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Abstract
Omnidirectional images (ODIs) have obtained lots of re-

search interest for immersive experiences. Although ODIs
require extremely high resolution to capture details of the
entire scene, the resolutions of most ODIs are insufficient.
Previous methods attempt to solve this issue by image
super-resolution (SR) on equirectangular projection (ERP)
images. However, they omit geometric properties of ERP in
the degradation process, and their models can hardly gener-
alize to real ERP images. In this paper, we propose Fisheye
downsampling, which mimics the real-world imaging pro-
cess and synthesizes more realistic low-resolution samples.
Then we design a distortion-aware Transformer (OSRT) to
modulate ERP distortions continuously and self-adaptively.
Without a cumbersome process, OSRT outperforms previ-
ous methods by about 0.2dB on PSNR. Moreover, we pro-
pose a convenient data augmentation strategy, which syn-
thesizes pseudo ERP images from plain images. This simple
strategy can alleviate the over-fitting problem of large net-
works and significantly boost the performance of ODISR.
Extensive experiments have demonstrated the state-of-the-
art performance of our OSRT.

1. Introduction
In pursuit of the realistic visual experience, omnidi-

rectional images (ODIs), also known as 360◦ images or
panoramic images, have obtained lots of research interest in
the computer vision community. In reality, we usually view
ODIs with a narrow field-of-view (FOV), e.g., viewing in a
headset. To capture details of the entire scene, ODIs require
extremely high resolution, e.g., 4K× 8K [1]. However, due
to the high industrial cost of camera sensors with high pre-
cision, the resolutions of most ODIs are insufficient.

Recently, some attempts have been made to solve this
problem by image super-resolution (SR) [13,16,29,40,41].
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Unseen LR LAU-Net [13] w/o Fisheye

OSRT w/o Fisheye OSRT w/ Fisheye

Figure 1. Visual comparisons of ×8 SR results on unseen LR im-
ages1. Fisheye denotes that the downsampling process in training
stages is under Fisheye images.
As most of the ODIs are stored and transmitted in the
equirectangular projection (ERP) type, the SR process is
usually performed on the ERP images. To generate high-
/low-resolution training pairs, existing ODISR methods
[13, 16, 29, 40, 41] directly apply uniform bicubic down-
sampling on the original ERP images (called ERP down-
sampling), which is identical to general image SR settings
[25, 44]. While omitting geometric properties of ERP in
the degradation process, their models can hardly general-
ize to real ERP images. We can observe missing struc-
tures and blur textures in Fig. 1. Therefore, we need a
more appropriate degradation model before studying SR al-
gorithms. In practice, ODIs are acquired by the fisheye
lens and stored in ERP. Given that the low-resolution is-
sue in real-world scenarios is caused by insufficient sensor
precision and density, the downsampling process should be
applied to original-formatted images before converting into
other storage types. Thus, to be conformed with real-world
imaging processes, we propose to apply uniform bicubic

1Photoed by Peter Leth on Flickr, with CC license.
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downsampling on Fisheye images, which are the original
format of ODIs. The new downsampling process (called
Fisheye downsampling) applies uniform bicubic downsam-
pling on Fisheye images before converting them to ERP im-
ages. Our Fisheye downsampling is more conducive to ex-
ploring the geometric property of ODIs.

The key issue of ODISR algorithm design is to utilize
the geometric properties of ERP images, which is also the
focus of previous methods. For example, Nishiyama et al.
[29] add a distortion-related condition as an additional in-
put. LAU-Net [13] splits the whole ERP image into patches
by latitude band and learns upscaling processes separately.
However, the separated learning process will lead to infor-
mation disconnection between adjacent patches. SphereSR
[41] learns different upscaling functions on various projec-
tion types, but will inevitably introduce multiple-time com-
putation costs. To push the performance upper bound, we
propose the first Transformer for Omnidirectional image
Super-Resolution (OSRT), and incorporate geometric prop-
erties in a distortion-aware manner. Specifically, to mod-
ulate distorted feature maps, we implement feature-level
warping, in which offsets are learned from latitude condi-
tions. In OSRT, we introduce two dedicated blocks to adapt
latitude-related distortion: distortion-aware attention block
(DAAB), and distortion-aware convolution block (DACB).
DAAB and DACB are designed to perform distortion mod-
ulation in arbitrary Transformers and ConvNets. These
two blocks can directly replace the multi-head self-attention
block and convolution layer, respectively. The benefit of
DAAB and DACB can be further improved when being in-
serted into the same backbone network. OSRT outperforms
previous methods by about 0.2dB on PSNR (Tab. 2).

However, the increase of network capacity will also en-
large the overfitting problem of ODISR, which is rarely
mentioned before. The largest ODIs dataset [13] contains
only 1K images, which cannot provide enough diversity for
training Transformers. Given that acquiring ODIs requires
expensive equipment and tedious work, we propose to gen-
erate distorted ERP samples from plain images for data aug-
mentation. In practice, we regard a plain image as a sampled
perspective, and project it back to the ERP format. Then we
can introduce 146K additional training patches, 6 times of
the previous dataset. This simple strategy can significantly
boost the performance of ODISR (Tab. 4) and alleviate the
over-fitting problem of large networks (Fig. 9). A similar
data augmentation method is also applied in Nishiyama et
al. [29], but shows marginal improvement on small models
under ERP downsampling settings.

Our contributions are threefold. 1) For problem formula-
tion: To generate more realistic ERP low-resolution images,
we propose Fisheye downsampling, which mimics the real-
world imaging process. 2) For method: Combined with the
geometric properties of ERP, we design a distortion-aware

Transformer, which modulates distortions continuously and
self-adaptively without cumbersome process. 3) For data:
To reduce overfitting, we propose a convenient data aug-
mentation strategy, which synthesizes pseudo ERP images
from plain images. Extensive experiments have demon-
strated the state-of-the-art performance of our OSRT.

2. Related Work
Single Image Super-Resolution (SISR). Deep learning

for single image SR (SISR) is first introduced in [14]. Fur-
ther works boost SR performance by CNNs [12, 15, 23, 25,
27,30,44], Vision Transformers (ViTs) [7,8,22,24] and gen-
erative adversarial networks (GANs) [21, 36, 37, 43]. For
instance, EDSR [25] removes Batch Normalization layers
and applies a more complicated residual block. RCAN [44]
introduces channel-wise attention mechanisms to a deeper
network. SwinIR [24] proposes an image restoration Trans-
former based on [26]. To improve perceptual quality, adver-
sarial training are performed as a tuning process to generate
more realistic results [36, 37]. Moreover, various flexible
degradation models are proposed in [36, 42] to synthesize
more practical degradations.

Omnidirectional Image Super-Resolution (ODISR).
Initially, ODISR models focus on the spherical assembling
of LR ODIs under various projection types [2–4, 18, 28].
Recent ODISR models are performed on plane images and
are fine-tuned from existing SISR models with L1 loss
[16] or GAN loss [31, 45]. The improvements are limited,
for they only concern the distribution gap between ODIs
and plain images. Since LAU-Net [13] found pixel den-
sity in ERP ODIs is non-uniform, many studies attempt
to design specific backbone networks to overcome this is-
sue. LAU-Net [13] manually splits the whole ERP im-
age into latitude-related patches and learns ERP distortion
over different latitude ranges separately. While LAU-Net
learns latitude-related ERP distortion somewhat, its non-
overlapped patches lead to disconnection in whole ERP im-
ages. Nishiyama et al. [29] treats area stretching ratio as
additional input. However, these conditions are tough to
be utilized with an unmodified SISR backbone network.
SphereSR [41] learns upsampling processes on various pro-
jection types (CP, ERP, Polyhedron) to mitigate the influ-
ence of non-uniformity in specific projection types. It ap-
plies a local implicit image function (LIIF) [9] to query
RGB values on spherical surfaces continuously. Although
SphereSR improves information consistency between vari-
ous ODI projection types, they apply multiple networks to
learn the upscaling process of each projection type. Given
that all other projection types in SphereSR are converted
from ERP, patterns under various types are reusable when
distortions are properly rectified. Moreover, the complex
and unstructured image data in polyhedron projection hin-
ders further research of ODISR.



Deformable Mechanism. Dai et al. [31] first propose
deformable convolutions to obtain information out of its
regular neighborhood. Xia et al. [39] further verified that
Vision Transformers also benefit from applying deformable
mechanisms on self-attention blocks. In Video SR tasks,
the deformable mechanism can be adapted to align features
between adjacent frames [5, 6, 35].

3. Method
In this section, we first analyze the cause of ERP and

Fisheye distortions, as well as the relationship between
these two distortions (Sec. 3.1). Then, we discuss the de-
signs of Fisheye downsampling (Sec. 3.2), distortion-aware
Transformer (OSRT) (Sec. 3.3), and the convenient data
augmentation strategy (Sec. 3.4).

3.1. Revisiting Distortions in ODIs
𝑦
𝐸
∈
(−

𝜋 2
,𝜋 2
)

𝜃𝐹 = 𝜃𝑠
𝜌𝐹 = 𝜋\2 − 𝜑𝑠

𝑥𝐸 = 𝜃𝑠
𝑦𝐸 = 𝜑𝑠

𝑦
𝐹
∈
(−

1
,1
)

𝑥𝐹 ∈ (−1, 1)

𝑥𝐹 = 𝜌𝐹𝑐𝑜𝑠𝜃𝐹
𝑦𝐹 = 𝜌𝐹𝑠𝑖𝑛𝜃𝐹

(b) Dual Fisheye(a) Fisheye Plane

(d) ERP

𝑥𝐸 ∈ (−𝜋, 𝜋)

𝑥𝐹 ∈ (−1, 1)

(c) Spherical Surface

Figure 2. Geometric explanation of transforming between ERP,
Fisheye, and the ideal spherical surface. To simplify, we discuss
the horizontal spliced Fisheye with an aperture degree of π.

As ODIs under each projection type are constrained
by different transforming equations, the distortion caused
by each type is inconsistent, indicating that applying ma-
trix operations under one projection type can introduce
unexpected changes when being converted to other types.
Specifically, applying uniformed bicubic downsampling on
ERP images will affect the distribution of pixel density
on Fisheye images, which are the original-formatted image
type of imaging process in real-world scenarios. To analyze
the specific effect of ERP downsampling on the Fisheye im-
age, we revisit the cause of distortions in ERP and Fisheye.

As we assume that viewing directions are uniformly dis-
tributed, the data points in an ideal ODI should be uniformly
distributed on a spherical surface. In practice, there is a
trade-off between the uniformity of the spherical surface
and the structural degree. ERP is the most convenient pro-
jection type for storage or transmission, but it is also the
projection type that suffers the heaviest distortion. To better
explain the causation of distortions, we follow the definition

of stretching ratio (K) in [32], which represents distortion
degree at different locations from the target projection type
to the ideal spherical surface. K is determined by area vari-
ation from one projection type to another. When the target
type is uniforming spherical surface, K is defined as:

K(x, y) =
δS(θ, ϕ)

δP (x, y)
=

cos(ϕ)|dθdϕ|
|dxdy|

=
cos(ϕ)

|J(θ, ϕ)|
, (1)

where δS(·, ·) and δP (·, ·) represent the area on the spher-
ical surface and the projection plane, respectively. |didj|
represents plane microunit. |J(θ, ϕ)| is the Jacobian deter-
minant from spherical coordinate to projection coordinate.

ERP distortion. The coordinate in ERP is defined as
x = θ and y = ϕ. ERP stretching ratio can be derived as:

KERP(x, y) = cos(ϕ) = cos(y), (2)

where x ∈ (−π, π), y ∈ (−π2 ,
π
2 ).

From Eq. (2), we conclude that ERP distortion is only
determined by its latitude degree. KERP is reduced to
zero when the absolute value of latitude degree increases
to π/2, which represents that pixel density on the polar ar-
eas of ERP images is closer to zero. As shown in Fig. 2
(c), with the increasing of the absolutely value of latitude
degree (|ϕs|), the corresponding area on the spherical sur-
face of an ERP microunit is gradually decreased to zero. In
conclusion, ERP distortion is caused by variable stretching
ratios KERP, and is the heaviest in the polar areas.

Fisheye distortion. The coordinate in Fisheye can be
derived from θ = arctan ( yx ) and ϕ = (1−

√
x2 + y2)× π

2 .
The stretching ratios of Fisheye can be derived as2:

KFisheye(x, y) =
2
π sin (π2

√
x2 + y2)√

x2 + y2
, (3)

where
√
x2 + y2 ∈ (0, 1).

KFisheye is determined by distance from the fisheye cen-
ter. As (KFisheye)−1 is bounded, fisheye projection is closer
to uniform distribution than ERP. Moreover, it introduces
much slighter distortion at the polar.

Relationship between ERP and Fisheye distortions.
To simplify, here we only discuss a typical Fisheye with an
aperture degree of π and a horizontal slicing plane3. In this
case, the ERP coordinates and Fisheye’s polar coordinates
correspond linearly. We can quantize the relationship by:

KERP|Fisheye(θ, ϕ) =
KERP(xE , yE)

KFisheye(xF , yF )
=
π

2
− |ϕ|, (4)

where θ, ϕ are spherical coordinates on the sphere, xE , yE
(xF , yF ) denotes the plain coordinate under ERP (Fisheye).

2Detailed derivative processes can be found in the supplementary file.
3The influence of Fisheye formats with arbitrary splicing plane is dis-

cussed in the supplementary file.
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Figure 3. Downsampling process of ODIs (left) and imaging pro-
cess in real world (right). * denotes that LR images synthesized
from different downsampling processes are inconsistent.

From Eqs. (2) to (4), we conclude that when uniformed
downsampling is performed on ERP, the kernel size of
equivalent Fisheye downsampling is non-uniformed. Espe-
cially when fisheye projection is spliced horizontally, the
kernel size is proportional with π/2− |ϕ|.

3.2. Learning with More Realistic Degradation

As depicted in Fig. 3, the original-formatted projection
type in ODI acquiring process is fisheye projection. Given
that real-world low-resolution issues are caused by insuffi-
cient precision and density of sensors, we consider that the
degeneration process should be directly applied to original-
formatted images before the type conversion.

Ideally, as camera sensors are arranged in uniform ar-
rays, pixel density on original-formatted images is consis-
tent everywhere. Thus, for a realistic ODI, the pixel density
on Fisheye should be a constant. As discussed in Sec. 3.1,
applying uniformed downsampling on ERP means apply-
ing downsampling of variable kernel size on Fisheye. The
variable kernel size leads to variable Fisheye pixel density,
which results in unrealistic LR images. In conclusion, the
ERP downsampling in previous methods influences the in-
trinsic distribution of pixel density in original-formatted im-
ages, which leads to unrealistic ODIs. When the downsam-
pling process happens on Fisheye, the Fisheye pixel density
is unchanged, which fits the real-world imaging process and
synthesizes more realistic LR pairs.

Process of Fisheye downsampling. To generate more
realistic LR ODIs, we mimic the real-world imaging pro-
cess and apply bicubic downsampling on Fisheye images.
One single Fisheye image can only store information about
a hemisphere. Hence, ERP images are converted to dual
Fisheye images. Before downsampling, Fisheye images are
padded by a FOV larger than 180◦ to avoid edge discon-
nections. This padding operation will not influence the geo-
metric transforming relation between ERP and Fisheye. As
Fisheye data is unstructured and Fisheye distortion is more
complicated than ERP distortion, we still learn the upscal-
ing process under ERP. Thus we reconvert LR images to the

ERP format. The overall process of Fisheye downsampling
are described in Fig. 3.

3.3. OSRT: Modulate Distortion in ODIs

Overall. As discussed in Sec. 3.1, ERP images suf-
fer a distortion caused by a non-consistency area stretch-
ing ratio from an ideal spherical surface. Referred from
Eq. (2), for an LR input Xi ∈ RC×M×N , the distortion
map Cd ∈ R1×M×N is derived by:

Cd = cos

(
m+ 0.5−M/2

M
π

)
, (5)

where m is the current height of LR input.
Previous methods tend to treat Cd as an additional in-

put of Xi [29], or re-weighting parameters by Cd [19]. Al-
though these solutions can benefit from building awareness
of distortion, continuous and amorphous distortions cannot
be adequately fitted by scattering and structured convolu-
tion operations. While previous methods cannot fully ex-
plore the advantage ofCd, we intend to design a novel block
for learning distorted patterns continuously. In VSR tasks,
the deformable mechanism is proposed to align features be-
tween adjacent frames [33, 35]. Unlike standard DCN [11],
which calculates offsets from the input feature map, off-
sets are calculated from bi-directional optical flow in VSR
pipelines. Inspired by feature-level flow warping in VSR,
we find that the deformable mechanism is a feasible solution
for continuous mappings. Consequently, we modulate ERP
distortion by feature-level warping operations. As shown
in Fig. 4, Cd is only utilized to calculate the deformable
offsets ∆p. To keep compatibility with arbitrary ConvNets
and Transformers, we propose two blocks to modulate ERP
distortion, which can directly replace the multi-head self-
attention blocks in Transformers and the standard convolu-
tion layers in ConvNets, respectively.

Distortion-aware attention block (DAAB). As de-
picted in Fig. 4 (a), a distortion condition guided de-
formable self-attention is proposed to learn correlations be-
tween the distorted input Fi−1 and its corresponding mod-
ulated feature map F̃i−1. DAAB is formulated as:

∆pi = Hoffseti(Cd, Cw), F̃i−1 = φ(Fi−1; pi + ∆pi), (6)

Fi = HSA(Fi−1Wqi , F̃i−1Wki , F̃i−1Wvi), (7)

where Hoffseti(·) denotes the i-th convolution block to cal-
culate offset maps ∆pi ∈ R2×H×W , andHSA denotes stan-
dard self-attention formula. Hoffset(·) consists of 1 × 1
convolution block with two hidden layers. The input of
Hoffset(·) is concatenated by the latitude-related distortion
condition Cd ∈ R1×H×W and the window condition Cw ∈
R2×H×W . Cw is a linear position encoding within a self-
attention kernel. φ(·, ·) denotes a bilinear interpolation, and
Wqi ,Wki ,Wvi denote i-th weight matrix of query, key, and
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Figure 4. Overall illustration of OSRT. From SwinIR [24], we replace the standard multi-head self-attention block with DAAB and insert
DACB behind the end of the RSTB. Channel dimensions of θoffsets in DAAB and DACB are 2 and 18, respectively.

value, respectively. For multi-head self-attention blocks,
Hoffseti(·) is identical in calculations of parallel heads.

Distortion-aware convolution block (DACB). As
shown in Fig. 4 (b), we apply a standard deformable convo-
lution layer with a substituted input for offset calculation.
Modulated output Fi is extracted as:

∆pi = Hoffseti(Cd), Fi = HDCNi
(Fi−1,∆pi), (8)

where HDCN(F,∆p) denotes standard deformable convo-
lution layer in [47]. The architecture of Hoffseti(·) is identi-
cal to that in DAAB. As the kernel size of DCN is 3× 3 in
DACB, the output channel dimension of offsets maps is 18.

OSRT. In practice, we propose an Omnidirectional im-
age Super-Resolution Transformer, named OSRT. SwinIR
[24] is selected as the basic architecture for its strong re-
construction ability in the SISR task. To learn distortion
rectified representations, we stack a DACB after the last
convolution layer of each residual swin Transformer block
and replace all self-attention blocks as DAAB. The feature
dimension of OSRT is reduced from 180 to 156 to maintain
identical parameters with SwinIR.

3.4. Boosting ODISR Performance by Plain Images

As the capacity of OSRT is relatively large, it suf-
fers overfitting for large upscaling factors (Fig. 9). Given
that acquiring ODIs are expensive, we propose to generate
pseudo ERP images from 2D plain images to tackle this is-
sue. After being sampled by sliding windows, the patch of
plain images is treated as a plain perspective. By converting
from Perspective to ERP, plain images are distorted in the
same way as ERP. Considering that distortion of a Perspec-
tive is enlarged by its FOV degree, a relatively small FOV

degree of 90◦ is applied. For a given pseudo Perspective, θp
is fixed at 0 and ϕp is derived by:

Φp = ϕh + z0, (9)

where ϕh is determined by patch locations and z0 is orderly
sampled from {−15◦, 0◦, 15◦}.

To maximize the approximate data distribution of ODIs,
we horizontally split a plain image into three sub-images
and define ϕh as −30◦, 0◦, 30◦ respectively. Pseudo ERP
images are cropped to remove the black border. As shown
in Fig. 5, we get a new ERP dataset (called DF2K-ERP)
by implementing the augmentation pipeline on widely-used
plain image dataset DF2K [25,34]. The DF2K-ERP dataset
consists of 146K high-quality ERP image patches with a
patch size larger than 256.

Pseudo Perspective Image
Synthetic ERP Augmented patches

DF2K

𝜑 = 15∘, 30∘, 45∘

𝜑 = −15∘, 0∘, 15∘

𝜑 = −45∘, −30∘, −15∘

Figure 5. Synthetic process of DF2K-ERP.



Method Scale ODI-SR SUN 360 Panorama
PSNR SSIM WS-PSNR WS-SSIM PSNR SSIM WS-PSNR WS-SSIM

Bicubic

×2

28.21 0.8215 27.61 0.8156 28.14 0.8118 28.01 0.8321
RCAN [44] 30.08 0.8723 29.49 0.8714 30.56 0.8712 31.18 0.8969

SRResNet [37] 30.16 0.8717 29.59 0.8697 30.65 0.8714 31.20 0.8953
EDSR [25] 30.32 0.8770 29.68 0.8727 30.89 0.8784 31.42 0.8995
SwinIR [24] 30.52 0.8819 29.87 0.8772 31.21 0.8852 31.78 0.9051

SwinIR† [24] 30.64 0.8821 30.00 0.8777 31.33 0.8855 31.98 0.9059
OSRT† 30.77 0.8846 30.11 0.8795 31.52 0.8888 32.14 0.9081

Bicubic

×4

25.59 0.7118 24.95 0.6923 25.29 0.6993 24.90 0.7083
RCAN [44] 26.85 0.7621 26.15 0.7485 27.10 0.7660 26.99 0.7856

SRResNet [37] 26.91 0.7597 26.24 0.7457 27.10 0.7618 26.99 0.7812
EDSR [25] 26.97 0.7589 26.30 0.7458 27.19 0.7633 27.10 0.7827
SwinIR [24] 27.12 0.7663 26.44 0.7523 27.39 0.7707 27.30 0.7901

SwinIR† [24] 27.31 0.7735 26.61 0.7589 27.71 0.7804 27.64 0.7996
OSRT† 27.41 0.7762 26.70 0.7609 27.84 0.7835 27.77 0.8020

Table 1. SR results under Fisheye downsampling. † denotes applying DF2K-ERP as augmented dataset. Best results are shown in Bold.

SUN360 (×4): 034

HR Bicubic RCAN [44] SRResNet [37]
PSNR/SSIM 24.38dB/0.6872 26.40dB/0.8137 26.21dB/0.7999

EDSR [25] SwinIR [24] SwinIR† [24] OSRT†

26.38dB/0.8072 26.77dB/0. 8234 27.34dB/0.8462 27.68dB/0.8561

SUN360 (×4): 095

HR Bicubic RCAN [44] SRResNet [37]
PSNR/SSIM 30.20dB/0.8506 33.59dB/0.9088 33.43dB/0.9043

EDSR [25] SwinIR [24] SwinIR† [24] OSRT†

33.64dB/0.9074 34.05dB/0.9119 34.41dB/0.9158 34.77dB/0.9187

Figure 6. Visual comparisons of ×4 SR results under Fisheye downsampling.

4. Experiments

4.1. Experimental Setup

ODI-SR dataset [13] and SUN360 Panorama dataset [40]
are used in our experiment. In the training phase, we follow
the data split setting in [13] and train on the ODI-SR train-
ing set. The resolution of the ERP HR is 1024 × 2048,
and the upscaling factors are ×2 and ×4. Fisheye down-
sampling is applied as our pre-defined downsampling ker-
nel. Loss is calculated by L1 distance and optimized by
Adam [20], with an initial learning rate of 2 × 10−4, a
total batch size of 32, and an input patch size of 64. We

train OSRT for 500k iterations and halve the learning rate
at 250k, 400k, 450k and 475k. In evaluation, we test on
the ODI-SR testing set and SUN360 dataset. PSNR [17],
SSIM [38], and their distortion re-weighted versions (WS-
PSNR [32], WS-SSIM [46]) are used as evaluation metrics.

4.2. Evaluation under Fisheye Downsampling

When the downsampling process is performed on Fish-
eye images, we train SRResNet [37], EDSR [25], RCAN
[44], and SwinIR [24] for comparison.

Quantitative results. As shown in Tab. 1, with the
help of additional DF2K-ERP training patches, OSRT out-



Scale ×8 ×16

Method ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama
WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 19.64 0.5908 19.72 0.5403 17.12 0.4332 17.56 0.4638
SRCNN [14] 20.08 0.6112 19.46 0.5701 18.08 0.4501 17.95 0.4684
EDSR [25] 23.97 0.6417 22.46 0.6341 21.12 0.5698 21.06 0.5645
RCAN [44] 24.26 0.6628 23.88 0.6542 21.94 0.5824 21.74 0.5742
360-SS [31] 21.65 0.6417 21.48 0.6352 19.65 0.5431 19.62 0.5308

LAU-Net [13] 24.36 0.6801 24.02 0.6708 22.07 0.5901 21.82 0.5824
SphereSR [41] 24.37 0.6777 24.17 0.6820 22.51 0.6370 21.95 0.6342

OSRT 24.53 0.6780 24.38 0.7072 22.69 0.6261 22.13 0.6388

Table 2. SR results under ERP downsampling.

performs previous methods by 0.3dB on PSNR. Although
directly applying SwinIR on the ODISR task has already
reached SOTA performance, OSRT surpasses SwinIR over
0.1dB on two datasets for both ×2 and ×4 SR tasks, which
demonstrates the effectiveness of its distortion modulation
ability. The performance of RCAN degrades under Fish-
eye downsampling, which is caused by the incompatibility
between channel attention and Fisheye downsampling4.

Qualitative comparison. Fig. 6 shows the visualization
results of ×4 ODISR task. While other methods strug-
gle to understand the geometric transformation process in
distorted images, OSRT can reconstruct sharp and accurate
boundaries with the advantages of distortion modulation. It
is observed that OSRT is skilled at reconstructing rigid tex-
ture. Moreover, benefiting from the distortion modulation
ability, OSRT can preserve the original structure as most
when being projected to other projection types (Fig. 7).

4.3. Evaluation under ERP Downsampling

To compare with previous ODISR methods [13, 31, 41],
we train OSRT under the previous ERP setting. Regard-
less of over-fitting issues, we only train on the dataset pro-
vided by [13] for fairness. As shown in Tab. 2, OSRT still
outperforms LAU-Net [13] and SphereSR [41] under large
upscaling factor and ERP downsampling. Without a com-
plicated training pipeline and discrete inference process,
OSRT yields the best PSNR values and surpasses all previ-
ous methods on most SSIM-related metrics (three of four).

4.4. Ablation Study and Discussion

In this section, we prove the effectiveness of Fisheye
downsampling, OSRT components, and augmented DF2K-
ERP. We then explain the distortion modulation ability of
OSRT by visualizing offsets in deformable blocks.

Fisheye downsampling. As shown in Fig. 1, the SR
model trained under ERP downsampling is more likely to
generate blur details and missing structures in real-world
scenarios. These artifacts cannot be removed by a superior
backbone network, but can be eliminated by a more real-
istic imaging process. More importantly, ERP downsam-
pling directly covers the geometric property of ERP images

4The cause is discussed in the supplementary file.

feature DACB DAAB ODI-SR SUN360 Params.
dim PSNR SSIM PSNR SSIM (M)

60 × × 30.27 0.8739 30.78 0.8742 0.91
60 X × 30.41 0.8775 31.00 0.8793 1.16
60 × w/o Cw 30.31 0.8746 30.83 0.8755 1.00
60 × w/ Cw 30.32 0.8746 30.84 0.8753 1.01
60 X w/ Cw 30.44 0.8780 31.04 0.8800 1.26
72 × × 30.32 0.8748 30.85 0.8755 1.29

Table 3. Ablation study on OSRT components. All models are
trained on ×2 SR task under Fisheye downsampling.

and makes the ODISR task identical to the standard plain
image super-resolution task. The evidence is that a stan-
dard SISR model (SwinIR) trained on a plain image dataset
(DF2K) can outperform previous SOTA in the ODISR
task, which yields WS-PSNR results of 24.63dB/24.49dB
(22.68dB/22.13dB) on ×8 (×16) ODI-SR/SUN360 testing
set, respectively. In conclusion, when the intrinsic property
of ODIs is broken by ERP downsampling, the ODISR task
degenerates into a plain image super-resolution task with a
particular data distribution.

ODI-SR (×4): 008
Fisheye (Vertical, Left)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†

SUN360 (×2): 062
Perspective (ϕ: 30◦; FOV: 90◦)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†

Figure 7. Visual comparisons for SR of Fisheye and Perspective
images. † denotes applying DF2K-ERP as augmented dataset.
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Figure 8. Visualizations of offset maps in OSRT. Reference and
deformed points are depicted in green and red, respectively. The
deformable kernel is sparse in the polar area.

OSRT components. To study the effectiveness of each
component in OSRT, we propose a light version of OSRT
(OSRT-light) for ablation study, which corresponds with the
official SwinIR-light [24]. As proofed in Tab. 3, all compo-
nents in OSRT are beneficial for modulating ERP distortion.
The advantages of DACB and DAAB can be stacked when
being applied in the same network. Compared with simply
expanding the feature dimension of SwinIR to match the
network complexity, the overall improvements of OSRT is
more significant (+0.05dB vs. +0.2dB).

Offsets in OSRT. To investigate whether the deformable
mechanism in OSRT can modulate distortion as expected,
we visualize offsets map in a well-trained OSRT. As de-
picted in Fig. 8, deformable kernels in both DAAB and
DACB tend to gather at the equator and scatter at the po-

27.00

27.05

27.10

27.15

27.20

27.25

27.30

27.35

27.40

27.45

27.50

20 60 100 140 180 220 260 300 340 380 420 460 500

P
S

N
R

 (
d

B
)

Training Iterations (K)

Original + DataAug + Distortion-aware

Original + DataAug

Original

Overfitting

Data

Augmentation

Distortion-aware

Figure 9. Training process of Transformers on ×4 ODISR task.
The overfitting issue is tackled by our augmentation scheme.

Backbone Datasets Training Scale SUN360
network scheme PSNR SSIM

SwinIR ODI-SR N/A

×2

31.21 0.8852
SwinIR DF2K/ODI-SR one-stage 31.26 0.8841
SwinIR DF2K-ERP/ODI-SR one-stage 31.33 0.8855
SwinIR DF2K-ERP/ODI-SR two-stage 31.17 0.8818
OSRT DF2K-ERP/ODI-SR one-stage 31.52 0.8888

SwinIR ODI-SR N/A

×4

27.39 0.7707
SwinIR DF2K/ODI-SR one-stage 27.59 0.7768
SwinIR DF2K-ERP/ODI-SR one-stage 27.71 0.7804
SwinIR DF2K-ERP/ODI-SR two-stage 27.74 0.7795
OSRT DF2K-ERP/ODI-SR one-stage 27.84 0.7835

Table 4. Ablation study on data augmentation. The results of ODI-
SR (In the supplementary file) are in the same trend as SUN360.

lar, which conforms to the geometric distribution of pixel
density in ERP images. Besides, DAAB can also learn an
overall kernel translation (the 29th DAAB), which can be
regarded as a self-adaptively shift window operation.

Pseudo ERP patches. In Sec. 3.4, we propose a dis-
torted dataset DF2K-ERP to tackle over-fitting issues. We
train a standard SwinIR on diverse datasets and training
schemes to study the influence of data augmentation sep-
arately. As shown in Tab. 4, while training on ODI-SR
and DF2K, distortion operations in DF2K lead to better per-
formance. Compared with fine-tuning on DF2K-ERP pre-
trained models (two-stage), training on two datasets jointly
(one-stage) shows better results. We infer that there is a do-
main gap between ODI-SR and DF2K-ERP, which is caused
by omitted Perspective distortion5. Moreover, the advan-
tage of distortion modulation mechanisms in OSRT is en-
larged when additional training patches are applied. Fig. 9
proves that our data augmentation scheme overcomes the
over-fitting issue and improves the reconstruction ability.

5. Conclusion
In this paper, we find that the previous downsampling

process in the ODISR task harms the intrinsic distribution
of pixel density in ODIs, which leads to poor generalization
ability in real-world scenarios. To tackle this issue, we pro-
pose Fisheye downsampling, which mimics the real-world
imaging process to preserve the realistic density distribu-
tion. After refining the downsampling process, we design
a distortion-aware Transformer (OSRT) to modulate distor-
tions continuously and self-adaptively. OSRT learns offsets
from the distortion-related condition and rectifies distortion
by feature-level warping. Moreover, to alleviate the over-
fitting problem of large networks, we propose to synthesize
additional ERP training data from the plain images. Ex-
tensive experiments have demonstrated the state-of-the-art
performance of our OSRT.

Limitation. This work focuses on the feature extract
process in ODISR. However, to get a better viewing expe-
rience, the process of sampling ERP images into viewing
types also requires careful design.

5Detailed analysis can be found in the supplementary file.
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Kämäräinen. 360 panorama super-resolution using deep con-
volutional networks. In Int. Conf. on Computer Vision The-
ory and Applications (VISAPP), volume 1, 2018. 1, 2

[17] Quan Huynh-Thu and Mohammed Ghanbari. Scope of va-
lidity of psnr in image/video quality assessment. Electronics
letters, 44(13):800–801, 2008. 6

[18] Hiroshi Kawasaki, Katsushi Ikeuchi, and Masao Sakauchi.
Super-resolution omnidirectional camera images using
spatio-temporal analysis. Electronics and Communica-
tions in Japan (Part III: Fundamental Electronic Science),
89(6):47–59, 2006. 2

[19] Renata Khasanova and Pascal Frossard. Geometry aware
convolutional filters for omnidirectional images representa-
tion. In International Conference on Machine Learning,
pages 3351–3359. PMLR, 2019. 4

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[21] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4681–4690,
2017. 2

[22] Wenbo Li, Xin Lu, Jiangbo Lu, Xiangyu Zhang, and Jiaya
Jia. On efficient transformer and image pre-training for low-
level vision. arXiv preprint arXiv:2112.10175, 2021. 2

[23] Zheyuan Li, Yingqi Liu, Xiangyu Chen, Haoming Cai, Jinjin
Gu, Yu Qiao, and Chao Dong. Blueprint separable residual
network for efficient image super-resolution. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 833–843, 2022. 2

[24] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. Swinir: Image restoration us-
ing swin transformer. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1833–1844,
2021. 2, 5, 6, 7, 8, 14

[25] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for single
image super-resolution. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 136–144, 2017. 1, 2, 5, 6, 7, 14

[26] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In



Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2

[27] Yiqun Mei, Yuchen Fan, and Yuqian Zhou. Image super-
resolution with non-local sparse attention. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3517–3526, 2021. 2

[28] Hajime Nagahara, Yasushi Yagi, and Masahiko Yachida.
Super-resolution from an omnidirectional image sequence.
In 2000 26th Annual Conference of the IEEE Industrial Elec-
tronics Society. IECON 2000. 2000 IEEE International Con-
ference on Industrial Electronics, Control and Instrumen-
tation. 21st Century Technologies, volume 4, pages 2559–
2564. IEEE, 2000. 2

[29] Akito Nishiyama, Satoshi Ikehata, and Kiyoharu Aizawa.
360 single image super resolution via distortion-aware net-
work and distorted perspective images. In 2021 IEEE In-
ternational Conference on Image Processing (ICIP), pages
1829–1833. IEEE, 2021. 1, 2, 4

[30] Ben Niu, Weilei Wen, Wenqi Ren, Xiangde Zhang, Lianping
Yang, Shuzhen Wang, Kaihao Zhang, Xiaochun Cao, and
Haifeng Shen. Single image super-resolution via a holistic
attention network. In European conference on computer vi-
sion, pages 191–207. Springer, 2020. 2

[31] Cagri Ozcinar, Aakanksha Rana, and Aljosa Smolic. Super-
resolution of omnidirectional images using adversarial learn-
ing. In 2019 IEEE 21st International Workshop on Multime-
dia Signal Processing (MMSP), pages 1–6. IEEE, 2019. 2,
3, 7

[32] Yule Sun, Ang Lu, and Lu Yu. Weighted-to-spherically-
uniform quality evaluation for omnidirectional video. IEEE
signal processing letters, 24(9):1408–1412, 2017. 3, 6, 11

[33] Yapeng Tian, Yulun Zhang, Yun Fu, and Chenliang Xu.
Tdan: Temporally-deformable alignment network for video
super-resolution. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
3360–3369, 2020. 4

[34] Radu Timofte, Eirikur Agustsson, Luc Van Gool, Ming-
Hsuan Yang, and Lei Zhang. Ntire 2017 challenge on single
image super-resolution: Methods and results. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition workshops, pages 114–125, 2017. 5

[35] Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 0–0, 2019. 3, 4

[36] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan.
Real-esrgan: Training real-world blind super-resolution with
pure synthetic data. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 1905–1914,
2021. 2

[37] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European conference on computer vision
(ECCV) workshops, pages 0–0, 2018. 2, 6, 14

[38] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to

structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 6

[39] Zhuofan Xia, Xuran Pan, Shiji Song, Li Erran Li, and Gao
Huang. Vision transformer with deformable attention. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4794–4803, 2022. 3

[40] Jianxiong Xiao, Krista A Ehinger, Aude Oliva, and Anto-
nio Torralba. Recognizing scene viewpoint using panoramic
place representation. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 2695–2702. IEEE,
2012. 1, 6

[41] Youngho Yoon, Inchul Chung, Lin Wang, and Kuk-Jin Yoon.
Spheresr: 360deg image super-resolution with arbitrary pro-
jection via continuous spherical image representation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 5677–5686, 2022. 1, 2,
7, 12

[42] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-
fte. Designing a practical degradation model for deep blind
image super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 4791–
4800, 2021. 2

[43] Wenlong Zhang, Yihao Liu, Chao Dong, and Yu Qiao.
Ranksrgan: Generative adversarial networks with ranker for
image super-resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 3096–
3105, 2019. 2

[44] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018. 1, 2, 6, 7, 12, 13, 14

[45] Yupeng Zhang, Hengzhi Zhang, Daojing Li, Liyan Liu,
Hong Yi, Wei Wang, Hiroshi Suitoh, and Makoto Odamaki.
Toward real-world panoramic image enhancement. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 628–629, 2020.
2

[46] Yufeng Zhou, Mei Yu, Hualin Ma, Hua Shao, and Gangyi
Jiang. Weighted-to-spherically-uniform ssim objective qual-
ity evaluation for panoramic video. In 2018 14th IEEE In-
ternational Conference on Signal Processing (ICSP), pages
54–57. IEEE, 2018. 6

[47] Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. De-
formable convnets v2: More deformable, better results. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 9308–9316, 2019. 5



Appendix
Due to the lack of space in the main paper, we provide

more details of the proposed OSRT in the supplementary
file. In Appendix A, we show the transformation relation-
ships from the uniformed sphere to various projection types
(ERP, Fisheye, and Perspective) and the derivation pro-
cesses of each projection type. More experimental details
and interpretations can be found in Appendix B. Then we
provide additional visual comparisons and visualizations
under various projection types in Appendix C.

A. Geometric Relationship
In this section, xE , yE and xP , yP refer to plane coor-

dinates of ERP and Perspective, respectively. For an ideal
sphere, θS , ϕS are the spherical coordinates, and xS , yS , zS
are the space coordinates. ρF , θF and xF , yF are polar co-
ordinates and plane coordinates of Fisheye, respectively.

A.1. Transformation

ERP. For ERP, the coordinate is defined as:{
xE = θS

yE = ϕS .
(10)

Fisheye. For Fisheye, the coordinate is defined as:
ρF = 2× arctan(

√
x2
S + y2

S/z
2
S)/AF

θF = arctan(yS/xS)

xS = ρF × cos(θF )

yS = ρF × sin(θF ),

(11)

where AF is the aperture degree of Fisheye. Specifically,
when the normal vector of the Fisheye splicing plane is par-
allel to the z-axis, Eq. (11) can be simplified as:{

ρF = 2× (π/2− ϕS)/AF

θF = θS .
(12)

Here, we define a rotation transformation under the spheri-
cal coordinates:

[x∗S , y
∗
S , z
∗
S ]T = Mr · [xS , yS , zS ]T , (13)

where Mr is the 3D rotation matrix. [xS , yS , zS ]T and
[x∗S , y

∗
S , z
∗
S ]T are the original and rotated spherical coordi-

nates, respectively. Eq. (13) is defined to align general Fish-
eye to the horizontally spliced one, which is identical to add
∆θr,∆ϕr on spherical polar coordinates.

Perspective. The coordinates is defined as:{
xP = tan(θS)

yP = tan(ϕS)/cos(θS),
(14)

where xP , yP ∈ [− tan(AP /2), tan(AP /2)]. AP is the
aperture degree of Perspective, which determines the field-
of-view (FOV) of the given Perspective. Note that a per-
spective image only represents information on a partial area
of a spherical surface.

A.2. Distortion

As mentioned in the main paper, the distortion degree of
each projection type is measured by [32]:

K(x, y) =
δS(θ, ϕ)

δP (x, y)
=

cos(ϕ)|dθdϕ|
|dxdy|

=
cos(ϕ)

|J(θ, ϕ)|
, (15)

where δS(·, ·) and δP (·, ·) represent the area on the spher-
ical surface and the projection plane, respectively. |didj|
represents a plane microunit. |J(θ, ϕ)| is the Jacobian deter-
minant from spherical coordinate to projection coordinate.

ERP distortion. From Eqs. (10) and (15), ERP stretch-
ing ratio can be derived as:

KERP(xE , yE) = cos(ϕS) = cos(yE). (16)

Fisheye distortion. In this paragraph, we denote AF as
π. |J∗F (θS , ϕS)| can be simplified by Eq. (12):

|J∗F (θS , ϕS)|

=

∣∣∣∣∣
∂(xF )
∂(θS)

∂(xF )
∂(ϕS)

∂(yF )
∂(θS)

∂(yF )
∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣∣
∂(ρF cos θF )

∂(θS)
∂(ρF cos θF )

∂(ϕS)
∂(ρF sin θF )

∂(θS)
∂(ρF sin θF )

∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣∣
∂((1−2ϕS/π) cos θS)

∂(θS)
∂((1−2ϕS/π) cos θS)

∂(ϕS)
∂((1−2ϕS/π) sin θS)

∂(θS)
∂((1−2ϕS/π) sin θS)

∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣ −(1− 2ϕS/π) sin θS −2 cos θS/π
(1− 2ϕS/π) cos θS −2 sin θS/π

∣∣∣∣
=

2

π
(1− 2ϕS/π)(sin2 θS + cos2 θS)

=
2

π
ρF .

(17)

From Eqs. (12), (15) and (17), the stretching ratio of hor-
izontally spliced Fisheye can be derived as:

K∗Fisheye(xF , yF ) =
cos(ϕS)

|JF (θS , ϕS)|

=
cos(π2 (1− ρF ))

2
πρF

.

(18)

Then, we can derive stretching ratio of general Fisheye
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Figure 10. Geometric illustration of three projection types. Blue and yellow refer to the spherical surface and projection plane, respectively.

from Eqs. (15), (17) and (18):

KFisheye(xF , yF ) =
δS(θS , ϕS)

δP (xF , yF )

=
δS(θ∗S , ϕ

∗
S)

δP (xF , yF )︸ ︷︷ ︸
Projection

· δS(θS , ϕS)

δS(θ∗S , ϕ
∗
S)︸ ︷︷ ︸

Rotation

= K∗ · cos(ϕS)|dθSdϕS |
cos(ϕ∗S)|dθ∗Sdϕ∗S |

= K∗ · cos(ϕ∗S + ∆ϕr)

cos(ϕ∗S)

=
cos(π2 (1− ρF )−∆ϕr)

2
πρF

,

(19)

where ∆ϕr is a constant, which is determined by the angle
between the normal vector of splicing plane and z-axis.

Perspective. From Eqs. (14) and (15), the Perspective
stretching ratio can be derived as:

KPerspective(xP , yP ) =
cos(ϕS)

|JP (θS , ϕS)|
= cos3(θS)cos3(ϕS)

= (1 + x2
P + y2

P )−
3
2 .

(20)

Original Cleaned

Num of images in ODI-SR (training) 1200 1150
Num of images in ODI-SR (testing) 100 100
Num of images in ODI-SR (validation) 100 97
Num of images in SUN360 100 100
Downsampling function OpenCV Pillow
Downsampling target ERP Dual Fisheye
Storage format JPEG PNG

Table 5. Differences between the original and cleaned datasets.

B. Details and Discussions
B.1. Data Cleaning on ODI Dataset

Except for ERP downsampling, we still find other issues
in both ODI-SR and SUN360 datasets. Previous datasets
are downsampled by bicubic function without anti-alias de-
sign (OpenCV-Python), which introduces mottled artifacts
(Fig. 11). Meanwhile, they are stored in the format of
JPEG, which leads to missing details and JPEG-blocking
artifacts. Storing HR images in JPEG format is harmful for
both training and evaluation. To tackle these issues, we pro-
pose to apply downsampling by anti-aliased bicubic func-
tion (Pillow) and store images in a lossless format (PNG).
Moreover, there are problematic ODIs in previous datasets:
1) transforming mistakes; 2) virtual scenarios; 3) extremely
low qualities; 4) plane images. Consequently, we propose
ODI-SR-clean and SUN360-clean datasets, the differences
are shown in Tab. 5. We train and test all models on cleaned
datasets except the comparison under ERP downsampling
(Sec. 4.3 in the main paper).

When comparing SR results under ERP downsampling,
we train and test models on original datasets, which is iden-
tical to previous methods. Thus we can directly compare
the SR results of OSRT with SR results reported by previ-
ous methods, e.g., LAU-Net [13] and SphereSR [41].

B.2. Instability of RCAN

For RCAN [44] trained with Fisheye downsampling, the
training process is unstable and thus the performance is de-
graded. We find that the instability of RCAN is caused by
incompatibility between the channel attention block (CAB)
and Fisheye downsampling. CAB requires global statistical
features, and its training stability depends on the consistent
mean value distribution of each patch [10]. However, when
Fisheye downsampling is applied to an ERP image, the ERP
image suffers from nonuniform downsampling, which di-



Backbone Datasets Training Scale ODI-SR SUN360
network scheme PSNR SSIM PSNR SSIM

SwinIR ODI-SR N/A

×2

30.52 0.8819 31.21 0.8852
SwinIR DF2K/ODI-SR one-stage 30.59 0.8810 31.26 0.8841
SwinIR DF2K-ERP/ODI-SR one-stage 30.64 0.8821 31.33 0.8855
SwinIR DF2K-ERP/ODI-SR two-stage 30.54 0.8797 31.17 0.8818
OSRT DF2K-ERP/ODI-SR one-stage 30.77 0.8846 31.52 0.8888

SwinIR ODI-SR N/A

×4

27.12 0.7663 27.39 0.7707
SwinIR DF2K/ODI-SR one-stage 27.24 0.7708 27.59 0.7768
SwinIR DF2K-ERP/ODI-SR one-stage 27.31 0.7735 27.71 0.7804
SwinIR DF2K-ERP/ODI-SR two-stage 27.33 0.7725 27.74 0.7795
OSRT DF2K-ERP/ODI-SR one-stage 27.41 0.7762 27.84 0.7835

Table 6. Ablation study on data augmentation.

Method Scale ODI-SR SUN 360 Panorama
PSNR SSIM PSNR SSIM

RCAN [44] ×2 30.08 0.8723 30.56 0.8712
RCAN-local [10] 30.28 0.8735 30.80 0.8740

RCAN [44] ×4 26.85 0.7621 27.10 0.7660
RCAN-local [10] 26.99 0.7622 27.24 0.7665

Table 7. Influence of test-time local converter.

OSRT trained on ODI-SR OSRT trained on ODI-SR-clean

OSRT trained on ODI-SR OSRT trained on ODI-SR-clean

Figure 11. Visual comparisons of×8 SR results trained and tested
on the original and cleaned datasets.

rectly increases the mean value diversity between patches.
Although implementing a test-time local converter (TLC
[10]) can reduce the distribution gap between the patch and
the whole image (Tab. 7), it cannot reduce the distribution
gap within patches. Consequently, while training ODISR
models under Fisheye downsampling, blocks that require
global statistical values are not recommended.

B.3. Full Ablation Results of Data Augmentation

Due to the lack of space in the main paper, we only show
partial ablation results of data augmentation strategies (Tab.
4). The full results are shown in Tab. 6. Compared with
fine-tuning on DF2K-ERP pre-trained models (two-stage),
training on two datasets jointly (one-stage) shows better re-

sults. Moreover, the advantage of OSRT is enlarged when
additional training patches are applied.

B.4. Domain Gap between Real and Pseudo ODIs

As mentioned in the main paper (Sec. 3.4), we syn-
thesize pseudo ERP training data (DF2K-ERP) from the
plain images to alleviate the over-fitting problem of large
networks. Although DF2K-ERP has shown obvious ben-
efits, there is still a domain gap between real and pseudo
images. From Eq. (20), we can see that the distortion de-
gree of Perspective is determined by the distance from the
center. As the projection range is determined by FOV de-
gree, perspective images with different FOV degrees suffer
inconsistent distortions. However, we cannot obtain the dis-
tribution of FOV degrees in real-world scenarios. Thus we
directly assume that all pseudo perspective images have a
fixed FOV degree of 90◦, which introduces a domain gap.
While the inevitably domain gap is a limitation of DF2K-
ERP, it still overcomes the over-fitting issue and improves
the reconstruction ability.

C. Visualization
As mentioned in the main paper (Sec. 3.2), ERP down-

sampling leads to unrealistic ODIs. Thus we only show vi-
sualizations based on Fisheye downsampling in this section.

Additional qualitative comparison. We provide ad-
ditional visual comparisons with other methods on the
ODI-SR-clean testing dataset and SUN360-clean dataset in
Fig. 12. Reconstructed ERP images are compared under
ERP, Fisheye, and Perspective. As shown in Fig. 12 (d) and
(f), we can see that OSRT can reconstruct sharp and accu-
rate boundaries. Besides, from Fig. 12 (a) and (c), we con-
clude that OSRT is skilled at reconstructing rigid textures.

Additional visualization of OSRT. To show the over-
all quality of OSRT reconstructed images, we project these
ERP images to arbitrary projection types. Figs. 13 to 15
depict visualizations of ×2, ×4 and ×8 SR results, respec-
tively. Under all projection types, OSRT can reconstruct de-
tails with high fidelity (buildings in Fig. 13, tiles in Fig. 14,
and grasses in Fig. 15).



(a) ERP SUN360 (×2): 004

HR Bicubic RCAN [44] SRResNet [37]

EDSR [25] SwinIR [24] SwinIR† [24] OSRT†

(b) ERP ODI-SR (×4): 049

HR Bicubic RCAN [44] SRResNet [37]

EDSR [25] SwinIR [24] SwinIR† [24] OSRT†

(c) ODI-SR (×4): 003
Fisheye (Vertical, Right)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†
(d) SUN360 (×4): 047
Fisheye (Vertical, Left)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†

(e) SUN360 (×4): 096
Perspective (ϕ: −45◦; FOV: 90◦)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†
(f) SUN360 (×4): 032

Perspective (ϕ: −30◦; FOV: 90◦)

EDSR [25] SwinIR [24]

SwinIR† [24] OSRT†

Figure 12. Visual comparisons of SR results under Fisheye downsampling. † denotes applying DF2K-ERP as augmented dataset.
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Figure 13. Visualization of ×8 SR results (SUN360-062).
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Figure 14. Visualization of ×4 SR results (ODI-SR-066).
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Figure 15. Visualization of ×2 SR results (SUN360-007).
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