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Abstract

Signed distance functions (SDFs) is an attractive frame-
work that has recently shown promising results for 3D shape
reconstruction from images. SDFs seamlessly generalize to
different shape resolutions and topologies but lack explicit
modelling of the underlying 3D geometry. In this work, we ex-
ploit the hand structure and use it as guidance for SDF-based
shape reconstruction. In particular, we address reconstruc-
tion of hands and manipulated objects from monocular RGB
images. To this end, we estimate poses of hands and objects
and use them to guide 3D reconstruction. More specifically,
we predict kinematic chains of pose transformations and
align SDFs with highly-articulated hand poses. We improve
the visual features of 3D points with geometry alignment
and further leverage temporal information to enhance the
robustness to occlusion and motion blurs. We conduct exten-
sive experiments on the challenging ObMan and DexYCB
benchmarks and demonstrate significant improvements of
the proposed method over the state of the art.

1. Introduction

Understanding how hands interact with objects is be-
coming increasingly important for widespread applications,
including virtual reality, robotic manipulation and human-
computer interaction. Compared to 3D estimation of sparse
hand joints [24, 39, 52, 54, 68], joint reconstruction of hands
and object meshes [11, 18, 21, 26, 63] provides rich infor-
mation about hand-object interactions and has received in-
creased attention in recent years.

To reconstruct high-quality meshes, some recent works [9,
17, 62] explore multi-view image inputs. Multi-view images,
however, are less common both for training and testing sce-
narios. In this work, we focus on a more practical and user-
friendly setting where we aim to reconstruct hand and object
meshes from monocular RGB images. Given the ill-posed
nature of the task, many existing methods [7, 19, 21, 55, 63]

gSDF gSDF gSDF

Figure 1. We aim to reconstruct 3D hand and object meshes from
monocular images (top). Our method gSDF (middle) first predicts
3D hand joints (blue) and object locations (red) from input images.
We use estimated hand poses and object locations to incorporate
strong geometric priors into SDF by generating hand- and object-
aware kinematic features for each SDF query point. Our resulting
gSDF model generates accurate results for real images with various
objects and grasping hand poses (bottom).

employ parametric mesh models (e.g., MANO [47]) to im-
pose prior knowledge and reduce ambiguities in 3D hand re-
construction. MANO hand meshes, however, have relatively
limited resolution and can be suboptimal for the precise
capture of hand-object interactions.

To reconstruct detailed hand and object meshes, another
line of efforts [11, 26] employ signed distance functions
(SDFs). Grasping Field [26] makes the first attempt to model
hand and object surfaces using SDFs. However, it does not
explicitly associate 3D geometry with image cues and has no
prior knowledge incorporated in SDFs, leading to unrealistic
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meshes. AlignSDF [11] proposes to align SDFs with respect
to global poses (i.e., the hand wrist transformation and the
object translation) and produces improved results. However,
it is still challenging to capture geometric details for more
complex hand motions and manipulations of diverse objects,
which involve the articulation of multiple fingers.

To address limitations of prior works, we propose a
geometry-driven SDF (gSDF) method that encodes strong
pose priors and improves reconstruction by disentangling
pose and shape estimation (see Figure 1). To this end, we first
predict sparse 3D hand joints from images and derive full
kinematic chains of local pose transformations from joint
locations using inverse kinematics. Instead of only using
the global pose as in [11], we optimize SDFs with respect
to poses of all the hand joints, which leads to a more fine-
grained alignment between the 3D shape and articulated
hand poses. In addition, we project 3D points onto the image
plane to extract geometry-aligned visual features for signed
distance prediction. The visual features are further refined
with spatio-temporal contexts using a transformer model to
enhance the robustness to occlusions and motion blurs.

We conduct extensive ablation experiments to show the
effectiveness of different components in our approach. The
proposed gSDF model greatly advances state-of-the-art accu-
racy on the challenging ObMan and DexYCB benchmarks.
Our contributions can be summarized in three-fold: (i) To
embed strong pose priors into SDFs, we propose to align
the SDF shape with its underlying kinematic chains of pose
transformations, which reduces ambiguities in 3D recon-
struction. (ii) To further reduce the misalignment induced by
inaccurate pose estimations, we propose to extract geometry-
aligned local visual features and enhance the robustness with
spatio-temporal contexts. (iii) We conduct comprehensive
experiments to show that our approach outperforms state-of-
the-art results by a significant margin.

2. Related Work
This paper focuses on jointly reconstructing hands and

hand-held objects from RGB images. In this section, we
first review previous works on the 3D hand pose and shape
estimation. We then discuss relevant works on the joint re-
construction of hands and objects.

3D hand pose and shape estimation. The topic of 3D
hand pose estimation has received widespread attention since
the 90s [23, 46] and has seen significant progress in re-
cent years [31, 66]. Methods which take RGB images as
input [24, 37, 39, 40, 49, 51, 52, 54, 60, 68] often estimate
sparse 3D hand joint locations from visual data using well-
designed deep neural networks. Though these methods can
achieve high estimation accuracy, their outputs of 3D sparse
joints provide limited information about the 3D hand surface,
which is critical in AR/VR applications. Following the intro-
duction of the anthropomorphic parametric hand mesh model

MANO [47], several works [2,5,10,18,29,30,33,35,41,58]
estimate the MANO hand shape and pose parameters to
recover the full hand surface. However, MANO has a lim-
ited mesh resolution and cannot produce fine surface details.
Neural implicit functions [13,25] have the potential to recon-
struct more realistic high resolution hand surfaces [12,38,43].
In this work, we combine the advantages of sparse, para-
metric and implicit modelling. We predict sparse 3D joints
accurately from images and estimate the MANO parameters
using inverse kinematics. We then optimize neural implicit
functions with respect to underlying kinematic structures
and reconstruct realistic meshes.

3D hand and object reconstruction. Joint reconstruc-
tion of hand and object meshes provides a more compre-
hensive view about how hands interact with manipulated
objects in the 3D space and has received more attention
in the past few years. Previous works often rely on multi-
view correspondence [3, 9, 17, 42, 59, 62] or additional depth
information [15, 16, 50, 56, 57] to approach this task. In
this work, we focus on a more challenging setting and
perform a joint reconstruction from monocular RGB im-
ages. Given the ill-posed nature of this problem, many
works [7, 18–21, 55, 61, 63] deploy MANO, which encodes
hand prior knowledge learned from hand scans, to recon-
struct hand meshes. To further simplify the object recon-
struction task, several works [18, 61, 63] make a strong as-
sumption that the ground-truth object model is available at
test time. Our work and some previous efforts [11, 21, 26]
relax this assumption and assume unknown object models.
Hasson et al. [21] employ a differentiable MANO layer to
estimate the hand shape and AtlasNet [14] to reconstruct the
manipulated object. However, both MANO and AtlasNet can
only produce meshes of limited resolution, which prevents
the modelling of detailed contacts between hands and ob-
jects. To generate more detailed surfaces, Karunratanakul et
al. [26] introduce grasping fields and propose to use SDFs to
reconstruct both hand and object meshes. However, such a
model-free approach does not capture any prior knowledge
about hands or objects, which can lead to predicting unreal-
istic 3D geometry. To mitigate this, Ye et al. [64] propose to
use hand poses estimated from an off-the-shelf model to help
reconstruct the hand-held object mesh. The main difference
with our work is that we jointly reconstruct hand meshes
and object meshes using our proposed model, which is more
challenging. Also, in addition to using hand poses to help
capture the object shapes, we predict object poses and show
their benefits for SDF-based object reconstruction. Another
work AlignSDF [11] optimizes SDFs with respect to esti-
mated hand-object global poses and encodes pose priors into
SDFs. In addition to using global poses as a guide for SDFs,
we propose to learn SDFs from the full kinematic chains
of local pose transformations, and achieve a more precise
alignment between the 3D shape and the underlying poses.
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Figure 2. The overview of our proposed single-frame model. Our method reconstructs realistic hand and object meshes from a single RGB
image. Marching Cubes algorithm [34] is used at test time to extract meshes.

To further handle hard cases induced by occlusion or mo-
tion blur where pose estimations are inaccurate, we leverage
a transformer to accumulate corresponding image features
from multiple frames and benefit the geometry recovery.

3. Method

This section presents our geometry-driven SDF (gSDF)
method for 3D hand and object reconstruction from monoc-
ular RGB images. We aim to learn two signed distance func-
tions SDFhand and SDFobj to implicitly represent 3D shapes
for the hand and the object. The SDFhand and SDFobj map
a query 3D point x ∈ R3 to a signed distance from the
hand surface and object surface, respectively. The Marching
Cubes algorithm [34] can thus be employed to reconstruct
the hand and the object from SDFhand and SDFobj .

3.1. Overview of gSDF

Figure 2 illustrates the overview of our gSDF reconstruc-
tion approach. Given an image It, we extract two types of
features to predict the signed distance for each query point
x, namely kinematic features and visual features.

The kinematic feature encodes the position of x under
the coordinate system of the hand or the object, which can
provide strong pose priors to assist SDF learning. Since the
feature is based on canonical hand and object poses, it helps
to disentangles shape learning from pose learning.

The existing work [64] proposes to use hand poses for
reconstructing object meshes but does not consider using
pose priors to reconstruct hand meshes. Another work [11]
only deploys coarse geometry in terms of the hand wrist
object locations, which fails to capture fine-grained details.
In this work, we aim to strengthen the kinematic feature with
geometry transformation of x to poses of all the hand joints
(see Figure 3) for both the hand and the object reconstruc-

tion. However, it is challenging to directly predict hand pose
parameters [6, 28, 67]. To improve the hand pose estimation,
we propose to first predict sparse 3D joint locations jh from
the image and then use inverse kinematics to derive pose
transformations θh from the predicted joints. In this way, we
are able to obtain kinematic features eh and eo for the hand
and the object respectively.

The visual feature encodes the visual appearance for the
point x to provide more shape details. Prior works [11, 26]
use the same global visual feature for all the points, e.g.,
averaging the feature map of a SDF feature encoder on the
spatial dimension. Such global visual features suffers from
imprecise geometry alignment between a point and its visual
appearance. To alleviate the limitation, inspired by [48], we
apply the geometry transformation to extract aligned local
visual features. Moreover, to address hard cases with occlu-
sions and motion blur in a single image It, we propose to
enhance the local visual feature with its temporal contexts
from videos using a spatio-temporal transformer. We denote
the local visual feature of a point as ev . Finally, we concate-
nate the kinematic feature and local visual feature to predict
the signed distance for x:

SDFhand(x) = fh([ev; eh]),

SDFobject(x) = fo([ev; eo]),
(1)

where fh and fo are the hand SDF decoder and the object
SDF decoder respectively.

In the following, we first present the proposed geometry-
driven kinematic feature and visual feature encodings in
Section 3.2 and 3.3 respectively. Then, in Section 3.4 we
introduce different strategies of sharing image backbones
for hand and object pose predictors as well as the SDF fea-
ture encoder. Finally, the training strategy of our model is
described in Section 3.5.
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Figure 3. We define hand and object features by transforming
queries x into hand- and object-centered coordinate systems. Com-
pared to AlignSDF [11] (left), each hand joint in our method defines
its own coordinate frame.

3.2. Kinematic Feature Encoding

Hand and object pose estimation. Directly regressing hand
pose parameters of MANO from image features [11, 19, 21]
has proved to be difficult [6, 28, 67]. In contrast, predicting
sparse 3D joint locations is easier and can achieve higher
accuracy. Therefore, we first train a 3D hand joint predic-
tion model which produces volumetric heatmaps [39, 45] for
21 hand joints. We use a differentiable soft-argmax opera-
tor [51] to extract 3D coordinates ψh ∈ R21×3 of hand joints
from the heatmaps. We then obtain an analytic solution for
hand poses θh ∈ R16×3, ϕh ∈ R16×3 from estimated 3D
joints ψh using inverse kinematics, where each θh,i ∈ R3

and θh,i ∈ R3 denote the relative pose of ith joint in terms
of rotation and translation with respect to its ancestor joint.
Here, we only calculate the rotation and use the default limb
lengths provided by the MANO model. Specifically, we first
compute the pose of the hand wrist using the template pose
defined in MANO, and then follow the hand kinematic chain
to solve the pose of other finger joints recursively. More
details are presented in the appendix.

For the object pose estimation, it is often difficult to accu-
rately estimate the rotation of the object since many objects
have a high degree of symmetry and are often occluded by
hands. We therefore follow [11] and only estimate the center
position of the object ψo ∈ R3 relative to the hand wrist.

Hand kinematic feature. Given the 3D point x, we gener-
ate the hand kinematic feature eh ∈ R51 by transforming
x into canonical coordinate frames defined by hand joints.
Figure 3(top,right) illustrates the proposed geometry trans-
formation for the hand. For the ith hand joint pose θh,i, ϕh,i,
the pose transformation Tp(x, θh,i, ϕh,i) to obtain the local

hand kinematic feature eh,i ∈ R3 is defined as

Gh,i =
∏

j∈A(i)

[
exp (θh,j) ϕh,j

0 1

]
,

eh,i = Tp(x, θh,i, ϕh,i) = H̃(G−1
h,i ·H(x)),

(2)

where A(i) denotes the ordered set of ancestors of the
ith joint. We use Rodrigues formula exp(·) to convert
θh,i into the form of a rotation matrix. By traversing the
hand kinematic chain, we obtain the global transformation
Gh,i ∈ R4×4 for the ith joint. Then, we take the inverse of
Gh,i to transform x into the ith hand joint canonical coor-
dinates. H(·) transforms x into homogeneous coordinates
while H̃(·) transforms homogeneous coordinates back to
Euclidean coordinates. Given local kinematic features eh,i,
the hand kinematic feature eh ∈ R51 is defined as:

eh = [x, eh,1, · · · , eh,16]. (3)

Object kinematic feature. To obtain geometry-aware SDF
for object reconstruction, we propose object kinematic fea-
ture eo ∈ R72. Following [11], we use estimated object
center ψo to transform x into the object canonical coordinate
frame by the translation transformation xoc = Tt(x, ψo) =
x−ψo. As the grasping hand pose also gives hints about the
shape of the manipulated object, similar to [64] we incorpo-
rate the knowledge of hand poses into object reconstruction.
To this end, for each joint i and its estimated 3D location
ψh,i, we transform x by translation as

eo,i = Tt(x, ψh,i) = x− ψj,i. (4)

Given the importance of the wrist motion for object grasping,
we also transform x into the canonical coordinate system of
the hand wrist xow = Tp(x, θh,1, ϕh,1) = H̃(G−1

h,1 ·H(x)),
which normalizes the orientation of the grasping and further
simplifies the task for the SDF object decoder. The object
kinematic feature is then defined by eo ∈ R72 as

eo = [x, xoc, eo,1, · · · , eo,21, xow]. (5)

Figure 3(bottom,right) illustrates the proposed geometry
transformation for the object kinematic feature.

3.3. Visual Feature Encoding

Geometry-aligned visual feature. Previous works [11, 26]
typically predict signed distances from global image features
that lack spatial resolution. Motivated by [48], we aim to gen-
erate geometry-aligned local image features for each input
point x. Assume vrt ∈ R16×16×d is the feature map gener-
ated from the SDF feature encoder, e.g. a ResNet model [22],
where 16× 16 is the spatial feature resolution and d is the
feature dimension. We project the 3D input point x to x̂
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(a) Single backbone.

(b) Symmetric backbone.

(c) Asymmetric backbone.

Figure 4. Illustrations of three image backbone sharing strategies.

on the image plane with the camera projection matrix and
use bilinear sampling to obtain a local feature ev from the
location on the feature map corresponding to x̂.
Temporaly-enhanced visual feature. To improve the ro-
bustness of visual features in a single frame It from occlu-
sion or motion blur, we propose to exploit temporal informa-
tion from videos to refine vrt . Note that due to non-rigid hand
motions, we do not assume video frames to contain different
views of the same rigid scene. We make use of the spatial-
temporal transformer architecture [1, 4] to efficiently prop-
agate image features across frames. Assume vrt−1, · · · vrt+1

are the feature maps from neighboring frames of It in a
video. We flatten all the feature maps as a sequence in the
spatial-temporal dimension leading to 3×16×16 tokens fed
into the transformer model. We reshape the output features
of the transformer into a feature map again for It, denoted as
vt ∈ R16×16×d. By aggregating spatial and temporal infor-
mation from multiple frames, vt becomes more robust to the
noise and can potentially produce more stable reconstruction
results compared to vrt . Our full gSDF model relies on the
feature map vt to compute the local visual feature ev for the
given input point x.

3.4. Image Backbone Sharing Strategy

As shown in Figure 2, our model contains three branches
for hand and object pose estimations as well as for SDF
feature encoding. These different branches may share image
backbones which might be beneficial with the multi-task
learning. In this section, we describe three alternative strate-
gies for sharing image backbones in our model.
Single image backbone (Figure 4a). We only employ one

single image backbone for both pose and shape predictions.
This is the strategy used in AlignSDF [11].
Symmetric image backbone (Figure 4b). To disentangle
pose and shape learning, we share the image backbone for
hand and object pose estimation, but use a different backbone
to extract visual features for SDFs learning.
Asymmetric image backbone (Figure 4c). Since hand pose
estimation plays a critical role in the task, we use a separate
backbone to predict the hand pose, while share the image
backbone for object pose predictor and SDF feature encoder.

3.5. Training

We apply a two-stage training strategy. In the first stage,
we train the hand pose predictor to predict hand joint coordi-
nates ψh with ℓ2 loss Lhp and an ordinal loss [44] Lord to
penalize the case if the predicted depth order between the
ith joint and the jth joint is misaligned with the ground-truth
relation 1ord

i,j , which are:

Lhp =
1

21

21∑
i=1

∥∥∥ψh,i − ψ̂h,i

∥∥∥2
2
, (6)

Lord =

21∑
j=2

j−1∑
i=1

1ord
i,j ×

∣∣∣(ψh,i − ψh,j) · n⃗
∣∣∣, (7)

where n⃗ ∈ R3 denotes the viewpoint direction. We randomly
sample twenty virtual views to optimize Lord. Since the
proposed kinematic features are based on the predicted hand
joints ψh, we empirically find that pretraining the hand joint
predictor in the first stage and then freezing its weights can
achieve better performance.

In the second training stage, we learn all the modules
except the hand joint predictor in an end-to-end manner. We
use the ℓ2 loss Lop to predict the object pose ψo as follows:

Lop =
∥∥∥ψo − ψ̂o

∥∥∥2
2

(8)

where ψ̂o denote the ground-truth location for the object cen-
ter. To train the SDFs, we sample many 3D points around the
hand-object surface and calculate their ground-truth signed
distances to the hand mesh and the object mesh. We use ℓ1
loss to optimize the SDF decoders:

Lhsdf =
∥∥∥SDFhand − ˆSDFhand

∥∥∥1
1
,

Losdf =
∥∥∥SDFobj − ˆSDFobj

∥∥∥1
1
,

(9)

where ˆSDFhand and ˆSDFobj denote ground-truth signed
distances to the hand and the object, respectively. The overall
training objective Lshape in the second training stage is:

Lshape = Lop + 0.5× Lhsdf + 0.5× Losdf . (10)
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4. Experiments

We conduct extensive experiments on two 3D hand-object
reconstruction benchmarks to evaluate the effectiveness of
our proposed gSDF model.

4.1. Datasets

ObMan [21] is a large-scale synthetic dataset that contains
diverse hand grasping poses on a wide range of objects
imported from ShapeNet [8]. We follow previous meth-
ods [11, 26, 43, 64] to generate data for SDFs training. First,
we remove meshes that contain too many double-sided trian-
gles, which results in 87,190 hand-object meshes. Then, we
fit the hand-object mesh into a unit cube and sample 40,000
points inside the cube. For each sampled point, we compute
its signed distance to the ground-truth hand mesh and object
mesh, respectively. At test time, we report the performance
on the whole ObMan test set of 6,285 testing samples.
DexYCB [9] is currently the largest real dataset that captures
hand and object interactions in videos. Following [11,61], we
focus on right-hand samples and use the official s0 split. We
follow the same steps as in ObMan to obtain SDF training
samples. To reduce the temporal redundancy, we downsam-
ple the video data to 6 frames per second, which results in
29,656 training samples and 5,928 testing samples.

4.2. Evaluation metrics

We follow prior works to comprehensively evaluate the
3D reconstructions with multiple metrics as below.
Hand Chamfer Distance (CDh). We evaluate Chamfer dis-
tance (cm2) between our reconstructed hand mesh and the
ground-truth hand mesh. We follow previous works [11, 26]
to optimize the scale and translation to align the recon-
structed mesh with the ground truth and sample 30,000
points on both meshes to compute Chamfer distance. We
report the median Chamfer distance on the test set to reflect
the quality of our reconstructed hand mesh.
Hand F-score (FSh). Since Chamfer distance is vulnerable
to outliers [53,64], we also report the F-score to evaluate the
predicted hand mesh. After aligning the hand mesh with its
ground truth, we report F-score at 1mm (FSh@1) and 5mm
(FSh@5) thresholds.
Object Chamfer Distance (CDo). Following [11, 26], we
first use the optimized hand scale and translation to transform
the reconstructed object mesh. Then, we follow the same
process as CDh to compute CDo (cm2) and evaluate the
quality of our reconstructed object mesh.
Object F-score (FSo). We follow the previous work [64]
to evaluate the reconstructed object mesh using F-score at 5
mm (FSo@5) and 10 mm (FSo@10) thresholds.
Hand Joint Error (Eh). To measure the hand pose estima-
tion accuracy, we compute the mean joint error (cm) relative
to the hand wrist over all 21 joints in the form of ℓ2 distance.

Table 1. Hand reconstruction performance with different hand kine-
matic features Kh

∗ and visual feature V1 on DexYCB dataset.

Wrist only All joints CDh ↓ FSh@1 ↑ FSh@5 ↑

Kh
1 × × 0.364 0.154 0.764

Kh
2 ✓ × 0.344 0.167 0.776

Kh
3 × ✓ 0.317 0.171 0.788

Table 2. Object reconstruction performance with different object
kinematic features Ko

∗ and visual feature V1 on DexYCB dataset.

Obj pose Hand pose CDo ↓ FSo@5 ↑ FSo@10 ↑
Ko

1 × × 2.06 0.392 0.660
Ko

2 ✓ × 1.93 0.396 0.668
Ko

3 ✓ ✓ 1.71 0.418 0.689

Object Center Error (Eo). To evaluate the accuracy of our
predicted object translation, we report the ℓ2 distance (cm)
between the prediction and its ground truth.

Additionally, we report Contact ratio (Cr), Penetration
depth (Pd) and Intersection volume (Iv) [11,21,26,61,63] to
present more details about the interaction between the hand
mesh and the object mesh. Please see the appendix for more
details.

4.3. Implementation details

Model architecture. We use ResNet-18 [22] as our image
backbone. For hand and object pose estimation, we adopt
volumetric heatmaps of spatial resolution 64 × 64 × 64 to
localize hand joints and the object center in 3D space. For the
spatial-temporal transformer, we use 16 transformer layers
with 4 attention heads. We present more details about our
model architecture in the appendix.
Training details. We take the image crop of the hand-object
region according to their bounding boxes for DexYCB bench-
mark. Then, we modify camera intrinsic and extrinsic pa-
rameters [36, 65] accordingly and take the cropped image as
the input to our model. The spatial size of input images is
256×256 for all our models. We perform data augmentation
including rotation ([−45◦, 45◦]) and color jittering. During
SDF training, we randomly sample 1000 points (500 points
inside the mesh and 500 points outside the mesh) for the
hand and the object, respectively. We train our model with
a batch size of 256 for 1600 epochs on both ObMan and
DexYCB using the Adam optimizer [27] with 4 NVIDIA
RTX 3090 GPUs. We use an initial learning rate of 1× 10−4

and decay it by half every 600 epochs. It takes 22 hours for
training on DexYCB and 60 hours on ObMan dataset.

4.4. Ablation studies

We carry out ablations on the DexYCB dataset to vali-
date different components in our gSDF model. We evaluate
different settings of hand kinematic features (Kh

∗ in Table 1),
object kinematic features (Ko

∗ in Table 2), and visual features

6



Table 3. Hand-object reconstruction performance with different visual features on DexYCB dataset. The visual features are combined with
the best kinematic features Kh

3 (Table 1) and Ko
3 (Table 2) to reconstruct hand and object respectively.

Transformer
CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑ Eh ↓ Eo ↓Global Local Spatial Temp.

V1 ✓ × × × 0.317 0.171 0.788 1.71 0.418 0.689 1.44 1.91
V2 × ✓ × × 0.310 0.172 0.795 1.71 0.426 0.694 1.44 1.98
V3 × ✓ ✓ × 0.304 0.174 0.797 1.60 0.434 0.703 1.44 1.94
V4 × ✓ ✓ ✓ 0.302 0.177 0.801 1.55 0.437 0.709 1.44 1.96

Table 4. Hand-object reconstruction performance using different image backbone sharing strategies on DexYCB dataset. The ablation is
carried out with visual features V1 and kinematic features Kh

3 and Ko
3.

Backbone CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑ Eh ↓ Eo ↓
Single 0.411 0.148 0.741 1.88 0.402 0.674 1.72 1.83

Symmetric 0.324 0.168 0.779 1.84 0.405 0.672 1.46 1.93
Asymmetric 0.317 0.171 0.788 1.71 0.418 0.689 1.44 1.91

(V∗ in Table 3). We use the asymmetric image backbone if
not otherwise mentioned.
Hand kinematic feature. In Table 1, we evaluate the contri-
bution of the proposed hand kinematic features for 3D hand
reconstruction. The model in Kh

1 does not use any pose priors
to transform the 3D point. The model in Kh

2 only uses the
hand wrist pose to transform the 3D point as AlignSDF [11].
Our model in Kh

3 computes the transformations to all the
hand joints, which achieves the best performance on all the
evaluation metrics. Compared to Kh

1 without any pose priors,
our model achieves more than 12% and 9% improvement on
CDh and FSh@1, respectively. Compared to Kh

2 with only
hand wrist, our model greatly reduces the hand Chamfer dis-
tance from 0.344 cm2 to 0.317 cm2, leading to 7.8% relative
gains. These results demonstrate the significance of pose pri-
ors and the advantage of gSDF for 3D hand reconstruction.
Object kinematic feature. In Table 2, we validate the effec-
tiveness of our proposed object kinematic feature. The model
in Ko

1 does not contain any pose priors, while the model in
Ko

2 alignes query points to the object center as in [11]. Our
model in Ko

3 further employs the hand pose to produce the
object kinematic feature, which significantly boosts the per-
formance for the object reconstruction on different metrics.
Compared to Ko

2, our proposed object kinematic feature
achieves more than 11% and 5.5% improvement on CDo

and FSo@5, respectively.
Visual features. We compare different visual features for
SDF prediction in Table 3. V1 uses the global visual feature
e.g. the average pooling of ResNet feature map as in pre-
vious works [11, 26]. Our local visual features V2 derived
from the geometry alignment with the query point reduces
the hand Chamfer distance from 0.317 cm2 to 0.310 cm2.
However, it shows less improvement on the object shape
accuracy. In V3 and V4, we use the transformer model to
refine the feature maps. To ablate the improvement from the
transformer architecture and from the temporal information

Input Images Our single-frame model Our video model

Figure 5. The qualitative comparsion between our single-frame
model built with the transformer and our video model.

in videos, we only use transformer for each single frame
in V3 while use it for multiple frames in V4. We can see
that the transformer architecture alone is beneficial for the
reconstruction. Enhancing the visual features with temporal
contexts further improves the performance in terms of all
the evaluation metrics especially for the objects. In Figure 5,
compared with our single-frame model built with the trans-
former, our video model can make more robust predictions
under some hard cases (e.g., motion blur). Although the re-
construction of the can is not accurate in the first example,
our model tends to produces more regular shapes.
Image backbone sharing strategy. Results of using differ-
ent strategies for image backbone sharing are presented in
Table 4. We train all the three models using the two-stage
strategy described in Section 3.5. The model with one sin-
gle backbone achieves the worst performance under most
of the evaluation metrics. This is because the pose learning
and shape learning compete with each other during training.
The symmetric strategy to separate backbones for pose and
SDFs performs better than the single backbone model. Our
asymmetric strategy with a separate backbone for hand pose
estimation and a shared backbone for object pose and SDF
feature encoder achieves the best performance. We also em-
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Table 5. Comparison with state-of-the-art methods on the image ObMan dataset.

Methods CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑ Eh ↓ Eo ↓

Hasson et al. [21] 0.415 0.138 0.751 3.60 0.359 0.590 1.13 -
Karunratanakul et al. [26] 0.261 - - 6.80 - - - -
Ye et al. [64] - - - - 0.420 0.630 - -
Chen et al. [11] 0.136 0.302 0.913 3.38 0.404 0.636 1.27 3.29

gSDF (Ours) 0.112 0.332 0.935 3.14 0.438 0.660 0.93 3.43

Table 6. Comparison with state-of-the-art methods on the video DexYCB dataset.

Methods CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑ Eh ↓ Eo ↓

Hasson et al. [21] 0.537 0.115 0.647 1.94 0.383 0.642 1.67 -
Karunratanakul et al. [26] 0.364 0.154 0.764 2.06 0.392 0.660 - -
Chen et al. [11] 0.358 0.162 0.767 1.83 0.410 0.679 1.58 1.78
Chen et al. [11] 1† 0.344 0.167 0.776 1.81 0.413 0.687 1.57 1.93

gSDF (Ours) 0.302 0.177 0.801 1.55 0.437 0.709 1.44 1.96

Figure 6. Qualitative results of our model on test images from the
ObMan and DexYCB benchmarks. Our model produces convincing
results for different grasping poses and diverse objects.

pirically find that learning the object pose and SDFs together
improves both the pose accuracy and the shape accuracy.
The possible reason is that estimating object pose also helps
our model to focus more on hand-object regions and boosts
the 3D reconstruction accuracy.

4.5. Comparison with state of the art

We compare our gSDF model with state-of-the-art meth-
ods on ObMan and DexYCB benchmarks. In Figure 6, we
qualitatively demonstrate that our approach can produce con-
vincing 3D hand-object reconstruction results.

1†To make more fair comparison with Chen et al. [11], we adapt their model
to the same asymmetric backbone structure as used in our method.

ObMan. Table 5 shows the comparison of hand and ob-
ject reconstruction results on the synthetic ObMan dataset.
Since ObMan does not contain video data, we do not use
the spatial-temporal transformer in this model. The proposed
gSDF outperforms previous methods by a significant margin.
Compared with the recent method [64] that only reconstructs
hand-held objects, our joint method produces more accu-
rate object meshes. gSDF achieves a 17.6% improvement
on CDh and a 7.1% improvement on CDo over the state-of-
the-art accuracy, which indicates that our model can better
reconstruct both hand meshes and diverse object meshes.

DexYCB. Table 6 presents results on the DexYCB bench-
mark. We also show the performance of AlignSDF [11] with
two backbones ( [11]-2BB). Our model demonstrates a large
improvement over recent methods. In particular, it advances
the state-of-the-art accuracy on CDh and CDo by 12.2% and
14.4%, respectively. The high accuracy of gSDF on DexYCB
demonstrates that it generalizes well to real images.

5. Conclusion
In this work, we propose a geometry-driven SDF (gSDF)

approach for 3D hand and object reconstruction. We explic-
itly model the underlying 3D geometry to guide the SDF
learning. We first estimate poses of hands and objects ac-
cording to kinematic chains of pose transformations, and
then derive kinematic features and local visual features us-
ing the geometry information for signed distance prediction.
Extensive experiments on ObMan and DexYCB datasets
demonstrate the effectiveness of our proposed method.
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Appendix

In the appendix, we provide more details of our method
and additional results. We first present details of our model
architecture in Section A. Then in Section B, we provide
more details about solving hand poses from predicted 3D
joints using inverse kinematics. Finally, we discuss addi-
tional experimental results in Section C.

A. Network Architecture
d

Kinematic features

visual feature

Concat 51
2

51
2 

-
d

d

51
2

51
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Figure 7. Network architecture used for our hand and object SDF
decoders. Following [11, 26], we use five fully-connected layers
(marked in purple) for the SDF decoder. The number in the box
denotes the dimension of features.

For our SDF decoders (see Figure 2 in the original paper)
we adopt the model architecture used in [11, 26] which em-
ploy five fully-connected layers as the decoder as illustrated
in Figure 7. Given visual feature ev ∈ R256 from the input
image (Section 3.2) and kinematic features eh ∈ R51 or
eo ∈ R72 from the query point (Section 3.3), we concatenate
them together to build a d-dimensional vector esdf and feed
it into the SDF decoder.

B. Hand Kinematics

In this section, we first introduce the forward kinematics
and inverse kinematics for the hand as shown in Figure 8(a).
Then we present how to use inverse kinematics to calculate
hand poses from predicted 3D joints in our method.
Forward Kinematics. Forward kinematics is usually de-
fined as the process to compute posed hand joints ψp ∈
R21×3 from given hand poses (i.e., relative rotations θ ∈
R16×3 and relative translations ϕ ∈ R16×3) and template
hand joints ψt ∈ R21×3. The kth joint in ψp can be com-
puted as:

ψp,k = Rk · ϕk + ψp,pa(k),

Rk = Rpa(k) · exp(θk),
(11)

where Rk denotes the global rotation matrix for the kth joint
and pa(·) returns the parent index of the kth joint. exp(·)
denotes Rodrigues formula to convert θk into the form of the
rotation matrix. We follow the inverse order of the kinematic
chain to derive the global rotation for the kth joint. For
simplicity, we assume that all hands share the same template

hand jointshand poses

Forward Kinematics

Inverse Kinematics

(a) Hand Kinematics (b) Hand Joints

Figure 8. Illustration of hand kinematics. In Figure (a), we show
functions of forward kinematics and inverse kinematics. In Figure
(b), we show relevant joints (marked in yellow) that are involved in
the computation of the hand wrist rotation.

Table 7. Comparison with state-of-the-art methods on ObMan.

Method Cr Pd Iv

Hasson et al. [21] 94.8% 1.20 6.25
Karunratanakul et al. [26] 69.6% 0.23 0.20
Chen et al. [11] 95.5% 0.66 2.81

gSDF (Ours) 89.8% 0.42 1.17

and set the relative translation as ϕk = ψt,k−ψt,pa(k), which
simplifies the computation of Equation 11 to:

ψp,k = Rk · (ψt,k − ψt,pa(k)) + ψp,pa(k),

Rk = Rpa(k) · exp(θk).
(12)

Inverse Kinematics. Given posed hand joints ψp and tem-
plate hand joints ψt, inverse kinematics solves relative hand
poses (θ, ϕ) that defines the transformations from ψt to ψp.
As we do in forward kinematics, we also omit ϕ in the com-
putation of inverse kinematics and only solves relative hand
rotations θ. We first derive the hand wrist rotation matrix
R1 ∈ R3×3 from the orientation of three connected joints
as shown in Figure 8(b) and formulate it as an optimization
problem:

R1 = arg min
R∈SO3

∑
i∈{5,9,13}

∥∥∥ψp,i −R · ψt,i

∥∥∥2
2
, (13)

where we can apply Singular Value Decomposition (SVD)
as in [32] to solve this problem. Then, we follow the hand
kinematic chain and solve the 3D rotation recursively for
each joint. To this end, we rewrite Equation 12 defined in
forward kinematics:

R−1
pa(k)(ψp,k − ψp,pa(k)) = exp(θk)(ψt,k − ψt,pa(k)).

(14)

Then, we could derive the norm and orientation of θk by
computing the dot product and cross product between the
vectorR−1

pa(k)(ψp,k−ψp,pa(k)) and the vector ψt,k−ψt,pa(k),
respectively.
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Table 8. Comparison with state-of-the-art methods on DexYCB.

Method Cr Pd Iv

Hasson et al. [21] 95.7% 1.15 9.64
Karunratanakul et al. [26] 96.0% 0.92 6.62
Chen et al. [11] 96.6% 1.08 8.40

gSDF (Ours) 95.4% 0.94 6.55

Table 9. Object reconstruction performance with different ob-
ject kinematic features on DexYCB dataset. ∗ denotes our re-
implementation of the method proposed in Ye et al. [64].

Model Obj. Pose CDo ↓ FSo@5 ↑ FSo@10 ↑
R1 Ye et al. [64] × - 0.420 0.630
R2 Ye et al.∗ × 2.09 0.404 0.663

R3 gSDF
(Ours)

× 1.78 0.411 0.676
R4 ✓ 1.71 0.418 0.689

Table 10. Comparing computational requirements of different mod-
els when reconstructing hand and object meshes of resolution
128× 128× 128 from an image on an NVIDIA 1080Ti GPU.

Method Input GPU Memory Latency

[26] Image 2357Mb 2.87s
[11] Image 2847Mb 3.17s

Ours Image 3425Mb 3.23s
Ours Video 3764Mb 4.14s

Table 11. Comparision of our method with AlignSDF [11] on
DexYCB while using different numbers of backbones (BB).

Model CDh ↓ FSh@1 ↑ FSh@5 ↑ CDo ↓ FSo@5 ↑ FSo@10 ↑

[11]-1BB 0.358 0.162 0.767 1.83 0.410 0.679
Ours-1BB 0.329 0.166 0.787 1.88 0.420 0.689

[11]-2BB 0.344 0.167 0.776 1.81 0.413 0.687
Ours-2BB 0.310 0.172 0.795 1.71 0.426 0.694

Ours-3BB 0.326 0.168 0.784 1.82 0.414 0.679

C. Experimental Results

C.1. Evaluations using additional metrics

To provide a more comprehensive view about our 3D
reconstruction performance, we also report Contact Ratio
(Cr), Penetration Depth (Pd) (cm) and Intersection Volume
(Iv) (cm3) for our models. We follow the same process as
previous works [11, 26] to compute these metrics. As shown
in Table 7 and Table 8, we can observe that our approach
can generate results with relatively low Penetration Depth
(Pd) and Intersection Volume (Iv) on both the ObMan and
DexYCB benchmarks, which suggests that our model can
produce physically plausible 3D reconstruction of hand and
object meshes. Table 10 compares the speed and memory of

different models. Our image model only slightly increases
compute compared to [11, 26].

C.2. Comparison with Ye et al. [64]

As Ye et al. [64] is a close work related to ours, we pro-
vide more ablation results for comparison with Ye et al. [64]
in Table 9. The main differences between Ye et al. [64] and
our work are three-fold. Firstly, they focus on 3D hand-held
object reconstruction instead of joint hand-object reconstruc-
tion. Secondly, they only consider the hand poses for object
reconstruction without object poses, and the hand poses are
predicted from an off-the-shelf model. Finally, a larger SDF
decoder is used in their work while we follow [11, 26] and
use a smaller decoder architecture. Therefore, in Table 9,
we only compare the object reconstruction performance. We
also re-implement Ye et al. [64] (R2 in Table 9) using the
same SDF decoder and the same predicted hand poses as
ours for a fair comparison. The model in R3 indicates that the
joint optimization of hand-object reconstruction is beneficial
compared to the model in R2. Our model in R4 uses both
hand poses and object poses to produce object kinematic
features and achieves the best performance on all the metrics
for 3D object reconstruction.

C.3. Ablations on the number of backbones

Table 11 reports additional results showing improvements
of our method over [11] while using the same number of
backbones. We note that all models in this table are trained
with the local visual features V2 defined in Table 3. We ob-
serve that gSDF can still outperform AlignSDF [11] under
a single backbone setting. For a better comparison, we also
extend AlignSDF to two backbones and train it with the
two-stage strategy. 2BB results in Table 11 show that our
method outperforms [11] even when both methods use two
backbones. We further conduct an experiment with three
backbones, where we use three separate backbones for hand
and object pose estimation and SDF learning. We observe
that 3BB consumes more resources without improving per-
formance. This shows that object pose estimation and SDF
learning benefit from a shared backbone in our 2BB asym-
metric architecture.

C.4. Qualitative results

In this section, we include more qualitative examples in
Figure 10 to show that our approach can reconstruct high-
quality hand meshes and object meshes for some challeng-
ing cases. We also qualitatively compare our method with
a most recent work AlignSDF [11] on both the ObMan and
DexYCB benchmarks. As shown in Figure 9, we can observe
that our method produces more realistic reconstruction re-
sults. Even for some objects with thin structures (e.g., bowl),
our method can still faithfully recover their 3D surfaces.
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Images gSDF (Ours)AlignSDF

Figure 9. Qualitative comparison between AlignSDF [11] and our gSDF. Our approach can produce more realistic hand and object
reconstruction results.

C.5. Failure cases analysis

In this section, we analyze some typical patterns for our
method on the DexYCB benchmark. As shown in Figure 11,

our method sometimes makes unreliable predictions in clut-
tered scenes. Our method uses a hand-relative coordinate
system. Hence, the reconstruction of both hands and ob-
jects may fail for scenes with heavily occluded hands. Since
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Figure 10. Qualitative results of our model on test images from
the ObMan and DexYCB benchmarks. Our approach can produce
convincing 3D reconstruction results for different hand grasping
poses and challenging objects.

Cluttered Scene Occlusion Scale Ambiguity Complex Object

Figure 11. Failure cases analysis of our method on the DexYCB
benchmark.

our method takes monocular RGB frames as the input, re-
constructed objects, especially for big objects, might have

incorrect scales. For some objects with complex geometric
topology, it is still difficult to produce accurate 3D recon-
structions under strong motion blur.
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