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Figure 1. Given multiple images under unknown spatially-varying illuminations, our method can recover the detailed surface normal map
of non-convex, non-Lambertian surfaces (Left). Our method even surpasses the level of detail provided by consumer 3-D scanners (Right).

Abstract

In this paper, we introduce SDM-UniPS, a groundbreak-
ing Scalable, Detailed, Mask-free, and Universal Photomet-
ric Stereo network. Our approach can recover astonishingly
intricate surface normal maps, rivaling the quality of 3D
scanners, even when images are captured under unknown,
spatially-varying lighting conditions in uncontrolled envi-
ronments. We have extended previous universal photometric
stereo networks to extract spatial-light features, utilizing all
available information in high-resolution input images and
accounting for non-local interactions among surface points.
Moreover, we present a new synthetic training dataset that
encompasses a diverse range of shapes, materials, and illu-
mination scenarios found in real-world scenes. Through ex-
tensive evaluation, we demonstrate that our method not only
surpasses calibrated, lighting-specific techniques on pub-
lic benchmarks, but also excels with a significantly smaller
number of input images even without object masks.

1. Introduction

Photometric stereo [59] aims to deduce the surface nor-
mal map of a scene by analyzing images captured from a
fixed perspective under diverse lighting conditions. Until

very recently, all photometric stereo methods assumed their
specific lighting conditions, which led to limitations in their
applicability. For instance, methods that assumed direc-
tional lighting conditions (e.g., [25,29,30]) were unsuitable
under natural illumination, and vice versa (e.g., [18, 44]).

To overcome this limitation, the “universal” photometric
stereo method (UniPS) [27] has been introduced, designed
to operate under unknown and arbitrary lighting conditions.
In contrast to prior uncalibrated photometric stereo meth-
ods [10, 12, 32], which assumed specific physically-based
lighting models, this method encodes a non-physical fea-
ture at each pixel for representing spatially-varying illumi-
nation, which is served as a substitute for physical light-
ing parameters within the calibrated photometric stereo net-
work [26]. This method has taken the first step towards
dealing with unknown, spatially-varying illumination that
none of the existing methods could handle. However,
the surface normal map recovered by UniPS, while not en-
tirely inaccurate, appears blurry and lacks fine detail (see
the top-right corner of Fig. 1). Upon investigation, we pin-
pointed three fundamental factors contributing to the subpar
reconstruction performance. Firstly, extracting illumination
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features (i.e., global lighting contexts) from downsampled
images caused a loss of information at higher input resolu-
tions and produced blurry artifacts. Secondly, UniPS em-
ploys a pixel-wise calibrated photometric stereo network to
predict surface normals using illumination features, which
leads to imprecise overall shape recovery. Although pixel-
wise methods [25,26,30] offer advantages in capturing finer
details compared to image-wise methods [11, 34, 56], they
suffer from an inability to incorporate global information.

Lastly, the third issue lies in the limited variety of shape,
material, and illumination conditions present in the training
data, which hampers its capacity to adapt to a diverse range
of real-world situations. This limitation primarily stems
from the fact that current datasets (i.e., PS-Wild [27]) do not
include renderings under light sources with high-frequency
components focused on specific incident angles, such as
point or directional sources. Consequently, the method ex-
hibits considerable performance degradation when exposed
to directional lighting setups like DiLiGenT [53], as will be
demonstrated later in this paper.

In this paper, we present a groundbreaking photometric
stereo network, the Scalable, Detailed, and Mask-Free Uni-
versal Photometric Stereo Network (SDM-UniPS), which
recovers normal maps with remarkable accuracy from im-
ages captured under extremely uncontrolled lighting condi-
tions. As shown in Fig. 1, SDM-UniPS is scalable, enabling
the generation of normal maps from images with substan-
tially higher resolution (e.g., 2048x2048) than the training
data (e.g., 512x512); it is detailed, providing more accu-
rate normal maps on DiLiGenT [53] with a limited number
of input images than most existing orthographic photomet-
ric stereo techniques, including calibrated methods, and in
some cases, surpassing 3D scanners in detail; and it is mask-
free, allowing for application even when masks are absent,
unlike many conventional methods. Our technical novelties
include:

1. The development of a scale-invariant spatial-light fea-
ture encoder that efficiently extracts illumination fea-
tures while utilizing all input data and maintaining
scalability with respect to input image size. Our en-
coder, based on the "split-and-merge" strategy, accom-
modates varying input image sizes during training and
testing without sacrificing performance.

2. The development of a surface normal decoder utilizing
our novel pixel-sampling transformer. By randomly
sampling pixels of fixed size, we simultaneously pre-
dict surface normals through non-local interactions
among sampled pixels using Transformers [58], effec-
tively accounting for global information.

3. The creation of a new synthetic training dataset, com-
prising multiple objects with diverse textures within a

scene, rendered under significantly varied lighting con-
ditions that include both low and high-frequency illu-
minations.

We believe that the most significant contribution is the ex-
traordinary time savings from data acquisition to normal
map recovery compared to existing photometric stereo al-
gorithms requiring meticulous lighting control, even in the
uncalibrated setup. This progress allows photometric stereo
to be executed at home, literally “in the wild” setup.

2. Related Works
In this section, we provide a succinct overview of photo-

metric stereo literature focusing on the single orthographic
camera assumption. Alternative setups (e.g., perspective,
multi-view cameras) are beyond the scope of this work.

Optimization-based Approach: The majority of photo-
metric stereo methods assume calibrated, directional light-
ing following Woodham [59] and optimize parameters by
inversely solving a physics-based image formation model.
This approach can be further categorized into robust meth-
ods, where non-Lambertian components are treated as out-
liers [29, 45, 60, 67]; model-based methods, which explic-
itly account for non-Lambertian reflectance [16,28,52]; and
example-based methods [22,24,54] that leverage the obser-
vations of known objects captured under identical condi-
tions as the target scene. The uncalibrated task is akin to
the calibrated one, but with unknown lighting parameters.
Until recently, most uncalibrated photometric stereo algo-
rithms assumed Lambertian integrable surfaces and aimed
to resolve the General Bas-Relief ambiguity [6, 14, 15, 19,
42,48,51,62]. In contrast to these works, photometric stereo
under natural lights has also been explored, wherein nat-
ural illumination is approximated using spherical harmon-
ics [7,18], dominant sun lighting [5,23], or equivalent direc-
tional lighting [17, 44]. Although most optimization-based
methods do not require external training data, they are fun-
damentally limited in handling global illumination phenom-
ena (e.g., inter-reflections) that cannot be described by the
predefined point-wise image formation model.

Learning-based Approach: Learning-based methods are
effective in addressing complex phenomena that are chal-
lenging to represent within simple image formation mod-
els. However, the first photometric stereo network [50] ne-
cessitated consistent lighting conditions during both train-
ing and testing. To address this limitation, various strate-
gies have been investigated, such as observation maps [25,
41], set-pooling [11, 31], graph-convolution [66], and self-
attention [26, 36]. Furthermore, researchers have explored
uncalibrated deep photometric stereo networks [10, 12, 32,
57], where lighting parameters and surface normals are re-
covered sequentially. Self-supervised neural inverse render-
ing methods have been developed without the need for ex-



ternal data supervision. Taniai and Maehara [56] used neu-
ral networks instead of parametric physical models, with
images and lighting as input. This work was expanded by Li
and Li [34, 35], who incorporated recent neural coordinate-
based representations [43]. However, despite their tremen-
dous efforts, these methods are designed to work with only
single directional light source and have limited ability to
generalize to more complex lighting environments.

Universal Photometric Stereo Network: The universal
photometric stereo network (UniPS) [27] was the first to
eliminate the prior lighting model assumption by leveraging
a non-physical lighting representation called global light-
ing contexts. These global lighting contexts are recovered
for each lighting condition through pixel-wise communica-
tion of hierarchical feature maps along the light-axis using
Transformers [58]. During surface normal prediction, a sin-
gle location is individually selected, and the network ag-
gregates all the global lighting contexts (bilinearly interpo-
lated from the canonical resolution) and raw observations at
the location under different lighting conditions to pixel-wise
predict the surface normal. This method introduced two
strategies to handle high-resolution images: down-sampling
images to the canonical resolution for recovering global
lighting contexts, and employing pixel-wise surface nor-
mal prediction. Although these two concepts contributed to
the scalability of image size, they resulted in performance
degradation due to the loss of input information and the ab-
sence of a non-local perspective, as previously discussed.

Our work draws inspiration from [27] and shares some
fundamental ideas, particularly the use of Transformers [58]
for communicating and aggregating features along the light-
axis. However, our method diverges from [27] by fully uti-
lizing input information in a non-local manner, which leads
to a significant enhancement in reconstruction quality.

3. Method

We target the challenging universal photometric stereo
task, which was recently introduced in [27]. Unlike prior
calibrated and uncalibrated tasks, the universal task makes
no assumptions about surface geometry, material properties,
or, most importantly, lighting conditions. The objective of
this task is to recover a normal map N ∈ RH×W×3 from
images Ik ∈ RH×W×3; k ∈ 1, . . . ,K captured under K
unknown lighting conditions using an orthographic camera.
Optionally, an object mask M ∈ RH×W may be provided.

Our method (SDM-UniPS) is illustrated in Fig. 2. Given
pre-processed images and an optional object mask, feature
maps for each lighting condition are extracted through in-
teractions along the spatial and light axes (i.e., the scale-
invariant spatial-light feature encoder). We then randomly
sample locations from the coordinate system of the input
image and bilinearly interpolate features at these locations.

Features and raw observations at each location are aggre-
gated pixel-wise, and surface normals are recovered from
the aggregated features after non-local spatial interaction
among them (i.e., the pixel-sampling Transformer). In line
with [27], we focus on describing high-level concepts rather
than providing detailed explanations for the sake of clarity.
Refer to the appendix for a comprehensive description of
the network architectures.

3.1. SDM-UniPS

Pre-processing: As in [27], we resize or crop input images
to a resolution (R) that is divisible by 32, which is accepted
by most hierarchical vision backbones. To ensure that im-
age values are within a similar range, each image is normal-
ized by a random value between its maximum and mean.

Scale-invariant Spatial-light Feature Encoder: After the
pre-processing, we extract feature maps from images and an
optional object mask through the interaction along both spa-
tial and light axes. Following the basic framework in [27],
each image and object mask 1 are concatenated to form a
tensor Ok ∈ RR×R×4, which is then input to the com-
mon vision backbone [37–39] to extract hierarchical fea-
ture maps Bs

k ∈ R
R
Ss

× R
Ss

×Cs , ; s ∈ 1, 2, 3, 4. Here, Ss ∈
4, 8, 16, 32 represents the scale of the s-th feature map, and
Cs is the dimension of features at that scale. For each fea-
ture scale, features from different tensors at the same pixel
interact with each other along the light-axis using naïve
Transformers [58]. Finally, hierarchical feature maps are
fused to Fk ∈ RR

4 ×R
4 ×CF using the feature pyramid net-

work [63], where CF is the output feature dimension. Note
that, unlike [27], we used a varying number of Transformer
blocks at each hierarchy scale (i.e., the number of blocks
changes from [1,1,1,1] to [0,1,2,4]) so that the deeper fea-
tures interact more than the shallow ones.

In UniPS [27], images and a mask are down-sampled to
a canonical resolution before being input to the backbone
network. This resolution must be constant and sufficiently
small (e.g., 256x256) to prevent excessive memory con-
sumption during feature extraction, particularly when deal-
ing with high-resolution input images. Additionally, using
a constant resolution ensures that tensors of the same shape
are fed to the backbone, which helps to avoid significant
performance degradation due to a large discrepancy in input
tensor shapes between training and testing. Consequently,
down-sampling leads to the loss of much information in the
input images, resulting in a blurry normal map recovery.

To address it, we propose a scale-invariant spatial-light
feature encoder designed to maintain a consistent, small
input resolution for the backbone network while preserv-
ing information from input images. Specifically, instead
of downsampling, we suggest splitting the input tensor into

1Without a mask, a matrix with all values set to one is concatenated.
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Figure 2. Our entire framework is illustrated in (a). Given multiple images and an object mask (optional), the scale-invariant spatial-light
encoder (detailed in (b)) extracts a feature map for each image. The surface normal vectors are independently recovered at each of pixel
samples (i.e., 2048) after the non-local interaction among aggregated features from interpolated feature maps and raw observations.

non-overlapping sub-tensors with a constant, small resolu-
tion. In greater detail, we decompose O into P 2 sub-tensors
of size G×G (G = 256 in our implementation, P ≜ R/G)
by taking a single sample from every P×P pixel and stack-
ing them as sub-tensors, as illustrated in Fig. 2. Each sub-
tensor encompasses the entire portion of the original ten-
sor but is slightly shifted. All sub-tensors are processed
independently through the same spatial-light feature en-
coder and subsequently merged back into a tensor of size
(R4 × R

4 × CF ). The combined feature maps from the sub-
tensors retain all input information since no downsampling
occurred. However, the absence of interaction among dif-
ferent sub-tensors leads to significant block artifacts, par-
ticularly when P is large. To mitigate this, another feature
map encoded from the naively downsized image is added2

to the merged feature maps, promoting interaction among
sub-tensors. Optionally, when P is larger than 4, we ap-
ply depth-wise Gaussian filtering (i.e., kernel size is P -
1) to the feature maps to further enhance the interaction.
Finally, we obtain the scale-invariant spatial-light feature
maps Fk ∈ RR

4 ×R
4 ×CF for every lighting condition.

Non-local Interaction with Pixel-sampling Transformer:
Given the scale-invariant spatial-light feature maps Fk and
images Ik, the surface normal is recovered after pixel-wise
feature aggregation along the light-axis (i.e., the light chan-
nel shrinks from K to 1). Feature aggregation under differ-
ent lighting conditions is a fundamental step in photometric

2Concatenation is also possible, but it did not improve the results de-
spite increased memory consumption.

stereo networks, and various strategies have been studied,
such as observation maps [25, 41], max-pooling [11, 12],
graph-convolution [66], and self-attention [26, 27]. We uti-
lize the Transformer model with self-attention [58] as in the
encoder following UniPS [27]. UniPS directly predicted
surface normals from pixel-wise aggregated feature vectors,
following other pixel-wise methods [25, 26, 30], without
considering non-local interactions. However, aggregated
features lose lighting-specific information, naturally obtain-
ing lighting-invariant representations more related to sur-
face attributes than those before aggregation. In traditional
physics-based vision tasks, common constraints including
isotropy [6], reciprocity symmetry [55], reflectance mono-
tonicity [9], sparse reflectance basis [16], and surface inte-
grability [47] are mostly shared on the surface, not limited
to a single surface point. Thus, considering non-local inter-
actions of aggregated features at multiple surface points is
crucial in physics-based tasks.

Applying image-wise neural networks like CNNs on the
aggregated feature map demands enormous computational
cost for large output resolutions (e.g., 2048 × 2048), and
risks compromising output normal map details. To address
these issues, we draw inspiration from recent Transformers
on 3-D points [61, 70] and apply a Transformer on a fixed
number (m) of pixel samples (e.g., m = 2048) from ran-
dom locations in the input coordinate system. We term this
the pixel-sampling Transformer. Unlike image-based ap-
proaches, pixel-sampling Transformer’s memory consump-
tion is constant per sample set, scaling to arbitrary image



Directional Point Environment Dir.+Env. Point+Env.

Figure 3. Examples in PS-Mix under different lighting conditions.

sizes. Moreover, by applying the Transformer to a randomly
sampled set of locations, local interactions that may lead to
over-smoothing of feature maps (e.g., in CNNs) are almost
entirely eliminated.

Concretely, given m random pixels xi=1,...,m from the
masked region of the input coordinate system, we interpo-
late features at those pixels as F1,...,K(S(xi)), where S is
the bilinear interpolation operator. Then, interpolated fea-
tures are concatenated with corresponding raw observations
I1,...,K(xi) and aggregated to A(xi) with pooling by multi-
head attention (PMA) [33], as in [27]. Given aggregated
features at different pixels in the same sample set, we ap-
ply another naïve Transformer [58] to perform non-local
interactions. Since the goal of this process is to consider
surface-level interactions based on physical attributes, pixel
coordinate information is unnecessary. Thus, we don’t ap-
ply position embeddings to samples, unlike most existing
visual Transformer models (e.g. [13,38]), allowing the sam-
ples to propagate their aggregated features without location
information.

After the non-local interaction, we apply a two-layer
MLP to predict surface normals at sampled locations. Fi-
nally, surface normals for each set are merged to obtain the
final surface normal map at the input image resolution. This
pixel-sampling Transformer approach facilitates non-local
interactions while maintaining computational efficiency and
preserving output normal map details, making it suitable for
physics-based tasks with high-resolution images.

3.2. PS-Mix Dataset

To train their universal photometric stereo network, Ike-
hata [27] presented the PS-Wild training dataset, which ren-
dered more than 10,000 scenes with commercial Adobe-
Stock 3-D assets [1]. One of the issues in PS-Wild is that
each scene consists of only a single object of uniform ma-
terial. Furthermore, the environment lighting used for ren-
dering scenes in [27] rarely has high-frequency illumination
(e.g., a single point light source); therefore, the rendered im-
ages are biased towards low-frequency lighting conditions.

In this paper, we create a new training dataset that solves
the issues in the PS-Wild training dataset. Instead of putting
a single object of uniform material in each scene, we put
multiple objects that overlap with each other in the same
scene and give them different materials. To ensure that the
material category is diverse in a scene, we manually cate-
gorized 897 texture maps in the AdobeStock material assets
into 421 diffuse, 219 specular, and 257 metallic textures.

Table 1. Ablation study on PS-Wild-Test [27].

Method Training Dir. HDRI Dir.+HDRI

I22 (UniPS) [27] PS-Wild 17.0 14.5 13.8

Only Local (base-
line)

PS-Mix 8.4 14.7 11.8

+Non-local (32) PS-Mix 7.8 14.9 10.8
+Non-local (128) PS-Mix 6.2 13.0 8.9
+Non-local (512) PS-Mix 5.8 12.4 8.2
+Non-local (2048) PS-Mix 5.7 12.2 8.0
+Non-local (20480) PS-Mix 5.7 12.3 8.0
+Scale-invariant
Enc.

PS-Mix 4.8 11.1 7.5

Local (1) Non-local (32) Non-local (2048)
MAE = 21.3°, K=16

MAE=10.8°, K=16

MAE=15.0°, K=16

GTest /GTrain=6 GTest /GTrain=3 GTest /GTrain=1
MAE=12.5°, K=16MAE=20.4°, K=16

(a) Different sample size (𝑚) for the non-local interaction

MAE=10.8°, K=16

(b) Different input resolutions between training and test

Figure 4. (a) Comparison of different sample size (m) for the non-
local interaction in the normal prediction. (b) Comparison of dif-
ferent input resolutions to the encoder between training and test.

For each scene, we randomly select four objects from 410
AdobeStock 3-D models and assign three textures from all
three material categories and randomly choose one for each
object. Furthermore, to make the lighting conditions more
diverse, instead of using only environment lighting to ren-
der images, we use five types of light source configurations
and mix them to render one scene; (a) environment lighting,
(b) single directional lighting, (c) single point lighting, (d)
(a)+(b), and (e) (a)+(c). The direction and position of light
sources are randomly assigned within the valid range of pa-
rameters3. We followed PS-Wild [27] for other rendering
techniques (e.g., auto-exposure, object scale adjustment).
Our dataset consists of 34,921 scenes, and each scene is
rendered to output 10 of 16-bit, 512×512 images. In Fig. 3,
we show sample images under each lighting condition for
the same scene.

4. Results

Training Details: Our network was trained on the PS-Mix
dataset from scratch using the AdamW optimizer and a
step decay learning rate schedule (×0.8 every ten epochs)

3Light directions are selected from the upper unit hemisphere, and point
light positions are selected inside the hemisphere.



Table 2. Evaluation on DiLiGenT [53] (Mean Angular Errors in degrees). All 96 images were used except where K is shown.

Method Approach Task Ball Bear Buddha Cat Cow Goblet Harvest Pot1 Pot2 Reading Ave.

Woodham [59] Self-Sup. Calibrated 4.1 8.4 14.9 8.4 25.6 18.5 30.6 8.4 14.7 19.8 15.3
IW14 [30] Self-Sup. Calibrated 2.0 4.8 8.4 5.4 13.3 8.7 18.9 6.9 10.2 12.0 9.1
IA14 [28] Self-Sup. Calibrated 3.3 7.1 10.5 6.7 13.1 9.7 26.0 6.6 8.8 14.2 10.6
I18 [25] Supervised Calibrated 2.2 4.1 7.9 4.6 8.0 7.3 14.0 5.4 6.0 12.6 7.2
CW20 [12] Supervised Calibrated 2.7 7.7 7.5 4.8 6.7 7.8 12.4 6.2 7.2 10.9 7.4
LB21 [41] Supervised Calibrated 2.0 3.5 7.6 4.3 4.7 6.7 13.3 4.9 5.0 9.8 6.2
LL22a [34] Sup.+Self-Sup. Calibrated 2.4 3.6 8.0 4.9 4.7 6.7 14.9 6.0 5.0 8.8 6.5

CH19 [10] Supervised Uncalibrated 2.8 6.9 9.0 8.1 8.5 11.9 17.4 8.1 7.5 14.9 9.5
CW20 [12] Supervised Uncalibrated 2.5 5.6 8.6 7.9 7.8 9.6 16.2 7.2 7.1 14.9 8.7
KK21 [32] Sup.+Self-Sup. Uncalibrated 3.8 6.0 13.1 7.9 10.9 11.9 25.5 8.8 10.2 18.2 11.6
LL22b [35] Sup.+Self-Sup. Uncalibrated 1.2 3.8 9.3 4.7 5.5 7.1 14.6 6.7 6.5 10.5 7.0
TR22 [57] (K=2) Self-Sup. Uncalibrated 6.3 9.7 14.5 9.9 11.1 14.2 26.1 10.7 12.1 19.9 13.4

I22 (UniPS) [27] Supervised Universal 4.9 9.1 19.4 13.0 11.6 24.2 25.2 10.8 9.9 18.8 14.7
Ours Supervised Universal 1.5 3.6 7.5 5.4 4.5 8.5 10.2 4.7 4.1 8.2 5.8

Ours (K=64) Supervised Universal 1.5 3.6 7.6 5.5 4.6 8.6 10.2 4.7 4.1 8.3 5.9
Ours (K=32) Supervised Universal 1.5 3.6 7.7 5.5 4.7 8.6 10.4 4.8 4.2 8.4 5.9
Ours (K=16) Supervised Universal 1.5 3.8 7.7 6.0 4.8 8.5 10.8 4.9 4.4 8.7 6.1
Ours (K=8) Supervised Universal 1.6 4.0 8.2 6.3 5.2 8.4 11.5 5.2 4.8 9.4 6.5
Ours (K=4) Supervised Universal 1.7 4.1 10.0 8.6 6.3 9.0 14.1 6.1 5.9 11.4 7.7
Ours (K=2) Supervised Universal 1.9 6.8 14.4 13.6 8.3 12.8 21.2 9.0 9.2 16.9 11.4

with learning-rate warmup during the first epoch. A batch
size of 8, an initial learning rate of 0.0001, and a weight
decay of 0.05 were used. The number of input training
images was randomly selected from 3 to 6 for each batch 4.
In our work, we chose ConvNeXt-T [39] as our backbone
due to its simplicity and efficiency, which is better than
recent ViT-based architectures [13,37,38] with comparable
performance. The training loss was the MSE loss, which
computes the ℓ2 errors between the prediction and ground
truth of surface normal vectors. Additional information,
such as network architectures and feature dimensions, is
provided in the appendix.

Evaluation and Time: The accuracy is evaluated based on
the mean angular errors (MAE) between the predicted and
true surface normal maps, measured in degrees. Training is
conducted on four NVIDIA A100 cards for roughly three
days. The inference time of our method depends on the
number and resolution of input images. In the case of 16
input images at a resolution of 512 × 512, it takes a few
seconds excluding I/O on a GPU. While the computational
cost will vary almost linearly with the number of images,
this is significantly more efficient than recent neural inverse
rendering-based methods [34, 35, 46, 69].

4.1. Ablation Study

Firstly, we perform ablation studies to evaluate the indi-
vidual contributions of our scale-invariant spatial-light fea-

4Six is the maximum number that can fit on our GPU.

ture encoder and non-local interaction with pixel-sampling
transformer across varying sample sizes. To quantitatively
compare performance under various lighting conditions, we
utilize the PS-Wild-Test dataset [27], which contains 50
synthetic scenes rendered under three distinct lighting se-
tups: directional, environmental, and a mixture of both.
In Table 1 and Fig. 4, we compare our method with dif-
ferent configurations against [27]. Note that without the
scale-invariant encoder and non-local interaction (i.e., the
baseline), our method is nearly equivalent to [27], except for
some minor differences (e.g., backbone architecture, num-
ber of Transformer blocks in the encoder). We observe
that the baseline method trained on our PX-Mix dataset im-
proves performance for scenes under directional lighting,
suggesting that one of the primary reasons why [27] was
ineffective under directional lights was due to bias in the
PS-Wild dataset. Accounting for non-local interaction of
aggregated features enhances reconstruction accuracy, even
with a small number of samples (e.g., m=32), as clearly il-
lustrated in Fig. 4-(top). Although accuracy improved as
the number of samples increased, as expected, performance
gains plateaued beyond a certain number (i.e., m=2048).
The efficacy of the scale-invariant spatial-light feature en-
coder was also confirmed. In Fig. 4-(bottom), we observed
that a significant difference in input resolution to the back-
bone between training and testing led to substantial perfor-
mance degradation, which further validates the advantage
of our method that maintains a constant input tensor shape.
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Figure 5. Results for objects under a single directional lighting
condition, including object masks.

4.2. Evaluation under Directional Lighting

DiLiGenT Evaluation: We first evaluate our method on
the DiLiGenT benchmark [53]. Each dataset provides 96
612x512 16-bit HDR images, captured under known sin-
gle directional lighting. The object mask and true sur-
face normal map are available. In addition to UniPS [27],
we also compare our method with calibrated [12, 25, 28,
30, 34, 41, 59] and uncalibrated [10, 12, 32, 35, 57] pho-
tometric stereo algorithms specifically designed for sin-
gle directional lighting. Calibrated methods include both
pixelwise [25, 28, 30, 41, 59] and image-wise [12, 34] ap-
proaches. All uncalibrated methods are image-wise. We
consider [32,34,35] as a combination of supervised and un-
supervised learning, as pretrained models were used as a
starting point for lighting prediction. To evaluate the valid
number of input images, we compare our method with dif-
ferent numbers of input images (results are averaged over
10 random trials).

The results are illustrated in Table 2. Impressively, our
method, which does not assume a specific lighting model,
outperforms state-of-the-art calibrated methods designed
for directional lights (LB21 [41], LL22a [34]). Further-
more, unlike conventional photometric stereo methods, the
proposed method does not experience significant perfor-
mance degradation even when the number of input images is
reduced; it maintains state-of-the-art results even with only
8 images. The proposed method (K = 2) also surpasses
TR22 [57], which is specialized for two input images.

Recovered normal maps of HARVEST and READING
are shown in Fig. 5. These objects are considered the
most challenging in the benchmark due to their highly non-
convex geometry. As expected, the state-of-the-art pixel-
wise calibrated method (LB21 [41]) can recover finer sur-
face details, while the state-of-the-art image-wise calibrated
method (LL22a [34]) can recover more globally consistent
results. However, both of them struggle to recover the non-

Ours (K=8) CW20 (K=64) LL22b (K=64)Input

Ground Truth Ours (K=16) CW20 (K=96) LL22b (K=96)Input

Deep relighting dataset (w/o object masks)

DiLiGenT dataset (w/o object masks)

GOBLET

HARVEST

Figure 6. Results for scenes under a single directional lighting
condition, excluding object masks.

convex parts of the objects accurately. On the other hand,
our method can recover both surface details and overall
shape without apparent difficulty, even with a much smaller
number of images (i.e., K=16). As expected, the perfor-
mance of I22 [27] is severely lacking.

Evaluation without Object Mask: To demonstrate that
our method does not require an object mask, we applied
it to two real scenes from a deep relighting work [65],
each containing 530 8-bit integer images at a resolution
of 512x512, captured under unknown single directional
lighting using a gantry-based acquisition system. The ob-
ject mask and true surface normal map are unavailable.
We compared our method with state-of-the-art uncalibrated
methods (CW20 [12] and LL22b [35]) and displayed the
results in Fig. 6 (top). Unlike the uncalibrated methods
that struggled to recover accurate lighting directions, our
proposed method successfully captured object boundaries
without masks, even in complex scenes with significant
global illumination effects, and consistently recovered nor-
mals across the entire image. We further evaluated our
method on DiLiGenT scenes without masks, as illustrated
in Fig. 6 (bottom). While existing methods that assume
an object mask produced highly inaccurate surface normal
maps, our proposed method recovered more plausible nor-
mals with fewer images (i.e., K=16 vs K=96).

4.3. Evaluation under Spatially-varying Lighting

Our method is evaluated on challenging scenes with
spatially-varying lighting conditions, comparing it to the
first universal network (UniPS) [27] and a state-of-the-art
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Input

Figure 7. Qualitative comparison on images under spatially-
varying lighting conditions with object masks [27].

uncalibrated photometric stereo method (GM21) [17] on
a dataset provided by [27]. We test three objects (Apple,
Grape, and Owl). While GM21 [17] fails and I22 [27] loses
details, our method, using a scale-invariant spatial-light fea-
ture encoder and non-local interaction, produces accurate
results.

In Fig. 8, we subjectively compare our method using four
objects with normal maps obtained from a 3D scanner. We
align the scanned normal map to the image using Mesh-
Lab’s mutual information registration filter [3], as in [53].
Our method recovers higher-definition surface normal maps
than the 3D scanner (EinScan-SE) and performs well re-
gardless of surface material. Photometric stereo perfor-
mance improves with increased digital camera resolution,
suggesting that 3D scanners may struggle to keep up.

Lastly, we demonstrate surface normal prediction for
complex non-convex scenes without masks under challeng-
ing lighting conditions in Figure 9. We apply our method to
three extremely challenging datasets: School Desk, Coins
and Keyboard, and Sweets. School Desk is a complex
scene with simple objects, non-uniform lighting, and cast
shadows, making surface normal map recovery difficult.
Coins and Keyboard features multiple planar objects of var-
ious materials. Sweets is a challenging scene with abun-
dant inter-reflections and cast shadows. As demonstrated,
the proposed method successfully recovers uniform surface
normals, largely unaffected by shadows, and effectively re-
constructs the surface micro-shape, demonstrating its scal-
ability and detail preservation.

5. Conclusion
In this paper, we presented a scalable, detailed, and

mask-free universal photometric stereo method. We demon-

3D scanner Ours (SDM-UniPS) I22 (UniPS) Input (K=10)

Figure 8. Qualitative comparison with 3-D scans.

School Desk (K=10)

Coins and Keyboard (K=12)

Sweets (K=13)

SDM-UniPS (Ours) UniPS (I22) Input (w/o object mask)

Figure 9. Surface normal recovery from images under spatially-
varying lighting conditions without object masks.

strated that the proposed method outperforms most cali-
brated and uncalibrated methods in the DiLiGenT bench-
mark. In addition, the comparison with the only existing
method [27] for the universal task showed a significant im-
provement over it.

However, several challenges still remain. Firstly,
although we have observed that the proposed method
works robustly for versatile lighting conditions, we found
that our method is not very effective when the lighting
variations are minimal. Secondly, the proposed method
can easily be extended beyond normal map recovery by
replacing the loss and data. In reality, we have attempted
to output BRDF parameters for materials. However, due
to fundamental ambiguities, it is difficult to evaluate the
recovered BRDF parameters. Please see the appendix
for further discussions of these limitations and a vari-
ety of additional results to better understand this study.
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Failure case 1: Dynamic lighting variations are too weak 

Failure case 2: Little changes on some areas

Included in the spotlight radius

Dynamic light changes are not noticeable

Variation is weak
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Figure 10. Failure cases. The performance of the proposed method
degrades significantly when changes in the illumination environ-
ment cannot be observed, whether in part or in the entire image.

Appendix A. Failure Cases and Better Imaging

While the main text discusses only the theoretical aspects
of the problem, this section discusses the practical aspects
of our method by discussing in more detail the limitations
regarding the input acquisition and how to capture better
images for our method.

Basics about image acquisition. Our image acquisition
process is simple. Prepare a scene and take photos of it un-
der different lighting conditions without moving a camera.
The light source can theoretically be either active (e.g., us-
ing a hand-held light) or passive (e.g., mounting a camera
and an object on the same board and moving them around)
as long as sufficient changes in illumination occur. Realis-
tically, the most probable situation may involve a combina-
tion of dynamic active lights in a static environment.

Our method has no restrictions on the size of scenes. On
the other hand, since the proposed method assumes an or-
thographic camera, extreme projection distortion is not con-
sidered. However, as a common practice, the view direc-
tions of a perspective projection camera become more paral-
lel with each other around the central field of view, so using
only the central region of a sufficiently high-resolution im-
age is not problematic for practical purposes. Throughout
the papers (i.e., main and supplementary), we used either
a 45mm or 200mm focal length camera based on the ob-
ject size to capture 4000x4000 images, of which the central
2048x2048 area was used in the preprocessing as described
in the main paper.

Failure cases and possible solutions. We observed two
major cases of failure in the course of our experiments as
illustrated in Fig. 10. First, the performance drastically de-
grades if the unmasked region contains areas where no or
little illumination change exists because our training data
(PS-Mix) contains no cases where the light source condition
doesn’t change or is very weak from image to image in any
regions of the image. For example, when a spotlight light is

Light (area or point light is better)

Digital camera

(Smartphone is also available)

Figure 11. Our acquisition setup simply needs a movable light
source and a camera.

illuminated on an object, the surface normal recovery could
fail if the image contains many areas that are not included in
the light diameter. Another common case is that the inten-
sity of the dynamic light source is very weak compared to
the static one therefore illumination changes between im-
ages are scarce. This tends to occur when the method is
applied during the daytime or when trying to recover large
scenes of wide depth range.

There are various possible ways to improve this, such as
improving the training data by including such cases (e.g.,
spot light rendering) or adding a mechanism to identify and
ignore regions where light source changes do not occur, but
further discussion would go beyond what is allowed in the
supplementary, so we leave these issues for the future work.

The better choice of light source. Based on the discussion
above, a point light source or surface light source that can
illuminate a wide area simultaneously may seem more ap-
propriate, rather than a spotlight that tends to produce areas
that are not clearly illuminated. Generally speaking, when
automatic exposure control is turned on, the tonal resolu-
tion is degraded to increase dynamic range when very dark
and bright areas are mixed together. On the other hand,
when the entire image is bright, it is possible to represent
enough information within a narrow dynamic range, result-
ing in less image noise. Therefore, to improve the quality
of a captured image, it is essential to make the irradiance
uniform across the image.

Empirically, we have found that using a ring light for
selfies or a smartphone/tablet screen as a light source are
the two most effective methods available to us that meet the
above conditions. Of these, the selfie-light, which provides
sufficient light and is easy to handle, was used in many of
the experiments in this paper. The tools used in this work
are shown in Fig. 11. Since no calibration of the light source
or camera is necessary, all that is required are a single light
source, a single camera, and target objects.

When a mask is necessary and when it is not. Basically,



the proposed method does not require a mask. As one may
have noticed from the paper’s results, our method is capa-
ble of preserving the depth discontinuities of objects with-
out a mask to a level that is not possible with any existing
methods. There are three main factors that make this pos-
sible. First, unlike the existing dataset (i.e., PS-Wild), our
PS-Mix consists of multiple overlapping objects, and learn-
ing is performed without explicitly providing their bound-
aries. Second, our method is more robust than all existing
methods against inter-reflections and cast shadows that oc-
cur at depth boundaries. Third, during global interactions
of the aggregated features, no local interaction is performed
unlike existing methods, so no over-smoothing occurs.

However, there are some cases where the object mask is
helpful. The first case is simply when one wishes to recover
only the shape of a particular object in a scene. The second
case is when we want to explicitly "hide" areas with little
lighting variation. During network training, a ground truth
mask is always given simultaneously, and the loss function
is computed only from pixels in the mask. Consequently,
information outside the mask is not taken into account in
the prediction during training. In other words, a mask can
be used to intentionally hide areas from the network where
lighting variations are weak. For this purpose, the mask
does not need to follow the contour of the object; a bound-
ing box-like specification is sufficient.

Other points to note on photography. We found that there
are other exceptional cases where our method does not work
well. If the image correction is too strong, it will fail. For
example, recent smartphones apply various image filters to
improve the appearance of images after they are taken. As a
result, the physically correct shading changes are destroyed.
Also, while the proposed method basically does not require
HDR (high-dynamic-range) images, it is not as robust with
respect to too much over- and under- exposure. Fortunately,
the automatic exposure control provided in recent digital
cameras and smartphones is very effective to avoid the sit-
uations. Similarly to other photometric stereo methods, our
method is also helpless with respect to an image blur and
an accidental misalignment of images. The above problems
can be easily solved by carefully tuning the camera, so they
are not critical in practice.

Summary

In conclusion to this section, the following points should
be kept in mind when taking photographs.

• To assume an orthographic camera, the object should
be placed in the central field of view of a camera with
a sufficiently large focal length.

• Ensure that the illumination changes throughout the
image. For this purpose, light sources that can illumi-
nate a wide area, such as a point light or a surface light,

are better than a spotlight. Alternatively, masks can be
used to hide areas of weak illumination variation.

• Turn off software image correction, increase the depth
of field to prevent blur, and ensure that the camera does
not move while taking photographs.

• The number of images can be small. If you need more,
just add more. It only takes a few seconds.

Appendix B. Network Architecture Details
Our entire framework consists of six sub-networks. The

scale-invariant spatial-light encoder includes (a) a backbone
network for the imagewise feature extraction, (b) a Trans-
former network for the pixelwise interaction along the light-
axis and (c) a feature pyramid network for the fusion of hi-
erarchical feature maps. And in the pixel-sampling Trans-
former, there are (d) a Transformer network for the feature
aggregation along the light-axis and (e) a Transformer net-
work for the feature interaction along the spatial-axis. Fi-
nally, we have (f) a MLP for the surface normal prediction.
In this section, we detail each network architecture.

Backbone: In our scale-invariant spatial-light encoder,
each sub-tensor (i.e., concatenation of a sub-image and a
sub-mask) is independently input to ConvNeXt [40] which
is a modernized ResNet [20] like architecture taking inspi-
ration from the recent Vision Transformer [13, 38]. The
variants of ConvNeXt differ in the number of channels C,
and the number of ConvNeXt blocks B in each stage. We
here chose the following configuration.

• ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)

The ConvNeXt block includes 7x7 depthwise convolution,
1x1 convolution with the inverted bottleneck design (4x hid-
den dimension) and 1x1 convolution to undo the hidden di-
mension. Between convolutions, layer normalization [64]
and GeLU [21] activation are placed. The output of Con-
vNeXt is a stack of feature maps of (B x 96 x R/4 x R/4), (B
x 192 x R/8 x R/8), (B x 384 x R/16 x R/16) and(B x 768
x R/32 x R/32) where B is the batch size and R is the input
sub-tensor size as defined in the main paper.

Transformer (interaction along light-axis): Given hier-
archical feature maps from the backbone network, we pix-
elwisely apply Transformer [58] to features of individual
scales along the light-axis as with [27]. We chose the num-
ber of channels in a hidden layer C, and the nuber of Trans-
former blocks B as follow.

• Transformer: C = (96, 192, 384, 768), B = (0, 1, 2, 4)

The Transformer block projects the input feature to query,
key and value vectors whose dimensions are same with the
input ones. They are then passed to a multi-head self-
attention (the number of heads is 8) with a soft-max and



a feed-forward network with two linear layers whose di-
mensionality of input and output layers is same but one of
the inner layer is twice of the input. A residual connection
around each of the two sub-layers, followed by layer nor-
malization [64] and dropout (p = 0.1).

Feature pyramid network: After the hierarchical feature
maps pixelwisely interact with each other using Transform-
ers, feature maps of different scales corresponding to each
input image are fused with the feature pyramid network (i.e.
UPerNet [63]) which was originally proposed for the se-
mantic segmentation task. We simply used an implemen-
tation on MMSegmentation [4] without any modifications.
The output feature size is (B x R/4 x R/4 x 256).

Transformer (aggregation along light-axis): Given m
pixel locations at the input coordinate system, we concate-
nate each pair of a raw observation and a bilinearly interpo-
lated feature vector from the output of the feature pyramid
network to a vector whose dimension is 259 (i.e., 256+3).
The feature aggregation network takes K sets of 259-dim
feature vectors at the same location as input and perform
two Transformer blocks of C=256 (shrunk from 259 to 256
by QKV projection). The output feature is further concate-
nated with the raw observation and each 259-dim feature
vectors are again fed to another three Transformer blocks
of C=256. Then, the output K feature vectors are passed to
PMA [33] where the number of elements in a set was shrunk
from K to one using another Transformer block of C=384.

Transformer (interaction along spatial-axis): At the final
step of the pixel-sampling Transformer module, we perform
two Transformer blocks (C=384) to communicate features
among the m locations. The näive self-attention requires
O(m2) memory consumption, however m (i.e., number of
pixel samples) is much larger than K (i.e., number of in-
put images), which makes increasing sample size difficult.
Therefore, we instead used the O(m) implementation of the
self-attention by [49] to tackle this problem (Note that the
computational cost doesn’t change).

Normal prediction network: The surface normal predictor
is a MLP with one hidden layer whose feature dimension
shrank as 384 → 192 → 3 and the norm of the output vec-
tor is normalized to be a unit surface normal vector at the
location.

Appendix C. BRDF Parameter Recovery

As highlighted in the main paper’s conclusion, the pro-
posed framework extends beyond surface normal recovery
and can be readily applied to surface reflectance recovery by
merely substituting the training data and loss function. This
versatility enables the proposed method to render the target
scene under novel lighting environments, or in other words,
achieve novel relighting. However, recovering surface re-

flectance from images in an uncalibrated setup poses a fun-
damental ambiguity due to the countless possible combina-
tions of illumination and reflectance, such as a red surface
under white light or a white surface under red light. This
complexity makes objective evaluation nearly unattainable.

Given the challenges in evaluation, we opted not to fea-
ture the results of reflectance recovery in the main paper. In-
stead, we present them here to demonstrate that our method
is not confined to surface normal recovery. Our PS-Mix
dataset already incorporates base color, roughness, and met-
alness maps from AdobeStock [1], which were employed
to render images. We simply utilize these maps as train-
ing data and train our network using Mean Squared Er-
ror (MSE) losses between the predicted and provided base
color, roughness, and metalness maps. Once the surface
reflectance parameters and surface normals are recovered,
we can render images of the scene under novel lighting
conditions using any physically-based renderer, such as
Blender [2].

Implementation details: We implemented two separate
networks for surface normal map recovery and base color,
roughness, and metalness maps recovery, respectively. We
observed that training a single network for both tasks
slightly degraded performance. The network architecture
and training methodology were identical to those described
in the main paper, with the only difference being the train-
ing data and loss functions.
Reflectance representation: The images in both PS-
Wild [27] and our PS-Mix were rendered using the dichro-
matic Bidirectional Reflectance Distribution Function
(BRDF) [8], which is commonly assumed in physically-
based rendering of materials. This BRDF is a combina-
tion of the diffuse, specular, and metallic BRDFs, con-
trolled by three parameters: base color ∈ R3, roughness
∈ R, and metalness ∈ R (all parameters are within the
range 0 to 1). The diffuse BRDF includes a Schlick Fresnel
factor and a term for diffuse retro-reflection whose color
is determined by the base color parameter. The specular
BRDF is the Cook-Torrance microfacet BRDF that uses
the isotropic GGX (also known as Generalized-Trowbridge-
Reitz-2) with a Smith masking-shadowing function. The
roughness parameter controls the shape of the lobe, with
smaller roughness values producing steeper specular lobes,
i.e., more prominent specular highlights. The metallic
BRDF uses the same specular BRDF, but the reflected light
is colored with the base color parameter. The metalness
parameter balances the weight between the dielectric (dif-
fuse+specular) and metallic BRDFs. As per this definition,
the metalness of a surface is primarily determined by the
color of its specular reflection. In other words, if the pre-
dicted surface base color and the color of the specular re-
flection are similar, the surface is classified as metallic and
assigned a corresponding metalness value. This can result
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Figure 12. Reflectance recovery and novel relighting of scenes under directional lightings.

in some black surfaces being classified as metallic, but it
does not pose an issue in novel relighting since black sur-
faces are always represented by the same BRDF, regardless
of their metalness value. For further details, please refer

to [8].

Results under directional lighting: In Fig. 12, we present
the results of reflectance recovery from random 32 images
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Figure 13. Reflectance recovery and novel relighting of scenes under spatially-varying illuminations.

of five objects in DiLiGenT [53]. For each object, we
show one of the input images and the recovered surface nor-
mal (N), base color (Bc), roughness (Ro), and metalness
(Mt) maps. We observe that the proposed method could

cluster identical materials, even though we did not impose
any physically-based constraints on reflectance properties
based on prior knowledge, such as smoothness or sparsity
of basis materials, which has been done in most existing
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Figure 14. We compared the results of reflectance recovery w/ and
w/o our pixel sampling Transformer. As we observe, the non-local
interaction among aggregated features seem to be critical in the
surface reflectance recovery.

works [34, 35, 68, 69]. We also observe successful separa-
tion between the surface color and shading effects. Further-
more, several objects in DiLiGenT have metallic paintings
(e.g., Harvest and Cow), and our method correctly recov-
ered the metalness values for these areas. To the best of
our knowledge, our method is the first to recover physically
plausible metalness parameters of non-convex scenes under
unknown lighting conditions.

Using the recovered BRDF parameters, we rendered the
scenes under three different lighting conditions using the
physically-based renderer [2]: a point light collocated with
the camera position, outdoor environment lighting, and in-
door environment lighting. While the unavoidable ambigu-
ity of the problem setup makes quantitative evaluation im-
possible, we obtained highly plausible rendering results for
each lighting condition. Note that all results were based on
the surface normal map, not the surface meshes, so we can-
not render global lighting effects such as cast shadows and
inter-reflections. Our analysis of the results revealed an in-
teresting observation: non-local interactions are more crit-
ical in recovering surface reflectance than surface normal.
As shown in Fig. 14, we found that the recovery of material
properties required a broad range of observations, including
from low-frequency (diffuse) to high-frequency (specular)
components. Reliable low-frequency information is almost
sufficient for surface normal prediction, but it is not enough
for recovering material properties, and focusing on a spe-
cific pixel is not adequate. The non-local interaction of ag-
gregated features proved helpful in seeing different surface
points of the same material for the recovery of surface re-
flectance, resulting in our outstanding results.

Results under spatially-varying lighting: In Fig. 13, we
present the results of reflectance recovery and novel re-

lighting from images under spatially-varying illuminations.
The results demonstrate that the proposed method achieves
physically plausible performance, overcoming the challeng-
ing conditions of each scene.

For instance, in the Figures dataset, a metallic-painted,
non-planar object and a non-metallic, planar object exist in
the same scene, but the network successfully reconstructed
the normal map without distinguishing between these ob-
jects. Additionally, the metalness parameters were suc-
cessfully recovered in the metallic-painted area, as demon-
strated in the relighting results. The Cable objects have
complex tangles of long, thin cables, and such geometries
tend to produce ambiguous depth discontinuities when han-
dled by existing methods. The proposed method not only
accurately reconstructed these geometries but also recov-
ered uniform base color without being affected by cast
shadows or inter-reflections caused by non-convex geome-
tries. For other objects such as Toast, Keychain, and Al-
ligator, the proposed method successfully recovered a de-
tailed surface normal map that preserved depth discontinu-
ities accurately and produced perceptually plausible surface
reflectance maps that were unaffected by shading and global
illumination effects. The novel relighting results demon-
strate that our results are of practical quality for the capture
of surface attributes.

These results suggest that the proposed method is highly
effective not only in surface normal recovery but also in sur-
face reflectance recovery and novel relighting of the scene.
However, we emphasize once again that we are aware that
the results of this experiment are not objective, and further
quantitative evaluation of surface reflectance recovery is left
for future work.


	1 . Introduction
	2 . Related Works
	3 . Method
	3.1 . SDM-UniPS
	3.2 . PS-Mix Dataset

	4 . Results
	4.1 . Ablation Study
	4.2 . Evaluation under Directional Lighting
	4.3 . Evaluation under Spatially-varying Lighting

	5 . Conclusion

