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Abstract

Lane graph estimation is an essential and highly challeng-
ing task in automated driving and HD map learning. Exist-
ing methods using either onboard or aerial imagery struggle
with complex lane topologies, out-of-distribution scenar-
ios, or significant occlusions in the image space. Moreover,
merging overlapping lane graphs to obtain consistent large-
scale graphs remains difficult. To overcome these challenges,
we propose a novel bottom-up approach to lane graph esti-
mation from aerial imagery that aggregates multiple over-
lapping graphs into a single consistent graph. Due to its
modular design, our method allows us to address two com-
plementary tasks: predicting ego-respective successor lane
graphs from arbitrary vehicle positions using a graph neural
network and aggregating these predictions into a consistent
global lane graph. Extensive experiments on a large-scale
lane graph dataset demonstrate that our approach yields
highly accurate lane graphs, even in regions with severe
occlusions. The presented approach to graph aggregation
proves to eliminate inconsistent predictions while increas-
ing the overall graph quality. We make our large-scale
urban lane graph dataset and code publicly available at
http://urbanlanegraph.cs.uni-freiburg.de.

1. Introduction

Most automated driving vehicles rely on the knowledge
of their immediate surroundings to safely navigate urban
environments. Onboard sensors including LiDARs and cam-
eras provide perception inputs that are utilized in multiple
tasks such as localization [7, 21, 27], tracking [4], or scene
understanding [20, 24, 26, 37] to aggregate representations
of the environment. However, robust planning and control
typically require vastly more detailed and less noisy world
models in the form of HD map data [12]. In particular, infor-
mation on lane parametrization and connectivity is essential
for both planning future driving maneuvers as well as high-
level navigation tasks. Creating and maintaining HD maps
in the form of lane graphs is a time-consuming and arduous
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Figure 1. Our approach predicts accurate lane graphs from aerial images
of complex urban environments. We visualize the estimated lane graph in
magenta and indicate model initialization points with yellow circles.

task due to the large amount of detail required in the anno-
tation and the data curation process including map updates
based on local environment changes such as construction
sites.

Previous approaches to lane graph estimation have shown
shortcomings in predicting lane graphs due to multiple defi-
ciencies: On the one hand, methods using onboard imagery
typically degrade at complex real-world intersections and
under significant occlusions, e.g., when following another
vehicle [5, 6]. On the other hand, methods based on aerial
imagery show reduced performance when confronted with
occlusions in the bird’s-eye-view (BEV) due to, e.g., vege-
tation or shadows, and suffer from catastrophic drift when
unconstrained in out-of-distribution scenarios [30]. Previous
works treat intersections and non-intersections inherently
differently [15] and thus require elaborated heuristics and
post-processing to merge single predictions into a consistent
lane graph. Moreover, prior works do not focus on use cases
where multiple predicted graphs must be merged into a sin-
gle consistent solution, which is essential for enabling the
automatic generation of highly detailed lane graphs of large
contiguous regions.
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Related to the aforementioned challenges, we propose
a novel two-stage graph neural network (GNN) approach
termed LaneGNN that operates on single aerial color images
for lane graph prediction. Inspired by methods in the field
of trajectory prediction [8], we formulate a bottom-up ap-
proach according to which we place a virtual agent into a
local crop of the aerial image and predict reachable successor
lane graphs from its positions. To transform multiple disjoint
local solutions into a single global solution, we aggregate a
global representation by iteratively inferring the lane graph
from consecutive poses, ultimately imitating real-world driv-
ing behavior. This iterative approach not only increases the
predicted area covered but also improves graph accuracy
based on data association and rejection. Note that we do not
require any human in the loop to perform the graph aggre-
gation. We visualize the output of our graph aggregation
procedure in Fig. 1, in which we superimpose the predicted
graph on the aerial image input. Using this framework, we
envision two applications: ego-centered successor path pre-
diction and full lane graph estimation by aggregation.

To summarize, the main contributions of this work are:
• An innovative bottom-up approach to lane graph estima-

tion in challenging environments that explicitly encodes
graph-level lane topology from input aerial images in a
scenario-agnostic manner.

• A novel graph aggregation scheme enabling robust and
method-agnostic merging of graph-level predictions.

• The large-scale lane graph dataset UrbanLaneGraph
comprising high-resolution aerial images aligned with
dense lane graph annotations aggregated from the Ar-
goverse2 dataset that we make publicly available.

• Extensive experiments and ablation studies demonstrat-
ing the significance of our findings.

2. Related Works

In recent years, the prediction of topological road features
such as road graphs and lane graphs have been extensively
studied. In our discussion, we differentiate between road
graph learning and lane graph learning. While road graphs
encode the topological connections between road segments,
lane graphs describe the locations and connectivity between
all lanes, resulting in a spatially much denser graph.
Many prior works focus on vehicle trajectory prediction,
conditioned on HD map features such as lane centerline and
boundary positions [9, 10, 28]. These models do not aim at
exclusively predicting the road or lane graph structure from
onboard vehicle images or aerial images but instead at pre-
dicting future vehicle states such as position and orientation.
Road Graph Learning: Prior works investigate estimating
road graphs from both onboard sensors [18] and from aerial
images [1, 22, 34] or focus on extracting pixel-level road
segmentation from images and extracting graphical road rep-

resentations, i.e., using morphological image operators or
graph neural networks to extract the connectivity between
different roads within the image [1, 19]. Other approaches
investigate iterative methods and interpret road graph predic-
tion as a sequential prediction task [2, 22].
Lane Graph Learning from Vehicle Data: Some earlier
works in lane graph learning from onboard vehicle sensors
such as cameras and LiDAR formulate lane extraction
as an image-based lane centerline regression task [16].
Homayounfar et al. [17] aggregate onboard LiDAR data
on highways and leverage a recurrent neural network to
generate highway lane graphs in an iterative manner. Zhou et
al. [35] utilize the OpenStreetMap database and a semantic
particle filter to accumulate projected semantic predictions
from a vehicle ego-view into a map representation. Zhang et
al. [31] propose an online road map extraction system for
a sensor setup onboard a moving vehicle and construct a
graph representation of the road network using a fully convo-
lutional neural network. More recently, Can et al. proposed
two different methods [5, 6] for lane connectivity learning
in intersection scenarios from onboard camera images.
Lane Graph Learning from Birds-Eye-View Data: De-
spite the advantages of leveraging readily available aerial
data for training lane graphs, only a few works considered
using aerial images as an input modality for the graph learn-
ing task. Zürn et al. [36] propose a lane centerline regression
model jointly with a Graph R-CNN backbone to predict
nodes and edges of the lane graph from a local aggregated
bird’s-eye-view image crop. More recently, He et al. [15]
propose a two-stage graph estimation pipeline. They first ex-
tract lanes at non-intersection areas and subsequently predict
the connectivity of each pair of lanes, and extract the valid
turning lanes to complete the map at intersections.

In contrast to existing works, we do not estimate the
complete lane graph visible in a given crop but only the
part of the graph that is reachable from a virtual agent pose
located within the crop, simplifying the graph estimation
problem based on reduced topological complexity. Further-
more, we leverage a GNN to explicitly model the relation-
ships between graph nodes, allowing us to leverage recent
developments in the field of geometric deep learning. This
explicit graph encoding and prediction allows us to formulate
a model that does not internally differentiate between inter-
section areas and non-intersection areas, in contrast to some
related works. Additionally, we propose a novel large-scale
dataset for lane graph estimation from aerial images, allow-
ing the research community to easily evaluate and compare
their approaches.

3. Dataset

To evaluate our approach on challenging real-world data,
we compiled the UrbanLaneGraph dataset. It is a first-of-its-
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Figure 2. Overview of our LaneGNN modelM predicting successor lane graphs. As a pre-training step, we train lane centerline and ego lane centerline
regressor models. The ego lane regression Sego

lane is used as a prior for sampling proposal nodes V in corridors that have a high likelihood of entailing the
successor graph. The model learns a binary classification of node and edge scores while also predicting the probability of a node being an endpoint of a given
lane segment.

Dataset City Lane Total
Splits/Merges Length [km]

Palo Alto 4752 796.4
Austin 8495 531.7

UrbanLaneGraph Miami 7642 850.8
(from Argoverse2) Pittsburgh 14610 1314.3

Washington D.C. 2066 739.6
Detroit 5424 990.5

LaneExtraction [15] Boston, Seattle, 2262 398.6Phoenix, Miami

NuScenes [11] Boston 1630 76.9

Table 1. Key statistics of our UrbanLaneGraph dataset, aggregated from
the Argoverse2 dataset [29], used for our experiments, compared with other
recent datasets for lane graph estimation.

kind dataset for large-scale lane graph estimation from aerial
images. The dataset contains aerial images from the cities of
Austin, Miami, Pittsburgh, Palo Alto, Detroit, and Washing-
ton DC. The images have a resolution of 15 cm per pixel. To
obtain the corresponding lane annotations, we leverage the
Argoverse2 dataset [29] which entails lane graphs for large
sections of the respective cities. The lane graphs in the Argo-
verse2 dataset are provided on a per-scenario basis, covering
only small local areas in one graph. Therefore, we collect all
local lane graphs of each city and aggregate them into one
globally consistent graph per city, thereby removing incon-
sistent or redundant nodes or edges. The annotated regions
feature a diverse range of environments including urban, sub-
urban, and rural regions with complex lane topologies. Ac-
cumulated over all cities, the overall length of all lanes spans
over 5.000 km. We split each city into disjoint training and
testing regions. We list key dataset statistics in Tab. 1, indi-
cating the scale of our generated dataset compared with other
recently proposed datasets containing graph annotations. For
more details on the dataset and exemplary visualizations,
please refer to Sec. S.1 in the supplementary material.

4. Technical Approach

Our approach is divided into two stages: lane graph learn-
ing and lane graph aggregation. In the first stage (Sec. 4.1),
we train our GNN model, denoted as LaneGNN, to pre-
dict the successor lane graph, entailing the nodes and edges

that can be logically visited from the pose of a virtual ve-
hicle agent. In the second phase (Sec. 4.2), we use our
trained LaneGNN model to traverse a large map area. This
is achieved by selecting an initial starting pose and predict-
ing the successor lane graph from this pose. Subsequently,
we iteratively estimate the traversable lane graph from the
current pose and move forward along the predicted graph
while aggregating. In the following, we detail both stages of
our approach.

4.1. Lane Graph Learning

We formulate the task as a supervised learning problem
where a successor lane graph Ĝ is estimated based on an
aerial image Ibev. First, a directed graph GI = (V,E) cov-
ering relevant regions is constructed by sampling from likely
regions of Ibev (see Fig. 2). For all our models and exper-
iments we choose a spatial resolution of 256 × 256 pixels.
The graph comprises a set of nodes i ∈ V that are connected
via directed edges E ⊆ {(i, j)|(i, j) ∈ V 2 and i ̸= j} that
constitute potentially valid lane graph edges. The graph
is attributed using both node features X ∈ R∥V ∥×D and
edge features Xe ∈ R∥E∥×(Dgeo+Dbev), where Dgeo and
Dbev denote the dimensionality of the involved edge fea-
tures (see Sec. 4.1). The overall model estimates an output
graph Ĝ = M(GI |θ), whereM is parameterized by net-
work model weights θ := (θreg, θGNN ).

Lane Regression and Graph Construction: We train two
regression networks: Firstly, a centerline regression network
predicting the likelihood map of lane centerlines Slane, and
secondly, a segmentation network predicting all reachable
lanes Sego

lane starting from the initial virtual agent pose at
the bottom center of Ibev. We use identical PSPNet [33]
architectures with a ResNet-152 feature extractor for this
task. We sample equally-distributed node positions using
Halton sequences [14] that are later filtered based on the
obtained ego-lane segmentation mask Sego

lane, which serves as
a region of interest for sampling (see Fig. 2). Directed edges
E among nodes are initialized for pairs of nodes with a Eu-
clidean distance dij ∈ [dmin, dmax]. Initial node features X
are crafted solely based on their 2D positions xi = (xi, yi),
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Figure 3. In our graph aggregation procedure, we iteratively obtain oriented image crops based on virtual agent poses along the currently predicted successor
graph. For each crop, our LaneGNN model predicts a successor graph Gpred, which is aggregated into a globally consistent lane graph Gagg .

while geometric edge features are defined as

xij,geo =

(
tan-1 ∆yij

∆xij
,

√
∆xij

2 +∆yij
2, xij , yij

)
, (1)

where ∆xij and ∆yij represent node position differences
and xij , yij are edge middle point coordinates. In addi-
tion to the geometric edge feature, we generate aerial edge
features: Per edge, a small oriented region of Ibev and the
lane segmentation Slane is obtained based on the direction
of the edge, which provides Xij,bev = [I∗bev,S

∗
lane] with

dimension Dbev = 4× 32× 32.

Feature Encoding and Message Passing: In our approach,
we estimate edge probabilities, node probabilities, and
whether a node is terminal. While the nodes themselves
hold only unidirectional information, we encode the notion
of direction using the proposed edge feature as outlined
above. We utilize a causal variant of neural message passing
as proposed by Brasó et al. [3]. By imposing a causality
prior, our network encodes predecessor and successor fea-
tures during message passing. This formulation of message
passing renders our approach direction-aware. Initial node
and geometric edge features are encoded using multi-layer
perceptrons f□

enc (MLP) while the aerial edge feature is
transformed using a ResNet-18 architecture fe,bev

enc . The geo-
metric and aerial edge features are concatenated and fused
subsequently to arrive at various node and edge embeddings
H

(0)
v and H

(0)
e :

fe,bev
enc (Xe,bev) = H

(0)
e,bev , f

e,geo
enc (Xe,geo) = H(0)

e,geo , (2)

fv
enc(X) = H(0)

v , fe
fuse([H

(0)
e,geo,H

(0)
e,bev]) = H(0)

e . (3)

In the following, multiple message-passing steps are per-
formed using various ReLU-activated MLPs denoted by f□
as follows. The edge feature is updated based on the cur-
rent neighboring node features h(l−1)

i , h(l−1)
j and the edge

feature h
(l−1)
ij :

h
(l)
ij = fe

([
h
(l−1)
i ,h

(l−1)
j ,h

(l−1)
ij

])
. (4)

Messages m
(l)
ij are crafted based on either predecessors

Npred(i) or successors Nsucc(i) of a node i and propagated
based on the constructed adjacency. In the next step, all
predecessors and successor messages, respectively, are ag-
gregated using a permutation-invariant sum:

h
(l)
i,pred =

∑
j∈Npred (i)

fpred
v

([
h
(l−1)
j ,h

(l)
ij ,h

(0)
j

])
︸ ︷︷ ︸

m
(l)
ji

, (5)

h
(l)
i,succ =

∑
j∈Nsucc(i)

f succ
v

([
h
(l−1)
j ,h

(l)
ij ,h

(0)
j

])
︸ ︷︷ ︸

m
(l)
ij

. (6)

Note that the message crafting includes skip connections to
initial node embeddings h(0)

j . Nodes are updated by com-
bining the two features using concatenation:

h
(l)
i = fv

([
h
(l)
i,pred ,h

(l)
i,succ

])
. (7)

Finally, sigmoid-valued edge scores êij and node score ŝi
are predicted from the obtained edge and node embeddings.
In a separate network head, we classify each node as being a
terminal node or not, denoted as a scalar t̂i. Therefore, we
optimize the following combined binary cross entropy:

L = −
∑
|V |

si log ŝi −
∑
|V |

ti log t̂i −
∑
|E|

eij log êij . (8)

The ground truth graph GGT as a learning target (si, ti, eij)
is generated based on the map annotations for the given
cropped region and the corresponding closest nodes. This is
further outlined in the supplementary material in Sec. S.3.

4.2. Iterative Temporal Graph Aggregation

In the second stage of our approach, we aggregate local
successor graphs into a globally consistent lane graph. First,
we prune the predicted per-crop lane graph, and second, we
iteratively aggregate the sparse graphs. In the following, we
detail both components.
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Raw Output Pruned Output

Figure 4. Comparison of raw and pruned lane graph predictions. On the
left-hand side, we visualize estimated edge scores êij and node scores ŝi
using the same color scaling. On the right-hand side, we visualize the
pruned graph. The circled numbers denote the order of traversal based on
estimated terminal node scores.

Pruning: The graph prediction obtained from the LaneGNN
model follows the graph connectivity initially generated dur-
ing sampling. Since the model prediction contains a number
of redundant paths with high predicted node and edge scores,
we prune the obtained solution to obtain sparse lane repre-
sentations. We formulate the graph pruning problem as a
search problem from a starting node to possibly multiple
predicted terminal nodes (see Sec. 4.1). Predicted lane split
points should coincide with actual split points. Thus, dif-
ferent branches should share the same set of edges up to a
split point. We use Dijkstra’s algorithm to iteratively find
high-score paths between the initial pose and terminal nodes,
ordered from high to low scores until all terminal nodes are
reached. Edge scores contained in found paths are set to
zero. In Fig. 4, we visualize the output of this step.

Aggregation: We iteratively aggregate predicted successor
lane graphs Gpred = (Vpred , Epred) into a globally con-
sistent and complete graph Gagg = (Vagg , Eagg) as de-
picted in Fig. 3. The predicted successor graph Gt

pred is
added to the current aggregated graph Gt−1

agg at time step t:
Gt

agg ← aggregate(Gt
pred , G

t−1
agg ). Plausible branches

of Gpred are merged into Gagg and thus extend the aggre-
gated graph with every iteration if new grounds are covered
in the respective crops. The next virtual agent pose is ex-
tracted from the set of forward-facing edges of Gagg given
the current pose. Only edges with a significant weight due to
previous aggregations are selected for this set. As the node
positions differ slightly with each model forward pass we
observe roughly similar paths in the lateral sense wrt. the
ground-truth graph. However, along the longitudinal dimen-
sion of a branch, we observe deviations in node position,
which must be circumvented when aggregating the graph.
Based on this, we only take the lateral deviation wrt. Gt

agg

into account when merging Gt
pred . Thus, Gt

agg is only up-
dated in a lateral sense while the longitudinal misalignment
of the two sets of nodes is neglected (see also Sec. S.5 in
the supplementary material). The nodes of Gt

pred have a

weight of 1 while a node of Gt
agg holds a weight equal to

the number of merges it has observed so far. If a novel node
i ∈ Vpred is not close to any other node in k ∈ Vagg it is
added to the aggregated graph including its incident edges.
This ultimately allows a weighting-based merging of arbi-
trary pairs of graphs, which is used for global lane graph
estimation (see Sec. 5.4).

We observe that the more graphs we aggregate, the more
we are certain about the significance of particular graph
branches. Following a weighting-based approach allows us
to set certain thresholds that allow modification of Gagg .
Thus, implausible graph branches, semantically similar par-
allel paths, redundant edges, and isolated nodes are deleted
based on confidence and distance as well as angle criteria
(see Fig. 3). As a result, we are able to decrease the number
of false positive split and merge points to obtain more consis-
tent global graphs. We observe that this approach greatly im-
proves lane graph prediction accuracy in difficult occluded
and out-of-distribution scenarios since the sum of model
predictions covering the same region shed light onto what
potentially constitutes, e.g., a valid and an invalid branch.

Multiple forward passes naturally lead to a multitude of
lane split points (both true positive and false positive splits).
We interpret each split point as an element of an exploration
frontier. A queue of unexplored, high-probability graph
branches is maintained, which is queried in a depth-first
manner as soon as the currently traversed branch terminates.
Following the weighting-based approach, a branch is only
explored if its depth-limited oriented successor tree weight
exceeds a certain level of confidence. Due to this flexible
approach, we can essentially handle arbitrary lane graph
topologies with a single holistic approach. For more details
on the graph pruning and aggregation procedures, please re-
fer to the supplementary material. Finally, we apply multiple
iterations of Laplacian smoothing to Gt

pred , which modifies
the original node positions in order to even out position ir-
regularities caused by sampling while keeping the adjacency
represented by Et

pred constant.

5. Experimental Results
In the following, we present our experimental findings.

We first define and illustrate three tasks on which we bench-
mark our method. Subsequently, we describe the evaluation
metrics and compare against other methods as well as our
own baselines. We provide extensive qualitative and quanti-
tative evaluations on our UrbanLaneGraph dataset.

5.1. Proposed Tasks

We propose three distinct and complementary tasks. In
the first task, successor lane graph prediction (Successor-
LGP, Sec. 5.3), we aim at predicting a feasible ego-reachable
successor lane graphs from the current pose of the virtual
agent. The purpose of the Successor-LGP task is to measure
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Table 2. Quantitative results of our model including ablation studies, in comparison with baseline models for the Successor-LGP task on our UrbanLaneGraph
dataset. P/R denotes Precision/Recall. For our LaneGNN model variants, we denote CMP as causal message passing, aerial node features as AerN, aerial edge
features as AerE, and the ego-lane regression with Sego

lane. For all metrics, higher values mean better results.

Model CMP AerN AerE Sego
lane TOPO P/R ↑ GEO P/R ↑ APLS ↑ SDA20 ↑ SDA50 ↑ Graph IoU ↑

Skeletonized Regression – – – – 0.597/0.613 0.578/0.601 0.315 0.020 0.185 0.180
LaneGraphNet [36] – – – – 0.0/0.0 0.0/0.0 0.179 0.0 0.0 0.063

LaneGNN (ours)

✗ ✗ ✓ ✓ 0.549/0.677 0.548/0.671 0.188 0.168 0.323 0.312
✓ ✓ ✗ ✓ 0.562/0.656 0.562/0.655 0.192 0.151 0.298 0.320
✓ ✗ ✗ ✓ 0.545/0.693 0.545/0.688 0.200 0.188 0.311 0.336
✓ ✗ ✓ ✗ 0.578/0.669 0.577/0.659 0.150 0.132 0.227 0.250
✓ ✗ ✓ ✓ 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

the prediction quality of potential future driving paths when
no HD map coverage is available. In the second task, full
lane graph prediction (Full-LGP, Sec. 5.4), we evaluate the
quality of regionally aggregated lane graphs in the context
of HD map estimation. This task aims at measuring the
predictive power of our full two-stage model performing
lane graph inference and graph aggregation in conjunction.
For such purposes, the full ground truth lane graph of a given
map area is compared to the aggregated predictions of our
model. Finally, we carry out a high-level path planning task
(Sec. 5.5) on the predicted lane graphs, intended to analyze
the fidelity of routes planned on the predicted graphs.

5.2. Evaluation Metrics

We leverage multiple complementary metrics for perfor-
mance evaluation as detailed below.
Graph IoU: This metric measures the intersection-over-
union (IoU) of two graphs rendered as a binary image [36],
where pixels closer than d = 5 pixels are assigned the label
1 and the remaining pixels the label 0. Equivalent to the
evaluation of semantic segmentation models, we determine
the IoU values for the non-zero pixels.
The APLS metric sums the differences in optimal path
lengths between nodes in the ground truth graph G and
the proposal graph G′ [25]. The APLS metric scales from 0
(worst) to 1 (best). Formally, it is defined as

APLS = 1− 1

Np

∑
min

{
1,
|d(v1, v2)− d(v′1, v′2)|

d(v1, v2)

}
, (9)

where vi and v′i are nodes in G and G′, respectively. Np

denotes the number of paths in G and d(·, ·) is the path
length. For more details, please refer to [25].
TOPO / GEO metrics: Following previous works in road
network extraction and lane graph estimation, we use the
GEO metric and the TOPO metric. For definitions and details
on these metrics, please refer to [15] and to the supplemen-
tary material.
Split Detection Accuracy (SDAR): This metric evaluates
how accurately a model predicts the lane split within a circle
of radius R pixels from a given ground truth lane split.

5.3. Successor Lane Graph Prediction

In the following, we evaluate LaneGNN by ablating and
comparing it with two baselines on the Successor-LGP task:
morphological skeletonization of the ego-lane regression
as well as a modified LaneGraphNet [36] to be used for
successor lane graph prediction. We list quantitative results
in Tab. 2. Our results demonstrate that none of the baseline
methods are capable of estimating accurate lane graphs given
the challenging topology of the lane graphs in the dataset.
The LaneGraphNet [36] model fails to model the graph for
many samples, yielding low scores in all metrics. Despite
its simplicity, the skeletonized regression model achieves
the highest APLS score and comparably high GEO/TOPO
scores. However, it fails to accurately predict lane split
points, resulting in low SDA scores. Increasing the number
of nodes of the skeleton leads to many more false positive
splits and thus deteriorates further.

Regarding different variants of LaneGNN, we find that,
e.g., causal message passing (CMP) increases performance
over standard message passing, which underlines the signifi-
cance of the imposed causality prior for lane graph learning.
In order to show the efficacy of computationally more de-
manding aerial image edge features (AerE) compared to
uni-directional aerial image node features (AerN), we ablate
on this in Tab. 2 as well. We observe stark increases across
the TOPO, GEO and SDA metrics when utilizing aerial edge
features. Lastly, we replace the ego-lane segmentation mask
Sego
lane used for sampling with the standard lane segmentation

mask. Our findings show that especially APLS, SDA, and
Graph IoU drastically decrease as graph estimation becomes
more difficult due to a generally enlarged sampling region
(see Fig. 2).

These results are further illustrated in Fig. 5, where we
show qualitative comparisons of predictions of our best-
performing model with predictions from the two baselines.
We find that the quality of predictions by LaneGraphNet [36]
is generally low, rendering it unsuitable for the task. The
skeletonized regression baseline is capable of following ba-
sic lane graph topologies, but lane split points cannot be
resolved accurately. In contrast, our LaneGNN model is
capable of modeling most graphs with high accuracy; both
in intersection areas and in straight road sections. For more
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Figure 5. Qualitative results on the Successor-LGP task. We compare predictions of our model with LaneGraphNet [36] and a morphological image
skeletonization baseline. Predicted nodes are visualized with points while predicted edges are visualized as directed arrows. We illustrate failure cases in the
two rightmost columns. Best viewed zoomed in.

Table 3. Quantitative evaluation for the Full-LGP task on the test-set of
our UrbanLaneGraph dataset. We compare a baseline model with graphs
aggregated with a naı̈ve aggregation scheme and our iterative temporal
aggregation scheme. P/R denotes Precision/Recall. Higher values mean
better results.

Model TOPO P/R ↑ GEO P/R ↑ APLS ↑ Graph IoU ↑

LaneExtraction [15] 0.405/0.507 0.491/0.454 0.072 0.213

Aggregation (naı̈ve) 0.366/0.654 0.523/0.727 0.101 0.376
Aggregation (ours) 0.481/0.670 0.649/0.689 0.103 0.384

results, please refer to the supplementary material, Sec. S.6.

5.4. Full Lane Graph Prediction

For the Full-LGP task, we compare our approach with
LaneExtraction [15]. Since their used graph representation is
incompatible with ours, we train it on their provided dataset.
To allow for a fair comparison, we evaluate both our method
and LaneExtraction only on scenes in the city of Miami,
Florida, as it is contained in both of the datasets. We select a
testing region that is not part of the training data for either
of the models. To initialize our aggregation scheme, we
select starting poses obtained from intermediate segmenta-
tion predictions including yaw angles of the LaneExtraction
model. Tab. 3 lists the evaluation results for the Full-LGP
task obtained with LaneExtraction [15] and the results ob-
tained with our LaneGNN model in conjunction with two
aggregation schemes: a naı̈ve aggregation scheme baseline

and our full aggregation scheme. The naı̈ve aggregation
scheme merges nodes in close proximity while not relying
on unvalidated split/merge or parallel path removal as well
as the lateral weighting-based merging (Sec. 4.2). Our exper-
iments show that our aggregation scheme outperforms both
the LaneExtraction model and the naı̈ve aggregation scheme
on nearly all evaluation metrics. We note that our method
improves the TOPO/GEO precision metrics while maintain-
ing similar recalls due to better handling of redundant nodes.
Fig. 6 illustrates successive aggregations from our model
while indicating the used initialization points from the La-
neExtraction model. Since our aggregation approach does
not differentiate between intersection and non-intersection
regions, it does not deteriorate in regions that do not exactly
fit this categorization. Furthermore, our model exhibits su-
perior performance in reduced visibility settings introduced
by stark illumination changes or road occlusions from veg-
etation, as illustrated in Fig. 6. One of the decisive assets
of our bottom-up method is that it allows to explore regions
that are missed by LaneExtraction [15] as they are entailed
in their predicted segmentation masks. For more qualitative
and quantitative results, please refer to the supplementary
material, Sec. S.7.

5.5. Path Planning

To illustrate the efficacy of our aggregation scheme, we
evaluate the quality of the lane graph on a planning task. We
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Figure 6. Qualitative results on the Full-LGP task. We visualize predictions of LaneExtraction [15] (top row) and aggregated LaneGNN predictions (bottom
row). Our model is initialized at poses using predicted lane direction masks of LaneExtraction (indicated with yellow circles). Best viewed zoomed in.

Table 4. Quantitative evaluation for the planning task. MMD denotes mean
minimum distance, MED denotes mean endpoint distance, and SR denotes
the path planning success rate.

Model MMD [m] ↓ MED [m] ↓ SR ↑

LaneExtraction [15] 157.0 339.4 0.47

Aggregation (ours) 2.2 19.7 0.46

generate 1000 randomly selected starting poses in the Miami
graph test area from which a plan to a random goal within
the graph must be found, using A* search. We place the
points such that a maximal optimal route length of 200m is
not exceeded. To evaluate the planned routes, we compare
the mean minimum distance (MMD) and the mean route
endpoint distance (MED) between the paths on the predicted
graph and the ground truth graph, respectively. We also
report the success rate (SR), indicating the number of cases
in which a path between start and goal exists. We list the
results in Tab. 4. While the SR for our aggregation scheme
and the LaneExtraction predictions is similar, the low MMD
and MED values of our aggregation scheme indicate that our
generated lane graph entails shorter and more direct paths,
compared to LaneExtraction. We show additional results in
the supplementary material, Sec. S.8.

5.6. Limitations

Due to its bottom-up architecture, the proposed approach
performs well for most evaluated scenes in urban and subur-
ban surroundings but struggles with highly complex graph
topologies such as multi-lane intersections or roundabouts.

Moreover, due to the iterative formulation of our aggrega-
tion scheme, the inference time of our approach increases
with the number of nodes and edges. To speed up infer-
ence time, future work might include adaptively changing
the distance between consecutive virtual agent positions and
leveraging efficient neighborhood lookup methods such as
k-d trees. Parallel execution of multiple agents would addi-
tionally boost run time to match top-down approaches and is
feasible in terms of the proposed aggregation scheme.

6. Conclusion

In this work, we presented a novel lane graph estimation
framework complemented with a novel dataset comprising
aerial images. We showed that formulating the lane graph
estimation problem as bottom-up graph neural network ap-
proach leveraging agent-centric views yields promising re-
sults. In addition, we presented a novel aggregation scheme
to merge successive lane graphs to produce large-scale so-
lutions. A first-of-its-kind dataset and benchmark for lane
graph estimation from aerial images will enable further re-
search in this field. Future work could address end-to-end
training and exploiting further modalities such as onboard
vehicle cameras for additional context information.
Acknowledgements: This work was partly funded by the
German Research Foundation (DFG) Emmy Noether Pro-
gram grant number 468878300, DFG grant number BU
865/10-2, and a hardware grant from NVIDIA.
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[9] Dian Chen and Philipp Krähenbühl. Learning from all vehi-
cles. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 17222–17231,
2022. 2

[10] Nemanja Djuric, Henggang Cui, Zhaoen Su, Shangxuan Wu,
Huahua Wang, Fang-Chieh Chou, Luisa San Martin, Song
Feng, Rui Hu, Yang Xu, et al. Multixnet: Multiclass multi-
stage multimodal motion prediction. In 2021 IEEE Intelligent
Vehicles Symposium (IV), pages 435–442. IEEE, 2021. 2

[11] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lubing
Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Valada.
Panoptic nuscenes: A large-scale benchmark for lidar panop-
tic segmentation and tracking. IEEE Robotics and Automation
Letters, 7(2):3795–3802, 2022. 3

[12] Nikhil Gosala and Abhinav Valada. Bird’s-eye-view panoptic
segmentation using monocular frontal view images. IEEE
Robotics and Automation Letters, 7(2):1968–1975, 2022. 1

[13] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring
network structure, dynamics, and function using networkx.
Technical report, Los Alamos National Lab.(LANL), Los
Alamos, NM (United States), 2008. 12

[14] J Halton and G Smith. Radical inverse quasi-random point
sequence, algorithm 247. Commun. ACM, 7(12):701, 1964. 3

[15] Songtao He and Hari Balakrishnan. Lane-level street map ex-
traction from aerial imagery. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pages
2080–2089, 2022. 1, 2, 3, 6, 7, 8, 13, 21

[16] Namdar Homayounfar, Wei-Chiu Ma, Shrinidhi Kow-
shika Lakshmikanth, and Raquel Urtasun. Hierarchical recur-
rent attention networks for structured online maps. In Proc. of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3417–3426, 2018. 2

[17] Namdar Homayounfar, Wei-Chiu Ma, Justin Liang, Xinyu
Wu, Jack Fan, and Raquel Urtasun. Dagmapper: Learning
to map by discovering lane topology. In Proceedings of the
IEEE International Conference on Computer Vision, pages
2911–2920, 2019. 2

[18] Justin Liang, Namdar Homayounfar, Wei-Chiu Ma, Shenlong
Wang, and Raquel Urtasun. Convolutional recurrent network
for road boundary extraction. In Proc. of the IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition (CVPR), pages 9512–9521, 2019. 2
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Learning and Aggregating Lane Graphs for Urban Automated Driving

- Supplementary Material -
Martin Büchner∗, Jannik Zürn∗, Ion-George Todoran, Abhinav Valada, and Wolfram Burgard

In our supplementary material, we expand upon multiple
aspects of our paper. In Sec. S.1, we visualize exemplary data
from our compiled UrbanLaneGraph dataset and detail pre-
and post-processing methods. We also discuss the proposed
benchmark for evaluating lane graph prediction models.

In Sec. S.2 we give additional detail on evaluation metrics.
In Sec. S.3, we discuss the sampling of the annotated graph
into a representation suitable to train our LaneGNN model.
In Sec. S.4, we provide additional explanations on the model
architectures, the training procedures, and hyperparameter
selection. In Sec. S.5, we explain our graph aggregation
in more detail compared to the main manuscript. Finally,
in Sec.. S.6, S.7, and S.8, we provide additional ablation
studies and evaluations for our Successor-LGP, Full-LGP,
and Planning tasks, respectively.

S.1. UrbanLaneGraph Dataset Details
As detailed in the main manuscript, we introduced a large-

scale lane graph dataset including aligned high-resolution
aerial images. In the following, we give a thorough descrip-
tion of the dataset curation process and how we designed the
lane graph prediction benchmark.

S.1.1. Dataset Curation

S.1.1.1 Annotation Pre-Processing

Our graph annotation source is the large-scale Argov-
erse2 [29] autonomous driving dataset, which includes HD
map annotations, including lane graphs, for all scenarios en-
tailed in the dataset. In the context of the dataset, a scenario
is a small-scale region (50m diameter). Our goal is to esti-
mate arbitrarily large lane graphs, rendering the per-scenario
graph annotation scheme insufficient. We aggregated all sce-
nario graph annotations into a per-city global graph. How-
ever, we found that many scenarios overlap while the nodes
in the respective overlaps do not have a perfect positional
match. Therefore, we implemented an annotation merging
procedure, producing the desired globally consistent ground-
truth graph.

S.1.1.2 Image-Graph Alignment

The coordinate system of the annotations is not consistent
with our aerial image coordinate frame. We therefore, trans-
form the graph annotations into the image coordinate system

employing the Kabsch-Umeyama [23] algorithm, in which
a set of selected point pairs in the source and in the target
frame are aligned, minimizing a least-squares objective func-
tion. The solution to the minimization problem comprises
the optimal translation, rotation, and scaling that maps points
from one frame into the other.

S.1.1.3 Regional Train-Test Splits

We split the dataset into disjoint train and test splits on a
geospatial basis. Concretely, for the experiments carried
out in this work, we select a challenging subset of the anno-
tated regions within each city as a separate test split. The
remaining regions are leveraged for model training. For all
tasks and models, we consistently use the same training and
testing regions.

S.1.1.4 Graph Sampling into Crops

In order to generate samples for training our LaneGNN
model, we sample the dataset into crops. As illustrated
in our manuscript, for our successor lane graph prediction
task, the input to our model is a 256 px × 256 px crop of
the original birds-eye view image. A sample consists of the
aerial image crop and the lane successor graph that starts at
the bottom center position of the crop. Crop positions are
selected according to the position of nodes in the lane graph
annotations. We also crop the annotated graph in order to
use only graph nodes and edges as learning targets that are
visible in the respective crop.

As described in the main manuscript, for aggregating
the locally predicted successor graphs into a global graph,
we facilitate an iterative aggregation scheme where the po-
sition and orientation of the next crop are determined ac-
cording to the graph prediction in the current crop. This
procedure can be interpreted as imitation learning from ex-
pert data, which are the crops present in the training data.
This can produce unstable trajectories that do not follow
lanes when deploying the model if the training data distri-
bution does not cover the full distribution of crops from
arbitrary positions and orientations. We, therefore, add
Gaussian noise w.r.t the crop position (xcrop, ycrop) and
orientation γcrop when sampling training data crops. Con-
cretely, we sample xcrop ∼ N (xgt, 5), ycrop ∼ N (ygt, 5),
and γcrop ∼ N (γgt, 0.3) . The units are px and rad, re-
spectively. This crop sampling scheme allows the model
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Figure S.1. Exemplary visualization of aerial imagery with a pixel-aligned lane graph for multiple US cities. Our UrbanLaneGraph dataset features a wide
range of environments, including rural, suburban, and urban areas. The graph annotations feature a wide range of topological complexity scales from straight
road sections to large-scale intersection scenarios with multiple incoming and outgoing lanes. The aerial images provided with the dataset have challenging
visual properties such as prominent shadows, and occlusions of streets due to trees and other vegetation.

to recover from crop positions and orientations that are not
well-aligned with the ground-truth graph.

S.1.1.5 Centerline Regression Data

The centerline regression targets are obtained by rendering
an inverse signed distance function from the graph as an im-
age with the same domain as the aerial image crop. Outputs
of models trained on this are visualized in Fig. S.4 (lane
centerline regression) and in Fig. S.3 (ego lane centerline

regression).

S.1.2. Benchmark

We envision the previously described dataset as a ref-
erence for evaluating future approaches. To facilitate eas-
ier and quantitatively fair comparison between different ap-
proaches, we provide an easy-to-use graph prediction bench-
marking API. For calculating all our metrics and generating
visualizations, we leverage the networkx [13] Python library.
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(a) (b) (c) (d) (e)

Figure S.2. Visualization of the data modalities that serve as the input to our LaneGNN model. From left to right: a) An aerial BEV image of a local scene,
including the virtual agent pose for this crop. b) The regression output Slane of our lane regression model. c) The regression output Segolane of the agent-centric
ego lane regressor. d) The lane graph node proposal that potentially holds the successor graph. e) The edge proposal list densely connects neighboring
proposal nodes.

Figure S.3. Exemplary visualizations of our ego lane regression model on random crops from the test split of our dataset.

The overall information flow of our benchmarking
system is visualized in Fig. S.5. Given an aerial im-
age, the to-be-evaluated model predicts a graph g pred.
The LaneGraphEvaluator expects g pred to be a
networkx-type object; the conversion of the model output
into networkx format may be implemented by the authors
in a to networkx() function. Given a predicted graph
in networkx format, our evaluator queries the ground-truth
graph annotations and crops the annotations to cover the
same region as the predicted graph. Subsequently, all de-
scribed metrics are evaluated and exported. Optionally, vi-
sualizations to rasterized or vector image formats may be
produced. Finally, path-planning experiments on the pre-
dicted and ground-truth graphs may be conducted, evaluated,
and visualized.

S.2. Evaluation Metrics Details

In the following, we detail the GEO and TOPO metrics,
proposed by He et al. [15] which were used, among others
metrics, to evaluate or experiments.

S.2.1. GEO Metric

The GEO metric aims to quantify the quality of the spa-
tial position of vertices in the predicted graph, ignoring any
topological properties (the existence of edges between the
vertices). To this end, following He et al. [15], we densely
interpolate the predicted graph Gpred = {Vpred , Epred} and
the ground-truth graph Ggt = {Vgt , Egt} such that any two
adjacent vertices have the same distance from each other.
Subsequently, a 1:1 matching between Vpred and Vgt is com-
puted, giving rise to the matching precision and matching
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Figure S.4. Exemplary visualizations of our lane regression model on random crops from the test split of our dataset.

def plan_paths()

def evaluate_paths()

{
  "apls": 0.235,
  "graph_iou: 0.461,
  ...
}

Graph Metrics

{
  "mmd": 0.235,
  "med": 0.461,
  "sr": 0.142,
}

Planning Metrics

results.json

Visualizations

def calc_apls()

def evaluate_graphs()

def visualize_graphs()

def visualize_paths()

def export_results()

def calc_iou()

...

class LaneGraphEvaluator(g_gt, g_pred)Model 
Predictions

Aerial 
Input Image

Graph
Annotations

to_networkx()

to_networkx()

roi_cropping()

Prediction 
Pipeline

Figure S.5. Basic information flow for our graph evaluation benchmark. We provide basic routes for evaluating and visualizing lane graph predictions and
annotations. Our evaluator expects the predicted graph(s) g pred and the ground-truth graph annotations g gt as networkx objects.

recall, denoted as GEO precision and GEO recall.

S.2.2. TOPO Metric

Building on top of the GEO metric, the TOPO metric
takes vertex connectivity through edges into account as well.
Given a vertex pair (Vgt , Vpred) obtained from the GEO
metric, subgraphs SVgt

gt and S
Vpred

pred are created by walking a
maximum distance D on the graphs. We select D = 50m.

The so-created sub-graphs may be compared according to the
GEO metric and averaged over all sub-graphs to obtain the
overall TOPO metric. The graph-walking procedure allows
penalizing missing links or false-positive graph branches as
they will produce poorly aligned sub-graphs Sgt and Spred .
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S.3. Target Graph Sampling for Lane Graph
Learning

As described in the main manuscript, our LaneGNN
model learns to predict node and edge scores for a proposal
graph. The ground-truth graph according to the dataset an-
notations, however, cannot without modification be used as
a learning target since its node positions do not correspond
to the node points obtained from the Halton-sequence-based
node sampling mechanism (see S.3.1). In the following, we
describe how a target graph used for learning the LaneGNN
model can be obtained from lane graph annotations.

Figure S.6. The ego lane regressor model output, binned into 6 discrete
thresholds from 0 to 1 for visualization purposes. The region of sampled
node proposals for our LaneGNN model is sensitive to the choice of thresh-
old cutoff value.

S.3.1. Node Sampling

In order to generate uniformly distributed 2D node po-
sitions in the rectangular image domain, we use Halton se-
quences. Their advantage over a per-dimension uniform
random sampling of points in a 2D rectangle is their compar-
atively low discrepancy, leading to an approximately equal
spacing of neighboring points across the 2D plane, rendering
them the preferred choice for sampling random uniformly
but non-regular distributed node proposals. For the experi-
ments in our manuscript, we generate Nnode = 400 Halton
points for each sample. Finally, we filter the generated node
positions based on the obtained ego centerline regression
mask. Thus, the effective number of nodes is vastly de-
creased on average. We visualize the sampled Halton points
for an exemplary scene in Fig. S.2d.

S.3.2. Edge Sampling

Due to the large number of possible edges in the num-
ber of nodes |E| = O(N2

node), we sample edge propos-
als between pairs of nodes that have a Euclidean distance
d ∈ [dmin, dmax] such that only neighboring node are as-
signed a proposal edge. We visualize the sampled edges

for an exemplary scene in Fig. S.2e. Furthermore, we only
include edges in the edge proposal list that do not span over
regions with low ego centerline regression output.

S.3.3. Node and Edge Scoring

Target node scores are a function of the proposal node
distance to the ground-truth graph. More precisely, we score
the node according to s(ni) =

(
1− dL2(ni, Ggt)

)8
where

dL2(·, ·) denotes the euclidean distance. We also assign a
binary is-endpoint label to each node. As described in the
main manuscript, in addition to predicting node scores, our
LaneGNN model also entails a node classification head, dis-
criminating between lane endpoint nodes and non-endpoint
nodes. This distinction allows for efficient proposal graph
pruning during model inference. The positive is-endpoint
label is assigned to the closest node in the proposal graph
the ground-truth graph endpoint for each endpoint in the
ground-truth graph.

For edge scoring, we empirically found that a binary
scoring function (in contrast to a continuous scoring func-
tion for the node scores) leads to favorable graph learn-
ing performance. To produce this scoring, we leverage
a two-step process: First, we evaluate a similar function
to the node scoring function but add an angle penalty to
the scoring function which penalizes a difference in the
relative angle between the proposal edge and the clos-
est edge eproxgt in the ground-truth graph. Concretely:

s(eij) =
(
1 − d∠(eij , e

prox
gt )dL2(eij , Ggt)

)8
. Second, we

find minimum-cost paths from the lane starting node to the
endpoint node(s) through the proposal graph, where the edge
traversal cost is the reciprocal of the edge score. All edges
along the minimum-cost paths from the start node to the end
nodes are assigned a score of one while all remaining edges
are assigned a score of zero.

S.4. Model Details

S.4.1. Image Skeletonization Baseline

Our image skeletonization baseline is obtained by first
thresholding the predicted ego centerline regression model
output to generate a binary image of high-likelihood succes-
sor lane graph regions. We subsequently skeletonize [32]
the binary image and obtain a 1-pixel wide representation
of this region (On-pixels in the binary image). Finally, we
convert this representation into a graph by considering all
On-pixels that have n = 1 neighbor pixels (lane starting
point or endpoint) or n >= 3 neighbor pixels (lane split
point), forming graph nodes. To obtain the graph edges, we
add a graph edge for all pairs of nodes that are connected
by regions of On-pixels that do not contain any other nodes
between the two nodes in consideration.
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Table S.1. Details on the used architecture of the LaneGNN modelM. All ReLU-activated MLP layers except for the ones under Classification which are
ReLU-activated up to the last layer followed by Sigmoid.

Stage Layer Transformation Parametrization

Encoding

Aerial edge features fe,bev
enc (Xe,bev) = H

(0)
e,bev ∈ RB×E×64 ResNet-18 (non-pretrained)

Geometric edge features fe,geo
enc (Xe,geo) = H

(0)
e,geo ∈ RB×E×16 MLP(4, 8, 16),ReLU

Node features fv
enc(X) = H

(0)
v ∈ RB×N×16 MLP(2, 8, 16),ReLU

Fusion Edge Feature Fusion fe
fuse([H

(0)
e,bev ,H

(0)
e,geo]) = H

(0)
e ∈ RB×E×32 MLP(16 + 64, 64, 32),ReLU

Message
Passing
l=1...L

Edge feature update fe(H
(l−1)
i ,H

(l−1)
ij ) = H

(l)
e ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

Node feature update

fpred
v (H

(l−1)
i ,H

(l−1)
ij ,H

(0)
i ) = H

(l)
v,pred ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

f succ
v (H

(l−1)
i ,H

(l−1)
ij ,H

(0)
i ) = H

(l)
v,succ ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

fv(H
(l)
i,pred,H

(l)
i,succ) = H

(l)
v ∈ RB×E×32 MLP(16 + 16 + 32, 64, 32),ReLU

Classification

Edge Activation Scores fe
cls(H

(L)
e ) = Ee ∈ RB×E×1 MLP(32, 16, 8, 1),ReLU + Sigmoid

Node Activation Scores fv
cls(H

(L)
v ) = Sv ∈ RB×E×1 MLP(16, 8, 4, 1),ReLU + Sigmoid

Terminal Node Scores fv,t
cls (H

(L)
v ) = Tv ∈ RB×N×1 MLP(16, 8, 4, 1),ReLU + Sigmoid

Table S.2. Training details for the three models contained in the full
LaneGNN modelM.

Batch Size Epoch Learning Rate Weight Decay

Lane Regressor 8 50 10−3 10−3

Ego Lane Regressor 8 50 10−3 10−3

Graph Neural Network 2 100 10−3 10−4

S.4.2. Centerline Regression Architectures

For the centerline regression and the ego centerline re-
gression models, we use the same model architectures. In
both cases, we use a PSPNet architecture [33] with a ResNet-
152 backbone. The number of input channels is 3 (RGB
color channels) for the centerline regression model while it
is 4 (RGB + 1 channel output of centerline regression model)
for the ego centerline regression model. Additional training
parameters can be found in Tab. S.2.

S.4.3. LaneGNN Architecture

The graph neural network architecture detailed in Ta-
ble S.1 is trained for 100 epochs using a learning rate of
10−3 and a batch size of 2. The used optimizer is Adam
with weight decay λ = 10−4 and β = (0.9, 0.999). Empiri-
cally, we found that the network is relatively insensitive to
variations in the learning rate, batch size, and the number of
message passing steps L = 6. This is further demonstrated
in Tab. S.3.

S.5. Graph Aggregation

In order to aggregate our successive predictions into
a globally consistent solution we take the parallelizable

approach of running multiple drive()-instances (see
Algo. 1) each starting at a different initial pose pi =
(xi, yi, γi) up to a certain maximum number of steps or a
maximum number of branches is reached. Each initial pose
pi could either be the actual pose obtained from localization
when driving or a pose inferred from a segmentation mask of
the aerial image that also includes yaw regression. Next, we
follow the procedure described in Algo. 1, which starts driv-
ing on the birds-eye view image. Sequentially, we predict a
successor lane graph Gpred that is pruned via multiple runs
of Dijkstra’s algorithm using the predicted terminal node
scores Tv as target nodes while neglecting already traversed
corridors between runs.

Before merging the predicted graph Gpred into Gagg , we
transform each predicted graph into global coordinates and
employ multiple iterations of Laplacian smoothing:

X← (I− γL)X , (1)

which smoothens the original node positions X based on the
graph Laplacian L of the undirected representation of Gpred.
The graph Laplacian is given by

L = D−A, (2)

where D is the degree matrix and A is the adjacency ma-
trix. Hereby, the position of each node is influenced by
its first-degree neighbors. The scalar γ denotes a smooth-
ing intensity parameter while I is the identity matrix. The
smoothing evens out position irregularities obtained from the
initial Halton sampling. In the following, we aggregate the
smoothed graph Gpred with a consistent representation of
all prior predictions Gagg (see Sec. S.5.1) and traverse it by
steadily exploring the edge that shows the highest successor-
tree weight up to a depth of 10. The depth is limited because
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Figure S.7. Left: Visualization of consecutive successor graph predictions for t ∈ [0, 1, ..., 100] time-steps. Right: The aggregated graph.

potentially existing loop closures of the lane graph would
induce infinite tree weights. As predicted intersections pro-
vide multiple future branches of which only one is explored
at a time, we queue the remaining ones for later exploration.
As soon as the next edge is selected, we step forward by one
edge length, which however is subject to hyperparameter op-
timization. After updating the pose, our approach is able to
make predictions on new grounds while further updating and
improving the aggregated lane graph representation Gagg.
This is illustrated over 100 time steps in Fig. S.7.

Depending on the mode of operation, we are able to
terminate a current branch as soon as a pose shows significant
similarity to an already visited pose stored in a list. In
addition, we also terminate a branch if a certain maximum
number of steps is traveled across a number of branches
combined or the number of explored branches exceeds a
certain value. Furthermore, every single branch can also be
terminated after a designated number of steps. If a branch
suddenly terminates, we filter the currently aggregated graph
Gagg by node out-degrees of two and larger to obtain split
points with unvisited edges/poses that provide grounds for
further exploration. The edge with the largest successor-tree
weight is investigated next if exceeds a certain threshold. We
have listed all used parameters in Sec. S.7.

Each and every aggregated output Gagg produced by one
of the drive()-instances are finally aggregated one by one
using the function aggregate() provided with Algo. 2,
which is able to merge arbitrary graphs. In general, it would
also be possible to aggregate multiple returns of drive()
in an agglomerative fashion to increase inference speed for
HD map creation. If necessary as a postprocessing step, we
delete all but one parallel branch with the same source and

end node if they do not show any intermediate branching
and contain less than six consecutive edges.

Overall, we observe an average runtime of 1 s per model
forward-pass and aggregation step on our development ma-
chine (NVIDIA RTX 3090, AMD EPYC CPU @ 3.65GHz).
With parallel execution, processing a map tile (106 m2) re-
quires ∼7min.

S.5.1. Lateral Aggregation Scheme

In the context of lane graphs, particular longitudinal
node coordinates are merely a consequence of the cho-
sen sampling distance. The proposed lateral graph aggre-
gation scheme disregards deviations in longitudinal node
position. Thus, we merge newly predicted graphs into an
existing graph while updating it solely based on lateral de-
viations. Before doing so, we remove unvalidated splits
and merges from the already existing aggregated graph
by disregarding all splits or merges that do not exhibit a
successor-edge tree of at least length three or do not show
sufficient successor-tree (splits) or predecessor-tree (merges)
weights. To do so, we construct local temporary aggregation
graphs LocalAggGraph(A) for each newly predicted node
A ∈ Gpred as depicted in Fig. S.8. This is done to decrease
the number of distance calculations necessary, which is cru-
cial for large graphs Gagg containing thousands of nodes.
Thus, each LocalAggGraph(A) represents the region of
Gagg in immediate vicinity of node A ∈ Vpred whereas
Gpred = (Vpred, Epred). In the next step, we obtain the
nearest edge contained in Gagg as well as the lateral dis-
tance a to that edge. Similarly, we obtain the closest and
second closest nodes I and II incident to that edge. If the
lateral distance a < athresh, we see the grounds for updat-
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Algorithm 1: drive(pinit, Isat)
1 Gagg ← InitializeEmptyAggGraph()
2 p← InitializePoseOnMap(pinit)
3 p← PadSatImageSymmetrically(Ibev)
4 stepCounter = 0
5 branchAlive = True
6 branchAge = 0
7 branchCounter = 0
8 numFutBranches = 1
9 do

10 if stepCounter > maxSteps ∨ branchCounter >
maxNumBranches ∨ branchAge >
maxBranchAge then

11 break
12 if branchAlive then
13 branchAge = branchAge+ 1
14 else
15 succEdges, numFutBranches←

GetUntraversedEdgesAtSplits(Gagg)
16 p← GetNewPoseOfMaxScoreEdge(succEdges)

17 GI , Segolane, Slane ← ConstrAttribGraphManifold(Ibev ,p)
18 Ee, Sv ,Te ← PredictSuccessorGraph(GI)

19 Ĝ← PruneTraverseLaneGraph(GI ,Ee, Sv ,Te)

20 Gpred ← TransformLaneGraphToGlobalCoords(Ĝ)
21 Gpred ← ApplyLaplacianSmoothing(Gpred)

Gagg ← Aggregate(Gagg , Gpred)
22 branchAlive,p← StepForwAlongCurrBranch(p, Gagg)

23 while numFutBranches ∨ branchAlive;
24 return Gagg

ing the node positions of I and II using a weighting-based
scheme involving the weights of the involved aggregated
nodes (obtained from previous aggregations) as well as the
initial weight of each newly predicted node A. To do so, we
calculate the angles α, β and, γ as given by Eq. 3 in order to
further calculate the lengths b1 and b2 as shown in Fig. S.8:

α = arccos

(
a

c1

)
, β = arctan

(
dAI
y

dAI
x

)
, γ =

π

2
− α− β (3)

b1 = c1 sin(α), b2 = c2 sin

(
arccos

(
a

c2

))
. (4)

These lengths are used to measure the relative influence
of A onto I as well as II, respectively. We create temporary
nodes A′ and A′′ to ease merging (Eq. 5) in the next step:

A′ = A + b1

[
cos(γ)
sin(γ)

]
, A′′ = A + b2

[
cos(γ)
sin(γ)

]
. (5)

Finally, we update the position of I and II using a
weighting-based approach as described with Eq. 6 and Eq. 7
in the following:

I∗ =
1

ωagg,I + ωA,I

(
ωagg,I

[
Ix
Iy

]
+ ωA,I

[
A′

x

A′
y

])
, (6)

II∗ =
1

ωagg,II + ωA,II

(
ωagg,II

[
IIx
IIy

]
+ ωA,II

[
A′′

x

A′′
y

])
, (7)








 

















Figure S.8. Geometric visualization of our lateral graph aggregation scheme.
We visualize the predicted graph Gpred in blue and the graph to be merged
into Gagg in red.

Figure S.9. Additional qualitative results of our LaneGNN model. In the
top row, we illustrate success cases. In the bottom row, we show interesting
failure cases. The depicted graphs are not Laplace-smoothed.

where ωA,I and ωA,II are defined using c1, c2 as follows:

ωA,I = 1− c1
c1 + c2

, ωA,II = 1− c2
c1 + c2

. (8)

We collect all aggregation information using a merging
map. All other nodes m ∈ Vpred that were not mapped to
any other node k ∈ Vagg are added as new nodes to Gagg.
Similarly, we add edges (m, l) ∈ Epred to Eagg in a slightly
different fashion depending on whether one of the involved
nodes has been already mapped to a node k ∈ Vagg . Finally,
our aggregate() function returns Gagg .

S.6. Extended Results: Successor-LGP

In the following section, we perform additional ablation
studies for our LaneGNN model on the Successor-LGP task.
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Algorithm 2: aggregate(Gpred,Gagg)

1 Add weight to each node m ∈ Vpred based on weight equal to path length to starting pose
2 Compute edge angles and mean node angles based on predecessor and successor edge angles for Gpred and Gagg

3 Gagg ← removeUnvalidatedSplitsMerges(Gagg)

4 DL2
agg,pred Compute pair-wise Euclidean distance between Vagg and Vpred.

5 D∠
agg,pred Compute pair-wise mean angle distance between Vagg and Vpred.

6 Bagg,pred ←
(
DL2

agg,pred < λ
)
∧
(
DL2

agg,pred < ψ
)

7 for A ∈ Vpred do
8 LocalAggGraph(A) = EmptyGraph()
9 for k ∈ Vagg do

10 if Bagg,pred(A, k) == 1 then
11 LocalAggGraph(A)← AddAggEdges(k)
12 if LocalAggGraph(A) not empty then
13 (II, I), a← getNearestEdgeAndLatDist(A, LocalAggGraph(A))
14 I, II← getNearestNodes(m,LocalAggGraph(A), (II, I))
15 if a < athresh then
16 Compute I∗ and II∗ as detailed in Eq. 6 and Eq. 7
17 Gagg ← UpdateAggGraph(I∗, II∗)

18 for m ∈ Vpred if m unmapped to Gagg do
19 Gagg ← AddUnmappedNode(Gagg,m)
20 for (m, l) ∈ Epred do
21 if m not mapped to Gagg ∧ l not mapped to Gagg then
22 Gagg ← AddUnconstrainedEdge(Gagg, (m, l)))
23 if m mapped to Gagg ∧ l not mapped to Gagg then
24 Gagg ← AddLeadingEdge(Gagg, (m, l)))
25 if m not mapped to Gagg ∧ l mapped to Gagg then
26 Gagg ← AddTrailingEdge(Gagg, (m, l)))

27 return Gagg

S.6.1. Quantitative Results

S.6.1.1 Additional LaneGNN Ablation

In addition to our observation regarding low sensitivity to
minor parameter variations (see Sec. S.4.3), we present a
parameter study in Tab. S.3 for the LaneGNN architecture as
well as the training parameters. The model is trained using
both 200 as well as 400 node samples, which is a hyper-
parameter that is chosen in the preprocessing stage. Note that
the effective number of nodes covering the drivable corridor
can be much lower in reality due to ego lane segmentation
masking. We observe significantly higher recalls while the
precision is roughly the same when increasing from 200
to 400 nodes. The remaining metrics, however, indicate a
more drastic performance difference with plummeting values
across APLS, SDA20, SDA50 and GraphIoU for fewer
nodes.

In addition to the number of nodes, we show that the inclu-
sion of the node loss term improves recall significantly while
also showing higher values across all other metrics. The
node regression outputs Sv are not used during graph traver-
sal but still induce significant performance improvements as
they guide the network towards reasonable corridors. The
batch size shows the best performance for a value of 2 or 4

depending on the evaluated metric while batch size 1 pro-
duces drastically worse outputs. In addition to the batch size,
we have observed that a number of 6 to 8 message passing
steps produces high precision as well as high recall. A GNN
depth of 0 essentially renders the network a classic edge clas-
sifier without leveraging the graph structure, which results
in drastically reduced performance. Our experiments show
that the produced output graph is often not even traversable
(using our pruning approach) under that limitation.

Lastly, we train three different GNN architectures: a
small-, medium- and, large-size LaneGNN. Our findings sup-
port our chosen network architecture presented in the main
paper and underpin that a larger network does not necessarily
perform better given the test sets across all 4 cities. Overall,
we observe that the parameter set used in the main paper
(underlined values) yields maximum performance across the
metrics evaluated.

S.6.1.2 City-wise Test Set Results

In the following, we evaluate the used LaneGNN architec-
ture for different training sets as well as different splits of the
test set each consisting of different combinations of cities.
For each respective city-split, we show the performance of
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Table S.3. Additional ablations of the LaneGNN modelM, measured across the test sets of all 4 cities combined. Underlined parameter values denote
our presented approach used in the main paper, whereas bold values represent respective best values for each distinct ablation. The tuples under feature
dimensions represent the main LaneGNN architecture dimensions (map feat dim, node dim, edge dim, msg dim, edge geo dim), please
see Table S.1.

Parameter TOPO P/R ↑ GEO P/R ↑ APLS ↑ SDA20 ↑ SDA50 ↑ Graph IoU ↑

Number of Nodes 200 0.622/0.561 0.622/0.560 0.077 0.094 0.162 0.172
400 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

Node Loss Term ✗ 0.502/0.702 0.501/0.699 0.144 0.149 0.288 0.335
✓ 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

Batch Size
1 0.421/0.557 0.421/0.560 0.170 0.110 0.222 0.296
2 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
4 0.581/0.701 0.579/0.696 0.162 0.220 0.387 0.349

GNN Depth

0 0.163/0.168 0.163/0.166 0.057 0.017 0.051 0.098
2 0.517/0.688 0.517/0.684 0.144 0.152 0.310 0.331
4 0.526/0.684 0.525/0.680 0.145 0.162 0.320 0.330
6 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
8 0.570/0.710 0.568/0.704 0.163 0.195 0.350 0.349

Feature Dimensions
(16, 8, 16, 16, 8) 0.599/0.655 0.598/0.650 0.114 0.072 0.178 0.234

(64, 16, 32, 32, 16) 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347
(128, 32, 48, 48, 16) 0.616/0.695 0.613/0.688 0.162 0.180 0.310 0.332

Table S.4. Additional ablations of the LaneGNN modelM for the Successor-LGP task trained on respective cities as detailed and evaluated on various
combinations of city-respective test sets. PAO, ATX, MIA, and PIT represent the cities of Palo Alto, Austin, Miami, and Pittsburgh, respectively. Bold entries
denote the maximum value for the given evaluation set under different training sets. Underlined values denote the numbers presented in the main paper.

Train Set Eval Set TOPO P/R ↑ GEO P/R ↑ APLS ↑ SDA20 ↑ SDA50 ↑ Graph IoU ↑

PAO ATX MIA PIT PAO ATX MIA PIT

✓ ✓ 0.584/0.744 0.582/0.739 0.177 0.220 0.367 0.378
✓ ✓ ✓ ✓ ✓ 0.666/0.702 0.663/0.696 0.206 0.199 0.337 0.366

✓ ✓ 0.468/0.726 0.468/0.727 0.123 0.227 0.304 0.327
✓ ✓ ✓ ✓ ✓ 0.579/0.660 0.578/0.660 0.194 0.206 0.361 0.301

✓ ✓ 0.534/0.687 0.532/0.683 0.145 0.217 0.354 0.330
✓ ✓ ✓ ✓ ✓ 0.643/0.672 0.638/0.666 0.193 0.198 0.371 0.315

✓ ✓ 0.530/0.722 0.532/0.714 0.143 0.151 0.307 0.336
✓ ✓ ✓ ✓ ✓ 0.667/0.674 0.667/0.665 0.191 0.115 0.243 0.333

✓ ✓ ✓ ✓ ✓ 0.603/0.675 0.601/0.670 0.203 0.206 0.376 0.339
✓ ✓ ✓ ✓ ✓ 0.549/0.686 0.548/0.681 0.200 0.185 0.338 0.338

✓ ✓ ✓ ✓ ✓ 0.578/0.663 0.577/0.658 0.202 0.174 0.348 0.330
✓ ✓ ✓ ✓ ✓ 0.577/0.643 0.574/0.635 0.171 0.073 0.179 0.281

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.600/0.699 0.599/0.695 0.202 0.227 0.377 0.347

a LaneGNN instance trained on either only the respective
city or on all cities (see Tab. S.4, upper half). In general,
we observe that the specifically trained models do not nec-
essarily perform better on the test-sets of their respective
cities. In comparison, the LaneGNN model trained on all
cities consistently produces higher precision while showing
comparably small reductions in recall. This allows us to state
that larger training sets across all cities do not necessarily
harm the performance on specific cities when evaluating.

In addition to these findings, we also evaluate different
LaneGNN instances trained on city-wise training sets and
measure their performance across all cities combined. We
observe no major performance drops when testing a city-

specific model on all cities except for the model trained
on Pittsburgh (see Tab. S.4, lower half). This essentially
means that we can use a model trained on one city and
still perform reasonably well in other cities. Nonetheless,
the model trained on all cities still shows the average best
performance across all cities.

S.6.2. Qualitative Results

In Fig. S.9, we visualize the success and failure cases of
our LaneGNN model for the Successor-LGP task. Challeng-
ing scenes typically entail complex topological structures,
such as roundabouts, multi-lane streets, and high-contrast
illumination scenarios. In the depicted high-contrast scene,
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(a) Region 1, naive aggregation (b) Region 1, our aggregation

(c) Region 2, naive aggregation (d) Region 2, our aggregation

Figure S.10. Visualizations of the naive and our aggregation scheme for two large-scale areas within the testing region of the city of Miami.

the lane turning right is not detected, leading to a missing
branch in the predicted lane graph. The roundabout de-
picted in the bottom center leads to a topologically correct
predicted successor graph, but the predicted waypoints of
the left-turning lane do not align with the position of the
roundabout center. Finally, in the bottom right scene, an
additional left-turning lane going in the opposite direction is
predicted by our LaneGNN model. Our aggregation scheme
can remove these false-positive graph branches if they are
not consistently predicted for multiple successive LaneGNN
forward passes.

S.7. Extended Results: Full-LGP
In order to generate the test-set results provided in

the main paper, we initialized our drive(pinit) func-
tion (Algo. 1) starting at the predicted lane start points as
provided by the yaw-segmentation output of LaneExtrac-
tion [15]. This results in 178 initial poses parametrized by
pi = (xi, yi, γi) used for parallel execution of drive()
as described in Algo. 1. Our numbers provided in the main
paper are generated using the parameters detailed below.

We make use of thresholding Sego
lane at a value of 0.15,

which produces relatively high recalls and thus more con-

Table S.5. Additional ablations of the aggregation scheme used in the Full-
LGP task. We compare the presented naı̈ve and full aggregation scheme
with the reduced variants of the full pipeline (no smoothing of Gpred, no
removal of invalidated splits and merges, and a smaller lateral aggregation
threshold).

Model APLS ↑ TOPO P/R ↑ GEO P/R ↑ Graph IoU ↑

w/o smoothing 0.105 0.452/0.671 0.631/0.726 0.377
w/o remove s/m 0.102 0.480/0.658 0.634/0.698 0.366

athresh = 10 0.108 0.458/0.677 0.581/0.738 0.354

Naı̈ve 0.101 0.366/0.654 0.523/0.727 0.376
Ours 0.103 0.481/0.670 0.649/0.689 0.384

nections at intersections. This is complemented by only
considering edges with an edge score of 0.5 or higher for
graph traversal. For aggregation, we use a radius and dis-
tance threshold of 80 px and 0.5 radians to filter close nodes
and edges of Gagg for constructing LocalAggGraph(A) in-
stances to speed up the aggregation process. For the actual
merging of nodes (Eq. 6 and Eq. 7), we choose a lateral dis-
tance athresh = 20 that is used for aggregate() within
one drive() instance as well as aggregation of multiple
drive() outputs (see Algo. 2). Regarding the drive()
function, the maximum overall number of steps is 36 over a
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Figure S.11. Illustrative path planning experiment results. We visualize the ground-truth graph in thin green and the path planned on the ground-truth graph in
bold green. We employ the same visualization scheme for the graph from LaneExtraction, and our aggregation scheme.

maximum of 4 branches with a maximum branch-age of 12
each. As described before we smooth the predicted graphs
and also remove splits and merges.

In addition, we present results on three additional param-
eter settings for the Full-LGP task in Tab. S.5. We observe
slight performance decreases in precision while the recall
is similar or higher when not smoothing predicted graphs.
Without removing unvalidated splits and merges, our perfor-
mance shows slight decreases for GraphIoU, GEO precision,
and TOPO P/R. Finally, we lower athresh to 10, which in-
creases recall but lowers precision, specifically the GEO
metric, while the Graph IoU also drops by three percent.
As in the main paper, we also list our naı̈ve aggregation
scheme for comparison. The results are further illustrated in
Fig. S.10.

S.8. Extended Results: Planning

As described in the main manuscript, we evaluate the qual-
ity of the generated lane graph on a planning task. Fig S.11
illustrates exemplary planned paths obtained on the graphs
from the ground-truth annotations, LaneExtraction, and our
aggregation scheme, respectively. We observe that for most
scenarios, the planned paths from our aggregation scheme
closely match the paths planned on the ground-truth graph.
Even for long routes with multiple turns, we report a close
match between our path and the ground-truth path. We
notice some inaccuracies in our planned path where the tra-

jectory deviates from the correct lane and contains slightly
misaligned path waypoint positions.

While some of the paths from LaneExtraction show en-
couraging results, we observe that for many routes, no close
match between the LaneExtraction path and the ground-truth
path can be observed, also mirrored in the quantitative eval-
uation of the planning task in the main manuscript. We
hypothesize that the LaneExtraction graphs are not always
complete and have missing links for occluded or topolog-
ically complex regions, resulting in the nonexistence of a
path through the graph from start to goal nodes.
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