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Abstract

We present Galactic, a large-scale simulation and
reinforcement-learning (RL) framework for robotic mobile
manipulation in indoor environments. Specifically, a Fetch
robot (equipped with a mobile base, 7DoF arm, RGBD camera,
egomotion, and onboard sensing) is spawned in a home
environment and asked to rearrange objects – by navigating
to an object, picking it up, navigating to a target location, and
then placing the object at the target location.

Galactic is fast. In terms of simulation speed (rendering
+ physics), Galactic achieves over 421,000 steps-per-second
(SPS) on an 8-GPU node, which is 54x faster than Habitat
2.0 [55] (7699 SPS). More importantly, Galactic was designed
to optimize the entire rendering+physics+RL interplay since
any bottleneck in the interplay slows down training. In terms
of simulation+RL speed (rendering + physics + inference +
learning), Galactic achieves over 108,000 SPS, which 88x
faster than Habitat 2.0 (1243 SPS).

These massive speed-ups not only drastically cut the
wall-clock training time of existing experiments, but also unlock
an unprecedented scale of new experiments. First, Galactic can
train a mobile pick skill to >80% accuracy in under 16 minutes,
a 100x speedup compared to the over 24 hours it takes to
train the same skill in Habitat 2.0. Second, we use Galactic to
perform the largest-scale experiment to date for rearrangement
using 5B steps of experience in 46 hours, which is equivalent
to 20 years of robot experience. This scaling results in a single
neural network composed of task-agnostic components achiev-
ing 85% success in GeometricGoal rearrangement, compared
to 0% success reported in Habitat 2.0 for the same approach.
The code is available at github.com/facebookresearch/galactic .

1. Introduction
The scaling hypothesis posits that as general-purpose neural

architectures are scaled to larger model sizes and training
experience ever increasingly sophisticated intelligent behavior

*Equal contribution

emerges. These so-called ‘scaling laws’ appear to be driving
many recent advances in AI, leading to massive improvements
in computer vision [12, 42, 44] and natural language process-
ing [3, 40]. But what about embodied AI? We contend that
embodied AI experiments need to be scaled by several orders
of magnitude to become comparable to the experiment scales
of CV and NLP, and likely even further beyond given the multi-
modal interactive long-horizon nature of embodied AI problems.

Consider one of the largest-scale experiments in vision-and-
language: the CLIP [39] model was trained on a dataset of
400 million images (and captions) for 32 epochs, giving a total
of approximately 12 Billion frames seen during training. In
contrast, most navigation experiments in embodied AI involve
only 100-500M frames of experience [5,30,68]. The value of
large scale training in embodied AI was demonstrated by Wi-
jmans et al. [60] by achieving near-perfect performance on the
PointNav task through scaling to 2.5 billion steps of experience.
Since then, there have been several other examples of scaling
experiments to 1B steps in navigation tasks [41,65]. Curiously,
as problems become more challenging, going from navigation
to mobile manipulation object rearrangement, the scale of
experiments have become smaller. Examples of training scales
in rearrangement policies include [19, 55, 59] training skills
in Habitat 2.0 for 100-200M steps and [58] in Visual Room
Rearrangement for 75M steps. In this work, we demonstrate for
the first time scaling training to 5 billion frames of experience
for rearrangement in visually challenging environments.

Why is large-scale learning in embodied AI hard? Unlike
in CV or NLP, data in embodied AI is collected through an
agent acting in environments. This data collection process
involves policy inference to compute actions, physics to update
the world state, rendering to compute agent observations, and
reinforcement learning (RL) to learn from the collected data.
These separate systems for rendering, physics, and inference
are largely absent in CV and NLP.

We present Galactic, a large-scale simulation+RL framework
for robotic mobile manipulation in indoor environments.
Specifically, we study and simulate the task of GeometricGoal

ar
X

iv
:2

30
6.

07
55

2v
1 

 [
cs

.L
G

] 
 1

3 
Ju

n 
20

23

https://github.com/facebookresearch/galactic


Arcade RL Sims Device Res Sensors Train SPS Sim SPS Photoreal Physics
VizDoom [26,37] 1x RTX 3090 28×72 RGB 18,900 38,100 ✖ ✓

Physics-only Sims Device Res Sensors Train SPS Sim SPS Photoreal Physics
Isaac Gym (Shadow Hand) [29] 1x A100 N/A N/A 150,000 – ✖ ✔
Brax (Grasp) [16] 4x2 TPU v3 N/A N/A 1,000,000 10,000,000 ✖ ✔
ADPL Humanoid [64] 1x TITAN X N/A N/A 40,960 144,035 ✖ ✔

EAI Sims Device Res. Sensors Train SPS Sim SPS Photoreal Physics
iGibson [28,51] 1x GPU 128×128 RGB – 100 ✔ ✔
AI2-THOR [11] 8x RTX 2080TI 224x224 RGB ≈300 2,860 ✔ ✔
Megaverse [37] 1x RTX 3090 128×72 RGB 42,700 327,000 ✖ ✓

8x RTX 2080TI 128×72 RGB 134,000 1,148,000
LBS [48] 1x RTX 3090 64×64 RGB 13,300 33,700 ✔ ✖

1x Tesla V100 64×64 RGB 9,000 –
8x Tesla V100 64×64 RGB 37,800 –

Habitat 2.0 [55,59] 1x RTX 2080 Ti 128×128 RGBD 367 1,660 ✔ ✔
8x RTX 2080 Ti 128×128 RGBD 1,243 7,699

1x Tesla V100 128×128 RGBD 128 2,790
8x Tesla V100 128×128 RGBD 945 17,465

Galactic (Ours) 1x Tesla V100 128×128 RGBD 14,807 54,966 ✔ ✔
8x Tesla V100 128×128 RGBD 108,806 421,194

Table 1. High-level throughput comparison of different simulators. Steps-per-second (SPS) numbers are taken from source publications, and
we don’t control for all performance-critical variables including scene complexity and policy architecture. Comparisons should focus on orders
of magnitude. We show Sim SPS (physics and/or rendering) and training SPS (physics and/or rendering, inference and learning) for various
physics-only and Embodied AI simulators. We also describe VizDoom, an arcade simulator which has served as a classic benchmarks for RL
algorithms due to its speed. The ✓ for Megaverse and VizDoom represent physics for abstract, non-realistic environments. Among EAI simulators
that support realistic environments (photorealism and realistic physics), Galactic is 80× faster than the existing fastest simulator, Habitat 2.0
(108,806 vs 1243 training SPS for 8 GPUs). Galactic’s training speed is comparable to LBS, Megaverse, and VizDoom, even though LBS doesn’t
simulate physics and neither Megaverse nor VizDoom support realistic environments. We also compare to GPU-based physics simulators: while
these are generally faster than Galactic, they entirely omit rendering, which significantly reduces their compute requirements. For Galactic, we
observe near-linear scaling from 1 to 8 GPUs, with a 7.3x speedup.

Rearrangement [2], where a Fetch robot [43] equipped
with a mobile base, 7DoF arm, RGBD camera, egomotion,
and proprioceptive sensing must rearrange objects in the
ReplicaCAD [55] environments by navigating to an object,
picking up the object, navigating to a target location, and then
placing the object at the target location.

Galactic is fast. In terms of simulation speed (rendering
+ physics), Galactic achieves over 421,000 steps-per-second
(SPS) on an 8-GPU node, which is 54x faster than Habitat
2.0 [55] (7699 SPS). More importantly, Galactic was designed
to optimize the entire rendering+physics+RL interplay since
any bottleneck in the interplay slows down training. In terms
of simulation+RL speed (rendering + physics + inference +
learning), Galactic achieves over 108,000 SPS, which 88x faster
than Habitat 2.0 (1243 SPS).

Our key technical innovations are: (1) integration of
CPU-based batch physics with GPU-heavy batch rendering
and inference, and (2) a new, approximate kinematic simulation
targeted at EAI rearrangement tasks. Compared to a “one
simulator, one environment, one process” paradigm, batching
yields massive speedups due to memory savings, lower
communication overhead, and greater parallelism. Meanwhile,
we leverage our physics approximations and the reduced

complexity of kinematic simulation to reduce our CPU compute
and yield further speedups.

These massive speed-ups not only drastically cut the wall-
clock training time of existing experiments, but also unlock an
unprecedented scale of new experiments. First, Galactic can
train a mobile pick skill to >80% accuracy in under 16 minutes,
a 100x speedup compared to the over 24 hours it takes to train
the same skill in Habitat 2.0. Second, we use Galactic to perform
the largest-scale experiment to date for rearrangement using 5B
steps of experience in 46 hours, which is equivalent to 20 years
of robot experience (assuming 8 actions per second). This scal-
ing results in a single neural network composed of task-agnostic
components (CNNs and LSTMs) achieving 85% success in
GeometricGoal rearrangement. This is impressive performance
because (1) the task is extremely long horizon (involving naviga-
tion, picking, and placing), (2) the architecture is monolithic and
has no mapping modules, task-planning, or motion-planning.
For context, Habitat 2.0 reported 0% success with a monolithic
RL baseline in GeometricGoal rearrangement. We find the
learned policies are able to efficiently navigate, avoid distractor
objects, and synchronize base and arm movement for greater
efficiency. Finally, we also show that models trained in Galactic
are somewhat robust to zero-shot sim2sim generalization, i.e.



can achieve 26% success when deployed in Habitat 2.0 despite
differences in rendering, physics, and underlying controller.

2. Related Work

Scaling Approaches in Embodied AI. There is a large
body of work in speeding up training embodied agents in
simulation. There are three general approaches for increasing
efficiency of the overall system: distributing the policy training
and inference, increasing the sample efficiency of the learning
algorithms, and batch simulation.

Distribution and parallelization: The works in this do-
main [15,24,35,54,60,67] achieve efficiency by distributing
training across multiple GPUs or nodes and parallelization of
the computation. Galactic’s systems contributions are targeted
at rollout computation (inference and environment-stepping) on
a single CPU process and single GPU, so it is complementary
to many of these approaches [59,60,67].

Training algorithms: Various techniques have been devel-
oped for the efficiency of training algorithms in interactive
settings. Using auxiliary losses [25, 31, 36, 50, 66, 68],
offline training [32, 33, 46, 49, 69, 70], and model-based
training [6,9,20–22,34] are some examples that lead to sample
efficiency (and typically wall clock time) of the training
algorithms. Similarly, since our experiments use a single
DD-PPO [60] policy trained from scratch, Galactic can be
combined with any of these techniques for further efficiency.

Batch simulation: Batch simulation refers to vectorized
physics or rendering to compute updates across multiple
environments with one operation in a batched fashion. This
yields large speedups compared to the “one process, one
simulator, one environment” paradigm. Our approach is closest
to LBS [48] and Megaverse [37], but ours is the first work to
combine batch physics and batch rendering to simulate realistic
environments and vision sensors. [48] does not support physics,
and instead only supports photorealistic, non-interactive scenes
and cylinder agents. Megaverse [37] does not support physics
simulation with articulated agents and realistic movable objects,
and instead only supports “block worlds” with movable blocks
and cylinder agents.

Embodied AI Simulators. There are various Embodied AI
simulation platforms [10, 17, 27, 38, 45, 51, 55, 62, 63] for in-
door environments that support tasks such as navigation [45,61],
object manipulation [14,53], instruction following [1,52], inter-
active question answering [8,18], and object rearrangement [55,
58]. The efficiency of the simulators is important for these tasks
since they typically involve long task horizons, and the state-of-
the-art training algorithms require millions of iterations to con-
verge. Galactic supports similar tasks in indoor environments.

Kinematic Simulation. Some recent work uses ”kinematic
simulation”, in which the robot and objects are moved directly
without simulating rigid body dynamics. [55] uses a “sticky
mitten” abstraction for grasping rather than simulating contact
physics. It also uses kinematic movement for the base rather

than simulating base momentum and wheel forces. [57]
explores training a navigation policy for a quadruped robot in
simulation. They show that training with kinematic movement
for the base transfers better to real compared to training with
full quadruped dynamics. Both of these works use the Habitat
2.0 simulator with underlying CPU-based Bullet physics [7].
For Galactic, we introduce a new kinematic simulator optimized
specifically for EAI rearrangement tasks.

3. Galactic System
From an ML systems perspective, RL training can be

broken down into rollout computation (collecting experience
by interacting with the EAI simulator) and learning (updating
the policy). Our systems contributions focus on speeding up the
experience collection. In particular, we optimize batch rollout
computation for a single GPU and associated CPU process by
(1) integrating CPU-based batch physics with GPU-based batch
rendering and DNN inference (Section 3.1), and (2) introducing
a new approximate kinematic simulation optimized for EAI
rearrangement tasks (Section 3.2). For our RL experiments,
we combine fast rollouts with DD-PPO [60] (Section 4.2), but
other approaches to distributed RL are also compatible [59,67].
We discuss throughput and scaling in Section 5.1. Galactic also
supports adding assets from different sources (see Appendix H
for details).

3.1. Batching

Consider non-batched EAI simulators like [27, 55]. They
use a “one Python process, one simulator, one environment”
paradigm. The simulator manages a single environment
(including physics and rendering) and produces a single set
of observations. Additionally, some task-specific logic is
implemented directly in Python code, e.g. extracting a robot’s
pose from the sim and computing reward and other metrics.

Python’s cooperative threading model and global interpreter
lock make parallelism difficult. To scale this RL training to mul-
tiple environments, these approaches typically spawn multiple
Python “env” processes, each hosting its own simulator instance.
In-memory assets here include CPU data, such as physics
collision geometry, and GPU data, such as meshes and textures,
and unfortunately they must be duplicated across instances,
not shared. Coordinating rollouts and gathering results requires
significant interprocess communication, e.g. sending observa-
tions between the “env” and “main” processes. Observations
are batched on the main process and fed to GPU-based batch
DNN inference. The number of parallel environments is limited
by total system memory, interprocess communication overhead,
and other factors and is typically between 16 and 28 [27,55].

Prior work has shown the benefit of batch simulation
over this non-batched paradigm, both for CPU-based physics
simulation [37], GPU-based physics simulation [16, 29, 64],
and GPU-based rendering [37,48]. For Galactic, we batch both
CPU-based physics and GPU-based rendering. For physics,



the main Python process hosts a single C++ simulator instance.
This instance steps physics for a batch of environments, sharing
in-memory CPU assets across environments. Unlike [48] which
moves nearly all task logic to C++, we retain the flexibility of
Python for reward and other task-specific computation. This is
implemented as efficient Numpy tensor operations, in contrast
to the non-tensor Python code in the non-batched paradigm.
We use the Python buffer protocol to ensure we have zero-copy
conversion between C++ and Python.

For rendering, we use Bps3D [48]. A single Bps3D renderer
instance renders all environments, sharing GPU memory assets
across environments. Scene graph updates are communicated
from our physics simulation to the Bps3D renderer efficiently
in C++. The renderer outputs a single batch observation
per camera sensor, essentially a stack of images from each
environment in GPU memory. This is directly consumed
by PyTorch GPU-based batch DNN inference, without ever
copying pixels to the CPU. We visualize example observations
from Galactic in Appendix D.

Figure 1 shows our integration of batch physics (orange),
batch rendering (purple), and PyTorch DNN inference (blue)
into the rollout computation loop. “Step post-processing” refers
to reward calculation and other task-specific logic. CPU-based
physics is computed in parallel with GPU-heavy rendering
and inference. Because of this interleaving, we must accept a
one-step-delay: as in [55], our policy’s actions are computed
not from the current step’s observations, ot, but rather those
from the previous step, ot−1. Our approximate kinematic sim
is fast enough such that we are “GPU-bound”: the bottleneck
here is primarily the GPU, with large gaps on both the main and
physics threads corresponding to idle CPU. This GPU-bound
property is desirable and means Galactic will benefit greatly
as faster GPUs become available.

Compared to the non-batched paradigm, Galactic rollouts
have no interprocess communication overhead because all CPU
compute happens in a single process. Because of memory
savings from batching, our number of environments is larger
than the non-batched paradigm (128 versus 16 to 32).

Figure 1. Rollout timeline for a single batch step, showing our
integration of batch physics (orange), batch rendering (purple), and
PyTorch DNN inference (blue). CPU-based physics is computed
in parallel with GPU-heavy rendering and inference. Physics is fast
enough for rollout computation to be primarily GPU-bound.

3.2. Approximate Kinematic Simulation

Batra et al. [2] reviews physics realism for EAI simulators,
including agent embodiment and how it interacts with the
scene. They describe a spectrum: at the most abstract end are
simple cylinder embodiments, “magic pointer” grasping, and
“virtual backpacks” [27,45]. At the other end is full rigid-body
dynamics simulation: [16,29,64].

Galactic’s approximate kinematic simulation lies somewhere
in the middle. It is kinematic: the robot and objects are moved
directly without simulating rigid body dynamics. It uses
approximations for detecting and resolving collisions and for
simulating object-dropping. Regarding these approximation
choices, an important design goal is feasible sim-to-real for
policies trained in Galactic: our policies should produce
detailed, physically-plausible trajectories for an articulated
robot and movable objects, requiring only the addition of
simple, low-level controllers on real hardware. As a proxy for
sim-to-real in this work, we explore sim-to-sim transfer to the
Habitat 2.0 dynamic simulator in Section 5.2.

Recent work has employed similar kinematic simula-
tion [55, 57], but these are built on top of Habitat 2.0 and the
existing CPU-based Bullet physics engine [7]. Meanwhile, we
build a new simulator from scratch, leveraging both our physics
approximations and the reduced complexity of kinematic
simulation to reduce our compute.

Our action space for the articulated robot includes offsets
for base forward/back, base rotation, and the other degrees of
freedom, e.g. arm joint rotation. Inside the simulator, these off-
sets are applied directly to the robot state, then we use forward
kinematics to compute the position of the robot’s articulated
links. This is kinematic movement: no velocities, forces, or
momentum are simulated. This new candidate pose for the robot
is tested for overlap (penetration) with the environment. A “col-
lision” is resolved by either disallowing all robot movement for
that step or by sliding the robot base (“allow sliding” is a training
hyperparameter). Our sliding implementation is approximate
and uses a heuristic search described in Appendix I.1.

Collision geometry is generally used in a physics simulator
to perform contact and overlap tests. Common primitives
include convex hulls and triangle meshes, which can accu-
rately represent real-world shapes using sufficiently high
vertex/triangle counts. For our rearrangement task, we assume
sub-centimeter tolerances are not important, so we use alternate
primitives which are less accurate but faster to query. In
particular, we approximate the robot (and the current grasped
object, if any) with a set of spheres (green and blue in Figure 3).
We approximate movable objects with oriented bounding boxes
(orange). Finally, we approximate the static (non-movable)
parts of the environment with a voxel-like structure called a
column grid (gray). It has limited precision in the lateral (XZ)
direction (3 cm) but full floating-point precision in the vertical
(Y) direction, so surface heights are accurately represented.
Spheres are authored for the robot manually while bounding



Figure 2. Overview of the GeometricGoal rearrangement task. In this task, a Fetch robot must move an object from a start position, specified
as a 3D coordinate, to a goal position, also specified as a 3D coordinate, all from egocentric sensing. Figure adapted from [56].

boxes and column grids are generated automatically from
high-fidelity source meshes in a preprocessing step.

Sphere-versus-environment overlap tests are optimized in a
couple ways: (1) we precompute a distinct column grid for each
unique sphere radius, so sphere-versus-column-grid tests are
simple lookups. (2) Resting movable objects are inserted into
a regular-grid acceleration structure. Testing against the entire
set of movable objects is fast because we need only iterate over
the precomputed set of nearby (50 cm) objects.

Our simulated grasping approximates a real-world suction
gripper kinematically without simulating contact or suction
forces. Firstly, our action space includes a discrete grasp/release
action. In the simulator, if the grasp action is active, we query
a small (3 cm) sphere at the tip of the end effector and check
for overlap (contact) with movable objects in the scene. If
an overlapping object is found, the object is fixed to the end
effector. The object moves with the end effector until the
release action is performed.

On release, our “snap-to-surface” operation approximates
the entire drop sequence for a released object: falling, landing,
and settling. We use a sphere-cast query to find the nearest
surface below the object. Instead of allowing movable objects
to stack on top of each other, we use an additional heuristic
search described in Appendix I.2 to find a collision-free resting
position nearby.

We choose to implement our simulator in C++; it runs
on the CPU, in contrast to recent GPU-based physics simula-
tors [16, 29, 64]. While these offer greater throughput, CPU-
based C++ code has advantages over GPU code: direct access to
host memory/disk/network resources, a less restrictive memory
model, and greater availability of third-party libraries. In addi-
tion, as shown in Figure 1, our kinematic sim (“step physics”) is
faster than GPU-based rendering and PyTorch inference. This
makes it “free” within our GPU-bound rollout computation, as
shown by the large idle gaps on the Physics thread. This is in
contrast to GPU-based physics simulators, which despite their
high throughput, would not be free in this GPU-bound scenario,
which would negatively impact overall rollout compute time.

Figure 3. Visualization of an environment (top) and its collision
geometry (bottom). In the bottom, the robot is represented with green
spheres, and the held object with blue spheres. The other movable
objects as oriented boxes (orange), and the static environment as a
voxel-like “column grid” data structure (gray).

4. Experiment Setup: Object Rearrangement

4.1. Task Description

We study how Galactic can accelerate learning in Geometric-
Goal object rearrangement [2] with end-to-end RL. We follow
the GeometricGoal rearrangement task setup from [55], where
a robot is tasked with moving an object from a start location
to the desired goal entirely from onboard sensing consisting
of an RGBD head camera and proprioceptive sensing. The
task is specified via the 3D center of mass for the target object’s
start location and the 3D center of mass for the object’s target
location. To accomplish the task, the agent must navigate
through an indoor environment, pick, place, and avoid distractor
objects and clutter, all while operating from egocentric sensors.
The agent is a simulated Fetch robot [43], with a wheeled base, a
7-DoF arm manipulator, a suction gripper, and a head-mounted
RGBD camera (128×128 pixels). The episode is successful if



the agent places the object within 15cm of the desired position
within the episode horizon of 500 time steps and calls the stop
action. We aim to transfer the policies learned in Galactic to
the Rearrange Easy benchmark from the NeurIPS 2022 Habitat
Rearrangement Challenge [55, 56]. We implement the same
rearrangement task in Galactic to facilitate this transfer.

We use an 11-dimension action space in Galactic consisting
of control for the base, arm, gripper, and episode termination.
2 actions control the linear and angular velocity of the robot
base. 7 actions are for delta joint angles for each of the 7 arm
joints. 1 binary action is for the grasping and 1 binary action
indicates episode termination.

The observation space consists of visual sensors, proprio-
ceptive sensing, and task specification. The visual sensor is a
128×128 RGBD, 90◦ FoV head-mounted camera. Propriocep-
tive sensing provides the angles in radians of all 7 joints and
if the robot is holding an object. From a base egomotion sensor,
we derive the relative position of the robot base and end-effector
to the object start and goal position as observations. Additionally,
we include an episode step counter in the observation.

We import the datasets and assets from the Rearrange
Easy benchmark in Habitat 2.0 into Galactic. The Rearrange
Easy benchmark uses the ReplicaCAD [55] scene dataset
consisting of 105 interactive indoor home spaces. We load
the train dataset of 10k episodes which specify rearrangement
episodes in the train split of 63 room layouts in ReplicaCAD.
We pre-compute the robot’s starting position in each episode
for greater efficiency. Each episode contains one target object
to rearrange and 29 distractor objects.

4.2. Approach: End-to-End RL

Our approach relies on training a “sensors-to-actions”
policy directly using RL with the task reward alone. Previous
state-of-the-art approaches for mobile manipulation in Habitat
2.0 rely on decomposing the task into the separate skills of
navigation, picking, and placing [19, 59]. However, such
hierarchical approaches suffer from requiring a hand-specified
task decomposition and “hand-off problems” where errors
between skills compound. Our approach avoids these issues
by training a single end-to-end policy via RL. Previously, such
end-to-end approaches achieved little success in the Habitat
2.0 rearrangement tasks [55]. However, with the speed of the
Galactic simulator, we can generate experience fast enough for
the end-to-end approach to become a viable approach to rear-
rangement tasks since it allows gathering the billions of samples
needed in only a few days with an 8-GPU compute node.
Reward function. We define the reward for the rearrangement
task largely following the default reward in the Rearrange Easy
benchmark, but with some modifications for smooth robot
motion. The agent gets a sparse reward for completing the task
and picking up the object. The robot is given a dense reward
as the decrease in L2 distance between the end-effector and
object as well as between the object and goal. The robot is

given a penalty for large differences in actions at subsequent
steps. Furthermore, to speed up training convergence, we do
not allow the robot to call the stop or drop action until the
end-effector is within a cylinder of width 0.15m and height
0.3m around the goal position. We analyze this decision in
detail in Section 5.3. Additional details of the rearrangement
task and reward function in Galactic are in Appendix A.
Architecture and Hyperparameters. Our primary experiments
use a ResNet18 [23] visual encoder, with a 2-layer 512 hidden
unit LSTM, and then separate actor and critic network heads.
We then train this with DD-PPO [60], a distributed version of
PPO [47]. We run 128 environments per GPU across 8 GPUs
giving 1024 environment instances in total. We use a policy
rollout length of 64, 2 mini-batches per update, and 1 epoch
over the rollout data per update. This setup runs at over 30,000
steps-per-second (SPS), where the policy contains 6 million
trainable parameters, We provide all training hyperparameters
in Appendix B.

5. Results
5.1. Throughput and Scaling

In Table 1, we report sim steps per second (physics and/or
rendering) and training SPS (physics and/or rendering, plus
inference and learning) for various physics-only and Embodied
AI simulators. We also describe VizDoom, an arcade simulator
that has served as a classic benchmark for RL algorithms due
to its speed.

Among EAI simulators that support realistic environments
(photorealism and realistic physics), Galactic is 80× faster than
the existing fastest simulator, Habitat 2.0 (108,806 vs 1243
training SPS for 8 GPUs). Galactic’s training throughput is
comparable to LBS, Megaverse, and VizDoom, even though
LBS doesn’t simulate physics, and neither Megaverse nor
VizDoom supports realistic environments. We also compare
to GPU-based physics-only simulators: while these are
generally faster than Galactic, they entirely omit rendering,
which significantly reduces the compute requirements of
environment-stepping, inference, and training compared to
visual simulators and vision-based policy training. As seen
in the last two rows, for our distributed training, we observe
near-linear scaling from 1 to 8 GPUs, achieving a 7.3x speedup.

In Figure 4, we show how the training SPS scales as a func-
tion of the number of environments (batch size) and visual en-
coder on a rearrangement task (described in detail in Section 4).
SPS increases for simpler encoders and larger batch sizes.

5.2. Sim-to-Sim Results

In this section, we show that we can scale RL training in
Galactic, achieve a high success rate in Galactic, and then
zero-shot transfer the policy to Habitat 2.0.
Training in Galactic. First, we train a policy in Galactic using
the end-to-end training setup and policy architecture described
in Section 4.2. We leverage the fast simulation and easy scaling
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Figure 4. The steps-per-second throughput when varying visual
encoder architecture and the number of environments per GPUs, using
a single compute node and 8 GPUs. The rightmost point on each
curve corresponds to the maximum number of environments we can
use before running out of GPU memory.

of Galactic to train a neural policy with RL for 5 billion steps
of experience. With 1024 environments across 8 GPUs, training
runs at 30,000 SPS which takes 46 hours to train the policy to
convergence at 5 billion steps.
Transfer to Habitat 2.0. Next, we transfer the policy trained
in Galactic zero-shot to Habitat 2.0. The physics simulation
in Galactic is kinematic, while the physics in Habitat 2.0 is
dynamic. In the kinematic simulation of Galactic, the actions
denote joint delta angles and base velocity, which are set by the
simulator on the next step. However, in Habitat 2.0, the arm is
controlled via joint motor torques at every step to achieve a target
joint state. Hence, we bridge the dynamics simulation gap by us-
ing the policy trained in Galactic as a higher-level policy that out-
puts target joint offset angles in Habitat 2.0 at 10Hz. A controller
then outputs the joint motor torques to achieve the target joint
state set by the policy trained in Galactic operating at 120Hz.
The policy takes as input the observations from Habitat 2.0 to
output this target delta state. Observations between Galactic and
Habitat 2.0 are similar since they use the same scenes and assets.

Other small differences in the simulators affect the
sim-to-sim performance. Since Galactic does not simulate
dynamics, the dropping mechanism “snaps” the object to the
surface directly below the drop point of the object. This ignores
the effects of the object rolling or bouncing off from the point
of contact after the drop. However, as described in Section 4.2,
the policy is trained to drop the object just above the surface.
This low drop point minimizes the potential effects of bouncing
or rolling due to high drop speeds, helping the sim-to-sim
transfer. Furthermore, collisions are handled differently in the
two simulators. In Galactic, we “allow sliding” for training like
described in Section 3.2, meaning that the base of the robot will
slide when the arm penetrates the environment. However, in
Habitat 2.0, the arm can collide with the surrounding scene.

We compare to training the same policy architecture directly
in Habitat 2.0 with RL. Specifically, we use an identical reward
and policy architecture setup as described in Section 4.2 in

Habitat 2.0. We train this policy for 50 hours which leads to
around 200M steps of training in Habitat 2.0 using the VER
trainer [59]. Training in Habitat 2.0 for 5 billion steps like
Galactic would take 46 days of training. Both the Galactic
policy and the Habitat 2.0 baseline policy utilize comparable
compute resources for training.

Galactic Galactic → H2.0 H2.0

Train 95.30± 0.67 36.70± 0.46 0.00± 0.00
Eval 86.70± 1.06 26.40± 0.43 0.00± 0.00

Table 2. Success rates in the Rearrange task. The middle column
shows the zero-shot success of the policy trained in Galactic on the
fully dynamic Habitat 2.0 (H2.0). The rightmost column is the policy
trained purely in H2.0. The leftmost column shows success for the
Galactic trained policy evaluated in Galactic (grayed since it reports
success in Galactic while other columns are in H2.0). Numbers
represent mean and standard error across 1k episodes.

Results. We evaluate the success rate of the trained policies
on unseen episodes in Table 2. The top row of Table 2 shows
the success rate for 1k of the train episodes, and the bottom
row shows the success rate over the evaluation dataset of 1k
episodes (the “val” dataset from the Rearrange Easy challenge).
The leftmost column (Galactic → Galactic) of Table 2 shows
the performance of the policy trained in Galactic on the unseen
episodes in Galactic, demonstrating that the policy can learn
generalizable rearrangement behavior from 5B steps of training.
In Habitat 2.0 → Habitat 2.0, we zero-shot transfer the policy
trained in Galactic to Habitat 2.0. Despite differences in visuals
and dynamics between the simulators, the policy can still
achieve 26.40% success rate without any further training. This
far outperforms training directly in Habitat 2.0 with a similar
compute budget as demonstrated by the policy trained directly
in Habitat 2.0 achieving no success. This result is consistent
with [55,56] where end-to-end policies also achieve no success.
The policy in Habitat 2.0 learns too slow, and even after 200M
steps, it only learns to pick the object up but struggles to place
it. In Appendix C, we further analyze policy in Habitat 2.0 and
the errors in the zero-shot transfer.

5.3. Analyzing Rearrangement Settings in Galactic

In this section, we analyze what properties of the rearrange-
ment task structure are important for RL training. Galactic
allows us to answer these questions at scale by training policies
fully to convergence, even if it takes billions of steps.

We analyze three variations of the rearrange task with
different conditions around the termination and drop action.

• Rearrange : The “default” version of rearrangement
where the policy may drop the object at any point or call
the stop action at any point in the episode.

• Rearrange [Safe Drop/Stop] : Same as Rearrange except
the policy has a heuristic condition around when the
stop and drop actions are executed. The drop action is



ignored except when the robot’s end-effector is within a
cylinder of radius 0.15m and height of 0.3m around the
goal location. The stop action is ignored before the robot
has dropped the object.

• Rearrange [No Distractors] : A version of Rearrange
[Safe Drop/Stop] where there are no other objects in the
scene other than the object the robot needs to move.

Policies are trained for 5 billion steps in the same training setup
as Section 5.2. Figure 5 compares the learning curves for each
setting where each point on the curve is the policy checkpoint
evaluated for 100 validation episodes (unseen configurations
of objects and scenes) from the Tidy House dataset. When
evaluating the last checkpoint on 1000 evaluation episodes,
we find that Rearrange [Safe Drop/Stop] achieves 84.73%
success rate while Rearrange achieves 79.63% success rate,
despite using the same sensor inputs. This demonstrates that the
challenges of learning the stop and drop actions harm learning.
Furthermore, the gap between Rearrange [Safe Drop/Stop] with
a success rate of 84.73% and Rearrange [No Distractors] with
a 99.5% success rate after only 500 million steps shows that the
presence of distractor objects makes learning more difficult.

Figure 5. Evaluation success rate of different Rearrange tasks on 100
held-out episodes with mean and std across 3 seeds.

5.4. Speeding Up Mobile Pick

We also show that Galactic can rapidly train policies in an
additional mobile pick task. In the mobile pick task, the robot
is spawned within a 2-meter radius of the object to pick up
and is provided the start coordinates of the object. The agent
then controls the base and arm to navigate to and then pick up
the object. The episode is successful if the agent picks up the
correct object within the episode horizon of 300 steps. We use
the policy architecture described in Section 4.2 with a ResNet18
visual encoder for policies in Galactic and Habitat 2.0.

The plot in Figure 6 shows that Galactic is capable of training

policies in Galactic 100× faster than in Habitat 2.0. To reach
an 80% success rate, training in Galactic requires 16 minutesof
wall-clock time, while reaching the same success in Habitat 2.0
requires over 26 hours. This 100× speed-up validates that Galac-
tic’s higher SPS translates directly to faster wall-clock time-to-
convergence. It also demonstrates that Galactic can be used to
accelerate even tasks less complex than full rearrangement.

100x Faster

16 minutes >26 hours

Figure 6. Wall-clock time versus success rate in the mobile pick task
between training policies in Galactic and Habitat 2.0. Galactic takes
16 minutesto train a policy to 80% accuracy while Habitat 2.0 requires
over 26 hours to train a policy to 80% accuracy.

6. Conclusion

We propose Galactic, a framework for rendering, physics,
and RL training for embodied tasks at a massive scale. To
achieve high throughput for experience collection, we develop
an approximate kinematic simulator optimized for embodied
rearrangement tasks and propose a batch processing approach
to jointly render observations and simulate the physics of the
world. Galactic processes more than 100,000 steps per second
in RL training. Learning a mobile picking skill takes less than
16 minutes, while training for the same task in Habitat 2.0, one
of the fastest embodied simulation frameworks, requires more
than 26 hours. We also show that policies trained in Galactic
generalize to zero-shot to Habitat 2.0. We hope that Galactic
opens up new avenues in embodied AI research by enabling
large-scale training.
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Toczek, and Wojciech Jaśkowski. ViZDoom: A Doom-based
AI research platform for visual reinforcement learning. In IEEE
Conference on Computational Intelligence and Games, 2016. 2

[27] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,
Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Abhinav
Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d environment
for visual ai. arXiv, 2017. 3, 4

[28] Chengshu Li, Fei Xia, Roberto Mart́ın-Mart́ın, Michael
Lingelbach, Sanjana Srivastava, Bokui Shen, Kent Vainio,
Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson
2.0: Object-centric simulation for robot learning of everyday
household tasks. arXiv, 2021. 2

http://pybullet.org


[29] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita
Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac
gym: High performance gpu-based physics simulation for robot
learning. arXiv, 2021. 2, 3, 4, 5

[30] Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik
Wijmans, Wojciech Galuba, Stefan Lee, and Dhruv Batra. Thda:
Treasure hunt data augmentation for semantic navigation. In
ICCV, 2021. 1

[31] Piotr Wojciech Mirowski, Razvan Pascanu, Fabio Viola, Hubert
Soyer, Andy Ballard, Andrea Banino, Misha Denil, Ross
Goroshin, L. Sifre, Koray Kavukcuoglu, Dharshan Kumaran, and
Raia Hadsell. Learning to navigate in complex environments.
In ICLR, 2017. 3
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A. Additional Task Details
The full reward function of the Rearrange task is described

in Equation (1).

rt=10Isuccess+5Ipick+∆obj
arm+∆goal

obj −0.001Ct (1)

Where:

• Isuccess is the indicator for task success.

• Ipick is the indicator if the agent just picked up the object.

• ∆obj
arm is the change in Euclidean distance between

the end-effector (arm) and the target object (obj). If
dt is the distance between the two at timestep t, then
∆obj

arm=dt−1−dt).

• ∆goal
obj is the change in Euclidean distance between the

object (obj) and the goal position (goal).

• Ct Is the squared difference in joint action values between
the current and previous time step. If akt is the action for
timestep t for moving joint k then Ct=

∑
k(a

k
t −akt−1)

2

The reward signal for the mobile pick is identical, but the
task ends in a success if the robot picks the correct object
(Isuccess=Ipick).

The action space of the monolithic policy consist of 11
actions:

• 7 continuous actions controlling the change to the joints
angles. These actions are normalized between −1 and 1
with the minimum and maximum value corresponding to
the maximum change to the joint angles allowed in each
direction per step.

• 1 continuous action between −1 and 1 corresponding
to the robot moving forward. An action with value of 1
corresponds to the robot moving forward by 10cm and −1
to the robot moving backward by 10cm in the simulation.

• 1 continuous action between −1 and 1 corresponding to
the robot rotating. An action with value of 1 corresponds
to the robot rotating in clockwise by 5◦ and −1 to the
robot rotating counter-clockwise by 5◦.

• 1 discrete action with 2 options corresponding to the robot
attempting to grasp or release an object. If the value is 0,
and the robot is holding an object, the robot will attempt
to release it. If the value is 1 and the robot is not holding
an object, the robot will attempt to grasp.

• 1 discrete action with 2 options corresponding to the robot
attempting to terminate the episode. If the value is 0 the
robot will continue the task. If the value is 1, the robot
will signal that the task is completed.

B. Method Details
More details about the method architecture here.
Our Hyperparameters are described in Table 3.

Hyperparameter Value

start learning rate 3.5×10−4

end learning rate 0
learning rate schedule linear

entropy coefficient 1×10−3

clip gradient norm 2.0
time horizon 64

number of epochs per updates 1
number of mini batches per updates 2
RGB and Depth image resolution 128×128

image encoder ResNet18
normalized advantage true

Table 3. Hyperparameters used for DD-PPO training in Galactic

To calculate the entropy of this action space for entropy reg-
ularization in DD-PPO, we add the entropy of the discrete and
continuous actions distributions together without any scaling.

The SimpleCNN model we use consists of 3 convolution
layers followed by a fully connected layer. The kernel sizes for
the three convolution layers are 8×8, 4×4 and 3×3, the strides
are 4×4, 2×2 and 1×1 and there is no dilation nor padding.
This is the same SimpleCNN visual encoder used in Habitat
2.0. The size of the models used are described in Table 4.

Model Total number of parameters

SimpleCNN 4,046,999
ResNet9 4,338,007
ResNet18 5,906,647

Table 4. Model sizes for the different visual encoders used. This
includes the visual encoder, the actor, and the critic.

C. Further Habitat 2.0 Results
First, we analyze the poor performance of the policy purely

trained in Habitat 2.0, which achieves no success in the Table 2.
Figure 7a shows the reward learning curve during training.
This learning curve demonstrates that even after 200M steps of
training, the reward is still increasing, which provides evidence
for the necessity of Galactic to scale training. In this training
time, the agent reliably learns to pick the object around 80% of
the time as shown by the training plot in Figure 7b comparing
the fraction of the time the robot picked the object within an
episode versus the number of training steps.

Next, we analyze the source of errors in the zero-shot transfer
from Galactic to Habitat 2.0. We show the drop in performance
is not due to the dynamic arm control by comparing to
transferring to Habitat 2.0 with a kinematic arm controller
instead of a dynamics-based torque controller. The agent with
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Figure 7. Learning curves for the policy trained purely in Habitat 2.0.
Figure 7a shows the episode reward does not saturate even after 200M
training steps. Figure 7b shows that even though the agent is never
successful, it still learns to pick the object.

the kinematic arm controller achieves a 29.7% success rate on
the “Eval” dataset, barely any better than the 26.4% success
rate the dynamics-based torque controller achieves.

D. Additional Task visuals
In this section, we visualize observations rendered using the

Galactic simulator. Figure 8 are examples of 128 × 128 RGB
images used for training. Figure 9 are examples of 128 × 128
depth images used for training. We also visualize observations
rendered using the Habitat 2.0 simulator also at 128×128 in
Figure 10 and Figure 11.

E. Training for 15 Billion steps
To show the usefulness of training for several billions of

steps, we trained the Rearrange task defined in Section 4 for
15 billion steps. Training and validation success rates are still

Figure 8. Samples of RGB observations collected in Galactic.

Figure 9. Samples of Depth observations collected in Galactic.

Figure 10. Samples of RGB observations collected in Habitat 2.0.

improving, showing that training still hasn’t converged, even
after 15 billion steps.



Figure 11. Samples of Depth observations collected in Habitat 2.0.

Figure 12. Training and evaluation curves for a 15 billion steps
training run. Each checkpoint is evaluated on 100 training or validation
episodes.

Visual Encoder ResNet18 SimpleCNN
Number of Envs 128 512
PyTorch Inference 7.52 8.80
Render Setup 0.77 1.47
Step Post-processing* 1.84 2.05
Step Physics* 1.78 3.76
GPU Rendering 2.27 9.68
Additional CPU 0.74 1.00
Total 11.30 ms 20.95 ms

Table 5. Timing breakdown of a single batch rollout step, for two
configurations in milliseconds. * Post-processing and Physics are
interleaved with GPU rendering and PyTorch inference and don’t
contribute to total rollout step time. See also Figure 1. 1x Tesla V100,
10x Intel Xeon Gold 6230 CPU @ 2.10GHz, 128x128 RGBD sensors.

F. Performance Timings

G. Additional Collision-Detection Details
In this section, we’ll expand on Section 3.2, in par-

ticular, we’ll discuss our collision representations and
collision-detection queries.

Visual Encoder ResNet18 SimpleCNN
Number of Envs 128 512
Compute Rollouts 726 1289
Update Agent 1381 856
Total 2204 ms 2215 ms
Training SPS 3716 SPS 14791 SPS

Table 6. Timing breakdown of a single train update for two config-
urations in milliseconds. 1x Tesla V100, 10x Intel Xeon Gold 6230
CPU @ 2.10GHz, 128x128 RGBD sensors, 64 batch rollout steps.

Galactic scenes include a Fetch robot [43], movable
YCB objects [4], and 105 static (non-movable) ReplicaCAD
scenes [55]. Note that scenes in the ReplicaCAD dataset include
some interactive furniture (e.g. openable cabinet drawers and
doors), but we don’t simulate these in Galactic as they aren’t
required for the Rearrange Easy benchmark.

As discussed in Section 3.2, our approximate kinematic sim
must perform collision queries between the robot (including
grasped object, if any) and the environment (resting movable
objects and the static scene). We represent each articulated link
of the robot with a set of spheres (green in Figure 3). These
are authored manually, with the goal to approximate the shape
of the Fetch robot with a minimal number of spheres. We also
represent each grasped object with a set of spheres (blue). These
are generated offline using a space-filling heuristic. Rather
than supporting arbitrary sphere radius, we limit ourselves to
a sphere-radius “working set” of{1.5 cm, 5 cm, 12 cm}. This
limitation is important as we’ll see shortly.

We approximate a ReplicaCAD scene as a voxel-like
structure called a column grid (gray in Figure 3). A column grid
is generated offline for a particular scene and a particular sphere
radius from our working set, so we generate three column grids
per scene. A column grid is a dense 2D array of columns in
the XZ (ground) plane, with 3-centimeter spacing. For each
column, we represent vertical free space as a list of layers. For
example, a column in an open area of the room would contain
just one layer, storing two floating-point height values roughly
corresponding to the height of the floor and the height of the
ceiling. A column in the vicinity of a table, meanwhile, would
contain two layers: one spanning from the floor to the underside
of the table, and another spanning from the table surface to the
ceiling. Finally, the stored height values don’t actually represent
the surface heights themselves, but rather the height of the
query sphere (of known radius) in contact with the surface. For
ReplicaCAD scenes, the maximum number of layers for any
column is approximately 10 and corresponds to columns in the
vicinity of a particular bookshelf with many shelves.

A column grid is generated offline using the ReplicaCAD
scene’s source triangle mesh and Habitat 2.0’s sphere-query
functionality. We load the scene in Habitat 2.0 and use the
scene extents to derive the column grid’s XZ (ground-plane)
extents. We iterate over this region using our chosen 3-cm



spacing. For each column, we perform a brute-force search of
the vertical region at the column’s XZ position, using a series of
sphere-overlap and vertical sphere-casts to find the free spans.

At runtime, to detect collisions between the robot (including
grasped object, if any) and the static scene, we implement
a fast sphere-versus-column-grid query. First, we select the
appropriate column grid corresponding to the query sphere’s
radius. Second, we retrieve the nearest column corresponding
to the sphere’s XZ position. Finally, we linearly search the
column’s layers to determine whether the query sphere’s Y
position is in free versus obstructed space. This linear search
is accelerated using caching: we start the search from the same
layer index found in recent searches. This leverages spatial and
temporal coherency, for example, consider the robot reaching
under a table: if one sphere from the robot arm’s link is found
to be between the floor and the underside of a table, it’s likely
that other spheres from that same link or other queries from
succeeding timesteps will also lie in that vertical layer.

Whereas a grasped movable object is represented with a set
of spheres (blue in Figure 3), a resting movable object is ap-
proximated as an oriented box (orange). This is computed from
the YCB object’s triangle mesh in a preprocess. At runtime, to
detect collisions between the robot (including grasped object, if
any) and the resting movable objects, we perform sphere-versus-
box queries. There are generally 30 resting movable objects in
the environment (1 target object and 29 distractor objects) and
we need to avoid performing all 30 sphere-versus-box queries.
So, we use a “regular grid” acceleration structure to quickly
retrieve a list of nearby resting objects.

Resting movable objects are inserted into a regular grid at
episode initialization. This is a dense 2D array spanning the
XZ (ground) plane, with each cell storing a list of objects that
overlap it. Objects will generally overlap multiple cells and thus
be present in the object lists of multiple cells. When an object is
grasped by the robot, it is removed from all relevant cells in the
regular grid, and if the object is later dropped, it is re-inserted
into the regular grid at its new resting position.

Let’s consider how to find the list of nearby resting
objects for a given query sphere. The regular grid spacing is
chosen such that cells are at least 4× the largest radius in our
sphere-radius working set (12 cm). A query sphere may overlap
up to four adjacent cells in the regular grid, e.g. the sphere is
centered near the shared edge of two cells or the shared corner
of four cells. A naive approach here would be to merge and de-
duplicate the object lists of the four cells. We avoid this expense
and instead maintain four separate regular grids, all spanning
the entire scene XZ extent, with carefully-chosen varying X and
Z offsets for the cell boundaries. In this way, any query sphere
is guaranteed to lie fully inside a single cell of one of these grids
(not spanning a cell edge or corner). Thus, our list of nearby
resting objects is simply the list stored in this cell; we don’t
have to merge or de-duplicate multiple lists. Note this approach
of four somewhat-redundant regular grids comes at the expense

of extra memory and added insertion/removal compute time.

H. Simulator Flexibility to new Assets
Galactic can work with various assets (robots, scenes and

objects) from different sources. We use a mostly-automated
pipeline that includes optimizing assets for the batch renderer
and generating collision geometry (see Appendix G). In Fig. 13
we added Stretch and Spot robots loaded in a scene from the
MP3D dataset [41] with new objects.

Figure 13. Galactic with an MP3D scene, Google Scanned Objects [13],
Stretch robot (left), Stretch debug viz (center), and Spot robot (right).

I. Description of Heuristics
I.1. Sliding Heuristic

We implement the robot sliding heuristic as the following
steps: (1) start from a candidate pose, (2) if the pose penetrates
the scene, compute a jitter direction in the ground plane (3)
jitter the robot base in the horizontal plane. Repeat from step
1 until a penetration-free pose is found, up to 3 times. If this
fails, the robot does not move on that step.

I.2. Object Placing Heuristic

The object placement heuristic is as follows: (1) start from
a candidate pose, (2) if the pose penetrates the scene, compute
a jitter direction in the ground plane, with some randomness, (3)
jitter the dropped object and re-cast down to a support surface.
Repeat from step 1 until a penetration-free pose is found, up to
6 times. If this fails, we restore the dropped object to its resting
position prior to grasp. This approximates the dropped object
bouncing or rolling away. Snap-to-surface is an instantaneous
operation that resolves within one physics step; objects do not
fall or settle over time.
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