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Abstract

This paper tries to address a fundamental question in
point cloud self-supervised learning: what is a good sig-
nal we should leverage to learn features from point clouds
without annotations? To answer that, we introduce a point
cloud representation learning framework, based on geomet-
ric feature reconstruction. In contrast to recent papers that
directly adopt masked autoencoder (MAE) and only pre-
dict original coordinates or occupancy from masked point
clouds, our method revisits differences between images and
point clouds and identifies three self-supervised learning
objectives peculiar to point clouds, namely centroid pre-
diction, normal estimation, and curvature prediction. Com-
bined with occupancy prediction, these four objectives yield
a nontrivial self-supervised learning task and mutually fa-
cilitate models to better reason fine-grained geometry of
point clouds. Our pipeline is conceptually simple and it
consists of two major steps: first, it randomly masks out
groups of points, followed by a Transformer-based point
cloud encoder; second, a lightweight Transformer decoder
predicts centroid, normal, and curvature for points in each
voxel. We transfer the pre-trained Transformer encoder to a
downstream peception model. On the nuScene Datset, our
model achieves 3.38 mAP improvement for object detection,
2.1 mIoU gain for segmentation, and 1.7 AMOTA gain for
multi-object tracking. We also conduct experiments on the
Waymo Open Dataset and achieve significant performance
improvements over baselines as well. 1

1. Introduction
While object detection and segmentation from LiDAR

point clouds have achieved significant progress, these mod-
els usually demand a large amount of 3D annotations that
are hard to acquire. To alleviate this issue, recent works ex-
plore learning representations from unlabeled point clouds,

*Corresponding to: hangzhao@mail.tsinghua.edu.cn
1Our code is available at https://github.com/Tsinghua-

MARS-Lab/GeoMAE.
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Figure 1. Pixel value regression has been proved effective in
masked autoencoder pre-training for images. We find this prac-
tice ineffective in point cloud pre-training and propose a set of
geometry aware prediction targets.

such as contrastive learning [20, 46, 53], and mask model-
ing [32, 51]. Similar to image-based representation learn-
ing settings, these representations are transferred to down-
stream tasks for weight initialization. However, the exist-
ing self-supervised pretext tasks do not bring adequate im-
provements to the downstream tasks as expected.

Contrastive learning based methods typically encode dif-
ferent ‘views’ (potentially with data augmentation) of point
clouds into feature space. They bring features of the same
point cloud closer and make features of different point
clouds ‘repel’ each other. Other recent works use masked
modeling to learn point cloud features through self re-
construction [32, 51]. That is, randomly sparsified point
clouds are encoded by point cloud feature extractors, fol-
lowed by a reconstruction module to predict original point
clouds. These methods, when applied to point clouds, ig-
nore the fundamental difference of point clouds from im-
ages – point clouds provide scene geometry while images
provide brightness. As shown in Figure 1, this modality
disparity hampers direct use of methods developed in the
image domain for point cloud domain, and thus calls for
novel self-supervised objectives dedicated to point clouds.

Inspired by modeling and computational techniques in
geometry processing, we introduce a self-supervised learn-
ing framework dedicated to point clouds. Most importantly,
we design a series of prediction targets which describe the
fine-grained geometric features of the point clouds. These
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geometric feature prediction tasks jointly drive models to
recognize different shapes and areas of scenes. Concretely,
our method starts with a point cloud voxelizer, followed
by a feature encoder to transform each voxel into a feature
token. These feature tokens are randomly dropped based
on a pre-defined mask ratio. Similar to the original MAE
work [18], visible tokens are encoded by a Transformer en-
coder. Then a Transformer decoder reconstructs the fea-
tures of the original voxelized point clouds. Finally, our
model predicts point statistics and surface properties in par-
allel branches.

We conduct experiments on a diverse set of outdoor point
cloud datasets including nuScenes [4] and Waymo [39].
Our setting consists of a self-supervised pre-training stage
and a downstream task stage (3D detection, 3D tracking,
segmentation), where they share the same point cloud back-
bone. Our results show that even without additional unla-
beled point clouds, self-supervised pre-training with objec-
tives proposed by this paper can significantly boost the per-
formance of 3D object detection. To summarize, our con-
tributions are:

• We introduce geometry aware self-supervised objec-
tives for point clouds pre-training. Our method lever-
ages fine-grained point statistics and surface properties
to enable effective representation learning.

• With our novel learning objectives, we achieve state-
of-the-art performance compared to previous 3D self-
supervised learning methods on a variety of down-
stream tasks including 3D object detection, 3D/BEV
segmentation, and 3D multi-object tracking.

• We conduct comprehensive ablation studies to under-
stand the effectiveness of each module and learning
objective in our approach.

2. Related Work
2.1. Self-Supervised Learning for Point Clouds

Self-supervised learning for point cloud [14, 20, 23, 32,
37, 38, 42, 46, 51, 53] has drawn considerable attention due
to the expensive cost of labeling the 3D point cloud. Some
are based on contrastive paradigms [20, 46, 53]. Point-
Contrast [46] learns from correspondences between differ-
ent point cloud views with a contrastive loss. DepthCon-
trast [53] considers different depth map as an instance and
discriminating between them to learn the representation.
STRL [20] learns the invariant representation from two aug-
mented temporally-correlated frames from a 3D point cloud
sequence. Others [14, 37, 38] utilize a pretext task to pro-
mote self-supervised representation learning. [38] phrases
the pretext task as a part segmentation task by displacing
the part of the parts of the point cloud and then predicting

their ordering labels. [14] squeezes learned representations
through an implicitly defined parametric discrete generative
model bottleneck. [37] introduces a bidirectional reasoning
between local and global to capture the underlying semantic
knowledge. Motivated by the huge success of 2D masked
image modeling, masked point modeling methods [32, 51]
have been proposed recently. Point-BERT [51] adopts a
BERT-style pre-training strategy by predicting discrete to-
kens of masked input point parts. Point-MAE [32] sim-
ply predicts the original coordinates of the masked point
patches tokens.

2.2. Masked Image Modeling

Motivated by the success of BERT [12] for masked lan-
guage modeling, Masked Image Modeling (MIM) [1, 3, 6,
13, 18, 24, 44, 47, 54] becomes a popular pretext task for
self-supervised visual representation learning. BEiT [3]
first introduces the pre-training pattern of BERT into the
computer vision field by masking out the random image
patches and predicting discrete tokens. MAE [18] and Sim-
MIM [47] both propose to predict the raw pixels of the
masked patches. Compared with SimMIM, MAE is more
pre-training efficient because it only takes the visible token
as the input of the encoder and passes all tokens through a
lightweight decoder. Many following works use such asym-
metric architecture but explore different prediction targets.
MaskFeat [44] uses low-level local features HOG [10] as
the prediction target. A2MIM [24] introduce to learn the
frequency component of the masked patch features. PeCo
[13] uses an offline visual perceptual codebook to guide the
training.

2.3. Geometry Learning in Point Cloud

In computer graphics, previous works [19, 31, 40, 45, 52,
59] propose various methods for the calculation of differ-
ential properties of 3D discrete geometry. Curvature and
normal are two of these most important properties. Taubin
algorithm [40] proposes to estimate the curvature of a sur-
face at each point of a polyhedral approximation. CAN [52]
introduces Local Fitting for normal curvatures by employ-
ing chord, neighbor normal vector and osculating circle. As
for surface normal estimation, Hoppe et al. [19] first sug-
gests to fit a least square plane to k nearest neighbors of
each point to estimate its normal. Mitra et al. [31] analyzes
the methods of least square with noise added and provides
theoretical bound.

In deep learning field, methods [9, 30, 34, 35, 41, 43, 56]
are commonly based on some assumptions of implicit lo-
cal geometry. Point-based methods [25, 26, 34–36, 41, 43]
usually adopt set abstraction to capture local points features
region-wise. Voxel-based methods [9,22,55,56] project the
point clouds to 3D voxel grids and encode features of points
inside the same voxel by voxelization.
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Figure 2. Architecture Overview. The input point cloud scene is first voxelized into voxel grids. After the voxelization, we randomly mask
the voxel tokens and fed the visible ones into a sparse encoder-decoder transformer. The encoder is encouraged to capture the geometric
information of the point cloud by supervising our proposed geometric prediction targets.

3. Method
3.1. Architecture Overview

We propose a simple yet effective method for self-
supervised point cloud representation learning, named Ge-
oMAE. GeoMAEpredicts both point statistics and sur-
face geometric properties from point clouds. The overall
pipeline is illustrated in Figure 2. First, we voxelize the
original point cloud and transform it into voxel patch to-
kens. We randomly masked out voxel tokens based on pre-
defined ratios for a challenging pre-text task. We define a
set of learnable tokens for masked tokens. These visible to-
kens (corresponding to masked tokens) are fed into a sparse
transformer encoder. Conditioned on features of visible to-
kens, learnable masked tokens are processed by separated
decoders to predict both point statistics (centroid and occu-
pancy) and surface properties (normal and curvature). Next,
we will elaborate on each step.

Voxel Token Embedding and Masking. We follow re-
cent 3D perception architectures [48] and transform sparse
input point clouds into regular voxel grids. Then, these vox-
els are processed by 3D convolutional neural networks or
transformer-based networks. We adopt the widely-used dy-
namic voxelization [55] to perform voxelization: First, the
input scene is divided into equally spaced voxels as shown
in Figure 2. Each point pi will be assigned to a voxel vj
where the point resides. Then, we pass non-empty voxels
through VFE [56] layers to obtain per-voxel features/tokens
Tv . Based on evidence from 2D masked modeling meth-
ods [18], we choose a high mask ratio (70%) when remov-
ing tokens. Our method predicts target properties per learn-
able masked token.

Sparse Encoder. After random masking, only visible
voxel tokens are fed into an encoder. Due to the sparse and
long-range nature of the input scene, we choose a sparse
transformer proposed in SST [15] as our encoder. Similar

to Swin-Transformer [27], self-attention is only calculated
among non-empty voxels within the same region in SST.
The output token of the encoder is Te, together with the
learnable masked token Tm to form the input Td of the de-
coder.

Decoders. We use two separate decoders to decode point
statistics and surface properties, respectively. Each decoder
consists of two sparse transformer blocks. These two de-
coders take the same input Td and generate two output fea-
tures Tpoint and Tsurface. Empirically, we found such a sep-
arate design better facilitated models to learn point statis-
tics and surface properties than a single shared decoder did.
Finally, we use separate prediction heads with lightweight
MLPs to predict each target P ∈ RN×K based on features
produced by previous decoders.

Prediction Targets. The prediction targets include the
point statistics and surface properties of a point cloud re-
gion. The point statistics contain two objectives: pyramid
centroid Tcent and occupancy Tocc. There are also two objec-
tives for surface properties: surface normal Tnorm and sur-
face curvature Tcurv. The details of each prediction target
will be discussed in Section 3.2 and Section 3.3.

We train our network to learn the point statistics and sur-
face properties of uneven point clouds by supervising those
prediction targets:

Lpoint = Lcent(Pcent, Tcent) + Locc(Pocc, Tocc),

Lsurface = Lcurv(Pcurv, Tcurv) + Lnor(Pnor, Tnor),
(1)

For centroid, curvature and normal prediction, we use MSE
loss, and for occupancy prediction we use Cross-Entropy
loss. The overall loss function of our framework is defined
as:

L = Lpoint + Lsurface (2)

3
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Figure 3. Prediction Targets. We introduce point statistics and surface properties prediction targets to guide the model learning the
geometric features of the point cloud. The point statistics targets contain the occupancy of each voxels and centroid of non-empty voxels in
a pyramid level. The surface properties prediction targets include surface normal and surface curvature which are obtained by an estimation
calculation.

3.2. Point Statistics Prediction

Different from 2D images and 3D indoor point clouds,
outdoor point clouds are sparse and occluded. Point density
varies much in a point cloud, which prevents models di-
rectly predicting original point coordinates. The pilot study
in Figure 1 also shows that such a prediction target is not
available. To deal with non-uniform points, we opt to pre-
dict centroid of points in each voxel. In addition, to in-
corporate multi-scale information, we aim to predict these
statistics in different scales by building a voxel pyramid. As
shown in Figure 3, we break each masked voxel into three
sub-voxel levels (top, middle, and bottom) and compute the
voxel occupancy and centroid at each level.
Centroid and Occupancy. Let Gl = {Gl

i = {IGl
i
}|i =

1, ..., Nl; l ∈ {top,middle, bottom}} be the set of non-
empty grids in the l-th pyramid level where IGl

i
is the grid

index, and Nl is the number of non-empty grids. Points that
are within the same grid Gl

i are grouped together into a set
N (Gl

i) by calculating their belonging grid index IGl
i

from
their spatial coordinates. The point centroid of each grid Gl

i

is then calculated as:

cGl
i
=

1

|N (Gl
i)|

∑
xpj

∈N (Gl
i)

xpj
(3)

We also introduce an occupancy prediction target to judge
whether a grid is empty or not:

oGl
i
=

{
1, at least one point in the grid
0, otherwise

(4)

The point statistics prediction targets for each masked token
vj can be formalized as:

P j
cent = {cGl

i
}, P j

occ = {oGl
i
} (5)

3.3. Surface Properties Prediction

LiDAR point clouds naturally preserve geometric infor-
mation. Although point statistics provide a rough estima-
tion of shapes, they cannot describe the fine-grained geo-
metric information that are usually critical to recognition
tasks. Therefore, in addition to point statistics prediction,
we further leverage 3D shape geometry of point clouds for
self-supervised learning. Our desiderata include: these ge-
ometric features should be easy to compute and accurately
approximate local shape geometry; we can estimate these
features from local point groups. Therefore, our choices are
surface curvature and surface normals which can be com-
puted in closed-form from local points. To obtain a more
stable geometric representation, we incorporate points from
8 neighboring voxels in addition to inside points in each
voxel.
Surface Normal and Curvature. Inspired by surface
feature estimation (i.e., curvature estimation [52] and nor-
mal estimation [31]) in geometry processing, we adopt lo-
cal least square fitting to handle noisy LiDAR point clouds.
Given a set of K gathered points pi (1 ≤ i ≤ K), we com-
pute a covariance matrix

M =
1

K

K∑
i=1

pip
T
i − p̄p̄T , (6)

4



Method
Waymo nuScenes

L1 AP/APH L2 AP/APH mAP NDS

Scratch 70.68/66.39 64.28/60.42 50.39 55.04

BYOL [16] 70.15/65.72 63.71/59.94 50.01 54.67

PointContrast [46] 71.73/67.28 65.34/61.45 50.96 55.39

SwAV [5] 71.85/67.43 65.41/61.63 51.57 55.72

STRL [20] 71.91/67.64 65.52/61.77 51.72 55.84

GeoMAE(Ours) 73.71/70.24 67.30/63.97 53.77 57.23

Table 1. Performances of 3D object detection on the Waymo Open Dataset and nuScenes Dataset validation split.

where M is a 3 × 3 symmetric matrix, p̄ is the centroid
of this point cluster. After the eigen-decomposition of M ,
we obtain eigenvalues λ1, λ2, λ3 (λ1 ≥ λ2 ≥ λ3) and
their corresponding eigenvectors and n1, n2, n3. In fact,
we use singular value decomposition. Following the afore-
mentioned work [31], the normal vector for each voxel is
n3 (the corresponding eigenvector of the least eigenvalue).
Moreover, we compute three pseudo curvature vectors cm
for each point:

cm =
λm∑3
i=1 λi

,m ∈ {1, 2, 3}. (7)

Therefore, surface properties prediction targets for each
masked token vj can be formalized as:

P j
nor = nj

3, P j
curv = {cj0, c

j
1, c

j
2} (8)

4. Experiments
In this section, we evaluate our proposed GeoMAEon

two widely used benchmarks: Waymo Open Dataset [39]
and nuScene Dataset [4]. We first elaborate the experi-
ment setting in Section 4.1. In Section 4.2 we compare our
method with previous self-supervised point cloud represen-
tation learning methods. In Section 4.3 we show the gener-
alization of our method on different downstream tasks. In
Section 4.4, we conduct various ablation studies to evaluate
the effectiveness of our approach.
4.1. Experimental Setup

Waymo Open Dataset. Waymo Open Dataset [39] con-
sists of 798 training sequences and 202 validation se-
quences. The point cloud scene is collected by a 64-beam
LiDAR with around 158k point cloud samples in the train-
ing split and 40k point cloud samples in the validation
split. For 3D detection, the official evaluation metric in-
cludes standard 3D mean Average Precision (mAP) and
mAP weighted by heading accuracy (mAPH). These met-
rics are based on an IoU threshold of 0.7 for vehicles and 0.5
for other categories. These metrics are further broken down
into two difficulty levels: L1 for boxes with more than five

LiDAR points and L2 for boxes with at least one LiDAR
point.
nuScenes Dataset. The nuScenes Dataset [4] is a large-
scale autonomous driving dataset that contains 700, 150,
and 150 sequences for training, validation, and testing, re-
spectively. For 3D detection, the major official metrics
are mean Average Precision (mAP) and nuScenes detection
score (NDS). The mAP uses a bird-eye-view center distance
threshold (0.5m, 1m, 2m, 4m) instead of bounding box IoU.
NDS is a weighted average of mAP and other attribute met-
rics, including translation, scale, orientation, velocity, and
other box attributes. For 3D tracking, nuScenes mainly uses
AMOTA, which penalizes ID switches, false positives, and
false negatives and is averaged among various recall thresh-
olds.
Model. Our proposed GeoMAEuse a standard SST [15]
as the encoder, which contains two consecutive blocks.
Each attention module in the encoder has two heads, 128
input channels, and 256 hidden channels. We use two paral-
lel decoders, and each decoder has two transformer blocks.
Given the masked voxels Vm with the voxel grid size gx, gy ,
gz along the x, y, and z axes of the 3D space, respectively,
we sub-divide each voxel’s spatial space into three pyramid
levels (as shown in Figure 3): top, middle, and bottom. The
grid in the top level has the same grid size as the original
voxel grid. The sub-grids in the middle level have a grid
size of gx/2, gy/2, and gz/4, while the grid size in the bot-
tom level is gx/4, gy/4, and gz/8. The number of grids in
each level, from top to bottom, is 1, 16, and 128, respec-
tively.
Training Details. On the Waymo Open Dataset, we use
all the samples for pre-training and uniformly sample 20%
of frames for finetuning following common practice. On the
nuScenes Dataset, we use all the frames (including the un-
labeled sweeps) for pre-training and the labeled samples for
finetuning. For pre-training, all the self-supervised methods
are trained for 72 epochs (denoted as 6x) with the AdamW
optimizer [21]. The initial learning rate is 1e-5. For finetun-
ing downstream tasks, we follow the original training set-
tings in each downstream approach to finetune the detector,
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Method Detection Head
Waymo nuScenes

L1 AP/APH L2 AP/APH mAP NDS

SpConv∗

Anchor-base

66.74/63.05 60.27/57.12 48.46 53.92

SST 70.68/66.39 64.28/60.42 50.39 55.04

GeoMAE 73.71/70.24 67.30/63.97 53.77 57.23

SpConv∗

Center-base

69.45/65.27 63.19/59.44 55.67 64.03

SST 70.23/66.29 64.00/60.39 55.71 64.07

GeoMAE 73.14/69.68 66.95/63.75 58.73 66.68

Table 2. Performances of 3D object detection on the Waymo Open Dataset and nuScenes Dataset validation split. ∗: re-implemented by
MMDetection3D.

Method mAP NDS

PointPillars [22] 30.5 45.3

3DSSD [49] 56.4 42.6

CBGS [57] 63.3 52.8

CenterPoint [50] 58.0 65.5

VISTA [11] 63.0 69.8

Focals Conv [7] 63.8 70.0

TransFusion-L [2] 65.5 70.2

LargeKernel3D [8] 65.4 70.6

GeoMAE† 67.8 72.5

Table 3. Performances of 3D object detection on the nuScenes test
split. † means that we use a multi-stride structure compared to the
original single-stride design [15].

segmenter, and tracker.

4.2. Comparison on 3D Object Detection

Unlike 2D MIM methods which adopt image classifica-
tion task as the benchmark to evaluate the effectiveness of
their pre-training methods, we do not have a classification
task for scene-level 3D point clouds. So we choose the 3D
object detection task to compare our method with previous
3D self-supervised methods.
Settings. We compare our GeoMAEwith several typical
3D self-supervised learning methods including PointCon-
trast [46], STRL [20], BYOL [16], and SwAV [5]. We
follow the strategy in [29] to apply these methods for pre-
training the SST backbone. Details are presented in the
Appendix. After pre-training, we evaluate the pre-trained
backbones based on the 3D object detector benchmark pro-
posed in SECOND [48]. Detectors with different pre-
trained SST backbones are all finetuned for 24 epochs on
the Waymo Open Dataset and 20 epochs on the nuScenes
Dataset.
Results. The finetuning results on 3D object detection are

shown in Table 1. Our proposed GeoMAEsignificantly im-
proves SST, which is 3.03/3.85 L1 AP/APH better than
training from scratch on the Waymo Open Dataset and 3.38
mAP on the nuScenes Dataset. Compared with other self-
supervised methods, GeoMAEoutperforms the second best
method STRL [20] by a significant margin, 1.78/2.20 L1
AP/APH on the Waymo Open Dataset and 2.05 mAP on the
nuScenes Dataset, demonstrating the effectiveness of our
model and prediction target designs.

4.3. Comparison on other Downstream Tasks

We further evaluate the effectiveness and generalization
of GeoMAEin different 3D downstream tasks (including
detection, segmentation and tracking) with different model
architectures (backbones and heads). For each model in a
downstream task, we evaluate three variants with different
backbones: 1. the original sparse convolutional networks
without pre-training; 2. SST without pre-training; 3. SST
pre-trained by our GeoMAE.

4.3.1 3D Object Detection

Settings. We comprehensively evaluate GeoMAEon both
the anchor-based detector SECOND and a center-based de-
tector CenterPoint [50]. For the Waymo Open Dataset, the
detection point cloud range is set to [-74.88m, 74.88m] for
X- and Y-axes, [-2m, 4m] for Z-axes, and the voxel size is
set to (0.32m, 0.32m, 6m). For nuScenes Dataset, the de-
tection range is set to [-51.2m, 51.2m] for X- and Y-axes,
[-5m, 3m] for Z-axes, and the voxel size is set to (0.256m,
0.256m, 8m).
Results. As shown in Table 2, both anchor-based and
center-based detectors with pre-trained SST by our Geo-
MAEachieve better performance than the baselines. For
anchor-based detector, our GeoMAEoutperforms the base-
line by 3.03 L1 AP on the Waymo Open Dataset and 3.38
mAP on the nuScenes Dataset. While for the center-based
detector, our approach improves the results of training from
scratch by 2.91 L1 AP on the Waymo Open Dataset and
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Cylinder3D [58] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4

Cylinder3D-SST 76.5 76.2 40.0 91.8 94.2 51.6 78.1 80.1 64.7 62.5 84.7 97.1 71.7 76.7 75.8 90.8 87.7

Cylinder3D-GeoMAE 78.6 78.2 42.6 93.5 95.8 55.4 79.8 83.5 66.8 65.6 87.3 97.7 73.3 78.2 77.4 92.6 89.5

Table 4. Performances of 3D semantic segmentation on the nuScenes Dataset validation split.

Methods Modality mIoU Drivable Ped. Cross. Walkway Stop Line Carpark Divider

CenterPoint [50]

L

48.6 75.6 48.4 57.5 36.5 31.7 41.9

CenterPoint-SST 49.7 77.2 49.5 58.7 37.2 32.5 43.1

CenterPoint-GeoMAE 52.4 79.5 53.1 61.6 39.7 34.9 45.6

BEVFusion [28]

C + L

62.7 85.5 60.5 67.6 52.0 57.0 53.7

BEVFusion-SST 63.1 86.1 60.8 68.7 53.5 53.8 55.5

BEVFusion-GeoMAE 65.2 86.5 62.3 70.2 55.7 59.4 56.8

Table 5. Performances of BEV map segmentation on the nuScenes Dataset validation split.

3.02 mAP on the nuScenes Dataset. All the results verify
the efficacy of our proposed method. In Table 3, we also
test our method on the nuScenes test split and achieve a
new state-of-the-art result.

4.3.2 3D Object Tracking

Settings. We also conduct experiments in a 3D multi-
object tracking (MOT) task on the nuScenes Dataset by per-
forming tracking-by-detection algorithms proposed by Cen-
terPoint [50] and SimpleTrack [33]. The point cloud range
and voxel size are the same as the 3D object detection set-
tings.
Results. From Table 6, we can see that our GeoMAE out-
performs the baseline (SST) by 1.7 AMOTA for Centerpoint
and 1.1 AMOTA for SimpleTrack. These observations are
consistent with those in 3D object detection.

Method AMOTA↑ AMOTP↓ MOTA↑ IDS↓

Centerpoint∗ [50] 57.3 0.681 0.522 594

Centerpoint-SST 59.9 0.660 0.514 586

Centerpoint-
GeoMAE 61.6 0.635 0.635 582

SimpleTrack∗ [33] 63.2 0.678 0.548 520

SimpleTrack-
SST 63.8 0.653 0.541 514

SimpleTrack-
GeoMAE 64.9 0.624 0.561 473

Table 6. Performances of 3D multi-object tracking on the
nuScenes Dataset validation split. ∗: re-implemented by MMDe-
tection3D.

4.3.3 LiDAR Semantic Segmentation

Settings. To demonstrate the generalization capability, we
evaluate our method on the nuScenes Dataset for the LiDAR

segmentation task. We follow the official guidance to lever-
age mean intersection-over-union (mIoU) as the evaluation
metric. We adopt the Cylinder3D [58] as our baseline ar-
chitecture and replace the last stage of the backbone from
sparse convolutions into SST. Other training settings are the
same as in Cylinder3D.
Results. As reported in Table 4, the Cylinder3D ob-
tains 0.4 performance gain by replacing the backbone from
sparse convolutions with our modified SST. When apply-
ing our GeoMAEto pre-train the backbone, it achieves 2.1
mIoU gain than training from scratch.

4.3.4 BEV Map Segmentation

Settings. We further experiment our method in the BEV
Map Segmentation task on the nuScenes Dataset. We per-
form the evaluation in the [-50m, 50m]×[-50m, 50m] region
following the common practice in BEVFusion [28]. We de-
velop the CenterPoint-SST and BEVFusion-SST by replac-
ing the last two stages of the LiDAR backbone with SST.
Results. We report the BEV map segmentation results
in Table 5. For the LiDAR-only model, our method
surpasses the SST baseline by 2.7 mIoU. In the multi-
modality setting, GeoMAEfurther boosts the performance
of BEVFusion-SST about 2.1 mIoU, which demonstrates
the strong generalization capability of our method.

4.4. Ablation Study

We adopt standard SST [15] as the default backbone in
our ablation study. To get efficient validation and reduce
experimental overhead, all the experiments are pre-trained
for 72 (6x) epochs if not specified.
Prediction Targets. We present ablation studies in Ta-
ble 7 to justify our design choices. Scratch means train-
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Methods Type Waymo L1
AP

nuScenes
mAP

Scratch 70.68 50.39

+ Centroid Point
Statistics

71.60 51.25

+ Occupancy 72.65 52.12

+ Surface Normal Surface
Properties

73.37 52.94

+ Surface Curvature 73.71 53.31

Table 7. Ablation study on prediction targets. Detection results on
the Waymo and nuScenes Dataset.

ing on the detection from scratch without pre-training the
backbone. From the table we can see that by adopting cen-
troid and occupancy as the prediction targets, the model per-
forms better than training form scratch with about 1.87 L1
AP gain on the Waymo Open Dataset and 1.7 mAP gain on
the nuScene Dataset. As shown in the last two rows, we
investigate the effect of predicting the surface normal and
curvature. The additional prediction targets further improve
the performance 1.06 AP on the Waymo Open Dataset and
1.19 mAP on the nuScenes Dataset.
Decoder Design. The separate decoder is one key com-
ponent in our GeoMAE. We ablate the design in Table 8.
Shared means we use a single decoder to decode both Point
Statistics and Surface Properties information. Same tar-
get means we use two decoders but the separate decoders
decode and predict the same Point Statistics targets or the
same Surface Properties targets. It can be observed that our
final design achieves the best performance, which indicates
that such separate decoder truly disentangles the different
representations and enable the model to learn different ge-
ometry information.

Decoder Waymo L1 AP nuScenes mAP

Shared Decoder 72.45 52.04

Separate (Only Point Statistics) 72.65 52.28

Separate (Only Surface Properties) 72.03 51.87

Separate (Different Targets) 73.71 53.31

Table 8. Ablation study on decoder design. Detection results on
the Waymo and nuScenes Dataset.

Masking Ratio. We study the influence of the masking
ratio in Table 10. Similar to the observation on images, the
optimal masking ratio is high (70%). The performance de-
grades largely with too low or too high masking ratios.
Training Schedule. Table 9 shows the effect of the train-
ing schedule length. We ablate the pre-training schedule of
GeoMAEfrom 24 (2x) to 96 (8x) epochs and fix the fine-
tuning epoch as 24 epochs. The accuracy improves steadily
with longer training schedule until 72 epochs.
Pre-training Dataset Scale. We also investigate the ef-
fect of different scales of pre-training dataset. As shown
in Table 11, performance grows as the scale of pre-training

Training Epochs Waymo L1 AP nuScenes mAP

24 72.67 52.64

48 73.32 52.97

72 73.71 53.31
96 73.71 53.30

Table 9. Ablation on training schedule. Detection results on the
Waymo and nuScenes Dataset.

Masking Ratio Waymo L1 AP nuScenes mAP

40% 72.27 52.47

60% 73.28 53.00

70% 73.71 53.31
80% 71.94 51.85

Table 10. Ablation on masking ratio. Detection results on the
Waymo and nuScenes Dataset.

Dataset Scale Waymo L1 AP nuScenes mAP

0% 70.68 50.39

20% 72.27 51.64

50% 72.88 52.74

80% 73.48 53.03

100% 73.71 53.31

Table 11. Impacts of different scale of the pre-training dataset.
Detection results on the Waymo and nuScenes Dataset.

data increases. And our method still achieves about 1 point
performance improvements on both datasets, which indi-
cates the effectiveness of our GeoMAE.

5. Conclusion
We present GeoMAE, a geometry-aware self-supervised

pre-training approach for point clouds. GeoMAE achieves
strong performance on a variety of downstream tasks in-
cluding 3D detection, segmentation, and tracking. Geo-
MAE leverages recent development in masked modeling.
In addition to the commonly used occupancy prediction tar-
get, our method proposes three additional learning objec-
tives, which jointly become a challenging and informative
pretext task. Our key observation is that geometric features
provide strong information for models to reason objects and
scenes, therefore improving downstream recognition per-
formance. Our results also suggest several venues for future
inquiry. First, pre-training using GeoMAE on a larger unla-
beled dataset will further boost the performance (e.g., pre-
training on DDAD dataset [17]). Besides, exploring other
types of geometric features remains an open and intriguing
question.

Acknowledgement This work was supported by National
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6. Appendix
We reproduce four previous self-supervised learning

methods, including two contrastive learning methods tai-
lored to point clouds (PointContrast [46] and STRL [20]),
as well as two typical self-supervised learning methods
(BYOL [16] and SwAV [5] ).
General Configurations. We adopt the standard SST as
the backbone. For the Waymo Open Dataset [39], the point
cloud range is set to [-74.88m, 74.88m] for X-axes and Y-
axes, [-2m, 4m] for Z-axes, and the voxel size is set to
(0.32m, 0.32m, 6m). For nuScenes Dataset [4], the point
cloud range is set to [-51.2m, 51.2m] for X-axes and Y-axes,
[-5m, 3m] for Z-axes, and the voxel size is set to (0.256m,
0.256m, 8m). For all the methods, the pretaining learning
rate is initialized as 1e-5, and the fine-tuning learning rate
is initialized as 1e-4. We use the Adam optimizer and the
cosine annealing learning scheme. The models are trained
with batch size 64.
PointContrast. We first transform the original point
cloud into two augmented views by random geometric
transformations, which include random flip, random scaling
with a scale factor sampled uniformly from [0.95, 1.05] and
random rotation around vertical yaw axis by an angle be-
tween [-15, 15] degrees. The scenes will be passed through
the SST backbone to obtain voxel-wise features. We ran-
domly select half of the voxel features and then embed them
into latent space by using a two-layer MLP (with Batch-
Norm and ReLU, and the dimensions are 128, 64). The la-
tent space feature will be concatenated with initial features
and passed through a one-layer MLP with dimension 64.
The concatenated features are used for comparative learn-
ing as in the original PointContrast.
BYOL. BYOL consists of two networks, an online net-
work and a target network. It iteratively bootstraps the out-
puts of the target network to serve as targets without using
negative pairs. We train its online network to predict the tar-
get network’s representation of the other augmented view of
the same 3D scene. We pass the voxel-wise features through
a two-layer MLP (with dimensions 512, 2048). After that,
a two-layer MLP (with dimensions 4096, 256) predictor in
the online network will project the embeddings into a la-
tent space as the final representation of the online network.
The target network is updated by a slow-moving averaging
of the online network with the parameter 0.999. For other
configurations, we follow the settings in the original paper.
SwAV. Different from contrastive learning methods,
SwAV does not directly compare embedding features by
introducing prototypes and swapped predictions. Similar
to the implementation of PointContrast, we apply the same
view generation module and obtain voxel-vise features of
different views. We adopt a two-layer MLP projection head
with dimensions 512 and 128. We then compute “codes” by
assigning features to prototype vectors. Note that we do not

adopt the multi-crop strategy proposed in the original paper
due to the differences between images and point clouds.
STRL. STRL learns invariant representations from two
augmented views, which are obtained by spatial augmenta-
tion and temporal sampling. For spatial data augmentation,
we adopt the same generation approach in PointContrast.
For temporal sampling, we follow the settings in the original
paper. We add a max-pooling layer at the end of the back-
bone to obtain the global features. The global features are
passed through a projector and a predictor for contrastive
learning.
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