provide
descriptions for appearance. To this end, DECA [9] uses
FLAME and additionally models facial appearance with
Lambertian reflectance and Spherical Harmonics (SH) light-
ing. Trained on a large dataset, DECA predicts albedo, SH
lighting, and the FLAME parameters from a single portrait
image. We utilize DECA to generate rough 3D represen-
tations that support easy “rigging” by editing the FLAME
parameters, albedo, and/or SH lighting. As we show in Fig-
ure 2, the realism gap between DECA rendering and real
photos is significant, calling for measurements post-editing.

3.2. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPMs)
[7, 15, 31] are a class of generative models that take random

3



Denoising Diffusion 
Model?

E
n

co
d

er Global Latent Code

Surface 
Normals

Albedo Lambertian
Render

Noise Map

Input

Personal Album (~20 Images)

FFHQ (70000 Images)

...

...
Fixed

Trained at Both 
Stages

Trained at Stage 1, 
Fixed at Stage 2

Lighting

Physical Buffers

DECA Pose
Expression

Test-time 
Edits

Channel-Wise Concat

Reconstruction

Stage 1

S
ta

g
e 

2

...

Figure 3. DiffusionRig overview. The input to our model is a set of physical buffers reconstructed from the input, a random noise map,
and a global latent code that encodes nuance features not modeled by the physical buffers. At Stage 1, we train our model on a large face
dataset to learn generic face priors. At Stage 2, we keep the global latent code encoder frozen and fine-tune the diffusion model to learn
personalized priors.

noise images as input and denoise the images progressively
to produce photorealistic images. This generation process
can be seen as the reverse of the diffusion process that grad-
ually adds noise to images. The key component of DDPMs
is a denoising network fθ. During training, it takes a noisy
image xt and a timestep t (1 ≤ t ≤ T ), and predicts the
noise at time t: εt. More formally, the predicted noise at
time t is ε̂t = fθ(xt, t), where xt = αtx0 +

√
1− α2

t εt, εt
is a random, normally distributed noise image, and αt is a
hyperparamter that gradually increases noise level of xt with
each step of the forward process. The loss is computed on
the distance between εt and ε̂t. Therefore, the trained model
can generate images by taking as input a random noise image
and gradually denoising it to a photorealistic one.

4. Method
To enable personalized appearance editing, our model,

which we dub DiffusionRig, needs to (a) generate images
based on different appearance conditions, such as novel
lighting, and (b) learn personal priors so that the person’s
identity is not altered during editing.

To this end, we design a two-stage training pipeline as
shown in Figure 3. At the first stage, the model learns generic
face priors by being trained to reconstruct portrait images
given their underlying “appearance conditions” represented
as physical buffers automatically extracted using an off-the-
shelf estimator. At the second stage, we finetune our model
using portrait photos of just one person so that the model
learns personalized priors, which are necessary to prevent
identity shift during appearance editing.

4.1. Learning Generic Face Priors

Our first stage is designed to learn facial priors that en-
able photorealistic image synthesis conditioned on physical
constraints like lighting. For the physical conditioning, we
use DECA [9] to produce the physical parameters including

the FLAME [24] parameters (shape β, expression ψ, and
pose θ), albedo α, (orthographic) camera c, and (spherical
harmonics) lighting l from the input portrait image. We then
use the Lambertian reflectance to render these physical prop-
erties into three buffers: surface normals, albedo, and Lam-
bertian rendering. Although these physical buffers provide
pixel-aligned descriptions of the facial geometry, albedo,
and lighting, they are rather coarse and nowhere close to
photorealistic images (see the Lambertian rendering in Fig-
ures 1 and 2). Still, using these buffers, we can “rig” our
generative model in a disentangled, physically meaningful
way by changing the DECA parameters. For photorealistic
image synthesis, we use a Denoising Diffusion Probabilistic
Model (DDPM) as our generator because DDPMs can natu-
rally take pixel-aligned conditions (more advantageous than
latent code conditions as shown in Section 5.5) to drive the
generation process.

Besides the pixel-aligned physical buffers, we keep the
random noise images in DDPMs to explain the stochasticity
during generation. In addition to the pixel-aligned buffers
and noise map, we need another condition to encode global
appearance information (as opposed to local information
such as local surface normals) that is not modeled by the
physical buffers, such as hair, hat, glasses, and the image
background. Therefore, our diffusion model takes both phys-
ical buffers and a learned global latent code as conditions
for image synthesis. Formally, our model can be described
as ε̂t = fθ([xt, z], t, φθ(x0)) where xt is the noisy image at
timestep t, z represent the physical buffers, x0 is the origi-
nal image, ε̂t is the predicted noise, and fθ and φθ are the
denoising model and the global latent encoder, respectively.

It is theoretically possible that the global latent code also
encodes local geometry, albedo, and/or illumination infor-
mation, which could lead to the diffusion model ignoring the
physical buffers entirely. Empirically, we find that the net-
work learns to use the physical buffers for local information

4



and does not rely on the global latent code, possibly because
these buffers are pixel-aligned with the ground truth and thus
more easily leveraged by the model.

4.2. Learning Personalized Priors
After learning the generic facial priors at the first stage,

DiffusionRig is able to generate photorealistic images given
coarse physical buffers. The next step is to learn personal-
ized priors for a given person to avoid identity shift during
appearance editing. Personal priors are crucial to preserv-
ing identity and high-frequency facial characteristics, as
shown in Figure 2. We achieve this by finetuning our denois-
ing model on a specific person’s photo album of around 20
images. During the finetuning stage, the denoising model
learns the person’s identity information. We fix the global
encoder from the previous stage since it has learned to en-
code global image information not modeled by the physical
buffers (which we want to retain). We show that this ap-
proach is simple and yet effective compared with GANs that
need careful tuning, as mentioned in MyStyle [32].

For this small personalized dataset, we also extract the
DECA parameters first. However, since DECA is a single-
image estimator, its output is sensitive to extreme poses or
expressions. Under the assumption that the general shape
of a person’s face does not change drastically within a rea-
sonable period of time, we compute the mean of the shape
parameters in FLAME over all the images in the album and
use that mean shape when conditioning DiffusionRig.

4.3. Model Architecture
DiffusionRig consists of two trainable parts: a denoising

model fθ and a global encoder φθ. The architecture of our
denoising model is based on ADM [7] with modifications
to reduce computational cost and take an additional global
latent code as input. For the global code, we use the same
method that ADM uses for their time embedding: We scale
and shift the features in each layer using the global latent
code. The encoder is simply a ResNet-18 [14] and we use
the output features as the global latent codes.

Our loss function is a P2 weight loss [5] that computes
distances between predicted and ground-truth noises: L =
λ′t||ε̂t−εt||22, where λ′t is a hyperparameter to control the loss
weight at different timesteps. We empirically find that the
P2 weight loss speeds up the training process and generates
high-quality images compared with a constant loss weight.

4.4. Implementation Details
During the first stage, we train DiffusionRig on the FFHQ

dataset [19], which contains 70,000 images. With Adam [23]
as the optimizer with a learning rate of 10−4, we train Diffu-
sionRig for 50,000 iterations with a batch size of 256 (so the
total number of samples seen by the model is 12,800,000).
During the second stage, we use only 10–20 images of a
single person. In the following, we show results for four

celebrities (Obama, Biden, Swift, and Harris) and two non-
celebrities. Please see the supplemental material and video
for more results including more identities. We use 20 images
for each person except for Harris, for whom we use only 10,
and for the ablation study on the number of training images.
We provide the personal photo album of two identities in the
supplemental material. We finetune our model on each small
dataset for 5,000 iterations with a batch size of 4 (so the
total number of seen samples during finetuning is 20,000).
We furthermore decrease the learning rate to 10−5 for the
second stage. Training for the first stage takes around 15
hours using eight A100 GPUs, and the Stage 2 finetuning
completes within 30 minutes on a single V100 GPU.

5. Experiments
We first show how to edit a person’s appearance (e.g.,

facial expression, lighting, and head pose) by modifying the
physical buffers that condition the model. We then demon-
strate how to rig, with the global latent code, other aspects of
a person’s appearance not modeled by the physical buffers
such as hairstyle and accessories. By swapping in the global
latent code from another image, we can transfer portrait char-
acteristics, such as hairstyle, accessories including glasses,
and/or the image background, while preserving the physi-
cal properties (e.g., identity, pose, expression, and lighting)
from the original image. Finally, we show the power of
the learned personal priors by conditioning, for example, an
Obama model on both the physical buffers and global latent
code from a different person (to “Obama-fy” that person).

5.1. Rigging Appearance With Physical Buffers
In this section, we use our personalized model to rig the

appearance with physical buffers. We show three different
types of appearance rigging: relighting, expression change,
and pose change. For relighting, we use different Spherical
Harmonics (SH) parameters for producing the Lambertian
rendering. To change the expression, we modify the expres-
sion and jaw rotation parameters of FLAME (the last three
parameters of the pose vector). To vary the pose, we modify
the head rotation parameters (the first three parameters of the
pose vector). The 64-dimensional global latent code is pro-
duced by encoding the input image and remains unchanged
when editing appearance.

Our results are displayed in Figure 4, where we depict
three identities: two celebrities and one daily user. All the im-
ages have a resolution of 256×256. Additionally, 512×512
results can be found in the supplemental material. We com-
pare our method against DECA [9], HeadNerf [17], GIF
[10], and MyStyle [32], of which the first two are 3D face
model estimation methods, and the latter two are GAN-based
approaches. As Figure 4 shows, while GIF is capable of rig-
ging the appearance by changing the expression and pose, it
fails to preserve the individual’s identity. DiffusionRig and
MyStyle, on the other hand, are both personalized models
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Figure 4. Appearance editing. DiffusionRig achieves convincing appearance edits while preserving the individual’s identity using only 20
images per identity. GIF creates realistic-looking images but does not use personalized priors, leading to significant identity shifts. MyStyle
is unable to make dramatic changes to the expression or pose without artifacts or minor identity shifts. In addition, MyStyle does not trivially
support controllable relighting, so the corresponding fields have been left empty.

that are able to preserve the identity. However, since our
method is directly conditioned on physical buffers, we can
rig the appearance in a physically-based manner, whereas
MyStyle needs to search for and step into a certain direc-
tion within the latent space to produce the target appearance,
limiting its controllability, interpretability, and capacity for
dramatic appearance changes. We also observe more arti-
facts for MyStyle when doing appearance editing, which is
likely due to the use of too few images during finetuning the
StyleGAN model.

5.2. Rigging Appearance With Global Latent Code
By design, DiffusionRig finds it easier to learn what phys-

ical buffers can describe from the pixel-aligned buffers than
from the global latent code. The latent code thus encodes
what physical buffers cannot describe including background,
makeup, and hairstyle. In this part, we change the global
latent code to show its effects on the generated images.

In Figure 5, we show a 2×3 matrix of generated images.
Along the horizontal axis, we swap in the global latent code
from another image of the same person while keeping the
physical buffers identical (i.e., same physical buffers but

different global codes). Along the vertical axis, we replace
the physical buffers while keeping the same global latent
code (i.e., same global code but different physical buffers).
We can see that geometry information, such as head pose
and expression, is preserved for each row, which shows
that only the physical buffers (not the latent code) contain
such information. This means that in DiffusionRig these
physical properties are well disentangled from each other
and from other appearance properties that physical buffers
cannot describe. On the other hand, the information hard to
model explicitly, including image background, glasses, and
hair style/color, is encoded in the global latent code.

5.3. Identity Transfer With Learned Priors
In previous sections, we saw what information the phys-

ical buffers and the global latent code encode. Now, we
demonstrate what information is encoded in the personalized
diffusion models’ weights. Here, we keep both physical
buffers and global latent code the same but exchange the
personalized model itself with another person’s personalized
model (i.e., model swapping without code or buffer swap-
ping). The results of this experiment for four identities are
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Figure 5. Mix and match of physical buffers and global latent
code. We mix the physical buffers from one image and the global
latent code from another image to demonstrate how the two condi-
tions encode disentangled information.

shown in Figure 6. Each row uses the same physical buffers
and latent code but another personalized model. Each col-
umn uses the same personalized model but different physical
buffers and latent code. For example, the column “Obama-fy”
shows four images that are generated by Obama’s personal
model but using the other celebrities’ images as input. We
see that across each row, while all inputs (physical buffers
plus global latent code) are the same, the four different per-
sonalized models output different identities. These results
further corroborate that our model is able to learn personal-
ized priors from a small dataset.

5.4. Baseline Comparisons & Evaluation Metrics
We evaluate our DiffusionRig quantitatively in three as-

pects: rigging quality, identity preservation, and photoreal-
ism, since these three qualities are the most important for
our personalized appearance editing.
DECA Re-Inference Error We follow the same setup as
in GIF [10] to compute the DECA re-inference error. To
evaluate relighting quality, we directly compute the RMSE
on the re-inferred spherical harmonics. We show our results
in Table 1. For our model, we also evaluate two ablated
versions: “vector cond.” and “feature cond.” Instead of
using pixel-aligned physical buffers as the condition, we
use DECA’s output parameters and features computed from
physical buffers as conditions in our two ablated models.
More details can be found in Section 5.5.

Face Re-Identification Error An important metric for
evaluating this work is whether DiffusionRig can preserve
the identity after appearance editing, since identity shift
is a notorious problem in generative model-based editing.
To this end, we run a widely popular face re-identification
network [22] to automatically determine if the edited and

Obama-fy Hopkins-fy Swift-fy Williams-fy

Figure 6. Swapping personalized models. We demonstrate the
power of personalized priors by running one person’s model on
other identities. This creates the effect of “adding” one person’s
identity to another person. The images with green borders are
“no-swap” results where the corresponding person’s model is used.

Light ↓ Shape ↓ Exp. ↓ Pose ↓
GIF [10] 13.8 3.0 5.0 5.6
GIF, vector cond. [10] – 3.4 23.1 29.7
DiffusionRig (Ours) 11.2 4.3 2.8 4.2
DiffusionRig, vector cond. 15.5 10.7 8.8 14.0
DiffusionRig, feature cond. 27.0 5.3 4.1 21.6

Table 1. RMSE of DECA re-inference. All numbers are multi-
plies of 10−3. We generate 1,000 images for evaluation. For shape,
expression, and pose, the RMSE is computed on rendered FLAME
faces. For lighting, the RMSE is computed on re-inferred spherical
harmonics directly. We only use our Stage 1 model since GIF is not
a personalized model. Numbers for GIF and its vector-conditioned
variant are cited from the original paper [10].

original images are of the same person. As Table 2 shows,
both MyStyle [32] and DiffusionRig preserve the identity
in all 400 expression-edited images of Obama and another
400 of Swift. That said, for dramatic changes such as head
pose change, DiffusionRig preserves the identity better than
MyStyle, as also demonstrated by Figure 4. One caveat of
this error metric, though, is the obvious degenerate solution
of not applying any edit at all, thereby achieving a perfect
score. We refer the reader to Figure 4 and Table 1, which
show that DiffusionRig avoids this degenerate solution.

User Study To further evaluate both the photorealism and
identity preservation of images from DiffusionRig against
MyStyle, we conduct a user study involving Amazon Me-
chanical Turk. During the study, we show pairs of images,
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Auto. Face Re-ID ↑ User Study ↑
Obama and Swift Obama Swift

Expr. Pose Expr. Pose Expr. Pose
MyStyle 100% 97.9% 79.4% 78.0% 64.5% 62.5%
Ours 100% 99.3% 87.2% 86.5% 82.4% 80.2%

Table 2. DiffusionRig vs. MyStyle [32] in expression and pose
editing, as measured by an automatic face re-ID error [22] (which
has an obvious flaw; see text) as well as a user study on both realism
and identity preservation.

where the left image is an original image from the real im-
age dataset, and the right image is a generated one. We
occasionally include some real images on the right, too, for
consistency check and quality control. We then ask the users
whether the right image is a real image of the person on
the left (so both photorealism and identity preservation are
probed). We generate images that include either an expres-
sion or pose change for both DiffusionRig and MyStyle. We
report our results in Table 2.

5.5. Ablation Study
We show several ablation studies to motivate the finetun-

ing stage that injects the personalized prior and the choice
of physical, pixel-aligned buffers to condition the model.

No Personalized Priors We first show how DiffusionRig
performs in the absence of personalized priors (i.e., trained
on only the large dataset from Stage 1). Figure 2 shows that
our model learns to use the physical buffers as conditions
for pose, expression, and lighting, but it is incapable of
preserving the person’s identity during appearance editing.

Number of Images Here we explore how the number of
images used in Stage 2 affects DiffusionRig’s ability of
learning personalized priors. We train three models of a
non-celebrity with 1, 5, 10, and 20 images and test them
on relighting, expression change, and pose change. As Fig-
ure 7 demonstrates, using just 1, 5, or 10 images yields
worse results than using 20 images (unsurprisingly). With
more images, DiffusionRig learns better-personalized priors
that capture high-frequency face characteristics, such as the
wrinkles in Figure 7.

Source
Pose

= 1 = 5 = 10 = 20Source
Lighting

Target
Pose

Target
Lighting

Figure 7. Quality w.r.t. number of Stage 2 images. DiffusionRig
achieves high-quality relighting and pose change with 20 images
for Stage 2. Using fewer may yield blurry results and make them
hard to rig with new conditions.

Different Forms of Conditions There are alternative
ways to condition the image synthesis. We demonstrate that

pixel-aligned physical buffers are the most effective form in
accurately rigging the appearance. We explore the following
two conditioning alternatives. “Vector cond.” is when we
directly concatenate DECA parameters, a 236-dimensional
vector, to the global latent code without using pixel-aligned
buffers. “Feature cond.” means that we concatenate the
physical buffers to the input image and pass them into the
encoder to compute a global latent code, which is then used
as a non-spatial feature condition. As shown in Figure 8, us-
ing pixel-aligned physical guidance is essential for accurate
conditional image editing. Both vector and feature condi-
tioning suffer from the generated images not following the
desired physical guidance.

Rigging Expression: input and src.

Rigging Pose: input and src.

Feature Cond.

DiffusionRig

DiffusionRig

Vector Cond.

Figure 8. Ablation on the form of conditions. Neither feature
conditioning nor vector conditioning is able to rig the input image
to follow the physical properties of the target image.

6. Limitations & Conclusion
Although DiffusionRig achieves state-of-the-art facial

appearance editing, it relies on a small portrait dataset to
finetune, which limits its scalability for massive user adop-
tion. Furthermore, when the edit involves dramatic head
pose change, DiffusionRig may not stay faithful to the origi-
nal background, since head pose change sometimes reveals
what used to be occluded, therefore requiring background
inpainting—a topic beyond the scope of this paper. Addi-
tionally, since DiffusionRig relies on DECA to get physical
buffers, it will also be affected by DECA’s limited estimation
capability: for instance, extreme expressions usually cannot
be well predicted. and the estimated lighting is sometimes
coupled with the skin tone.

In this paper, we have presented DiffusionRig, a riggable
diffusion model for identity-preserving, personalized editing
of facial appearance. We introduced a two-stage method to
first learn generic face priors and later personalized priors.
Using both explicit conditioning via physical buffers and
implicit conditioning via global latent code, we can drive
and control our model’s facial image synthesis.

Acknowledgment We thank Marc Levoy for the valuable
feedback and everyone whose photos appear in this paper
for their permission.
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Supplementary Material

A. More Results on Personalized Editing
We provide more results on using physical buffers to

rig/drive facial appearance generation in Figure S1.

Expression Lighting Pose

Figure S1. More results on using physical buffers to rig the
facial appearance. The physical buffers (not shown) are used to
edit the input images (top row) in terms of facial expression (left
column), lighting (middle column), and head pose (right column).

B. Extreme Lighting Editing
During the training of DiffusionRig, we rely on the SH-

based lighting model from DECA, which is limited in mod-
eling high-frequency lighting. At inference time, we can use

a different lighting representation that can model directional
lighting with cast shadow (through ray casting). We show
one such extreme lighting example and another RGB lighting
example in Figure S2, for which our model regresses slightly
towards less extreme lighting but still produces reasonable
results.

Input Target Lighting Output

Figure S2. Stress test with difficult directional and RGB lighting.

C. Personal Photo Collections

In Figure S3, we show two sets of images we used to
train Stage 2. For celebrities, we crawl the photos from the
internet; for non-celebrities, we use everyday photos. In
comparison, MyStyle requires 92–279 images for finetuning.
When using only 20 images as we do, MyStyle cannot learn
personalized priors well as shown in the main paper.

D. Neural Network Architecture Details

For our global encoder, we modify the ResNet-18 model
by replacing the final classification layer with a feature ex-
traction layer. More specifically, we change the last layer
into a linear layer that outputs our latent code.

Our diffusion model is based on the architecture presented
in Guided-Diffusion [7]. We modify the architecture so that
the model can take the global latent code as another condition
(in addition to the concatenation of physical buffers and the
noise image). This global latent code is used for scaling and
shifting the features. Our model architecture details can be
found in Table S1, where we provide hyperparameters for
both our 256× 256 and 512× 512 models.
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Figure S3. Personal photo collections used for training Stage 2: Taylor Swift and a non-celebrity.

Input Target N+S L N+L A+L A+N+L
Lighting (Ours)

Figure S4. Ablation on different input conditions. N: Normals, S: SH layers, L: Lambertian rendering, A: Albedo.

256× 256 512× 512
Diffusion Steps 1000 1000
Channels 128 128
Channels Multiple 1, 1, 2, 2, 4, 4 0.5, 1, 1, 2, 2, 4, 4
Heads Channels 128 128
Attention Resolution 16 16
Dropout 0.1 0.1
P2 gamma† 1.0 1.0
P2 k† 1.0 1.0
Optimizer Adam Adam
Weight Decay 0.0 0.0
Batch Size (S1) 256 64
Batch Size (S2) 4 2
Iterations (S1) 50k 200k
Iterations (S1) 5k 20k
Learning Rate (S1) 10−4 10−4

Learning Rate (S2) 10−5 10−5

Table S1. DiffusionRig architecture details. S1 and S2 denote
Stages 1 and 2, respectively. Refer to Guided-Diffusion [7] for
more details. † are two hyperparamters defined in prior work [5].

E. Different Types of Pixel-Aligned Buffers
We ablate different pixel-aligned buffers in Figure S4.

In our method, we use three kinds of physical buffers from
DECA which are Normals (N), Albedo (A) and Lambertian
rendering (L). With Lambertian rendering being the only
physical buffer that contains lighting information, we include
it in all our ablation studies except for the “N+S” where we
use Normals and Spherical Harmonics with SH rendered
on all-white albedo (i.e., shading), so it doesn’t contain
albedo information. We can see with Normals, Albedo,
and Lambertian rendering, the results preserve details (e.g.,
mouth) better, while N+S cannot render accurate lighting
due to the missing albedo.

F. Higher-Resolution Results (512× 512)
DiffusionRig can be trained at 512× 512 resolution. We

show these higher-resolution results in Figures S5 and S6 on
two new celebrities.
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Input Light Expression Pose

Figure S5. 512×512 Facial Appearance Editing Results. Two groups of results are presented here with the first row of each group being
the physical buffers that drive the editing.
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Input Light Expression Pose

Figure S6. 512×512 Facial Appearance Editing Results. Two groups of results are presented here with the first row of each group being
the physical buffers that drive the editing.
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