
Phase-Shifting Coder: Predicting Accurate Orientation
in Oriented Object Detection

Yi Yu1,2, Feipeng Da1,2,*
1School of Automation, Southeast University, Nanjing, China

2Key Laboratory of Measurement and Control of Complex Systems of Engineering,
Ministry of Education, Southeast University, Nanjing, China

{yuyi, dafp}@seu.edu.cn

Abstract

With the vigorous development of computer vision, ori-
ented object detection has gradually been featured. In this
paper, a novel differentiable angle coder named phase-
shifting coder (PSC) is proposed to accurately predict the
orientation of objects, along with a dual-frequency version
(PSCD). By mapping the rotational periodicity of differ-
ent cycles into the phase of different frequencies, we pro-
vide a unified framework for various periodic fuzzy prob-
lems caused by rotational symmetry in oriented object de-
tection. Upon such a framework, common problems in
oriented object detection such as boundary discontinuity
and square-like problems are elegantly solved in a unified
form. Visual analysis and experiments on three datasets
prove the effectiveness and the potentiality of our approach.
When facing scenarios requiring high-quality bounding
boxes, the proposed methods are expected to give a com-
petitive performance. The codes are publicly available at
https://github.com/open-mmlab/mmrotate.

1. Introduction
As a fundamental task in computer vision, object de-

tection has been extensively studied. Early researches are
mainly focused on horizontal object detection [34], on the
ground that objects in natural scenes are usually oriented
upward due to gravity. However, in other domains such as
aerial images [2,12,20,23,25], scene text [7,10,13,14,35],
and industrial inspection [11, 19, 32], oriented bounding
boxes are considered more preferable. Upon requirements
in these scenarios, oriented object detection has gradually
been featured.

At present, several solutions around oriented object de-

*Corresponding author is Feipeng Da. This work is supported by Spe-
cial Project on Basic Research of Frontier Leading Technology of Jiangsu
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tection have been developed, among which the most intu-
itive way is to modify horizontal object detectors by adding
an output channel to predict the orientation angle. Such a
solution faces two problems:

1) Boundary problem [24]: Boundary discontinuity
problem is often caused by angular periodicity. Assuming
orientation −π/2 is equivalent to π/2, the network output is
sometimes expected to be −π/2 and sometimes π/2 when
facing the same input. Such a situation makes the network
confused about in which way it should perform regression.

2) Square-like problem [27]: Square-like problem usu-
ally occurs when a square bounding box cannot be uniquely
defined. Specifically, a square box should be equivalent to
a 90◦ rotated one, but the regression loss between them is
high due to the inconsistency of angle parameters. Such
ambiguity can also seriously confuse the network.

A more comprehensive introduction to these problems
can be found in previous researches [25, 27]. Also, sev-
eral methods have been proposed to address these problems,
which will be reviewed in Sec. 2.

Through rethinking the above problems, we find that
they can inherently be unified as rotationally symmetric
problems (boundary under 180◦ and square-like under 90◦

rotation), which is quite similar to the periodic fuzzy prob-
lem of the absolute phase acquisition [38] in optical mea-
surement. Inspired by this, we come up with an idea to
utilize phase-shifting coding, a technique widely used in
optical measurement [37], for angle prediction in oriented
object detection. The technique has the potential to solve
both boundary discontinuity and square-like problems:

1) Phase-shifting encodes the measured distance (or par-
allax) into the periodic phase in optical measurement. The
orientation angle can also be encoded into the periodic
phase, and boundary discontinuity is thus inherently solved.

2) Phase-shifting also has the periodic fuzzy problem,
which is similar to the square-like problem, and many solu-
tions exist. For example, the dual-frequency phase-shifting
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technique solves the periodic fuzzy problem by mixing
phases of different frequencies (also known as phase un-
wrapping [38]).

Motivations of this paper:
Based on the above analysis, we believe that the phase-

shifting technique can be modified and adapted to oriented
object detection. What is the principle of the phase-shifting
angle coder? How to integrate this module into a deep
neural network? Will this technique result in better perfor-
mance? These questions are what this paper is for.

Contributions of this paper:
1) We are the first to utilize the phase-shifting coder to

cope with the angle regression problem in the deep learning
area. An integral and stable solution is elaborated on in
this paper. Most importantly, the codes are well-written,
publicly available, and with reproducible results.

2) The performance of the proposed methods is evalu-
ated through extensive experiments. The experimental re-
sults are of high quality—All the listed results are retested
on identical environments to ensure fair comparisons (in-
stead of copied from other papers).

The rest of this paper is organized as follows:
Section 2 reviews the related methods around oriented

object detection. Section 3 describes the principles of the
phase-shifting coder in detail. Section 4 conducts exper-
iments on several datasets to evaluate the performance of
the proposed methods. Section 5 concludes the paper.

2. Related work
With datasets such as DOTA [20], HRSC [12], and IC-

DAR [14], extensive studies around oriented object detec-
tion have been carried out, and some representative ones are
summarized in this section.

2.1. From horizontal to oriented

Many oriented object detection methods are based on
horizontal object detection, which has been reviewed in the
literature [8, 17, 34]. Hence, we only briefly introduce four
representative frameworks:

1) Anchor-based. RetinaNet (2017) [9]: As a one-stage
detector, RetinaNet uses Feature Pyramid Network (FPN)
as the backbone, to which two subnetworks are attached,
one for classification and the other for regression.

2) Anchor-free. FCOS (2019) [18]: By adding a center-
ness regression, this work presents an anchor-free one-stage
detector, which avoids the complicated computation and
hyper-parameters related to anchor boxes.

3) Point-based. RepPoint (2019) [31]: RepPoint is a rep-
resentation of objects as a set of sample points, which learn
to arrange themselves in a manner that bounds the spatial
extent of an object and indicates significant local areas.

4) High-efficiency. YOLO (v5, 2021) [6]: Famous for its
high speed and accuracy, YOLO divides images into a grid

system. Each cell in the grid is responsible for detecting
objects within itself.

By adding an output channel to predict the orientation
of each object, these horizontal detectors can comfortably
be applied to oriented object detection, usually termed as
Rotated RetinaNet, Rotated FCOS, Rotated RepPoint, and
Rotated YOLO [36].

2.2. Rotation-invariant detectors

Based on the above frameworks, some studies use ad-
ditional modules to cope with rotation and improve perfor-
mance. Some representative ones are as follows:

1) RoI Transformer (2019) [1]: The core idea is to apply
spatial transformations on Regions of Interest (RoIs) and
learn the transformation parameters under the supervision
of oriented bounding box (OBB) annotations.

2) ReDet (2021) [4]: Rotation-equivariant Detector (Re-
Det) is proposed in this work to explicitly encode ro-
tation equivariance and rotation invariance. A rotation-
equivariant network is used to accurately predict the ori-
entation, and upon that, rotation-invariant features can be
extracted through rotation-invariant RoI align.

3) S2ANet (2021) [3]: Single-shot alignment network
(S2ANet) consists of two modules: a feature alignment
module (FAM) and an oriented detection module (ODM).
The FAM can generate high-quality anchors, and the ODM
adopts active rotating filters to encode the orientation infor-
mation and produce orientation-invariant features.

4) R3Det (2021) [26]: An end-to-end refined one-stage
rotation detector is proposed for fast and accurate object
detection by using a progressive regression approach from
coarse to fine granularity, followed by a feature refinement
module to further improve detection performance.

5) Oriented R-CNN (2021) [21]: This work proposes a
general two-stage oriented detector with promising accu-
racy and efficiency. In the first stage, an oriented Region
Proposal Network (oriented RPN) directly generates high-
quality oriented proposals in a nearly cost-free manner. The
second stage is oriented R-CNN head for refining oriented
Regions of Interest (oriented RoIs) and recognizing them.

Most of the above methods enhance the network ar-
chitecture and improve the rotation invariance of the out-
put features. With the progress in related fields, some re-
searchers found that to further improve the performance,
two other problems need to be concerned: boundary dis-
continuity and square-like [24, 27].

2.3. Boundary and square-like problems

Since these two problems were pinpointed, many tech-
niques have been proposed to solve part of them, which can
be divided into three categories:

1) Smooth loss function. SCRDet (2019) [28]: IoU-
smooth L1 loss is proposed to smooth the boundary loss
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Figure 1. Overall flowchart of the phase-shifting coder integrated into a deep neural network.

jump; RSDet (2021) [16]: Similarly, a modified version us-
ing modulated loss is proposed in this work.

2) Angle coder. CSL (2020) [24]: Circular smooth la-
bel (CSL) technique converts angle regression to classifica-
tion to handle the periodicity of the orientation angle and
increase the error tolerance to adjacent angles; Upon CSL,
DCL [22] further solves the square-like problem.

3) Gaussian distribution. GWD (2021) [27]: Regres-
sion loss based on Gaussian Wasserstein distance (GWD) is
proposed, where the rotated bounding box is converted to
a 2D Gaussian distribution to calculate the regression loss;
KLD (2021) [29]: The Kullback-Leibler Divergence (KLD)
between the Gaussian distributions is calculated as the re-
gression loss; KFIoU (2022) [30]: Kalman filter is adopted
to mimic the mechanism of Skew Intersection over Union
(SkewIoU) by its definition, which requires less hyper-
parameter tuning than GWD and KLD.

These methods consider the problems from different per-
spectives and each has its pros and cons. For example,
SCRDet and RSDet are designed to alleviate the impact of
the problems, instead of theoretically solving them; CSL
is simple and stable, but not able to solve the square-like
problem, and its performance could be greatly affected by
hyper-parameters; GWD and KLD solve both problems ele-
gantly, but their prediction is relatively inaccurate, resulting
in high mAP50 but low mAP75 performance.

Based on the above analysis, much progress has been
made in the field of oriented object detection, but related
problems have not yet been completely solved.

3. Method

In this section, we will first introduce the encoding and
decoding procedure of the phase-shifting coder. Afterward,
an enhanced version dual-frequency phase-shifting coder

will be introduced. Readers are referred to literature [37]
for the basic principles of the phase-shifting technique.

3.1. Phase-shifting coder (PSC)

The overall flowchart of the phase-shifting coder inte-
grated into a deep neural network is illustrated in Fig. 1.
Taking the “long edge 90” angle definition as an example
for illustration, symbols can be defined as follows:

• θ: Orientation angle, in range [−π/2, π/2)

• φ: Principal phase, in range [−π, π)

• Nstep: The number of phase-shifting steps

• X: Encoded data, X = {xn | n = 1, 2, · · · , Nstep}

Mapping: The cycle of sin or cos is 2π, whereas a rect-
angle box is identical to itself when rotated by π, thus a
mapping is required to match them, as follows:

φ = 2θ (1)

Encoding: The formula of encoding φ into X can be
described as:

xn = cos

(
φ+

2nπ

Nstep

)
(2)

where n = 1, 2, · · · , Nstep.
To simplify the subsequent description, Eq. (2) is also

denoted as X = fenc(φ).
Decoding: The formula of decoding φ from X can be

described as:

φ = − arctan

∑Nstep
n=1 xn sin

(
2nπ
Nstep

)
∑Nstep

n=1 xn cos
(

2nπ
Nstep

) (3)
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Figure 2. Inference flow of (a) single-frequency PSC and (b) dual-frequency PSC.

The arctan in the formula should be implemented by the
arctan2 function so that its output is in the range (−π, π].
Equation (3) is also denoted as φ = fdec(X).

3.2. Dual-frequency phase-shifting coder (PSCD)

Through rethinking the boundary problem and the
square-like problem, we believe these two problems can be
inherently unified. If a bounding box is equivalent to itself
under 180◦ rotation, the boundary problem occurs, but if
they are equivalent under 90◦ rotation, the square-like prob-
lem occurs. Both cases are periodic fuzzy problems but of
different cycles.

Therefore, to solve both boundary discontinuity and
square-like problems, an additional phase is required to es-
tablish the dual-frequency phase-shifting coder. The differ-
ence between the basic phase-shifting coder and the dual-
frequency one is illustrated in Fig. 2.

Additional symbols used in dual-frequency phase-
shifting coder can be defined as follows:

• φ1: Phase of the first frequency, in range [−π, π)

• φ2: Phase of the second frequency, in range [−2π, 2π)

• φ: Final principal phase, in range [−π, π)

• X1: Data encoded from the phase of the first fre-
quency, X1 = {xn | n = 1, 2, · · · , Nstep}

• X2: Data encoded from the phase of the second fre-
quency, X2 = {xn | n = 1, 2, · · · , Nstep}

• X: Final encoded data, with coding length 2 × Nstep,
X = {X1, X2}

Mapping: In dual-frequency PSC, two principal phases
are mapped from angle θ during the training process:{

φ1 = 2θ
φ2 = 4θ

(4)

The output orientation angle is mapped from the final
principal phase during the inference process:

θ =
1

2
φ (5)

Encoding: Similar to Eq. (2), the formula of encoding
φ1 and φ2 into X1 and X2 can be described as:{

X1 = fenc(φ1)
X2 = fenc(φ2)

(6)

Decoding: Similar to Eq. (3), the formula of decoding
φ1 and φ2 from X1 and X2 can be described as:{

φ1 = fdec(X1)
φ2 = fdec(X2)

(7)

Unwrapping: The network outputs two principal phases
during inference: φ1 as the absolute phase and φ2 as the
wrapped phase. We need to mix them to obtain the final
phase (also known as phase unwrapping). To this end, we
first calculate the inner product between φ1 and φ2 by:

δ = cosφ1 cos
φ2

2
+ sinφ1 sin

φ2

2
(8)

Afterward, φ2 is unwrapped according to δ, so that the
two phases can be automatically mixed to obtain the final
phase φ, as follows:

φ =

{
π + φ2

2 , if δ < 0
φ2

2 , else
(9)

It should be noted that the above formula is a simplified
version for higher clarity. In fact, after added by π, φ could
be out of the range [−π, π). In such case, φ needs to be sub-
tracted by 2π, otherwise the output angle could be outside
the definition range.

3.3. General form of mapping

Similarly, the ambiguity caused by “triangle-like” or
“pentagon-like” objects can also be solved, as well as the
360◦ orientation problem (for example, predicting the head-
ing direction of the airplane), by extending the mapping be-
tween phase and angle to a more general form:

φ = kθ (10)
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Figure 3. Objects with different rotational periodicity.

where k = 2π/s, assuming objects to be detected are sym-
metric under the rotation of s radians, as shown in Fig. 3.

PSC is applicable in all of these cases, while the multi-
frequency strategy can be used when different types exist
simultaneously. In other words, by mapping the rotational
periodicity of different cycles into the phase of different fre-
quencies, we provide a unified framework for various rota-
tional symmetry problems in oriented object detection.

3.4. Loss function

The oriented bounding box is represented by five param-
eters (x, y, w, h, θ), denoting the box’s center coordinates,
width, height, and angle, respectively. As an angle-coder-
based method, PSC only involves the regression of θ.

According to Eq. (2), the encoded data (phase-shifting
patterns) are in the range [−1, 1]. To make the training more
stable, we also transform the output features with:

XPred = 2× sigmoid(XFeat)− 1 (11)

where XFeat is the output features of the convolution layer,
and XPred is the predicted encoded data in range [−1, 1].

Afterward, the loss of the angle branch can be calculated
with L1 loss:

Lang = |XGT −XPred| (12)

where XGT is the ground truth phase-shifting patterns en-
coded from the orientation angle of annotated boxes.

Finally, the overall loss can be expressed as:

L = w1Lcls + w2Lbox + w3Lang (13)

where w1Lcls and w2Lbox are the weighted loss of classifi-
cation and box regression branches defined by the backbone
detector, and w3 is set to 0.2w1 by default.

It should be noted that Eq. (13) describes only the gen-
eral situation, and there are also some special cases, such as
FCOS with center-ness loss.

4. Experiments
With the help of PyTorch [15], ultralytics/yolov5 [6],

and MMRotate [36] tool kits, experiments are carried out
to evaluate the performance of the proposed methods. To
compare with existing literature, we choose mean average
precision (mAP) as the major metric. The computing in-
frastructure is as follows: CPU: Intel i9-12900K, GPU:

Nvidia RTX3080, OS: Windows 10, PyTorch: 1.10.1, ul-
tralytics/yolov5: 6.0, MMRotate: 0.3.2.

4.1. Datasets and benchmarks

DOTA [20]: DOTA is comprised of 2,806 large aerial
images—1,411 for training, 937 for validation, and 458
for testing. The dataset is annotated using 15 categories
with 188,282 instances in total. The categories are de-
fined as: Plane (PL), Baseball Diamond (BD), Bridge (BR),
Ground Field Track (GTF), Small Vehicle (SV), Large Ve-
hicle (LV), Ship (SH), Tennis Court (TC), Basketball Court
(BC), Storage Tank (ST), Soccer-Ball Field (SBF), Round-
about (RA), Harbor (HA), Swimming Pool (SP), and He-
licopter (HC). We follow the standard preprocessing pro-
cedure in MMRotate—The high-resolution images are split
into 1024 × 1024 patches with an overlap of 200 pixels for
training, and during inference, the detection results of all
patches are merged to evaluate the performance.

HRSC [12]: As a ship detection dataset, HRSC contains
ship instances both on the sea and inshore, with arbitrary
orientation. The training, validation, and testing set include
436, 181, and 444 images respectively. We use the pre-
processing provided by MMRotate, where the images are
scaled to 800 × 800 for training and testing.

OCDPCB [32]: OCDPCB is a dataset for oriented com-
ponent detection in printed circuit boards aimed at auto-
mated optical inspection. The dataset consists of 636 im-
ages, of which 445 images are used for training and 191 for
testing. The resolution of the images is 1280 × 1280.

4.2. Ablation study

Ablation study of hyper-parameters:
In most existing methods such as CSL, GWD, and

KLD, hyper-parameters could highly affect the perfor-
mance. Worse still, the best parameters vary in different
scenarios and datasets, which require laborious tuning.

PSC is quite different—The only hyper-parameter Nstep
is an integer greater than or equal to 3, so we evaluate sev-
eral Nstep values most commonly used in the phase-shifting
technique, and the results, which are obtained on RetinaNet
with dual-frequency PSC, are shown in Tab. 1.

Metrics Nstep = 3 Nstep = 4 Nstep = 5

DOTA (mAP50) 71.09 70.96 71.01

DOTA (mAP75) 41.17 41.82 41.53

DOTA (mAP50:95) 41.25 41.51 41.13

HRSC (mAP50) 85.53 85.49 85.46

HRSC (mAP75) 59.57 59.64 59.54

HRSC (mAP50:95) 53.20 53.22 53.12

Table 1. Performance under different Nstep value.

According to the experimental results, this parameter has



(a) Detection results of  PSC: Boundary discontinuity free, accurate, and unquantized

(b) Detection results of PSCD: Square-like problem free and more accurate
Figure 4. Visual comparison between single-frequency PSC and dual-frequency PSC.

quite a limited impact on the results. Although Nstep = 4
shows better mAP75 performance, it also impairs mAP50

performance. On the whole, larger Nstep will not bring sig-
nificant benefits. Taking the computational complexity into
consideration, we would recommend Nstep = 3.

Once Nstep = 3 is determined, PSC has no adjustable
hyper-parameters.

Ablation study of dual-frequency:
We provide an intuitive comparison between single-

frequency PSC and dual-frequency PSC to verify the effec-
tiveness of the dual-frequency module and help researchers
decide which one to choose.

The visual comparison displayed in Fig. 4 quite con-
forms with our theory, proving that the dual-frequency strat-
egy can work as expected and solve both boundary discon-
tinuity and square-like problems in a unified way. And thus,
the dual-frequency strategy is highly recommended in sce-
narios containing square-like objects.

4.3. Experimental settings

Group settings:
PSC can work with various detectors and backbones.

Thus, we select three state-of-the-art backbones for experi-
ments: FCOS (anchor-free), RetinaNet (anchor-based), and
YOLO (high-efficiency). In the experiments, FCOS and
RetinaNet are set to be based on ResNet-50 [5] (denoted as
R-50), and YOLO includes two configurations: YOLOv5s
and YOLOv5m. The parameter number of the four mod-
els is about FCOS (R-50): 32M, RetinaNet (R-50): 36M,
YOLOv5s: 7M, and YOLOv5m: 21M.

We set up five experimental groups for DOTA dataset,
and two for HRSC or OCDPCB datasets (as shown in
Tabs. 2 to 4). Both the backbone and the data augmen-
tation are identical within each group to make the com-
parisons fair. Also, SWA [33] and multi-scale testing are
not adopted. Networks based on FCOS and RetinaNet are
trained by 12 epochs on DOTA and 72 epochs on HRSC and
OCDPCB, whereas the YOLO-based groups are trained by
120 epochs. The learning rate is initially set to 1e-3 and
finally reduced to 1e-5. Readers are referred to the configu-
ration files in our codes for all the particulars.

Baseline methods:
As an angle-coder-based method for boundary disconti-

nuity and square-like problems, we take the following two
most relevant methods as the baseline for comparison.

(1) CSL [24]: The most widely used angle coder convert-
ing the angle regression to classification to solve boundary
discontinuity problem.

(2) KLD [29]: The state-of-the-art method solving both
boundary discontinuity and square-like problems based on
Gaussian distribution.

4.4. Results and analysis

The quantitative results on DOTA, HRSC, and OCDPCB
datasets are demonstrated in Tabs. 2 to 4. The top two re-
sults within each group are labeled in bold red and blue.

Comparisons on DOTA dataset:
1) With KLD. PSC and PSCD show advantages over ex-

isting methods in many groups of experiments. Specifically,
PSC is on a par with KLD in mAP50, but significantly bet-



Method R PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50 mAP75 mAP50:95

FC
O

S
(R

-5
0)

Rotated 89.18 71.99 47.97 61.61 79.30 73.52 85.78 90.90 81.09 84.30 59.57 62.69 62.08 69.94 49.31 71.28 37.08 39.42

+KLD 89.17 75.42 49.41 56.48 79.66 76.78 86.91 90.89 83.52 84.41 58.76 62.21 63.44 67.90 50.07 71.67 37.53 39.67

+CSL 88.24 74.87 41.27 61.03 79.52 78.35 87.19 90.88 81.50 84.53 54.70 62.65 62.84 68.45 46.50 70.83 38.71 39.75

+PSC 88.24 74.42 48.63 63.44 79.98 80.76 87.59 90.88 82.02 71.58 59.12 60.78 65.78 71.21 53.06 71.83 39.21 40.42

+PSCD 88.04 73.95 48.83 63.44 80.01 80.75 87.58 90.88 81.69 67.23 58.70 60.26 65.67 71.11 53.06 71.41 39.35 40.36

FC
O

S
(R

-5
0) +KLD ✓ 89.05 73.73 49.17 57.86 79.54 77.91 87.41 90.87 83.23 82.42 58.97 61.83 62.91 72.69 59.44 72.47 37.84 39.95

+CSL ✓ 87.84 68.88 42.15 57.41 77.24 74.78 87.66 90.89 79.43 84.34 54.35 63.46 61.39 69.62 61.16 70.71 37.13 38.47

+PSC ✓ 89.07 73.60 48.91 62.63 75.24 77.71 88.02 90.85 82.86 69.85 61.48 65.25 65.68 73.03 67.88 72.80 38.83 41.10

+PSCD ✓ 89.06 73.61 49.03 62.34 75.18 77.69 88.00 90.85 82.63 72.97 61.48 64.20 65.77 72.88 67.88 72.90 39.80 41.51

R
et

in
aN

et
(R

-5
0) Rotated 89.41 76.81 40.88 67.54 77.51 62.63 77.55 90.89 82.31 81.98 58.16 61.56 56.46 63.71 38.96 68.42 42.03 40.13

+KLD 89.50 79.91 39.92 70.40 78.04 64.24 82.79 90.90 81.80 83.02 57.63 63.52 56.63 65.13 50.04 70.23 37.88 39.31

+CSL 89.33 79.67 40.83 69.95 77.71 62.08 77.46 90.87 82.87 82.03 60.07 65.27 53.58 64.03 46.62 69.49 40.42 39.69

+PSC 89.41 80.66 39.06 69.08 77.61 61.63 77.21 90.86 82.52 81.76 60.98 66.20 57.51 64.75 48.28 69.83 40.37 40.03

+PSCD 89.32 82.29 37.92 71.52 78.40 66.33 78.01 90.89 84.21 80.63 60.22 64.73 59.69 68.37 53.85 71.09 41.17 41.25

Y
O

LO
v5

s +CSL ✓ 89.26 84.53 51.36 60.69 80.70 84.74 88.41 90.68 85.93 87.59 59.62 65.18 74.53 81.71 66.91 76.79 46.85 45.63

+PSC ✓ 89.65 86.37 51.76 63.42 81.21 84.63 88.29 90.80 85.39 87.93 61.00 66.41 75.01 81.77 66.20 77.32 47.56 46.48

+PSCD ✓ 89.70 86.68 52.47 59.74 81.57 85.14 88.44 90.83 83.99 88.40 60.43 69.04 74.89 83.30 66.27 77.40 51.50 48.27

Y
O

LO
v5

m +CSL ✓ 89.60 86.39 54.62 62.04 80.36 85.20 88.40 90.80 80.54 88.47 64.16 61.21 76.70 83.13 67.91 77.30 49.88 47.97

+PSC ✓ 89.85 85.93 54.94 61.56 81.89 85.47 88.37 90.73 86.90 88.79 63.90 68.92 76.82 82.83 63.25 78.01 50.50 48.60

+PSCD ✓ 89.86 86.02 54.94 62.02 81.90 85.48 88.39 90.73 86.90 88.82 63.94 69.19 76.84 82.75 63.24 78.07 54.10 50.35

Table 2. AP50 of each category and mAP on DOTA. Column “R” means using random rotation and random resize as augmentation.

ter than KLD in mAP75. Such improvement in mAP75 is
even more significant for PSCD, which outperforms KLD
by 2.36 pp on average. Based on the above analysis, it
can be concluded that PSC and PSCD show similar recall
as KLD, but the bounding boxes of PSC and PSCD have
higher Intersection over Union (IoU) and better quality.

2) With CSL. In comparisons with CSL, both PSC and
PSCD are superior in most metrics. On average, PSCD out-
performs CSL by 1.15 pp in mAP50, and 2.59 pp in mAP75.
It can be seen from the results that the gap between PSC
and CSL is even more significant when data augmentation
is used. We believe this phenomenon can be theoretically
explained—By observing the training log, we find that the
angle loss of PSC is much lower than that of CSL. With
lower angle loss, PSC leaves more margin for the network
to fit those augmented data, allowing the network to pay
more attention to the classification and the bounding box
branches, and finally resulting in higher performance. Fur-
thermore, PSC is fully differentiable with unquantized out-
puts, which can be useful in detecting tiny deviations. This
feature usually cannot be reflected by the mAP value, but
could be important for some applications.

3) Between PSC and PSCD. The mAP75 of PSCD is
considerably higher than that of PSC on DOTA dataset, with
the improvement reaching 3.94 pp on YOLOv5s and 3.60 pp

on YOLOv5m. In experiments using FCOS and RetinaNet
backbones, PSCD also increases the mAP75 by an average
of 0.64 pp compared with PSC.

Comparisons on HRSC dataset:
1) With CSL and KLD. From the experimental results,

the mAP50 performance of different methods on HRSC
dataset do not differ much, among which FCOS+PSC is the
best, reaching 90.06 mAP50. Whereas for mAP75, there are
noticeable differences among the methods—Although CSL
achieves a decent mAP50, its mAP75 performance is signif-
icantly lower than other methods, indicating that the quality
of the bounding boxes detected by CSL is relatively poor,
with IoU generally below 75%. When compared with the
state-of-the-art method KLD, PSC also shows a significant
advantage in mAP75, with an improvement of 1.1 pp and
2.54 pp under FCOS and RetinaNet, respectively.

2) Between PSC and PSCD. The dual-frequency strat-
egy plays a negative role in some of the experiments.
Such results of dual-frequency PSC, a technique mainly
aimed at the square-like problem, are quite in line with our
expectation—Objects in ship detection datasets are unlikely
to be “square-like”. A similar phenomenon also occurs in
OCDPCB dataset. These results provide guidance for re-
searchers: PSC could be a better alternative than PSCD in
scenarios containing rather few square-like objects.



Method mAP50 mAP75 mAP50:95

FC
O

S
(R

-5
0) Rotated 89.74 77.00 63.84

+KLD 89.76 77.46 62.63
+CSL 89.84 66.47 58.92
+PSC 90.06 78.56 67.57
+PSCD 89.91 79.20 67.88

Re
tin

aN
et

(R
-5

0) Rotated 83.50 59.60 51.56
+KLD 85.85 58.76 53.40
+CSL 84.87 38.75 44.17
+PSC 85.65 61.30 54.14
+PSCD 85.53 59.57 53.20

Table 3. Detection accuracy on HRSC dataset.

Method mAP50 mAP75 mAP50:95

FC
O

S
(R

-5
0) Rotated 87.88 75.00 64.26

+KLD 87.72 67.41 59.77
+CSL 87.23 73.82 63.12
+PSC 88.87 75.72 64.85
+PSCD 87.49 75.48 64.18

Re
tin

aN
et

(R
-5

0) Rotated 74.68 64.25 55.85
+KLD 76.30 54.27 49.06
+CSL 75.38 61.92 53.14
+PSC 77.35 65.61 57.58
+PSCD 75.77 64.24 55.70

Table 4. Detection accuracy on OCDPCB dataset.

Comparisons on OCDPCB dataset:
Most oriented object detectors have been well-tuned on

DOTA and HRSC datasets, but when adapted to a com-
pletely new dataset, they might give a performance far
below expectation. Therefore, we choose a less com-
mon dataset and train the networks with the same hyper-
parameters used in training HRSC.

Surprisingly, without tuning hyper-parameters (such as
the smooth radius in CSL) specifically for OCDPCB
dataset, CSL and KLD produce rather limited effects, with
mAP50 slightly higher but mAP75 much lower under Reti-
naNet, and negative results under FCOS.

PSC and PSCD still work well in such circumstances, es-
pecially in mAP75, where PSC outperforms KLD by 9.83 pp
on average. Based on the above results, it can be concluded
that PSC and PSCD can obtain high performance more eas-
ily than CSL and KLD when facing a new dataset.

4.5. Inference time

With images of 1024 × 1024 resolution from DOTA
dataset, the average inference time and the model size are
evaluated in Tab. 5, which demonstrate that PSC and PSCD
are slightly slower than KLD but much faster than CSL.

Method Time (ms) Parameters

RetinaNet (R-50) 42.9 (base) 36.71M (base)

+KLD 43.0 (+0.1) 36.71M (+0.00M)
+CSL (ω = 4) 46.3 (+3.4) 37.64M (+0.93M)
+CSL (ω = 1) 50.5 (+7.6) 40.44M (+3.73M)
+PSC 43.1 (+0.2) 36.79M (+0.08M)
+PSCD 43.4 (+0.5) 36.88M (+0.17M)

Table 5. Comparisons on inference time and model size.

5. Conclusions

A novel differentiable angle coder for oriented object de-
tection named phase-shifting coder (PSC) is proposed in
this paper, which encodes the orientation angle into periodic
phases to solve the boundary discontinuity problem. Upon
PSC, an enhanced dual-frequency version (PSCD) mapping
the rotational periodicity of different cycles into the phase
of different frequencies is proposed to elegantly solve both
boundary discontinuity and square-like problems.

Afterward, extensive experiments are carried out to eval-
uate the performance of PSC and PSCD, through which the
following conclusions can be drawn:

1) Among angle-coder-based methods, PSC shows sig-
nificant improvement in both mAP50 and mAP75 com-
pared with the currently most widely used method CSL. On
DOTA dataset, PSCD outperforms CSL by an average of
1.15 pp in mAP50 and 2.59 pp in mAP75.

2) Compared with other state-of-the-art approaches, PSC
is on a par with Gaussian-distribution-based method KLD
in mAP50, but significantly better than KLD in mAP75.
In particular, PSCD outperforms KLD by an average of
2.36 pp in mAP75 on DOTA dataset. When high-IoU
bounding boxes are required, PSC and PSCD are expected
to give a competitive performance.

3) The mAP75 of PSCD is considerably higher than that
of PSC on DOTA dataset, with the improvement reaching
3.94 pp on YOLOv5s and 3.60 pp on YOLOv5m. However,
on HRSC and OCDPCB datasets, the dual-frequency strat-
egy plays a negative role, indicating that in scenarios con-
taining rather few square-like objects, PSC could be a better
alternative than PSCD.

4) Many existing approaches require different parame-
ters on different datasets. PSC and PSCD, by contrast, do
not use dataset-dependent hyper-parameter tuning, so they
can be applied to new scenarios more comfortably.

In many scenarios, some objects require 360◦ oriented
detection, while others are 180◦ or 90◦ rotationally sym-
metric. This is an extended form of the square-like problem
and a common situation in real applications. In such a case,
PSC can still be theoretically applicable, which will be fur-
ther explored in our future work.
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