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With the progress of 3D human pose and shape estima- g NIKI
tion, state-of-the-art methods can either be robust to oc- T s0. -
clusions or obtain pixel-aligned accuracy in non-occlusion £ A
cases. However, they cannot obtain robustness and mesh- 2 701 x\
image alignment at the same time. In this work, we present ) '
NIKI (Neural Inverse Kinematics with Invertible Neural go 601 " )
Network), which models bi-directional errors to improve b, ﬂ
the robustness to occlusions and obtain pixel-aligned ac- < 301 /
curacy. NIKI can learn from both the forward and inverse 404 iN
processes with invertible networks. In the inverse process, 3DPW 3DPW-OCC 3DPW.XOCC

the model separates the error from the plausible 3D pose
manifold for a robust 3D human pose estimation. In the
forward process, we enforce the zero-error boundary condi-
tions to improve the sensitivity to reliable joint positions for
better mesh-image alignment. Furthermore, NIKI emulates
the analytical inverse kinematics algorithms with the twist-
and-swing decomposition for better interpretability. Ex-
periments on standard and occlusion-specific benchmarks
demonstrate the effectiveness of NIKI, where we exhibit ro-
bust and well-aligned results simultaneously. Code is avail-
able at https://github.com/Jeff-sjtu/NIKI.

1. Introduction

Recovering 3D human pose and shape (HPS) from
monocular input is a challenging problem. It has many
applications [10, 32,47,61, 62,64, 65]. Despite the rapid
progress powered by deep neural networks [18,22,23,25,

,068], the performance of existing methods is not satisfac-
tory in complex real-world applications where people are
often occluded and truncated by themselves, each other, and
objects.
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Figure 1. Trade-off between pixel-aligned accuracy and robust-
ness. From 3DPW to 3DPW-XOCC, the degree of occlusion in-
creases. The pixel-aligned approach performs well only in non-
occlusion cases. The direct regression approach is more robust to
occlusions but less accurate in non-occlusion cases. NIKI shows
high accuracy and strong robustness simultaneously. Illustrative
results on the 3ADPW-XOCC dataset are shown on the right.

Existing state-of-the-art approaches rely on pixel-
aligned local evidence, e.g., 3D keypoints [15, 30], mesh
vertices [4 1], and mesh-aligned features [68], to perform ac-
curate human pose and shape estimation. Although the lo-
cal evidence helps obtain high accuracy in standard bench-
marks, it fails when the mesh-image correspondences are
unavailable due to occlusions and truncations. These pixel-
aligned approaches sacrifice robustness to occlusions for
high accuracy in non-occlusion scenarios. On the other
hand, direct regression approaches are more robust to oc-
clusions. Such approaches directly predict a set of pose
and shape parameters with neural networks. By encoding
human body priors in the networks, they predict a more
physiologically plausible result than the pixel-aligned ap-
proaches in severely occluded scenarios. However, direct
regression approaches use all pixels to predict human pose
and shape, which is a highly non-linear mapping and suf-
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fers from image-mesh misalignment. Recent work [20, 23]
adopts guided attention to leverage local evidence for better
alignment. Nevertheless, in non-occlusion scenarios, direct
regression approaches are still not as accurate as the pixel-
aligned approaches that explicitly model the local evidence.
Fig. 1 shows the performance of the state-of-the-art pixel-
aligned and regression approaches in scenarios with differ-
ent levels of occlusions. These two types of approaches
cannot achieve mesh-image alignment and robustness at the
same time.

In this work, we propose NIKI, a Neural Inverse Kine-
matics (IK) algorithm with Invertible neural networks, to
improve robustness to occlusions while maintaining pixel-
aligned accuracy. IK algorithms are widely adopted in
pixel-aligned approaches [15, 30] to obtain mesh-image
alignment in non-occlusion scenarios. However, existing
IK algorithms only focus on estimating the body part ro-
tations that best explain the joint positions but do not con-
sider the plausibility of the estimated poses. Therefore, the
output human pose inherits the errors from joint position
estimation, which is especially severe in occlusion scenar-
ios. In contrast, NIKI is robust to unreliable joint positions
by modeling the bi-directional pose error. We build the bi-
jective mapping between the Euclidean joint position space
and the combined space of the 3D joint rotation and the la-
tent error. The latent error indicates how the joint positions
deviate from the manifold of plausible human poses. The
output rotations are robust to erroneous joint positions since
we have explicitly removed the error information by super-
vising the output marginal distribution in the inverse direc-
tion. In the forward direction, we introduce the zero-error
boundary conditions, which enforce the solved rotations to
explain the reliable joint positions and improve mesh-image
alignment. The invertible neural network (INN) is trained
in both forward and inverse directions. Since forward kine-
matics (FK) is deterministic and easy to understand, it aids
the INN in learning the complex IK process through inher-
ent bijective mapping. To further improve the interpretabil-
ity of the IK network, we emulate the analytical IK algo-
rithm by decomposing the complete rotation into the twist
rotation and the swing-dependent joint position with two
consecutive invertible networks.

We benchmark NIKI on 3DPW [56], AGORA [44],
3DOH [69], 3DPW-OCC [56], and our proposed 3DPW-
XOCC datasets. 3DPW-XOCC is augmented from the orig-
inal 3DPW dataset with extremely challenging occlusions
and truncations. NIKI shows robust reconstructions while
maintaining pixel-aligned accuracy, demonstrating state-of-
the-art performance in both occlusions and non-occlusion
benchmarks. The main contributions of this paper are sum-
marized as follows:

* We present a framework with a novel error-aware in-
verse kinematics algorithm that is robust to occlusions

while maintaining pixel-aligned accuracy.

* We propose to decouple the error information from
plausible human poses by learning a pose-independent
error embedding in the inverse process and enforc-
ing zero-error boundary conditions during the forward
process using invertible neural networks.

* Our approach outperforms previous pixel-aligned and
direct regression approaches on both occlusions and
non-occlusion benchmarks.

2. Related Work

3D Human Pose and Shape Estimation. Prior work es-
timates 3D human pose and shape by outputting the param-
eters of statistical human body models [, 36,43, 45, 63].
Initial work follows the optimization paradigm [6, 27, 45,

].  SMPLIify [6] is the first automated approach that
fits SMPL parameters to 2D keypoint observations. This
paradigm is further extended to silhouette [27] and volu-
metric grids [52].

Recently, learning-based paradigms have gained much
attention with the advances in deep neural networks. Exist-
ing work can be categorized into two classes: direct regres-
sion approaches and pixel-aligned approaches. Direct re-
gression approaches use deep neural networks to regress the
pose and shape parameters directly [18, 19,22-25,28, 58].
Intermediate representations are used as the weak supervi-
sion to improve the regression performance, e.g., 2D key-
points [18] and body/part segmentation [46]. Several stud-
ies [17,25] leverage the optimization paradigm to intro-
duce the pseudo ground truth for better supervision. Pixel-
aligned approaches explicitly exploit pixel-aligned local ev-
idence to estimate the pose and shape parameters. Moon et
al. [41] use the vertex positions to regress the SMPL pa-
rameters. Li et al. [30] and Igbal et al. [15] propose to map
the 3D keypoints to pose parameters. Zhang et al. [68] pro-
pose the mesh-aligned feedback loop to predict the aligned
SMPL parameters. Explicitly modeling local evidence con-
tributes to the state-of-the-art performance of pixel-aligned
approaches.

Although pixel-aligned approaches achieve high accu-
racy in standard benchmarks, they are vulnerable to oc-
clusions and truncations. When the local evidence is not
reliable or even does not exist in occluded and truncated
cases, such approaches predict physiologically implausible
results. Direct regression approaches [10,20,23,50,69] are
more robust to occlusions and truncations but less accu-
rate in non-occlusion scenarios. Zhang et al. [69] use the
saliency map to infer object-occluded human bodies. Ko-
cabas et al. [23] propose part-guided attention to exploit the
information about the visibility of body parts. Khirodkar
et al. [20] use body centermaps to exploit the spatial con-
text. A number of studies [45,48,51] propose to use pose



prior to improve the plausibility of the estimated poses. Al-
though the local evidence is implicitly used in recent re-
gression approaches, pixel-aligned approaches still domi-
nate non-occlusion benchmarks.

In this work, we combine the merits of pixel-aligned ap-
proaches and direct regression approaches. NIKI maintains
pixel-aligned accuracy by aligning with the body joints via
inverse kinematics while achieving robustness to occlusions
and truncations with bi-directional error decoupling.

Inverse Kinematics. The inverse kinematics (IK) process
finds the relative rotations to produce the desired positions
of body joints. It is an ill-posed problem because of the
information loss in the forward process. Traditional numer-
ical approaches [4,7,12,21,57,60] are time-consuming due
to iterative optimization. The heuristic approaches such as
CDC [37], FABRIK [3], and IK-FA [49] are more efficient
and have a lower computation cost for each heuristic itera-
tion. Recent work [9, 54] has started using neural networks
to solve the IK problem. Zhou et al. [70] train a four-layer
MLP network to predict the 3D human pose parameterized
as 6D vectors. Li et al. [30] propose a hybrid analytical-
neural solution to accurately predict the body part rotations.
Oreshkin et al. [42] propose to use prototype encoding to
predict rotations from sparse user inputs. Voleti er al. [55]
extend the same model to arbitrary skeletons. The work
of Ardizzone et al. [2] is most related to us. They use in-
vertible neural networks (INNs) to solve inverse problems,
including the toy inverse kinematics problem in 2D space.
However, similar to all the aforementioned approaches, they
assume the input body joints are reliable, resulting in vul-
nerability to occlusions and truncations.

Invertible Neural Network in HPS Estimation. Mod-
eling the conditional posterior of an inverse process is a
classical statistical task. Wehrbein et al. [59] propose to
estimate 3D human poses from 2D poses by capturing lost
information with INNs. Several studies [03, 66] leverage
INNs to build priors for 3D human pose estimation. The
pose priors are learned by normalizing flows that are built
with INNs. Biggs et al. [5] propose to use the learned prior
from normalizing flows to resolve ambiguities. Kolotouros
et al. [26] propose a conditional distribution with normaliz-
ing flows as a function of the input to combine information
from different sources. Li et al. [29] leverage normalizing
flows to capture the underlying residual log-likelihood of
the output and propose a novel regression paradigm from
the perspective of maximum likelihood estimation. Unlike
previous methods, our approach leverages the property of
bijective mapping in INNs to decouple joint errors and solve
the inverse kinematics problem robustly.
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Figure 2. Illustration of (a) analytical IK, (b) feedforward MLP-
based IK, and (c) NIKI with bi-directional error decoupling.

3. Method

In this section, we present NIKI, a neural inverse kine-
matics solution for 3D human pose and shape estimation.
We first review the formulation of existing analytical and
MLP-based IK algorithms in §3.1. In §3.2, we introduce the
proposed INN-based IK algorithm with bi-directional error
decoupling. In §3.3, we present the overall human pose es-
timation framework and the learning objective. Then we
elaborate on the proposed IK-specific invertible architecture
in §A. Finally, we provide the necessary implementation de-
tails in §3.5

3.1. Preliminaries

The IK process is to find the corresponding body part
rotations that explain the input body joint positions, while
the forward kinematics (FK) process computes the desired
joint positions based on the input rotations. The FK process
is well-defined, but the transformation from joint rotations
to joint positions incurs an information loss, i.e., multiple
rotations could correspond to one position, resulting in an
ill-posed IK process. Here, we follow HybrIK [30] to con-
sider twist rotations for information integrity.

The conventional IK algorithms only require the output
rotations to match the input joint positions but ignore the
errors of the joint positions and the plausibility of the body
pose. Therefore, the errors of the joint positions will be
accumulated in the joint rotations (Fig. 2a). This process
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Figure 3. Overview of the proposed framework. The input im-
age is fed into the CNN backbone network to estimate the initial
joint positions and twist rotations, followed by NIKI to solve the
joint rotations.

can be formulated as:

R+e = IKAnalytical(p+€pv¢+ € | /6); (D

erroneous output erroneous input

where R denotes the underlying plausible rotations, €, de-
notes the accumulated error in estimated rotations, p de-
notes the underlying plausible joint positions, ¢, denotes
the position errors, ¢ denotes the underlying plausible twist
rotations, €4 denotes the twist error, and 3 denotes the body
shape parameters.

A straightforward solution to improving the robust-
ness of the IK algorithms is using the standard regression
model [9, 69] to approximate the underlying plausible rota-
tions R given the erroneous input (Fig. 2b):

R ~ IKmp(p + €p, ¢ + €4 | B). (2)

Indeed, modeling the IK process with classical neural net-
works, e.g., MLP, can improve the robustness. However, the
output rotations are less sensitive to the change of the joint
positions. The errors are highly coupled with the joint po-
sitions. Without explicitly decoupling errors from plausible
human poses, it is difficult for the network to distinguish be-
tween reasonable and abnormal changes in joint positions.
Therefore, the output rotations cannot accurately track the
movement of the body joints. In practice, we find that the
feedforward neural networks could improve performance in
occlusion cases but cause performance degradation in non-
occlusion cases, where accurate mesh-image alignment is
required. Detailed comparisons are provided in Tab. 5.

3.2. Inverse Kinematics with INNs

In this work, to improve the robustness of IK to oc-
clusions while maintaining the sensitivity to non-occluded
body joints, we propose to use the invertible neural network
(INN) to model bi-directional errors explicitly (see Fig. 2c).
In contrast to the conventional methodology, we learn the

IK model g(-;3,0) jointly with the FK model f(;3,6):

[p+€p7¢+e¢} :f(R7ZT;/6a0)a (3)
R,z,] =g(p+ e, 0 +€4:8,0), 4

where z,. is the error embedding that denotes how the input
joint positions deviate from the manifold of plausible hu-
man poses. Notice that f and g share the same parameters
6, and f = g~ is enforced by the invertible network archi-
tecture. We expect that simultaneously learning the FK and
IK processes can benefit each other.

In the forward process, we can tune the error embedding
z, to control the error level of the body joint positions. The
body part rotations will perfectly align with the joint po-
sitions by setting z, to 0, which means no deviation from
the pose manifold. In the inverse process, the error is only
reflected on z,.. The rotation R keeps stable against the er-
roneous input.

Decouple Error Information. The input joints and twists
to the IK process contain two parts of information: i) the
underlying pose that lies on the manifold of plausible 3D
human poses; ii) the error information that indicates how
the input deviates from the manifold. We can obtain robust
pose estimation by separating these two types of informa-
tion. Due to the bijective mapping enforced by the INN, all
the input information is preserved in the output, and no new
information is introduced. Therefore, we only need to re-
move the pose information from the output vector z, in the
inverse process. The vector z, will automatically encode
the remaining error information. To this end, we enforce
the model to follow the independence constraint, which en-
courages R and z, to be independent upon convergence,
ie., p(z:|R) = p(z,).

After we separate the error information, we can manipu-
late the error embedding to let the model preserve the sensi-
tivity to error-free body joint positions without compromis-
ing robustness. In particular, we constrain the error infor-
mation in the forward process with the zero-error condition:

P, 8] = f(R,0;8,0). 5)

In this way, the rotations will track the joint positions and
twist rotations accurately in non-occlusion scenarios. Be-
sides, the zero-error condition can also be extended to the
inverse process:

[Rv 0] :g(pa d),,@,&) (6)

With the independence and zero-error constraints, the
network is able to model the error information in both the
forward and inverse processes, making NIKI robust to oc-
clusions while maintaining pixel-aligned accuracy.



3.3. Decoupled Learning

The overview of our approach is illustrated in Fig. 3.
During inference, we first extract the joint positions and
twist rotations with the CNN backbone, which are subse-
quently fed to the invertible network to predict the com-
plete body part rotations. During training, we optimize FK
and IK simultaneously in one network. Hereby, we perform
FK and IK alternately with the additional independence loss
and boundary loss. The gradients from both directions are
accumulated before performing a parameter update.

Inverse Training. In the inverse iteration, the network
predicts the body part rotations given the joint positions p
and twist rotations (}5 from the CNN backbone. The loss
function is defined as:

Lin = ||Rim — R + ||FK(Rin) — FK(R)|

)

with R R
[Rinw ZT] = g(f)7 P?; B, o)a (®)

where R represents the ground-truth rotations, and FK(-)
denotes the analytical FK process to supervise the corre-
sponding 3D joint positions of the predicted pose.

Forward Training. In the forward process, the network
predicts the joint positions and twist rotations given the
body part rotations. The error of the noisy predictions p
and é& should only be determined by the error embedding.
Therefore, with the ground-truth rotations R and error em-
bedding z, obtained from the inverse iteration, the forward
model should predict the same values as the CNN output:

Liwa = |Bwa — Pl + s — D113, ©)

with A B
[f)ﬁ‘/d7¢fwd] = f(Ra 27“71676) (10)

Independence Loss. The latent error vector is learned in
an unsupervised manner by making R;,, and z, indepen-
dent of each other. The pose information in R;,, is super-
vised by Eq. 7. We then enforce the independence by pe-
nalizing the mismatch between the joint distribution of the
rotations and error embedding q(f{,-,w, z,) and the product

of marginal distributions p(R)p(z):

Lina = D(q(Rim, 2, ), p(R) p(2)), (11)

where z ~ N(0,I) follows the standard normal distribu-
tion, I is the identity matrix, and D(-) denotes the Maxi-
mum Mean Discrepancy [ 3], which allows us to compare
two probability distributions through samples. In addition
to the independence constraint, £;,; encourages the error
embedding z, to follow the standard normal distribution
p(z), serving as a regularization.

Boundary Condition Loss. To enforce the solved rota-
tions to explain the reliable joint positions, we supervise
the boundary cases where no error occurs. In the inverse
process, the output error should be zero when the network
is fed with the ground truth:

Lia = &3 + | Rpa — RJ2, (12)

with X B
[Rbndagr] = g(ﬁa ¢v/379)7 (13)

where p and % denote the ground-truth joint positions and
twist rotations, respectively.

In the forward process, the joint positions and twist ro-
tations should map to the ground truth when the input error
vector z, is 0:

EJ;nd = 1Boma — Bll1 + |dpma — P13 (14)
with . _
[f)bmhqbbnd} = f(R707/659) (15)
Overall, the total loss of NIKI is:

L :)\inv['inv + Aﬂ’dﬁﬁ"d

i i foopf (16)

+AindLind + NpnaLona T XonaLona>
where Nin, s Ninds Mo Afén 4 are the scalar coefficients to
balance the loss terms.

3.4. Invertible Architecture

One-Stage Mapping. To build a fully invertible neural
network for inverse kinematics, we build the one-stage map-
ping model using RealNVP [11]. Since the IK and FK pro-
cesses require the skeleton template, we extend the INN to
incorporate the conditional shape parameters input. The ba-
sic block of the network contains two reversible coupling
layers conditioned on the shape parameters. The overall
network consists of multiple blocks connected in series to
increase capacity. Besides, since the invertible network re-
quires the input and output vectors to have the same dimen-
sion, we follow previous work [2] and pad zeros to the input.

Twist-and-Swing Mapping. Although treating the in-
vertible neural network as a black box can let us model both
the FK and IK processes at the same time, we further emu-
late the analytical IK algorithm to improve the performance
and interpretability. Specifically, we follow the twist-and-
swing decomposition [30] and divide the IK process into
two steps: 1) from joint positions to swing rotations; ii)
from twist and swing rotations to complete rotations. The
two-step mapping is implemented by two separate invertible
networks:

[stazsw] :gl(p+6p;ﬂ7el)v (17)
[R7 ZT’] = 92(R3W7¢+6¢;92)7 (18)



where Ry, is the swing rotations, and zj, indicates the de-
viation from the plausible swing rotation manifold.

Since the mappings are bijective, the FK process also fol-
lows the twist-and-swing procedure but inversely. We have
f = fiofs =gy 'ogs ' = g~ . In the FK process, the body
part rotations are first decomposed into twist and swing ro-
tations. Then the swing rotations are transformed into the
joint positions. The intermediate supervision of swing rota-
tions is used in both the forward and inverse training.

Temporal Extension. The invertible framework is flexi-
ble. It can be easily extended to solving the IK problem
with temporal inputs. The model with static inputs can
only identify the errors related to physiological implausi-
bility. In contrast, the temporal model further improves mo-
tion smoothness by decoupling errors of implausible human
body movements. More details are provided in the supple-
mentary material.

3.5. Implementation Details.

We adopt HybrIK [30] as the CNN backbone to predict
the noisy body joint positions and the twist rotations. The
input of the IK model includes the joint positions p € R3%,
twist rotations parameterized in 2-dimensional vectors, i.e.,
¢ € R2(K=1) " and the confidence scores of each joint
s € R¥, where K denotes the total number of human body
joints. The output of the model consists of the body part
rotations parameterized as a 6D vector for each part, i.e.,
R € RSX and the error embedding z, € RP=. The IK
model is conditioned on the shape parameters 3, which is
also predicted by the CNN backbone. We pad the input with
a zero vector with the dimension M = D, + 2 to satisfy the
dimension constraint of the invertible neural network. The
networks are trained with the Adam solver for 50 epochs
with a mini-batch size of 64. The learning rate is set to
1 x 1073 at first and reduced by a factor of 10 at the 30th
and 40th epochs. Implementation is in PyTorch. Detailed
architectures are provided in the supplementary material.

4. Experiments

Datasets. We employ the following datasets in our experi-
ments: (1) 3DPW [56], an outdoor benchmark for 3D human
pose estimation. (2) AGORA [44], a synthetic dataset with
challenging environmental occlusions. (3) 3DOH [69], a 3D
human dataset where human activities are occluded by ob-
jects. (4) 3DPW-OCC [56], a different split of the original
3DPW dataset with a occluded test set. (5) 3DPW—-XOCC,
a new benchmark for 3D human pose estimation with ex-
tremely challenging occlusions and truncations. We simu-
late occlusions and truncations by randomly pasting occlu-
sion patches and cropping frames with truncated windows.

| 3DPW

Method ‘ MPJPE| PA-MPJPE| PVE|
- HMRIIZ] 130.0 81.3 -
£ SPIN[25] 96.9 59.2 116.4
& ROMP [50] 85.5 53.3 103.1
& METRO [33] 77.1 47.9 88.2
®  PARE [23] 74.5 46.5 88.6
- PyMAF [68] 92.8 58.9 110.1
S I2L [4]1] 93.2 58.6 -
2 KAMA [15] - 51.1 97.0
%‘ Mesh Graphormer [34] 74.7 45.6 87.7
E HybrIK (ResNet) [30] 76.2 45.1 89.1

HybrIK (HRNet) [30] 72.9 41.8 88.6

NIKI (One-Stage) 71.7 41.0 86.9

NIKI (Twist-and-Swing) 71.3 40.6 86.6

Table 1. Quantitative comparisons with state-of-the-art meth-
ods on the 3DPW dataset. Symbol “-” means results are not avail-
able.

| 3DPW-X0OCC
Method ‘ MPJPE| PA-MPJPE| PVE|
HybrIK [30] 148.3 98.7 164.5
PARE [23] 139.4 85.3 151.6
PARE* [23] 114.2 67.7 133.0
NIKI (One-Stage) 117.0 64.4 135.6
NIKI (Twist-and-Swing) 110.7 60.5 128.6

Table 2. Quantitative comparisons with state-of-the-art meth-
ods on the 3DPW-XOCC dataset. Symbol * means finetuning on
the 3DPW-XOCC train set.

Training and Evaluation. NIKI is trained on 3DPW [56]
and Human3.6M [14] and evaluated on 3DPW [56] and
3DPW-XOCC [56] to benchmark the performance on both
occlusions and non-occlusion scenarios. We use the
AGORA [44] train set only when conducting experiments
on its test set. For evaluations on the 3DPW-OCC [56]
and 3DOH [69] datasets, we train NIKI on COCO [35],
Human3.6M [14], and 3DOH [69] for a fair compari-
son. Procrustes-aligned mean per joint position error (PA-
MPJPE) and mean per joint position error (MPJPE) are re-
ported to assess the 3D pose accuracy. Per vertex error
(PVE) is also reported to evaluate the estimated body mesh.

4.1. Comparison to State-of-the-art Methods

We evaluate NIKI on both standard and occlusion-
specific benchmarks. Tab. 1 compares NIKI with previ-
ous state-of-the-art HPS methods on the standard 3DPW
dataset. We report the results of NIKI with one-stage map-
ping and twist-and-swing mapping. We can observe that
in the standard benchmark, pixel-aligned approaches obtain
better performance than direct regression approaches. NIKI



\ AGORA

Method | NMVE] NMJE| MVE| MPJPE|
HMR [18] 217.0 226.0 173.6 180.5
SPIN [25] 216.3 223.1 168.7 175.1
EFT [17] 196.3 203.6 159.0 165.4
ROMP [50] 227.3 236.6 161.4 168.0
PyMAF [68] 200.2 207.4 168.2 174.2
PARE [23] 167.7 174.0 140.9 146.2
SPEC [24] 126.8 133.7 106.5 112.3
CLIFF [31] 83.5 89.0 76.0 81.0
HybrIK [30] 81.2 84.6 73.9 71.0
NIKI (One-Stage) 72.2 75.9 65.7 69.1
NIKI (Twist-and-Swing) 70.2 74.0 63.9 67.3

Table 3. Quantitative comparisons with state-of-the-art meth-
ods on the AGORA dataset.

| 3DPW-0CC | 3DOH
Method | MPIPE| | PA-MPIPE | | PVEL | MPIPE | | PA-MPIPE |
Zhang et al. [69] - 722 - - 58.5
SPIN [25] 98.4 62.5 135.1 104.3 68.3
HMR-EFT [17] 95.8 62.0 120.5 75.2 53.1
HybrIK [30] 90.8 58.8 111.9 40.4 31.2
PARE [23] 91.4 574 115.3 63.3 44.3
NIKI (One-Stage) 88.2 55.3 109.7 38.9 29.2
NIKI (Twist-and-Swing) 85.5 53.5 107.6 38.8 28.7

Table 4. Quantitative comparisons with state-of-the-art meth-
ods on the 3DPW—-OCC and 3DOH datasets.

significantly outperforms the most accurate direct regres-
sion approach by 5.9 mm on PA-MPIJPE (12.7% relative
improvement). Besides, NIKI obtains comparable perfor-
mance to pixel-aligned approaches, showing a 1.2 mm im-
provement on PA-MPJPE.

Tab. 2 demonstrates the robustness of NIKI to extreme
occlusions and truncations. We report the results of the most
accurate pixel-aligned and direct regression approaches on
the 3DPW-XOCC dataset. It shows that direct regression ap-
proaches outperform pixel-aligned approaches in challeng-
ing scenes, which is in contrast to the results in the standard
benchmark. NIKI improves the PA-MPJPE performance by
38.7% compared to HybrIK and 10.1% compared to PARE
that finetuned on the 3DPW-XOCC train set.

The results of NIKI on other occlusion-specific datasets
are reported in Tab. 3 and Tab. 4. NIKI shows consistent im-
provements on all these datasets, demonstrating that NIKI
is robust to challenging occlusions and truncations while
maintaining pixel-aligned accuracy. Specifically, NIKI im-
proves the NMJE performance on AGORA by 12.5% com-
pared to the state-of-the-art methods. We can also observe
that the twist-and-swing mapping model is consistently su-
perior to the one-stage mapping model. More discussions
of limitations and future work are provided in the supple-
mentary material.

Occlusion Sensitivity Per Joint
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Figure 4. Per joint occlusion sensitivity analysis of three differ-
ent methods: HybrIK [30], PARE [23], and NIKI.

| 3DPW | 3DPW-XOCC

| MPIPE | | PA-MPIPE | | MPIPE | | PA-MPIPE |

Analytical IK [30] 74.9 41.8 148.3 98.7
(a) MLP-based IK [70] 83.2 50.3 121.1 68.5
Vanilla INN-based IK 73.8 43.1 1153 64.4
Ardizzone et al. [2] 79.1 45.6 119.5 67.3
NIKI 71.3 40.6 110.7 60.5
b) w/o Independence 71.6 40.8 112.6 61.4
w/o Boundary 73.6 43.0 112.5 62.9
w/o Bi-directional Train 74.0 43.0 111.9 61.9

Table 5. Ablation experiments on the 3DPW and 3DPW—-XOCC
datasets.

4.2. Ablation Study

INN vs. NN. To demonstrate the superiority of the invert-
ible network in solving the IK problem, we compare NIKI
with existing IK algorithms, including the analytical [30],
MLP-based [70], the INN-based [2], and the vanilla INN
baseline. [2] is trained without modeling the error informa-
tion. The vanilla INN baseline is trained in both the forward
and inverse directions without independence and boundary
constraints. Quantitative results are reported in Tab. 5a. The
MLP-based method shows better performance in occlusions
scenarios compared to the analytical method. However, it is
less accurate in the standard non-occlusion scenarios since
it cannot accurately track the movement of the body joints.
The vanilla INN performs better than the MLP model in
both standard and occlusion datasets but is still less accu-
rate than the analytical method in the standard dataset. NIKI
surpasses all methods in both datasets.

Effectiveness of Error Decoupling. To study the effec-
tiveness of error decoupling, we evaluate models that are
trained without enforcing independence or boundary con-
straints. Quantitative results are summarized in Tab. 5b. It
shows that the independence loss for inverse error modeling
contributes to a better performance in occlusion scenarios
and barely affects the performance in non-occlusion scenar-
i0os. Besides, the boundary constraints contribute to a better
alignment. Without boundary constraints, the model shows
performance degradation in non-occlusion scenarios.
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Figure 5. Quantitative results on COCO (rows 1-3) and 3DPW-XOCC (rows 4-5) datasets. From left to right: Input image, (a)

HybrIK [30] results, (b) PARE [23] results, and (c) NIKI results.

Effectiveness of Bi-directional Training. To further val-
idate the effectiveness of bi-directional training, we report
the results of the baseline model that is only trained with
the inverse process. Without bi-directional training, we also
cannot apply the boundary condition in the forward direc-
tion, which means that we only decouple the errors in the
inverse process. As shown in Tab. 5b, the IK model cannot
maintain the sensitivity to non-occluded body joints in the
standard benchmark without forward training.

Sensitivity Analysis. We further follow Kocabas et
al. [23] to conduct the occlusion sensitivity analysis. Fig. 4
shows the per-joint breakdown of the mean 3D error from
the occlusion sensitivity analysis for three different methods
on the 3DPW test split. Although HybrIK [30] obtains high
accuracy on the 3DPW dataset, it is quite sensitive to oc-
clusions. NIKI is more robust to occlusions and improves
the robustness of all joints. We also qualitatively compare
HybrlIK, PARE, and NIKI in Fig. 5. NIKI performs well in
challenging occlusion scenarios and predicts well-aligned
results. More occlusion analyses and qualitative samples
are provided in the supplementary material.

5. Conclusion

In this paper, we propose NIKI, a neural inverse kine-
matics solution for accurate and robust 3D human pose
and shape estimation. NIKI is built with invertible neu-
ral networks to model bi-directional error information in
the forward and inverse kinematics processes. In the in-
verse direction, NIKI explicitly decouples the error infor-
mation from the manifold of the plausible human poses to
improve robustness. In the forward direction, NIKI enforces
zero-error boundaries to obtain accurate mesh-image align-
ment. We construct the invertible neural network by emulat-
ing the analytical inverse kinematics algorithm with twist-
and-swing decomposition to improve interpretability. Com-
prehensive experiments on standard and occlusion-specific
datasets demonstrate the pixel-aligned accuracy and robust-
ness of NIKI. We hope NIKI can serve as a solid baseline
for challenging real-world applications.
Acknowledgments. This work was supported by the Na-
tional Key R&D Program of China (No. 2021ZD0110704),
Shanghai Municipal Science and Technology Major
Project (2021SHZDZX0102), Shanghai Qi Zhi Insti-
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(21511101200).



Appendix
A. Architecture of INN

____________________________

Figure 6.
model.

Detailed architecture of the one-stage mapping

A.l. One-Stage Mapping

The detailed architecture of the one-stage mapping
model is illustrated in Fig. 6. We follow the architecture of
RealNVP [ 1 1]. The model consists of multiple basic blocks
to increase capacity. The input vector u of the block is split
into two parts, u; and ue, which are subsequently trans-
formed with coefficients exp(s;) and ¢; (i € {1,2}) by the
two affine coupling layers:

vi = u; ©exp(sz(ug, B)) + tz2(uz, 8), (19)
vy = ug ® exp(s1(vy, 8)) + (v, B), (20)

where v = [vy, Vo] is the output vector of the block and ®
denotes element-wise multiplication. The coefficients of the
affine transformation can be learned by arbitrarily complex
functions, which do not need to be invertible. The invert-
ibility is guaranteed by the affine transformation in Eq. 19
and 20. The scale network s; is a 3-layer MLP with the hid-
den dimension of 512, and the translation network ¢; has the
same architecture followed by a tanh activation function.

A.2. Twist-and-Swing Mapping

The detailed architecture of the twist-and-swing map-
ping model is illustrated in Fig. 7. The two-step mapping is
implemented by two separate invertible networks. The first
network has the same architecture as the one-stage map-
ping model, while its input is only the joint positions, and
the output is the swing rotations. The second network re-
moves the shape condition and directly transforms the twist
and swing rotations to complete rotations.

B. Implementation Details

In our experiments, we use the weights pretrained on
COCO [35] 2D pose estimation task for the initialization of
the CNN backbone to accelerate convergence. The scalar
coefficients in the loss function are Ay, = 1, Mgy = 1,

___________________

sir : Vi 20
= ETNE)
) | P~
S 10

____________________________

Figure 7. Detailed architecture of the twist-and-swing mapping
model.

Xind = 1, Aby = 0.1, A/ , = 1. We first train the CNN
backbone following HybrIK [30] to obtain initial joint po-
sitions and twist rotations. Then we solely train NIKI and
freeze the parameters of the CNN backbone. During train-
ing, we follow EFT [17], SPIN [25], and PARE [23], which
use fixed data sampling ratios for each batch. We incor-
porate 50% Human3. 6M and 50% 3DPW when conducting
experiments on the 3DPW and 3DPW-XOCC datasets. For
experiments on the 3DPW—OCC and 3DOH datasets, we in-
corporate 35% COCO, 35% Human3. 6M, and 30% 3DOH.

C. Temporal Extension of NIKI
C.1. Architecture

We extend the invertible network for temporal input. We
design a spatial-temporal INN model to incorporate tempo-
ral information to solve the IK problem. For simplicity, we
use the basic block in the one-stage mapping and twist-and-
swing mapping models as the spatial INN. Self-attention
modules are introduced to serve as the temporal INN and
conduct temporal affine transformations. The temporal in-
put vectors {u’}7 are split into two subsets, { ut}ltT/ ) and
{ut}LTT /2] 417 which are subsequently transformed with co-
efficients exp(s;) and ¢; (i € {1, 2}) by the two affine cou-
pling layers like Eq. 19 and 20. We adopt self-attention
layers [53] as the temporal scale and translation layers. The
detailed network architecture of the temporal INN is illus-
trated in Fig. 8.

C.2. Experiments of the Temporal Extension

We evaluate the temporal extension on both standard and
occlusion-specific benchmarks. Tab. 6 compares temporal
NIKI with previous state-of-the-art temporal HPS methods
on the standard 3DPW [56] dataset. Notice that we do not
design complex network architecture or use dynamics infor-



Figure 8. Detailed architecture of the temporal INN.

| 3DPW
Method | MPJPEL PA-MPIPE| PVE| ACCEL/
VIBE [22] 82.9 51.9 99.1 23.4
MEVA [38] 86.9 547 . 1.6
TCMR [8] 86.5 52.7 102.9 7.1
MAED [58] 79.1 45.7 92.6 17.6
D&D [28] 73.7 42.7 88.6 7.0
NIKI (Frame-based) 71.3 40.6 86.6 15.1
NIKI (Temporal) 71.2 40.5 86.3 12.3

Table 6. Quantitative comparisons with state-of-the-art tem-
poral methods on the 3DPW dataset. Symbol “-” means results
are not available.

| 3DPW-XOCC
Method ‘ MPJPE | PA-MPIJPE | PVE | ACCEL |
HybrIK [30] 148.3 98.7 164.5 108.6
PARE* [23] 114.2 67.7 133.0 90.7
PARE* [23] + VIBE [22] 97.3 60.2 114.9 18.3
NIKI (Frame-based) 110.7 60.5 128.6 74.4
NIKI (Temporal) 88.9 52.1 98.0 17.3

Table 7. Quantitative comparisons with state-of-the-art tem-
poral methods on the 3DPW—XOCC dataset. Symbol * means
finetuning on the 3DPW—-XOCC train set.
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Figure 9. Acceleration error curve.

mation. Our temporal extension simply applies the affine
coupling layers to the time domain. It shows that our sim-
ple extension obtains better accuracy than state-of-the-art
dynamics-based approaches.
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Figure 10. Noise sensitivity analysis of analytical IK, MLP-based
IK and NIKI.

Tab. 7 presents the performance on the occlusion-specific
benchmark. We compare the temporal extension with a
strong baseline. The baseline combines PARE [23] with
the state-of-the-art temporal approach, VIBE [22]. We first
use the backbone of PARE [23] to extract attention-guided
features. Then we apply VIBE [22] to incorporate temporal
information to predict smooth and robust human motions.
Temporal NIKI outperforms the baseline in challenging oc-
clusions and truncations.

Fig. 9 present the acceleration error curves of the single-
frame and temporal models in the 3DPW—-XOCC dataset. We
can observe that the temporal model can improve motion
smoothness.

D. Noise Analysis

We assess the robustness of three different IK algo-
rithms: analytical IK, MLP-based IK, and NIKI. We evalu-
ate their performance on the AMASS dataset [39] with noisy
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Figure 11. Improvement over different occlusion levels.

| 3DPW | 3DPW-XOCC

| MPIPE | | PA-MPIPE | | MPIPE | | PA-MPIPE |

NIKI 71.3 40.6 110.7 60.5
+ Heatmap Cond. [59] 71.1 40.4 110.8 60.6

Table 8. Integrate heatmap condition.

joint positions. As shown in Fig. 10, MLP-based IK is more
robust than the analytical IK when the noise is larger than 30
mm. However, MLP-based IK fails to obtain pixel-aligned
performance when the noise is small. NIKI shows superior
performance at all noise levels.

E. Collision Analysis

To quantitatively show that the output poses from NIKI
are more plausible, we compare the collision ratio of
mesh triangles [40] between HybrIK and NIKI on the
3DPW-XOCC dataset. NIKI reduces the collision ratio from
2.6% to 1.0% (57.7% relative improvement).

F. Occlusion Analysis

We follow the framework of [23,67] and replace the clas-
sification score with an error measure for body poses. We
choose MPJPE as the error measurement. This analysis is
not limited to a particular network architecture. We apply it
to the state-of-the-art pixel-aligned approach, HybrIK [30],
and the direct regression approach, PARE [23]. The visu-
alizations of the error maps are shown in Fig. 12 and 13.
Warmer colors denote a higher MPJPE. It shows that NIKI
is more robust to body part occlusions.

Additionally, we follow the official AGORA analyses to
compare the performance in different occlusion levels. As
shown in Fig. 11, in the low occlusion level (0-10%), NIKI
brings 6.5 mm MPJPE improvement. The improvement
reaches a peak (13.3 mm) in the medium occlusion level
(20-30%). For the high occlusion level (70-80%), the im-
provement falls back to 10.2 mm. We can observe that NIKI
is good at handling medium occlusions. There is still a lot
of room for improvement in highly occluded scenarios.

G. Heatmap Condition

We follow Wehrbein et al. [59] and add heatmap con-
dition in the INN. As shown in Tab. 8, it brings 0.2 mm
improvement on the 3DPW dataset. However, it is 0.1 mm

worse on the 3DPW-XOCC dataset. We assume this is be-
cause heatmap is not reliable under server occlusions.

H. Inference Time and Model Size

We benchmark the inference time of the analytical IK
algorithm, HybrIK [30] and NIKI with an RTX 3090 GPU
with a batch size of 1. The latency of HybrIK is 26 ms and
NIKI is 8 ms, respectively. HybrIK is much slower since it
needs to solve the rotations iteratively along the kinematic
tree. For the model size, the total parameters of NIKI is
29.01M.

I. Details of 3DPW-XOCC

3DPW-XOCC is a new benchmark for human pose and
shape estimation with extremely challenging occlusions and
truncations. The dataset is augmented from the original
3DPW dataset by adding temporally-smooth synthetic oc-
clusions and truncations. To ensure temporal smoothness,
we choose keyframes at an interval of 8 frames, and the rest
frames are generated by linearly interpolating the clipping
and occlusion of the keyframes. In the keyframe, the im-
age is randomly clipped to ensure that at least one body part
is outside the clipped image with a possibility of over 2/3.
A square area that takes up to 30% of the clipped image is
replaced by gaussian noise to serve as occlusion. The eval-
uation protocol and the split of the dataset are unchanged.

J. Limitations and Future Work

Our work has several limitations. First, NIKI does not
include body shape refinement. Human body shape esti-
mation is also challenging in occlusion scenarios. The in-
correct body shape would cause incorrect distal joints re-
construction. For example, even the knee and ankle rota-
tions are correct, the wrong leg length will cause a wrong
ankle position. Exploiting the bone length information in
joint positions can help refine 3 for better pose and shape
estimation. Second, NIKI does not use the scene informa-
tion to separate the pose error. The initial joint positions
could be physiologically plausible but do not match the in-
put scene. Using scene constraints can reduce implausi-
ble human-scene interactions and further improve robust-
ness. Third, the training of NIKI relies on the diversity
of datasets. To accurately built the bijective mapping, the
training data need to be diverse enough. We believe these
limitations are exciting avenues for future work to explore.

K. Qualitative Results

Additional qualitative results are shown in Fig. 14 and
15.
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Figure 12. Occlusion Sensitivity Maps of PARE [23] and NIKI.
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Figure 13. Occlusion Sensitivity Maps of HybrIK [30] and NIKI.
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Figure 14. Qualitative comparison with PARE [23].
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