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Abstract

LiDAR panoptic segmentation facilitates an autonomous
vehicle to comprehensively understand the surrounding ob-
jects and scenes and is required to run in real time. The
recent proposal-free methods accelerate the algorithm, but
their effectiveness and efficiency are still limited owing to
the difficulty of modeling non-existent instance centers and
the costly center-based clustering modules. To achieve ac-
curate and real-time LiDAR panoptic segmentation, a novel
center focusing network (CFNet) is introduced. Specifically,
the center focusing feature encoding (CFFE) is proposed to
explicitly understand the relationships between the origi-
nal LiDAR points and virtual instance centers by shifting
the LiDAR points and filling in the center points. More-
over, to leverage the redundantly detected centers, a fast
center deduplication module (CDM) is proposed to select
only one center for each instance. Experiments on the Se-
manticKITTI and nuScenes panoptic segmentation bench-
marks demonstrate that our CFNet outperforms all exist-
ing methods by a large margin and is 1.6 times faster
than the most efficient method. The code is available at
https://github.com/GangZhang842/CFNet.

1. Introduction

Panoptic segmentation [18] combines both semantic seg-
mentation and instance segmentation in a single framework.
It predicts semantic labels for the uncountable stuff classes
(e.g. road, sidewalk), while it simultaneously provides se-
mantic labels and instance IDs for the countable things
classes (e.g. car, pedestrian). The LiDAR panoptic segmen-
tation is one of the bases for the safety of autonomous driv-
ing, which employs the point clouds collected by the Light
Detection and Ranging (LiDAR) sensors to effectively de-
pict the surroundings. Existing LiDAR panoptic segmenta-
tion methods first conduct semantic segmentation, and then

Figure 1. PQ vs. runtime on the SemanticKITTI test set. Runtime
measurements are taken on a single NVIDIA RTX 3090 GPU. The
panoptic quality (PQ) is introduced in section 4.1.

achieve instance segmentation for the things categories in
two ways, the proposal-based and proposal-free methods.

The proposal-based methods [17, 31, 37] adopt a two-
stage process similar to the well-known Mask R-CNN [14]
in the image domain. It first generates object proposals for
the things points by using 3D detection networks [19, 30]
and then refines the instance segmentation results within
each proposal. As shown in Fig. 1, these methods are usu-
ally complicated and hardly achieve real-time processing,
owing to their sequential multi-stage pipelines.

The proposal-free frameworks [13, 15, 21, 22, 29, 35, 39]
are more compact. To associate the things points with in-
stance IDs, these methods usually leverage the instance cen-
ters. Specifically, they regress the offsets from the points
to their corresponding centers, and then adopt the class-
agnostic center-based clustering modules [13, 15, 29] or the
bird’s-eye view (BEV) center heatmap [22, 35, 39]. How-
ever, two problems exist in these methods. First, for center
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(a) CFNet without CFFE (b) CFNet with CFFE

Figure 2. Instance segmentation of a car. Without our CFFE, the
car is split into parts (a), while the CFFE significantly alleviates
this problem (b). Different colors represent different instances.

feature extracting and center modeling, the non-existent in-
stance centers increase the difficulty, considering that the
LiDAR points are usually surface-aggregated [35] and an
instance center is imaginary in most cases. As shown in
Fig. 2(a), the difficulty often results in the fault that one
instance is incorrectly split into several parts. Second,
for exploiting the redundantly detected centers, the clus-
tering modules (e.g. MeanShift, DBSCAN) are too time-
consuming to support the real-time autonomous driving per-
ception systems, while the BEV center heatmap cannot dis-
tinguish objects with different altitudes in the same BEV
grid.

For accurate and fast LiDAR panoptic segmentation, a
proposal-free center focusing network (CFNet) is proposed.
For better encoding center features, a novel center focusing
feature encoding (CFFE) is proposed to generate center-
focusing feature maps by shifting the things points to fill
in the non-existent instance centers for more accurate pre-
dictions (as shown in Fig. 2(b)). For center modeling, the
CFNet not only decomposes the panoptic segmentation task
into the widely-used semantic segmentation and center off-
set regression, but also proposes a new confidence score
prediction for indicating the accuracy of the center offset re-
gression. Subsequently, for the detected centers exploiting,
a novel center deduplication module (CDM) is designed to
select one center for a single instance. The CDM keeps
the predicted centers with higher confidence scores, while
suppressing the ones with lower confidence. Finally, in-
stance segmentation is achieved by assigning the shifted
things points to the closest center. For efficiency, the pro-
posed CFNet is built on the 2D projection-based segmenta-
tion paradigm. Our contributions are as follows:

• A proposal-free CFNet is proposed to achieve accu-
rate and fast LiDAR panoptic segmentation by solving
the bottleneck problems of center modeling and center-
based clustering in previous methods.

• The CFFE is proposed to alleviate the difficulty of
modeling the non-existent instance centers and the
CDM is designed to efficiently keep one center for

each instance.

• The proposed CFNet is evaluated on the nuScenes and
SemanticKITTI LiDAR panoptic segmentation bench-
marks. Our CFNet achieves the state-of-the-art perfor-
mance with a real-time inference speed.

2. Related Work
The LiDAR panoptic segmentation methods usually

adopt the LiDAR semantic segmentation networks as the
backbone and jointly optimize the semantic segmentation
and instance segmentation tasks. The results of the two
tasks are fused to generate the final panoptic segmentation
results. The LiDAR semantic segmentation backbone is
first introduced. Then, the panoptic segmentation methods,
achieving instance segmentation upon the semantic seg-
mentation backbone, are grouped into the proposal-based
and proposal-free methods, and are further discussed.

LiDAR semantic segmentation backbone. The back-
bone network for LiDAR semantic segmentation can be di-
vided into three groups: point-based, voxel-based, and 2D
projection-based methods. The point-based methods [16,
27, 28, 33] directly operate on the raw point clouds but
are extremely time-consuming due to the expensive local
neighbor searching. The voxel-based methods [7, 8, 32, 40]
discretize the point clouds into structured voxels, where
sparse 3D convolutions are applied. These methods are
still difficult to meet the real-time applications, although
they achieve the highest accuracy. The 2D projection-based
methods are more efficient since most of their computation
is done in the 2D space, such as range view (RV) [10,25,34],
bird’s-eye view (BEV) [19], polar view [38], and multi-
view fusion [1, 23]. For fast LiDAR panoptic segmen-
tation, the Panoptic-PolarNet [39], SMAC-Seg [20], and
LPSAD [24] all adopt the 2D projection-based backbone.
A recent real-time semantic segmentation method, namely
CPGNet [23], is a 2D projection-based one that explores an
end-to-end multi-view fusion framework by fusing the fea-
tures from the point, BEV, and RV.

Proposal-based methods. The proposal-based meth-
ods conduct instance segmentation through a two-stage
complicated process. They first detect the foreground in-
stances and then refine the instance segmentation results
independently within each detected bounding box. Based
on the Mask R-CNN [14] for instance segmentation, the
MOPT [17] and EfficientLPS [31] insert a semantic branch
to achieve panoptic segmentation on the range view (RV).
Recently, LidarMultiNet [37] unifies LiDAR-based 3D ob-
ject detection, semantic segmentation, and panoptic seg-
mentation in a single framework to reduce the computation
cost by sharing a strong voxel-based backbone.

Proposal-free methods. The proposal-free methods
usually apply the class-agnostic clustering to the things
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Figure 3. The overview of our CFNet. It consists of four steps: 1) the 2D projection-based backbone extracts features on the 2D space;
2) the proposed center focusing feature encoding (CFFE) mimics and enhances the non-existent instance center features; 3) the panoptic
segmentation head predicts the output results; 4) the proposed center deduplication module (CDM) achieves instance segmentation that is
fused to generate the final panoptic segmentation results. The dashed lines indicate that the operations are only used during inference.

points to conduct instance segmentation. The LPSAD [24]
clusters points into instances by regressing the center off-
sets. The Panoster [13] directly predicts the instance IDs
from a learning-based clustering module, where the time-
consuming DBSCAN [11] is used to refine the instance seg-
mentation results. The DS-Net [15] proposes a learnable
dynamic shifting module that adjusts the kernel functions
of the MeanShift [9] to handle instances with various sizes.
The GP-S3Net [29] constructs a graph convolutional net-
work (GCN) on the over-segmentation clusters to identify
instances. The SMAC-Seg [20] proposes a sparse multi-
directional attention clustering and center-aware repel loss
for instance segmentation. These methods adopt the time-
consuming clustering methods. To further accelerate the al-
gorithm, recently, Panoptic-PolarNet [39], SCAN [35], and
Panoptic-PHNet [22] adopt the BEV center heatmap and
center offsets for instance segmentation. However, the BEV
center heatmap is also costly and confuses on z-axis.

3. Approach
The input of the LiDAR panoptic segmentation task is

the LiDAR point clouds, given by a set of unordered points
P = {(pi,f i)}

N−1
i=0 (where pi = (x, y, z) is the 3D coor-

dinates in the cartesian space and f i denotes additional Li-
DAR point features, e.g. intensity). The task aims to assign
a set of labels L = {(si, insti)}N−1

i=0 to these points, where
si is the semantic label (e.g. road, building, car, pedes-
trian), and insti is the instance ID of the ith point. More-
over, si can be divided into the uncountable stuff classes
(e.g. road, building) and countable things classes (e.g. car,
pedestrian). The instance IDs of stuff points are set as 0.

To predict the labels L of the input LiDAR point clouds
P , our CFNet decomposes this process into four steps, as
shown in Fig. 3: 1) an off-the-shelf 2D projection-based
backbone is applied to efficiently extract features on the 2D
spaces (e.g. BEV, RV); 2) a novel center focusing feature
encoding (CFFE) is used to generate center-focusing fea-
ture maps for more accurate predictions of the instance cen-
ters; 3) the panoptic segmentation head fuses the features
from the 3D points and 2D spaces to predict the semantic
segmentation results, the center offsets, and the confidence
scores of the center offsets, respectively; 4) during infer-
ence, a post-process is conducted to produce the panoptic
segmentation results, where a novel center deduplication
module (CDM) operates on the shifted things points to se-
lect only one center for a single instance.
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Figure 4. The proposed center focusing feature encoding (CFFE). The “Conv” represents a 2D convolution with 3 × 3 kernels, a batch
normalization, and a ReLU layer. The details of the semantic branch and instance branch are shown in Fig. 3. The blue arrows are
coordinate-related operations.

The design of the backbone in the first step is beyond the
scope of the paper, and the last three mentioned steps are
illustrated in detail in the following subsections.

3.1. Center Focusing Feature Encoding

As mentioned above, the LiDAR points of an object are
usually surface-aggregated, especially for car and truck cat-
egories, resulting in the fact that the center of an object is
imaginary and does not exist in the LiDAR point clouds. To
encode the features of the non-existent centers, a novel cen-
ter focusing feature encoding (CFFE) is proposed, which
takes the 2D features from the backbone and the 3D point
coordinates as inputs and generates the enhanced center-
focusing feature maps as shown in Fig. 3.

The CFFE module consists of three steps, including in-
termediate result prediction, center feature generation, and
feature enhancement module, as shown in Fig. 4.

Intermediate result prediction. In this step, the CFFE
predicts intermediate results (including the semantic seg-
mentation, center offset, and its confidence scores) accord-
ing to the 2D features Fm and 3D point features F p for
subsequent center feature simulation. Specifically, two con-
volution layers are applied on the 2D features Fm in-
dependently, to generate semantic features F sem

m and in-
stance features F ins

m (m is the specific 2D view, such as
RV [10, 25, 34], BEV [19], and polar view [38].)

F sem
m = Conv(Fm;θ1), (1)

F ins
m = Conv(Fm;θ2), (2)

where Conv denotes sequential 2D convolution, batch nor-
malization, and ReLU operations, and θ1 and θ2 are their
learnable parameters. Then, the semantic branch generates
per-point 3D semantic features F sem

p by fusing the point
features F p and 2D semantic features F sem

m ,

F sem
p = Seg(F p,F

sem
m ;θ3), (3)

where Seg is the semantic branch, and θ3 is the parameters.
Finally, the intermediate semantic results Ŝ′ =

{ŝ′i}N−1
i=0 is produced based on F sem

p . The intermediate
results of center offsets Ô′ = {ô′

i}N−1
i=0 and confidence

scores Ĉ′ = {ĉ′i}N−1
i=0 are predicted by the instance branch

with the point features F p and 2D instance features F ins
m ,

Ŝ′ = FC(F sem
p ;θ4), (4)

Ô′, Ĉ′ = Ins(F p,F
ins
m ;θ5), (5)

where Ins is the instance branch, and FC represents the
fully-connected layer. The structure and the training ob-
jective of semantic and instance branches are the same as
those in the panoptic segmentation head and are elucidated
in Fig. 3 and section 3.2.

Center feature generation (CFG). In this step, the
CFFE generates the shifted center features F sem

p→m by shift-
ing the 3D semantic point features F sem

p to the predicted
centers according to the mentioned intermediate results.
First, the coordinates of a predicted center pshift

i are com-
puted by,

pshift
i = pi + ô′

i ∗ 1[ĉ′i > δ], (6)

where pi is the original 3D LiDAR point coordinates, and
1[ĉ′i > δ] is a binary indicator of whether the confidence ĉ′i
is greater than δ = 0.2. In other words, it does not shift the
stuff points or the things points with low confidence scores.

Then, the shifted 3D points {pshift
i }N−1

i=0 are served as
the new coordinates of the feature points, and the Point to
Grid (P2G) operation in [23] re-projects the 3D semantic
features F sem

p onto the 2D projected feature maps F sem
p→m

with this new coordinates,

F sem
p→m = P2G(F sem

p ; {pshift
i }N−1

i=0 ). (7)



Compared with F sem
p , the feature maps F sem

p→m pay more
attention to the imaginary centers since most of the things
points have been shifted to their predicted centers.

Feature enhancement module (FEM). The CFFE fi-
nally fuses the semantic feature maps F sem

m and the re-
projected shifted center feature maps F sem

p→m to generate
center-focusing semantic feature maps FCFsem

m and in-
stance feature maps FCFins

m , which are used by the sub-
sequent semantic and instance branches for more accurate
predictions. The enhancement module is composed of a
simple concatenation operation and several convolution lay-
ers, whose details are in the supplementary material.

In addition, for application of the multi-view fusion
backbone (e.g. [23] shown in the supplementary material),
the feature maps Fm, F sem

m , F ins
m , F sem

p→m (e.g. m ∈
{RV,BEV}) of each view are computed independently ac-
cording to the above process. Then, they are fused in the
point fusion (PF) module [23] to generate integrated 3D
point features and per-point prediction.

3.2. Panoptic Segmentation Head

For better modeling the instance center, the panoptic seg-
mentation head uses a semantic branch to predict the se-
mantic segmentation, and an instance branch to estimate
both the center offsets and the newly introduced confidence
scores, given the center-focusing semantic and instance fea-
ture maps. The architectures of both branches follow the
segmentation head in [23] and are briefly introduced, while
their training objectives are elaborated on.

Semantic branch. For a per-point prediction, the se-
mantic branch first applies the Grid to Point (G2P) oper-
ations to acquire the 3D point-wise features from the 2D
semantic feature maps. Then, a PF module fuses the point-
wise features from the G2P operation and the original 3D
points to generate point-wise semantic features. The de-
tails of the G2P and PF can be found in [23]. After ob-
taining the point-wise semantic features, a fully connected
(FC) layer is used to predict the final per-point semantic re-
sult ψ̂j

i (ψ̂j
i ∈ [0, 1]). ψ̂j

i represents the probability of the
ith LiDAR point belonging to the jth class. The predicted
semantic label ŝi is acquired by selecting the most probable
class ŝi = argmaxj ψ̂

j
i .

Referring to the CPGNet [23], the same loss functions
are adopted, including weighted cross entropy (WCE) loss
Lwce, Lovász-Softmax loss Lls [4], and transformation
consistency loss Ltc.

Instance branch. Similar to the semantic branch, the
instance branch also adopts the G2P operation and a PF
module to acquire point-wise instance features. An FC layer
is applied to predict the per-point center offsets ôi. The
ground-truth for ôi is the offset vector ei − pi from the ith

point pi to its corresponding instance center ei.
For center offset regression, the loss function for opti-

mizing ôi only considers the things classes and is formu-
lated as follows,

Loi
=

{
||ôi − (ei − pi)||2 if si ∈ things classes,
0 otherwise,

(8)

where ei is the axis-aligned center of the instance [15].
Then, the losses are summarized as the following,

Lo =
1

N things

N−1∑
i=0

Loi
, (9)

where N and N things are the numbers of all points and
things points, respectively.

For confidence score regression, another FC layer is used
to predict the per-point confidence score ĉi to indicate the
accuracy degree of ôi. ĉi is activated by a sigmoid function
to ensure ĉi ∈ [0, 1]. The ground-truth label ci for supervis-
ing ĉi is generated by

ci =

{
exp(−L2

oi

2σ2 ) if si ∈ things classes,
0 otherwise.

(10)

For the things points, the lower Loi
is, the higher ci is. It

means that the point with a more accurate regression of the
center offset has a higher confidence score.

The weighted binary cross entropy loss Lwbce is applied,

Lwbce = −
1

N

N−1∑
i=0

6ci log(ĉi)+(1− ci) log(1− ĉi), (11)

where the things points are manually emphasized since the
number of them is much less than that of the stuff points.

Finally, the loss for each group of results (from the
CFNet or CFFE) is defined as

L = Lwce + 3Lls + Ltc + 2Lo + Lwbce. (12)

The total loss is the sum of the two losses sourced from the
CFNet and CFFE.

3.3. Center Deduplication Module

Given the final predictions of the semantic segmentation
Ŝ, center offsets Ô, and confidence scores Ĉ, this section
introduces how to exploit the detected centers to acquire the
panoptic segmentation results during inference, and illus-
trates the key module, center deduplication module (CDM).

Post-process. For the panoptic segmentation results,
instance segmentation is first generated and then the final
panoptic segmentation is acquired by fusing the semantic
and instance segmentation labels. There are five steps to
achieve the final panoptic segmentation:



Algorithm 1: Center deduplication module

Input: Shifted things points {p̃shift
t ∈ R3}M−1

t=0 ,
confidence scores {c̃t ∈ [0, 1]}M−1

t=0 ,
distance threshold d ∈ R

Output: Instance centers {ẽj ∈ R3}D−1
j=0

1 order = sort index({c̃t}M−1
t=0 , decending=true)

2 initialize a boolean vector rej ∈ BM with all
elements of false and an empty list keep

3 for k ← 0 to M − 1 do
4 if not rej[order[k]] then
5 keep.append(order[k])
6 for h← k + 1 to M − 1 do
7 dist = ||p̃shift

order[k] − p̃shift
order[h]||2

8 if dist < d then
9 rej[order[h]] = true

10 end
11 end
12 end
13 end
14 {ẽj} = p̃shift

keep

1) The things points {p̃t}M−1
t=0 = {pi|ŝi ∈

things classes} are selected according to the predicted se-
mantic labels, with their offsets {õt}M−1

t=0 and confidence
scores {c̃t}M−1

t=0 (where M is the number of things points).

2) Each shifted things point p̃shift
t is given by p̃shift

t =
p̃t + õt and is severing as an instance center candidate.

3) A center ẽj for each instance j is selected by the CDM
based on the coordinates p̃shift

t and its confidence score c̃t,
while other candidates are suppressed.

4) The instance ID înstt is acquired by assigning the
shifted things points p̃shift

t to the closest center in all cen-
ters {ẽj}D−1

j=0 (D is the number of detected instances).

5) The majority voting [15, 39] reassigns the most fre-
quent semantic label to all points of a predicted instance to
further guarantee the consistency of semantic labels within
a predicted instance.

Center deduplication module (CDM). The CDM
takes the shifted points {p̃shift

t }M−1
t=0 and confidence scores

{c̃t}M−1
t=0 as input to get an instance center êj for each in-

stance j. Inspired by the bounding box NMS, our CDM
suppresses the candidate centers with lower scores within
a euclidean distance threshold d. The pseudo-code of our
CDM is shown in Algorithm 1, where two centers with a
distance less than d are considered as the same instance.
The process of our CDM is simple and can be easily imple-
mented in CUDA.

4. Experiments
The proposed CFNet is compared with the existing meth-

ods on the public SemanticKITTI [2] and nuScenes [5]
panoptic segmentation benchmarks.

4.1. Experimental Setup

Datasets. The SemanticKITTI [2] consists of 22 se-
quences collected by a Velodyne HDL-64E 360◦ rotating
LiDAR with 64 beams vertically. It contains 43,552 LiDAR
scans in total and is split into a training set with 19,130
scans from sequences 00 to 10 except 08, a validation set
containing sequence 08 with 4,071 scans, and a test set in-
cluding the rest sequences with 20,351 scans. The test set
is only provided with point clouds and used for the online
leaderboards. For the panoptic segmentation, it has 19 valid
categories, including 11 stuff and 8 things categories.

The nuScenes [5] is a newly released benchmark with
1,000 scenes collected by a Velodyne HDL-32E 360◦ ro-
tating LiDAR with 32 beams vertically. The dataset is col-
lected in Boston and Singapore. It uses 28,130 scans for
training, 6,019 for validation, and 6,008 for testing. The
panoptic segmentation benchmark provides 16 categories,
including 6 stuff and 10 things categories [12].

Evaluation metric. As the official benchmarks [3, 12]
suggest, the panoptic quality (PQ) is adopted to evaluate
the performance of LiDAR panoptic segmentation. The
PQ [3, 12] measures the overall quality of the panoptic seg-
mentation, and can be decomposed into two terms: 1) the
segmentation quality (SQ) is the average IoU of all matched
pairs; 2) the recognition quality (RQ) measures the F1

score. These three metrics are also reported separately on
the stuff and things classes, including PQSt, SQSt, RQSt,
and PQTh, SQTh, RQTh, respectively. The PQ† [26] is also
reported by replacing the PQ of each stuff class with its IoU.
For evaluating the sub-task of semantic segmentation, mean
Intersection over Union (mIoU) [2] is reported.

Training details. In the experiments, two 2D
projection-based backbones, namely PolarNet [38] and
CPGNet [23], are used in our CFNet. For the backbone
of PolarNet [38], the training schedules and data augmen-
tation are the same as those of Panoptic-PolarNet [39]
for a fair comparison. Besides, for efficiency, only one
stage version of CPGNet [23] is used in our CFNet. It
is trained from scratch for 48 epochs with a batch size
of 8 and takes around 24 hours on 8 NVIDIA RTX 3090
GPUs. Stochastic gradient descent (SGD) is used as the
optimizer, where the initial learning rate, weight decay,
and momentum are 0.02, 0.001, and 0.9, respectively. The
learning rate is decayed by 0.1 per 10 epochs. In training,
the data augmentation is applied as a convention, including
random flipping along the x and y axes, random global
scale sampled from [0.95, 1.05], random rotation around
the z-axis, and random Gaussian noise N (0, 0.02).



Backbone CFFE Deduplication PQ PQ† PQTh PQSt mIoU RT(ms)CFG FEM
a

PolarNet [38]

BEV Center Heatmap [39] 59.1 64.1 65.7 54.3 64.5 65.3 + 20.9
b ✓ BEV Center Heatmap [39] 59.5 64.3 66.2 54.4 64.6 69.7 + 20.9
c ✓ ✓ BEV Center Heatmap [39] 60.4 65.6 67.2 55.1 65.2 71.9 + 20.9
d ✓ ✓ CDM [Ours] 60.6 65.7 67.8 55.2 65.4 71.9 + 3.6
e

CPGNet [23]

DBSCAN [11] 59.5 64.1 63.8 56.3 64.6 31.6+24.9
f HDBSCAN [6] 58.3 62.9 60.9 56.3 64.9 31.6+48.7
g MeanShift [9] 59.9 64.5 64.7 56.3 64.9 31.6+84.6
h CDM [Ours] 60.5 65.6 66.1 56.5 66.3 32.7+2.3
i ✓ CDM [Ours] 60.8 65.9 66.3 56.9 66.5 37.4+2.3
j ✓ ✓ CDM [Ours] 62.7 67.5 70.0 57.3 67.4 41.2+2.3

Table 1. Ablation studies on the SemanticKITTI validation set. RT: running time.

4.2. Ablation Studies

Ablative analyses are conducted on the SemanticKITTI
validation set with the above experimental setup. As shown
in Table 5, two 2D projection-based backbones, namely
PolarNet [38] and CPGNet [23], are incorporated with
our framework to validate the proposed CFFE and CDM.
Row (a) shows the original Panoptic-Polarnet [39], while
rows (b,c,d) are implemented based on the official code of
Panoptic-Polarnet [39]. The running time is reported by the
time of the model inference plus that of the post-process.

Effects of the CFFE. The CFFE is configured in three
ways: 1) the CFFE is not applied (a,e,f,g,h); 2) the cen-
ter feature generation (CFG) in the CFFE is removed (b,i),
which is equal to the setting of only imposing the interme-
diate supervision; 3) the whole CFFE is applied (c,d,j). For
the two backbones, a common observation is that the im-
provements primarily come from the CFG rather than the
intermediate supervision, especially for the things classes
(a,b,c and h,i,j). In terms of the running time, The CFFE
brings acceptable latency of +6.6 ms and +8.5 ms for these
two backbones, respectively.

Moreover, the errors in predicting things center offsets
are calculated for both the CFNet with CFFE and its in-
termediate results as shown in Table 2. Equipped with the
backbone of CPGNet [23], the proposed CFFE reduces the
errors of predicting the things center offsets. The observa-
tions demonstrate that explicitly modeling center features
helps in identifying an instance.

Effects of the CDM. For the proposal-free meth-

training set validation set
Intermediate 1.35 1.22

CFNet 1.19 1.13

Table 2. Mean errors measured in meter (m) of things center off-
sets for the intermediate results and the CFNet with the CFFE on
the SemanticKITTI training and validation set.

ods, there are primarily three ways to identify each in-
stance: 1) the class-agnostic clustering methods (e.g. DB-
SCAN, HDBSCAN, MeanShift) (e,f,g), 2) the BEV cen-
ter heatmap [39] (a,b,c), and 3) our CDM (d,h,i,j). For
the backbone of PolarNet [38], our CDM outperforms the
BEV center heatmap [39] by +0.2 for the PQ (c,d), while
our CDM runs faster. For the backbone of CPGNet [23],
compared with the class-agnostic clustering methods, our
CDM also achieves the best performance on both accu-
racy (+0.6∼+2.2 for the PQ) and running time (-21.5 ms∼-
81.2 ms), though it slows down the model inference by
+1.1 ms (g,h) owing to the additional confidence prediction.

More ablation studies can be seen in the supplementary
material.

4.3. Evaluation Comparisons

Quantitative results. In Table 3 and Table 7, our
CFNet with CPGNet as its backbone is compared with
the existing methods on the SemanticKITTI test set and
nuScenes validation set, respectively. From top to bottom,
the methods are grouped as proposal-based and proposal-
free methods. It is found that our proposal-free CFNet sur-
passes the previous methods by a large margin on most met-
rics. Specifically, on the SemanticKITTI test set, our CFNet
outperforms the previous state-of-the-art SCAN [35] and
Panoptic-PHNet [22] by +1.9 for the PQ, and +1.5 for the
RQ. On the nuScenes validation set, our CFNet outperforms
the most competitive Panoptic-PHNet [22] by +0.4 for the
PQ, +0.6 for the SQ, and +0.4 for the RQ, respectively.

Running time. The running time is reported on the
SemanticKITTI. It is measured with PyTorch FP32 with-
out any model acceleration tricks on a single NVIDIA RTX
3090 GPU. For clarity, the running time of our method is
further divided into two parts, including the time costs of the
model and post-process. Based on the same kind of devices
as the existing methods, our CFNet runs 43.5 ms (41.2 ms
for model inference and 2.3 ms for post-process) and is 1.6
times faster than the most efficient Panoptic-PHNet [22].

Qualitative results. The visualization results are



Methods PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU RT(ms)
Proposal-based Methods
RangeNet++ [25]&PointPillars [19] 37.1 45.9 75.9 47.0 20.2 75.2 25.2 49.3 76.5 62.8 52.4 416.6
KPConv [33]&PointPillars [19] 44.5 52.5 80.0 54.4 32.7 81.5 38.7 53.1 79.0 65.9 58.8 526.3
PanopticTrackNet [17] 43.1 50.7 78.8 53.9 28.6 80.4 35.5 53.6 77.7 67.3 52.6 147
EfficientLPS [31] 57.4 63.2 83.0 68.7 53.1 87.8 60.5 60.5 79.5 74.6 61.4 -
Proposal-free Methods
LPSAD [24] 38.0 47.0 76.5 48.2 25.6 76.8 31.8 47.1 76.2 60.1 50.9 84.7
DS-Net [15] 55.9 62.5 82.3 66.7 55.1 87.2 62.8 56.5 78.7 69.5 61.6 294.1
Panoster [13] 52.7 59.9 80.7 64.1 49.4 83.3 58.5 55.1 78.8 68.2 59.9 -
GP-S3Net [29] 60.0 69.0 82.0 72.1 65.0 86.6 74.5 56.4 78.7 70.4 70.8 270.3
SMAC-Seg [20] 56.1 62.5 82.0 67.9 53.0 85.6 61.8 58.4 79.3 72.3 63.3 99
Panoptic-PolarNet [39] 54.1 60.7 81.4 65.0 53.3 87.2 60.6 54.8 77.2 68.1 59.5 86.2
SCAN [35] 61.5 67.5 84.5 72.1 61.4 88.1 69.3 61.5 81.8 74.1 67.7 78.1
Panoptic-PHNet [22] 61.5 67.9 84.8 72.1 63.8 90.7 70.4 59.9 80.5 73.3 66.0 69.3
CFNet [Ours] w/CPGNet [23] 63.4 69.7 85.2 73.6 66.7 89.8 74.3 61.0 81.9 73.1 68.3 41.2 + 2.3

Table 3. Comparison results on the SemanticKITTI test set.

Methods PQ PQ† SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt mIoU
Proposal-based Methods
Cylinder3D [40]&PointPillars [19] 36.0 44.5 83.3 43.0 23.3 83.7 27.0 57.2 82.7 69.6 52.3
Cylinder3D [40]&SECOND [36] 40.1 48.4 84.2 47.3 29.0 84.4 33.6 58.5 83.7 70.1 58.5
PanopticTrackNet [17] 51.4 56.2 80.2 63.3 45.8 81.4 55.9 60.4 78.3 75.5 58.0
EfficientLPS [31] 62.0 65.6 83.4 73.9 56.8 83.2 68.0 70.6 83.8 83.6 65.6
Proposal-free Methods
LPSAD [24] 50.4 57.7 79.4 62.4 43.2 80.2 53.2 57.5 78.5 71.7 62.5
DS-Net [15] 42.5 51.0 83.6 50.3 32.5 83.1 38.3 59.2 84.4 70.3 70.7
GP-S3Net [29] 61.0 67.5 84.1 72.0 56.0 85.3 65.2 66.0 82.9 78.7 75.8
SMAC-Seg [20] 67.0 71.8 85.0 78.2 65.2 87.1 74.2 68.8 82.9 82.2 72.2
Panoptic-PolarNet [39] 63.4 67.2 83.9 75.3 59.2 84.1 70.3 70.4 83.6 83.5 66.9
SCAN [35] 65.1 68.9 85.7 75.3 60.6 85.7 70.2 72.5 85.7 83.8 77.4
Panoptic-PHNet [22] 74.7 77.7 88.2 84.2 74.0 89.0 82.5 75.9 86.8 86.9 79.7
CFNet [Ours] w/CPGNet [23] 75.1 78.0 88.8 84.6 74.8 89.8 82.9 76.6 87.1 87.3 79.3

Table 4. Comparison results on the nuScenes validation set.

  Semantic Segmentation Instance Segmentation

Figure 5. Visualizations of our CFNet on the SemanticKITTI test
set. Different colors represent different classes or instances.

shown in Fig. 5. Our CFNet can distinguish adjacent pedes-
trians or cars. Besides, the boundaries of instances can be
accurately segmented. More qualitative results can be seen
in the supplementary material.

5. Conclusion
A novel proposal-free CFNet is proposed for real-time

LiDAR panoptic segmentation. For better modeling and
exploiting the non-existent instance centers, a novel CFFE
is proposed to generate enhanced center-focusing feature
maps and a CDM is introduced to keep only one center for
each instance and then assign the shifted things points to the
closest center for acquiring instance IDs. From the exper-
iments, it can be seen that center modeling and exploiting
is a key problem in the proposal-free LiDAR panoptic seg-
mentation methods, and mimicking the non-existent center
features is promising and shows a clear benefit.

Acknowledgements
The research project is partially supported by the Na-

tional Key R&D Program of China (No.2021ZD0111902),
and the National Natural Science Foundation of China
(No.U21B2038, 62272015, U19B2039).



References
[1] Yara Ali Alnaggar, Mohamed Afifi, Karim Amer, and Mo-

hamed ElHelw. Multi projection fusion for real-time seman-
tic segmentation of 3d lidar point clouds. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 1800–1809, 2021. 2

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 9297–9307,
2019. 6

[3] Jens Behley, Andres Milioto, and Cyrill Stachniss. A bench-
mark for lidar-based panoptic segmentation based on kitti.
In 2021 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 13596–13603. IEEE, 2021. 6

[4] Maxim Berman, Amal Rannen Triki, and Matthew B
Blaschko. The lovász-softmax loss: A tractable surrogate
for the optimization of the intersection-over-union measure
in neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4413–
4421, 2018. 5

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 6

[6] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander.
Density-based clustering based on hierarchical density esti-
mates. In Pacific-Asia conference on knowledge discovery
and data mining, pages 160–172. Springer, 2013. 7

[7] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and
Bingbing Liu. 2-s3net: Attentive feature fusion with adap-
tive feature selection for sparse semantic segmentation net-
work. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12547–12556,
2021. 2

[8] Christopher Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 3075–
3084, 2019. 2

[9] Dorin Comaniciu and Peter Meer. Mean shift: A robust ap-
proach toward feature space analysis. IEEE Transactions on
pattern analysis and machine intelligence, 24(5):603–619,
2002. 3, 7

[10] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy.
Salsanext: Fast, uncertainty-aware semantic segmentation of
lidar point clouds. In International Symposium on Visual
Computing, pages 207–222. Springer, 2020. 2, 4, 11

[11] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. In kdd, volume 96, pages
226–231, 1996. 3, 7

[12] Whye Kit Fong, Rohit Mohan, Juana Valeria Hurtado, Lub-
ing Zhou, Holger Caesar, Oscar Beijbom, and Abhinav Val-

ada. Panoptic nuscenes: A large-scale benchmark for lidar
panoptic segmentation and tracking. IEEE Robotics and Au-
tomation Letters, 7(2):3795–3802, 2022. 6

[13] Stefano Gasperini, Mohammad-Ali Nikouei Mahani, Al-
varo Marcos-Ramiro, Nassir Navab, and Federico Tombari.
Panoster: End-to-end panoptic segmentation of lidar point
clouds. IEEE Robotics and Automation Letters, 6(2):3216–
3223, 2021. 1, 3, 8

[14] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017. 1,
2

[15] Fangzhou Hong, Hui Zhou, Xinge Zhu, Hongsheng Li, and
Ziwei Liu. Lidar-based panoptic segmentation via dynamic
shifting network. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
13090–13099, 2021. 1, 3, 5, 6, 8, 13

[16] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11108–
11117, 2020. 2

[17] Juana Valeria Hurtado, Rohit Mohan, Wolfram Burgard, and
Abhinav Valada. Mopt: Multi-object panoptic tracking.
arXiv preprint arXiv:2004.08189, 2020. 1, 2, 8

[18] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten
Rother, and Piotr Dollár. Panoptic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9404–9413, 2019. 1

[19] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12697–12705, 2019. 1, 2, 4, 8, 11

[20] Enxu Li, Ryan Razani, Yixuan Xu, and Liu Bing-
bing. Smac-seg: Lidar panoptic segmentation via sparse
multi-directional attention clustering. arXiv preprint
arXiv:2108.13588, 2021. 2, 3, 8

[21] Enxu Li, Ryan Razani, Yixuan Xu, and Bingbing Liu. Cpseg:
Cluster-free panoptic segmentation of 3d lidar point clouds.
arXiv preprint arXiv:2111.01723, 2021. 1

[22] Jinke Li, Xiao He, Yang Wen, Yuan Gao, Xiaoqiang Cheng,
and Dan Zhang. Panoptic-phnet: Towards real-time and
high-precision lidar panoptic segmentation via clustering
pseudo heatmap. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11809–11818, 2022. 1, 3, 7, 8, 12, 13

[23] Xiaoyan Li, Gang Zhang, Hongyu Pan, and Zhenhua
Wang. Cpgnet: Cascade point-grid fusion network for
real-time lidar semantic segmentation. arXiv preprint
arXiv:2204.09914, 2022. 2, 4, 5, 6, 7, 8, 11, 12, 13

[24] Andres Milioto, Jens Behley, Chris McCool, and Cyrill
Stachniss. Lidar panoptic segmentation for autonomous driv-
ing. In 2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 8505–8512. IEEE,
2020. 2, 3, 8



[25] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill
Stachniss. Rangenet++: Fast and accurate lidar semantic
segmentation. In 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4213–4220.
IEEE, 2019. 2, 4, 8, 11

[26] Lorenzo Porzi, Samuel Rota Bulo, Aleksander Colovic, and
Peter Kontschieder. Seamless scene segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8277–8286, 2019. 6

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 2

[28] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a
metric space. arXiv preprint arXiv:1706.02413, 2017. 2

[29] Ryan Razani, Ran Cheng, Enxu Li, Ehsan Taghavi, Yuan
Ren, and Liu Bingbing. Gp-s3net: Graph-based panoptic
sparse semantic segmentation network. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, pages 16076–16085, 2021. 1, 3, 8

[30] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-
voxel feature set abstraction for 3d object detection. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10529–10538, 2020. 1

[31] Kshitij Sirohi, Rohit Mohan, Daniel Büscher, Wolfram Bur-
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Supplementary Material
In the supplementary material, the implementation de-

tails, extensive ablation studies, and some representative vi-
sualization results are shown in section A, section B, and
section C, respectively.

A. Implementation Details
In this section, we illustrate the detailed architec-

tures of the feature enhancement module in the proposed
CFFE and the CFNet framework with the backbone of the
CPGNet [23].

Feature enhancement module. As shown in Fig. 6,
the feature enhancement module (FEM) fuses the semantic
feature maps F sem

m and the re-projected shifted center fea-
ture maps F sem

p→m to generate center-focusing semantic fea-
ture maps FCFsem

m and instance feature maps FCFins
m (m

is the specific 2D view, such as RV [10, 25, 34], BEV [19],
and polar view [38].), which are used by the subsequent
semantic and instance branches for more accurate predic-
tions. Specifically, it first concatenates the two feature
maps. Then, the concatenated feature maps undergo three
convolution layers, where the dilation coefficients are set
as 1, 2, and 4, respectively, to enlarge the receptive field.
In the experiments, it is found that a larger receptive field
can improve performance. Finally, the outputs of the three
convolution layers are concatenated and then undergo two
extra convolution layers to get semantic and instance fea-
ture maps, respectively. In our implementation, C2 denotes
the number of output channels of the corresponding 2D
projection-based backbone. C3 and C4 are set as 64 and
48, respectively.

CFNet with the backbone of the CPGNet. Fig. 7
presents the proposed CFNet with the backbone of the
CPGNet [23], which is a powerful and efficient multi-view
fusion backbone and consists of the 2D projection-based
bird’s-eye view (BEV) and range view (RV) branches.
Fig. 8 shows the corresponding center focusing feature en-
coding (CFFE) that is integrated with the CPGNet [23]
backbone. These two modules are similar to those of the
single-view backbone but add another view to alleviate the
information loss during 2D projection.

As shown in Fig. 7, for efficiency, only one stage version
of the CPGNet is adopted in our CFNet. In the CPGNet,
the P2G operation aims to project the LiDAR point features
onto the BEV and RV feature maps. Specifically, C1 and
C2 are set as 64. Hb and Wb are set as 600. Hr and Wr

are set as 64 and 2048, respectively. The 2D FCN extracts
features on each view. On the contrary to the P2G, the G2P
operation transmits the features from each view back to the
LiDAR points. The PF is responsible for fusing the features
from the 3D points, BEV, and RV to generate point-wise
features for the following predictions. For the details of the
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Figure 6. The feature enhancement module in the proposed CFFE.
“Conv” represents a 2D convolution with 3 × 3 kernels, a batch
normalization, and a ReLU layer. dilation denotes the dilation
coefficient of the 2D convolution and is set as 1 unless specified.

CPGNet backbone, please refer to the CPGNet [23].

B. Ablation studies

In this section, the ablative experiments are enriched for
a comprehensive understanding of our CFNet.

Different configurations of the CFFE. As shown in
Table 5, row (a) is the proposed CFNet with the backbone
of the CPGNet [23]. Row (b) is that all dilation coefficients
in the feature enhancement module (FEM) are set as 1. Row
(c) denotes that the center feature generation (CFG) gener-
ates the re-projected feature maps F sem

p→m according to the
ground-truth center offsets instead of the predicted ones. It
can be discovered that: 1) the larger receptive field results
in the better performance (a,b); 2) the ground-truth cen-
ter offsets facilitate the biggest performance improvements
(a,c), which illustrates the importance and upper bound of
the CFFE.

Distance threshold d on different classes. To figure
out the effects of the distance threshold d, Table 6 shows
the distance threshold d versus the PQ metric on some rep-
resentative classes. The car and truck denote large objects,
while the person and bicycle are small objects. The car and
truck get the best PQ when the distance threshold d is in the
range of 1.2 to 1.6. The person and bicycle get the highest
PQ when the distance threshold d is set as 0.8. Thus, the
optimal distance threshold d varies from different classes.
However, when d is set as 0.8 in the main body, the perfor-
mances of different classes are comparable to the optimal
ones.

Comparison results on the nuScenes test set. As
shown in Table 7, the proposed CFNet can be compara-
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Figure 8. The proposed center focusing feature encoding (CFFE) that is integrated with the CPGNet [23] backbone. The “Conv” represents
a 2D convolution with 3× 3 kernels, a batch normalization, and a ReLU layer. The details of the semantic branch and instance branch are
shown in Fig. 7. The blue arrows are coordinate-related operations.

ble with the state-of-the-art Panoptic-PHNet [22] on the nuScenes test set. However, the proposed CFNet runs much



Methods Backbone PQ PQ† PQTh PQSt mIoU
a CFNet [Ours]

CPGNet [23]
62.7 67.5 70.0 57.3 67.4

b CFNet [Ours]; dilation = 1 62.2 66.7 68.5 57.2 67.1
c CFNet [Ours]; GT Offsets 65.5 69.7 76.4 57.5 69.5

Table 5. Ablation studies on the SemanticKITTI validation set. dilation = 1 denotes that all dilation coefficients in the feature enhance-
ment module (FEM) are set as 1. “GT Offsets” means that the center feature generation (CFG) generates the re-projected feature maps
F sem

p→m according to the ground-truth center offsets instead of the predicted ones.

distance threshold d 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
car 20.4 64.3 90.4 94.2 94.9 95.1 95.2 95.2 95.2 95.2 95.2 95.0 94.6
truck 4.7 29.2 40.6 59.5 71.3 71.7 71.9 71.9 71.9 71.5 70.8 70.0 68.9
person 16.6 76.9 84.7 85.5 85.5 84.9 83.3 82.7 81.9 81.0 79.9 77.8 76.8
bicycle 10.2 42.3 55.3 58.0 58.6 58.2 58.2 58.1 57.8 57.2 56.4 56.1 55.9

Table 6. Different values of distance threshold d in the proposed center deduplication module (CDM) on the SemanticKITTI validation set.

Panoptic-PolarNet DS-Net CFNet (Ours)

Figure 9. Comparison visualization results of the instance segmentation from the Panoptic-PolarNet [39], DS-Net [15], and our CFNet on
the SemanticKITTI test set. The black box marks the region of interest.

faster, as referred to the Table 3 of the main body.

Methods PQ PQ† SQ RQ mIoU
EfficientLPS [31] 62.4 66.0 83.7 74.1 66.7
Panoptic-PolarNet [39] 63.6 67.1 84.3 75.1 67.0
Panoptic-PHNet [22] 80.1 82.8 91.1 87.6 80.2
CFNet [Ours] w/CPGNet [23] 79.4 81.6 90.7 87.0 83.6

Table 7. Comparison results on the nuScenes test set.

C. Visualization

In this section, our CFNet with the backbone of the
CPGNet [23] is inferred on the SemanticKITTI test set.

Comparison visualization results. We run the official
code of the Panoptic-PolarNet [39] and DS-Net [15] with
the provided model parameters on the SemanticKITTI test
set. For better visualization comparison, it only presents
the instance segmentation results in Fig. 9. It can be ob-
served that the over-segmented and under-segmented prob-



semantic segmentation instance segmentation

Figure 10. Visualization results of our CFNet on the SemanticKITTI test set. For semantic and instance segmentation, different colors
represent different classes and instances, respectively.

lems frequently occur in the Panoptic-PolarNet and DS-Net,
while our CFNet can avoid this problem. By the way, the
over-segmented problem means that an instance is split into
several parts and the under-segmented problem means that
adjacent instances are predicted as a single instance.

Visualization results. We present more visualization
results of our CFNet on the SemanticKITTI test set in
Fig. 10. Our CFNet can distinguish adjacent objects. Be-
sides, the boundaries of instances can be accurately seg-
mented.
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