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Abstract

During industrial processing, unforeseen defects may
arise in products due to uncontrollable factors. Although
unsupervised methods have been successful in defect local-
ization, the usual use of pre-trained models results in low-
resolution outputs, which damages visual performance. To
address this issue, we propose PyramidFlow, the first fully
normalizing flow method without pre-trained models that
enables high-resolution defect localization. Specifically,
we propose a latent template-based defect contrastive lo-
calization paradigm to reduce intra-class variance, as the
pre-trained models do. In addition, PyramidFlow utilizes
pyramid-like normalizing flows for multi-scale fusing and
volume normalization to help generalization. Our com-
prehensive studies on MVTecAD demonstrate the proposed
method outperforms the comparable algorithms that do not
use external priors, even achieving state-of-the-art perfor-
mance in more challenging BTAD scenarios.

1. Introduction
Due to the uncontrollable factors in the complex in-

dustrial manufacturing process, unforeseen defects will be
brought to products inevitably. As the human visual system
has the inherent ability to perceive anomalies [25], quality
control relies on manual inspection for a long time.

However, large-scale images and tiny defects are chal-
lenging for manual inspection, so increasing research is fo-
cused on automated machine vision inspection. Among all
the methods, supervised deep learning has achieved great
success. It relies on annotated datasets to learn discrimina-
tive features, effectively overcoming the hand-crafted short-
comings. However, because of insufficient negative sam-
ples, the high demand for labels, and the absence of prior
knowledge, those approaches based on supervised learning
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Figure 1. Illustration of various anomaly localization methods.
(a) Reconstruction-based method. (b) Anomaly-based method,
where NF denotes normalizing flow. (c) Our PyramidFlow, which
combines latent templates and normalizing flow, enables high-
resolution localization.
may suffer in identifying unseen defects in practices,

Recently, unsupervised methods have been applied to
defect detection, as shown in Fig. 1(a,b). Reconstruction-
based methods [4, 15, 23, 29] are the most famous, which
take reconstructed images as templates and then apply ex-
plicit contrast in image space to achieve high-resolution lo-
calization. However, reconstructing using decoders is an
ill-posed inverse problem, it is hard to reconstruct com-
plex details. To overcome the above limitations, anomaly-
based methods [6, 7] utilizing texture-aware pre-trained
models achieves high image-level performance, which also
damages pixel-level visual performance. One of the most
promising methods is convolutional normalizing flows [10,
22, 27], which models the probability distribution further
from pre-trained features, earning higher performance.

In this paper, a Pyramid Normalizing Flow (Pyramid-
Flow) is proposed. It develops the idea of templates from
image space into latent space by normalizing flow, then
performing contrast ∆zd for high-resolution anomaly lo-
calization, as shown in Fig. 1(c). Specifically, we propose
the multi-scale Pyramid Coupling Block, which includes
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invertible pyramid and volume normalization, as the crit-
ical module to construct volume-preserving PyramidFlow.
To the best of our knowledge, PyramidFlow is the first
UNet-like fully normalizing flow specifically designed for
anomaly localization, analogous to UNet [19] for biomed-
ical image segmentation. Our main contributions can be
summarized as follows.

• We propose a latent template-based defect contrastive
localization paradigm. Similar to the reconstruction-
based methods, we perform contrast localization in la-
tent space, which avoids the ill-posedness and reduces
intra-classes variance efficiently.

• We propose PyramidFlow, which includes invertible
pyramids and pyramid coupling blocks for multi-scale
fusing and mapping, enabling high-resolution defect
localization. Additionally, we propose volume normal-
ization for improving generalization.

• We conduct comprehensive experiments to demon-
strate that our advanced method outperforms compa-
rable algorithms that do not use external priors, and
even achieves state-of-the-art performance in complex
scenarios.

2. Related Work

2.1. Deep learning-based Defect Localization

With the rise of deep learning, numerous works apply
generalized computer vision methods for defect detection.
Some works are based on object detection [13,14,28,30,31],
which relies on annotated rectangular boxes, enabling locat-
ing and classifying defects end-to-end. The other is apply-
ing semantic segmentation [5, 18, 24], which enables pixel-
level localization, suit for complex scenarios with difficult-
to-locate boundaries. However, these works still rely on su-
pervised learning, they attempt to collect sufficient defec-
tive samples to learn well-defined representations.

Recently, some promising work has considered the
scarcity of defects in real-world scenarios, where defect-
free samples are only obtained. These methods can be
classified as reconstruction-based and anomaly-based. The
reconstruction-based method relies on generative models
such as VAE or GAN, which encode a defective image
and reconstruct it to a defect-free image, then localize
the defect with the contrast of these two images. The
reconstruction-based method performs well on single tex-
tural images, but they cannot generalize to non-textural im-
ages for ill-posedness and degeneracy [25]. The anomaly-
based method treats defects as anomalous, applying neu-
ral networks to discriminate between normality and anoma-
lous. These methods extract pre-trained features, then esti-
mate their probability density using Mahalanobis distances

or K-NearestNeighbor, while the lower probability indi-
cates where the image patches are abnormal. Although
anomaly-based methods had achieved great success in de-
fect detection, it locates defects with low pixel-level resolu-
tion compared with reconstruction-based methods, usually
1/16th or even lower, which greatly limits practical indus-
trial applications.

To overcome existing shortcomings, we propose a latent
template-based defect contrastive localization paradigm,
which breaks the limitation of low-frequency texture-
aware-only models, enabling more accurate results.

2.2. Normalizing Flow

Normalizing flow is a kind of invertible neural network
with bijective mappings and traceable Jacobi determinants.
It was first proposed for nonlinear independent component
estimation [8] and applied to anomaly detection [21] re-
cently for its invertibility helps prevent mode collapse. The
normalizing flow comprises coupling blocks, these basic
modules for realizing nonlinear mappings and calculating
Jacobi determinants. Originally, NICE [8] proposed the
additive coupling layer with unitary Jacobi determinants,
while RealNVP [9] further proposed the affine coupling
layer that enables the generation of non-volume-preserving
mappings. However, redundant volume degrees of freedom
can lead to increased optimization complexity, creating a
domain gap between maximum likelihood estimation and
anomaly metrics, which may potentially compromise the
generalization performance in anomaly detection.

Previous works [10,21,27] on anomaly localization usu-
ally follow the methods proposed in RealNVP, but some
challenges remain. Some studies [22] have found that con-
volutional normalizing flow focuses on local rather than se-
mantic correlations, which are usually addressed by image
embeddings [12]. Hence, earlier studies [21] adopted pre-
trained backbones, while recent trends used pre-trained en-
coders to extract image patches [10, 22, 27]. However, pre-
trained-based methods rely on task-irrelevant external pri-
ors, which limit generalization in unforeseen scenarios.

To address the above challenges, we propose a pyramid-
like normalizing flow called PyramidFlow, which utilizes
volume normalization to preserve volume mappings that
include task-relevant implicit priors. Additionally, our
method offers the option of using pre-trained models, and
we have observed that external priors from pre-trained mod-
els can improve generalization performance. We will dis-
cuss these contributions in Sec. 4.3 and Sec. 4.4.

3. Methodology
Our algorithm consists of two processes, training and

evaluation, as shown in Fig. 2. The training process is sim-
ilar to siamese networks, the model is optimized by mini-
mizing the Frequency differences ‖F(∆zd)‖ within the im-
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Figure 2. Schematic of training and evaluation for PyramidFlow. (a) Given any normality pair, minimize the distance of latent variables.
(b) The means of the latent variables are contrasted to the examples, then apply pyramid composition to obtain an anomaly localization
map.
age pair. For the evaluation process, latent templates are
obtained through inference at the total training dataset, then
latent contrast and pyramid composition are applied to ob-
tain an anomaly localization map. The details are shown in
the following sections.

3.1. Invertible Pyramid

Defect images contain various frequency components.
Usually, the low-frequency components represent the slow
gradient background, while the high-frequency components
correspond to details or defects. To decouple the frequency
components and identify each frequency component inde-
pendently, we propose invertible pyramids, which enable
multi-scale decomposition and composition for a single fea-
ture. To facilitate feature learning, previous work applies
pre-trained encoders to extract features. Although pre-
trained methods with external priors help performance im-
provement, to fully explore the advantages of our approach
in our primary study, let’s consider a baseline without any
pre-trained model.

For a three-channel image I , apply orthogonally initial-
ized 1× 1 convolution W ∈ RC×3 to the image for obtain
features x = WI . Given a feature x and a positive integer
L, the pyramid decomposition is a mapping from features
to feature sets Ldec : x→ {xd|d ∈ ZL−1}, where xd is the
d−level pyramid can be calculated as

xd = Dd(x)− U(Dd+1(x)) (1)

where D(·) and U(·) are arbitrary linear upsampling and
downsampling operators, while Dd(·) represents repeated
downsampling d times. If Eq. (1) is further satisfied
D0(x) = x,DL(x) = 0, then the inverse operation Lcom :
{xd|d ∈ ZL−1} of the pyramid decomposition can be de-
scribed as

x =
L−1∑

d=0

Ud(xd) (2)

Differing from Gaussian pyramid, Eq. (2) indicates that

there is always an inverse operation for pyramid decompo-
sition, which is called pyramid composition. The method
based on Eqs. (1) and (2), enabling perform multi-scale fea-
ture decomposition and composition, is a critical invertible
module for PyramidFlow.

3.2. Pyramid Coupling Block

Invertible Modules. Invertible modules are the essential
elements to implementing invertible neural networks. The
invertible modules introduced in this paper are invertible
convolution, invertible pyramid, and affine coupling block.
The affine coupling block is the basic module that consti-
tutes the normalizing flow. It is based on feature splitting
for invertible nonlinear mappings with easily traceable Ja-
cobian determinants and inverse operations.

As shown in Fig. 3(a), the conventional affine coupling
block splits a single feature along the channel dimension,
where one sub-feature keeps its identity while another is
performed affine transformation controlled by it. Denote
the splitted features are x0, x1 and its outputs are y0, y1,
then the corresponding transformation can be described as

y0 = x0

y1 = exp (s(x0))� x1 + t(x0)
(3)

where s(·), t(·) are affine parameters, can be estimated by
zero-initialized convolutional neural networks. For for-
mula(3), there is an explicit inverse transformation:

x0 = y0

x1 = exp (−s(y0))� (y1 − t(y0))
(4)

Denote the element at position i, j of s(·) as si,j(·). As
the Jacobian matrix of transformation(3) is a triangular ma-
trix, its logarithmic determinant can be estimated as

log

∣∣∣∣
∂(y0, y1)

∂(x0, x1)

∣∣∣∣ =
∑

i,j

si,j(x0) (5)

Eqs. (3) to (5) are the basis of all affine coupling blocks.
However, the coupling block shown in Fig. 3(a) remains
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Figure 3. The proposed pyramid coupling block and PyramidFlow, where the solid line symbolizes the transformation while the dotted
line refers to identity. (a) Channel-splitting affine coupling block. (b) The reverse cascade of (a)-architecture. (c) The proposed scale-wise
pyramid coupling block. (d) The reverse parallel and reparameterized of (c)-architecture. (e) The proposed PyramidFlow, is a stacking of
(c,d)-architecture both in depths and layers, where 1× 1 convolution is neglected to represent.
identical for one part. Therefore the reverse cascade ar-
chitecture is proposed in NICE [8] such that both parts are
transformed, as shown in Fig. 3(b). The previous works
construct the holistic invertible normalizing flow by itera-
tive applying the structure shown in Fig. 3(b).
Implementation. Our method decomposes a single feature
along the scale and realizes multi-scale feature fusion based
on Eqs. (3) to (5). In our implementation, the multi-scale
affine parameters s(·), t(·) are estimated using a convolu-
tional neural network with two linear layers, where bilinear
interpolation is applied to match the target shape.

In addition, we employ invertible 1x1 convolution [11]
for feature fusion within features. Specifically, denoting the
full rank matrix corresponding to the invertible 1 × 1 con-
volution as A, which can be decomposed by PLU as

A = PL(U + diag(exp(si))) (6)

where P is a frozen permutation matrix, L is a lower tri-
angular matrix with unit diagonal elements, U is an upper
triangular matrix with zero diagonal elements, and exp(si)
is the i-th eigenvalue of the matrix A, which always holds
nonnegativity. The matrix A is always invertible during op-
timization, then its logarithmic Jacobian determinant can be
estimated as

log |A| =
∑

i

si (7)

In summary, Eqs. (3) to (7) describe proposed pyramidal
coupling block mathematically, as shown in Fig. 3(c). First,
multi-scale feature fusion(3-5) is performed, and then ap-
ply linear fusion(6-7) for shuffle channels. Furthermore, we
propose a dual coupling block as shown in Fig. 3(d), which
is equivalent to the reverse parallel of the coupling block
in Fig. 3(c). The dual coupling block is reparameterized in
our implementation, and its affine parameters s(·), t(·) are
estimated from concatenated features.
Volume Normalization. Suppose that the invertible trans-
formation f : x → z maps the variable x to the latent vari-
able z. Previous works have assumed that the latent variable

H
, W

NC

H
, W H
, W

NC

(a) Batch Norm (b) CVN (c) SVN

C N
Figure 4. Illustration of volume normalization. (a) Batch Normal-
ization. (b) The proposed Channel Volume Normalization (CVN).
(c) The proposed Spatial Volume Normalization (SVN).
follows basic probability distribution (e.g. Gaussian distri-
bution), then estimates sample probability density based on
the following equation:

P (x) = P (z)

∣∣∣∣
∂f(x)

∂x

∣∣∣∣ (8)

However, this approach relies on the basic distribution
assumption and ignores the effect of the implicit prior in the
probability density transform on generalization. When such
approaches are applied to anomaly detection, the inconsis-
tency between the training objectives and the anomaly eval-
uation results in domain gaps.

Similar to batch normalization or instance normalization
in deep learning, the proposed volume normalization will be
employed for volume-preserving mappings, as illustrated in
Fig. 4. Particularly, for the affine coupling block, the param-
eter s(·) is subtracted from its mean value before perform-
ing Eq. (3); for the invertible convolution, the parameter
si is subtracted from its mean value before calculating the
matrix A based on Eq. (6). Depending on the statistical di-
mension, we propose Spatial Volume Normalization (SVN)
and Channel Volume Normalization (CVN). SVN performs
mean statistics along the spatial dimension, while CVN is
along the channel dimension. Various volume normaliza-
tion methods contain different priors, then we will explore
their impact in Sec. 4.2.

3.3. Pyramid Normalizing Flow

Architecture. Our PyramidFlow can be obtained by stack-
ing the pyramid coupled blocks of Fig. 3(c,d) along the
depth D − 1 times and along the layer L − 1 times, as
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shown in Fig. 3(e). Specifically, PyramidFlow boosts the
image I to feature x using matrix W, then performs the
pyramid decomposition based on Eq. (1). The pyramid cou-
pling blocks described in Eqs. (3) to (7) are calculated in the
order described in Fig. 3(e) to obtain potential pyramid fea-
tures zd, d = 0, 1, · · · , L − 1, which are finally composed
into latent variables according to Eq. (2).
Loss Function. In the cases with volume normalization,
the loss function excludes the probability density coeffi-
cients. Moreover, the logarithmic Jacobian determinant of
the semi-orthogonal matrix W is sample-independent, so
its effect could be ignored during training.

Suppose a training batch with 2 normal samples, its la-
tent variables are zd(i), zd(j). Previous studies train neural
networks using spatial difference ∆zd = ‖zd(i)− zd(j)‖2.
However, it ignored the impact of high-frequency defects.
To address the above shortcoming, we propose the follow-
ing Fourier loss function.

Lloss = ‖F(Lcom({∆zd|d ∈ ZL−1}))‖ (9)

where F is the fast Fourier transform of the image. Train-
ing the normalizing flow using Eq. (9) enables the model to
focus on the high-frequency, allowing faster convergence.
We will discuss this trick in Sec. 4.3.
Defect Localization. Previous studies [22, 27] usually lo-
calize defects with obvious differences based on category-
independent zero templates. In our method, the defects are
modeled as anomalous deviations with respect to the tem-
plate. Then, the anomaly of the latent pyramid zd is defined
as σ(zd) = ‖zd − z̄d‖, where z̄d is mean of the latent pyra-
mid. Finally, the total anomaly can be estimated as

σ(z) = Lcom({σ(zd)|d ∈ ZL−1}) (10)

The Eq. (10) shows that the total anomaly is a composi-
tion of anomalies at various scales, which is consistent with
the empirical method proposed by Rudolph, et al. [22].
Image Template Estimation. The image template is a pro-
totype of normal samples, a visualization of the latent tem-
plate. Our fully normalizing flow is based on 1×1 convolu-
tion instead of pre-trained encoders, maintaining end-to-end
and near-invertibility, thus the flow’s input xtemp can be re-
trieved using Eq. (2) and Eq. (4) from latent mean z̄d, then
solve the least square problem WItemp = xtemp for image
template Itemp.

4. Experiment and Discussion
In this chapter, we perform unsupervised anomaly local-

ization experiments on MVTec Anomaly Detection Dataset
[2] (MVTecAD) and BeanTech Anomaly Detection Dataset
[16] (BTAD). MVTecAD contains 15 categories of indus-
trial defect images, five of which are textural images and
the other ten are object images. The object images contain
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Figure 5. Analysis of model complexity for various depths. The
bars correspond to the Training Memory Usage (GB) in the left
vertical coordinate, while the line graph and horizontal lines relate
to the Model Parameters (M) on the other side. For each depth D,
the left bar presents the normalizing flow implemented based on
autoFlow framework with memory-saving tricks, while the right
is implemented by PyTorch with auto-differentiation.

three classes (grid, metal nut, screw) without rough registra-
tion and one class (hazelnut) without fine registration, and
we will discuss these cases in Sec. 4.5. The BTAD contains
three types of real-world and industry-oriented textural im-
ages, which is more challenging for pixel-level localization.

All experiments take Area Under the Receiver Operat-
ing characteristic Curve (AUROC) and Area Under the Per
Region Overlap (AUPRO) as evaluation metrics. AUROC is
the most widely used anomaly evaluation metric, and higher
values indicate that various thresholds have less impact on
performance. However, AUROC prefers larger anomalies
and may fail in small proportions of anomalies. Thus, we
further evaluate AUPRO for localization metric, similar to
Intersection Over Union (IoU) commonly used in semantic
segmentation. Detailed definitions can be found in [2].

4.1. Complexity Analysis

The normalizing flow based on Eqs. (3) and (4) is com-
putationally invertible, which indicates that only one copy
of the variables is necessary for all stages. This feature de-
creases the memory footprint during backpropagation from
linear to constant complexity. We have analyzed the above
characteristics based on a fixed number of pyramid layers
L = 8, image resolution with 256 × 256, and channels
C = 24, then changed the number of stacked layers D to
explore the trends of memory usage and model parameters.
The forward and memory-saving backpropagation is im-
plemented based on the self-developed PyTorch-based [17]
framework autoFlow. All indicators are recorded during
steady-state training, then plotted as bar and line graphs, as
shown in Fig. 5.
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The memory usage based on auto-differentiation in-
creases linearly with depth D, while the implementation
based on normalizing flow achieves approximate depth-
independent memory usage. The memory superiority
enables the proposed method to be trained in memory-
constrained devices below 4G without powerful hardware.
The line graph shows the exponential trends between model
parameters and depth, while the horizontal line represents
the parameters of the usual pre-trained model. We mainly
adopt methods with D < 8 or even shallower, where
the number of parameters is far smaller than popular pre-
training-based methods. In summary, in scenarios of mem-
ory constraint, the proposed PyramidFlow enables dealing
with larger images and requires fewer parameters than oth-
ers.

4.2. Study on Volume Normalization

In this subsection, based on MVTecAD, we investigate
the impact of volume normalization on generalization. The
experiment without data augmentation, fixed pyramid lay-
ers L = 4, channels C = 16, and linear interpolated im-
age to 256 × 256. During the training, the volume nor-
malization applies sample mean normalization and updates
the running mean with 0.1 momenta, while in the testing,
the volume normalization is based on the running mean.
We sufficiently explored the volume normalization meth-
ods proposed in Sec. 3.2. Some representative categories
are shown as Tab. 1.
Table 1. Quantitative results of CVN and SVN on different
categories. For each case in the table, the first column is
Pixel-AUROC% and the second is AUPRO% , while the values

within parentheses represent the relative improvement.

Classes
CVN SVN

AUROC AUPRO AUROC AUPRO

capsule 96.1(+2.6) 93.1(+5.1) 93.5(+0.0) 88.0(+0.0)
pill 96.2(+1.8) 96.3(+1.4) 94.4(+0.0) 94.9(+0.0)

toothbrush 98.9(+2.5) 97.9(+4.3) 96.4(+0.0) 93.6(+0.0)
carpet 88.9(+0.0) 88.3(+0.0) 90.8(+1.9) 91.0(+2.7)
grid 86.2(+0.0) 84.5(+0.0) 94.2(+8.0) 92.7(+8.2)

zipper 92.2(+0.0) 91.9(+0.0) 95.4(+3.2) 95.1(+3.2)

The result in Tab. 1 shows the performance differences
between the various volume normalization methods: CVN
outperforms SVN for the first three classes, while the latter
behaves the opposite. We further visualize these defect dis-
tributions in Fig. 6, which shows that SVN-superior classes
are commonly textural images with a larger range of de-
fects, while CVN-superior classes are object images.

SVN with larger receptive fields achieves non-local lo-
calization by aggregating an extensive range of texture fea-
tures, while CVN realizes accurate localization by shuffling
channels. In a word, different volume normalization tech-
niques implicitly embody distinct task-specific priors. Fur-
thermore, our ablation study in Sec. 4.3 shows that volume

capsule pill toothbrush

carpet grid zipper

C
V
N

SV
N

Figure 6. Defects in Tab. 1 are visualized as heat maps. The top
row displays CVN-superior class object images, while the bottom
row displays SVN-superior class texture images.

normalization does help to improve average performance.

4.3. Ablation Study

This subsection discusses the impact of some proposed
methods on performance. The study is conducted on full
MVTecAD, and other settings are the same as Sec. 4.2. We
ablate four methods from baseline individually. In partic-
ular, experiment I is based on latent Gaussian assumption
and Eq. (8) without volume normalization. For experiment
II , the category-independent zero template z̄d = 0 is ap-
plied. Then, Experiment III does not adopt the method of
Eq. (10) but composes the pyramid first and localizes its
difference later. Finally, experiment IV adopts a spatial
version of the loss function instead of Eq. (9). The result of
the above ablation experiments is shown in Tab. 2.
Table 2. The ablation study on full MVTecAD. For each cell
in the table, the first row is Pixel-AUROC% and the second is
AUPRO% . The number within parentheses means the change

relative to baseline, the larger absolute value with larger impor-
tance.

Method
Classes

MEANTexture Object

Ours (baseline)
95.2(+0.0) 95.7(+0.0) 95.5(+0.0)
95.1(+0.0) 93.5(+0.0) 94.0(+0.0)

I. w/o Volume
Normalization

89.4(-5.8) 85.2(-10.5) 86.6(-8.9)
87.5(-7.6) 83.6(-9.9) 84.9(-9.1)

II. w/o Latent
Template

93.1(-2.1) 90.7(-5.0) 91.5(-4.0)
91.9(-3.2) 84.7(-8.8) 87.1(-6.9)

III. w/o Pyramid
Difference

87.8(-7.4) 93.1(-2.6) 91.3(-4.2)
87.8(-7.3) 89.4(-4.1) 88.9(-5.1)

IV. w/o Fourier
Loss

92.0(-3.2) 93.3(-2.4) 92.9(-2.6)
92.8(-2.3) 91.9(-1.6) 92.2(-1.8)

Tab. 2 demonstrates that experiments I -IV present vari-
ous performance degradation. Experiment I has the largest
average degradation, with the object classes being more af-
fected. Although the non-volume-preserving enables larger
outputs and higher Image-AUROC performance, the im-
plicit prior in volume normalization discussed in Sec. 4.2 is
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Table 3. Quantitative results of various challenging methods on MVTecAD. In the table, the fully normalized flow method is labeled
as FNF, while the abbreviations Res18, WRes50, EffiB5, and DTD are denoted as ResNet18, Wide-ResNet50-2, EfficientNet-B5, and
Describable Textures Dataset, respectively. For each case in the table, the first row is Pixel-AUROC% and the second is AUPRO% ,
where the best results are marked in bold.

External
Prior Methods carpet leather tile wood bottle cable capsule hazelnut pill toothbrush transistor zipper MEAN

×

AnoGAN [23]
54.2 64.1 49.7 62.1 85.8 78.0 84.1 87.1 86.8 90.0 79.9 78.1 75.0
20.4 37.8 17.7 38.6 62.0 38.3 30.6 69.8 77.6 74.9 54.9 46.7 47.4

Vanilla VAE [15]
62.0 83.5 52.0 69.9 89.4 81.6 90.7 95.1 87.9 95.3 85.1 77.5 80.8
61.9 64.9 24.2 57.8 70.5 77.9 77.9 77.0 79.3 85.4 61.0 60.8 66.6

AE-SSIM [4]
87.0 78.0 59.0 73.0 93.0 82.0 94.0 97.0 91.0 92.0 80.0 88.0 84.5
64.7 56.1 17.5 60.5 83.4 47.8 86.0 91.6 83.0 78.4 72.4 66.5 67.3

Ours 90.8 99.6 97.9 93.8 95.9 92.1 96.1 98.0 96.2 98.9 97.4 95.4 96.0
(FNF) 91.0 99.7 95.8 96.2 94.0 86.4 93.1 97.3 96.3 97.7 91.4 95.1 94.5

Res18 S-T [3]
93.5 97.8 92.5 92.1 97.8 91.9 96.8 98.2 96.5 97.9 73.7 95.6 93.7
87.9 94.5 94.6 91.1 93.1 81.8 96.8 96.5 96.1 93.3 66.6 95.1 90.6

WRes50 SPADE [6]
97.5 97.6 87.4 88.5 98.4 97.2 99.0 99.1 96.5 97.9 94.1 96.5 95.8
94.7 97.2 75.9 87.4 95.5 90.9 93.7 95.4 94.6 93.5 97.4 92.6 92.4

WRes50 PaDiM [7]
99.1 99.2 94.1 94.9 98.3 96.7 98.5 98.2 95.7 98.8 97.5 98.5 97.5
96.2 97.8 86.0 91.1 94.8 88.8 93.5 92.6 92.7 93.1 84.5 95.9 92.3

EffiB5 CS-Flow [22]
98.0 98.4 93.9 88.6 90.9 95.3 97.9 96.3 95.7 96.3 95.5 96.4 95.3
98.0 98.5 94.5 92.9 88.7 94.0 96.1 95.1 91.1 89.9 96.9 95.4 94.2

DTD DRÆM [29]
94.9 96.6 99.6 97.3 97.6 95.4 94.0 99.2 95.0 98.1 90.0 94.4 96.0
96.1 97.9 99.7 97.9 97.2 90.4 96.5 98.7 93.7 97.1 92.9 94.7 96.1

Res18 Ours
97.4 98.7 97.1 97.0 97.8 91.8 98.6 98.1 96.1 98.5 96.9 96.6 97.1
97.2 99.2 97.2 97.9 95.5 90.3 98.3 98.1 96.1 97.9 94.7 95.4 96.5

more helpful for generalization. For experiment II , it shows
that the latent template benefits the performance, and object
classes are improved greatly. It is because the category-
specific latent template reduces intra-class variance, helping
convergence during training. Then, experiment III suggests
that multi-scale differences had a more pronounced impact
on textural classes, as higher-level operators with larger re-
ceptive fields correspond to large defects. Finally, Experi-
ment IV reveals that Fourier loss (9) is the icing on the cake
that helps performance improvement. To summarize, meth-
ods I -III are critical for the proposed model, while tricks
IV help further improvements.

4.4. Anomaly Localization

MVTecAD. We performed defect localization for 12 regis-
tered classes in MVTecAD. In our comparisons, the method
based on pre-trained models or using external datasets is
viewed as requiring external prior, corresponding to the first
column of Tab. 3. In our implementation, we augment tex-
tural classes with flips and rotations, each with a probability
of 0.5, while object categories do not undergo any augmen-
tation operation. It is worth noting that those base on com-
plex augmentation or weak supervision is not considered in
our comparisons, as our approach is capable of incorporat-
ing these techniques to improve performance. The detailed
results are shown in Tab. 3.

First, we take three methods based on image contrast,
AnoGAN [23], Vanilla VAE [15], and AE-SSIM [4]. They
are not dependent on external datasets, so it is fair to com-

pare them with our FNF model. Furthermore, we also com-
pared our method to those that utilize external priors, such
as S-T, SPADE, etc. All methods were reproduced based
on the official implementation or AnomaLib [1]. For fair
comparisons, we adapted the 1 × 1 convolution W to the
pre-trained encoder, where the pre-trained encoder is the
first two layers of ResNet18 for extracting the image into
features of original 1/4 size and with 64 channels.

As shown in Tab. 3, our FNF method greatly outperforms
the comparable methods without external priors, even ex-
ceeding S-T, SPADE, and CS-Flow that using external pri-
ors. Most of the reconstruction-based methods in Tab. 3
suffer from ill-posedness in complex scenarios (e.g., tile and
wood.), while our method achieves the best AUPRO score
owing to high-resolution contrast in latent space. How-
ever, a larger resolution implies larger intra-class variance,
which degrades the overall AUROC performance for hard-
to-determine anomaly boundaries. Furthermore, Fig. 7(a)
visualizes representative examples of MVTecAD anomaly
localization, which shows that our method achieves precise
localization with reasonable scale.

BTAD. To fully illustrate our superiority, we experi-
mented on the more challenging BTAD dataset without
any data augmentation, and other settings are the same
as MVTecAD. The detailed result in Tab. 4 shows that
our method also achieves state-of-the-art performance, and
Fig. 7(b) visualizes representative examples of BTAD
anomaly localization.
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Figure 7. Visualization of our results on MVTecAD and BTAD. From top to bottom are original images, estimated image templates, our
localization results, and ground truths. (a) The six challenging results on MVTecAD. (b) Two representative results on BTAD. (c) Results
for the four unregistered categories on MVTecAD.
Table 4. Quantitative results of various challenging meth-
ods on BTAD. For each case in the table, the first row is
Image-AUROC% and the second is Pixel-AUROC% , where

the best results are marked in bold.

Methods
Classes

MEAM01 02 03

VT-ADL [16]
97.6 71.0 82.6 83.7
99.0 94.0 77.0 90.0

P-SVDD [26]
95.7 72.1 82.1 83.3
91.6 93.6 91.0 92.1

SPADE [6]
91.4 71.4 99.9 87.6
97.3 94.4 99.1 96.9

PatchCore [20]
90.9 79.3 99.8 90.0
95.5 94.7 99.3 96.5

PaDiM [7]
99.8 82.0 99.4 93.7
97.0 96.0 98.8 97.3

Ours (Res18)
100.0 88.2 99.3 95.8
97.4 97.6 98.1 97.7

4.5. Study on unregistered categories

In principle, template-based methods require pixel-level
registration between images and templates, which is typ-
ically satisfied in most real-world scenarios, but may fail
in some cases. This subsection explores the performance
of the proposed method on unregistered (e.g. rotation,
shift) categories (e.g. grid, metal nut, screw, and hazel-
nut), as shown in Tab. 5. The reconstruction-based AE-
SSIM heavily relies on pixel-level contrast, which decreases
the average localization accuracy (AUPRO%). In contrast,
the anomaly-based SPADE avoids registration issues and
achieves better performance. Fortunately, our ResNet18-
based method, which utilizes normalizing flow to reduce
patch variance, remains competitive in unregistered scenes,
although it falls short of state-of-the-art performance. We

visualize these categories in Fig. 7(c).
Table 5. Quantitative results on unregistered categories without
Rough Registration (RR) or Fine Registration (FR). For each case
in the table, the first row is Pixel-AUROC% and the second is
AUPRO% , where the best results are marked in bold.

Methods

Classes

MEANw/o RR w/o FR

grid metal nut screw hazelnut

AE-SSIM [4]
94.0 89.0 96.0 97.0 94.0
84.9 60.3 88.7 91.6 81.4

SPADE [6]
93.7 98.1 98.9 99.1 97.5
86.7 94.4 96.0 95.4 93.1

Ours (Res18)
95.7 97.2 94.6 98.1 96.4
94.3 91.4 94.7 98.1 94.6

5. Conclusion
In this paper, we propose PyramidFlow, the first fully

normalizing flow method based on the latent template-based
contrastive paradigm, utilizing pyramid-like normalizing
flows and volume normalization, enabling high-resolution
defect contrastive localization. Our method can be trained
end-to-end from scratch, similar to UNet, and our compre-
hensive experiments demonstrate that it outperforms com-
parable algorithms that do not use external priors, even
achieving state-of-the-art performance in complex scenar-
ios. While experiments on unregistered categories show
that our method falls short of state-of-the-art, it still exhibits
competitive performance. Future research will focus on im-
proving performance in such scenarios.

Acknowledgment. We would like to extend sincere appre-
ciation to Jiabao Lei for his valuable guidance and insight-
ful suggestions, which greatly contributed to the success of
this work.
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[5] Jakob Božič, Domen Tabernik, and Danijel Skočaj. Mixed
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Supplementary Material for
PyramidFlow: High-Resolution Defect Contrastive Localization using Pyramid

Normalizing Flow

1. Implementation Details
1.1. Experimental Settings

Hardware. We implemented our models in Python3.8 and Pytorch1.10. Experiments are run on NVIDIA GTX3060 GPUs.
Baseline method. We train our baseline model on 256× 256 image. During all experiments, the training batch size is fixed
to 2. Model parameters are updated using Adam optimizer with a constant learning rate of 2 × 10−4, epsilon of 1 × 10−4,
weight decay of 1×10−5, and beta parameters of (0.5, 0.9). In addition, we apply gradient clipping with a maximum gradient
of 1.0 for training stability.
Pre-trained method. For the pre-trained version of PyramidFlow, we used ImageNet-pretrained ResNet18 from torchvision.
The pre-trained encoder is the first two layers of ResNet18 for extracting the features from 1024× 1024 image to 256× 256
features with 64 channels.

1.2. Model Architecture

In this subsection, we provide the detailed architecture of the proposed PyramidFlow, including invertible pyramids,
pyramid coupling blocks, and volume normalization.
Invertible Pyramid. The invertible pyramid is inspired by the Laplacian pyramid, which is commonly used in image pro-
cessing. In invertible pyramids, the pyramid decomposition and composition are performed on the per-channel features. The
linear downsampling operator D(·) first applies a Gaussian filter with kernel size 5 × 5, then downsamples using nearest-
neighbor interpolation. In contrast, upsampling U(·) performs nearest-neighbor interpolation before applying Gaussian fil-
tering.
Pyramid Coupling Block. For the example of dual coupling blocks, denoting the feature notations as shown in Fig. 3(d), the
corresponding pseudocode is described in Algorithm 1. It is mainly composed of three custom functions - AffineParamBlock,
VolumeNorm2d, and InvConv.
Volume Normalization. The proposed volume normalization is similar to some normalization techniques such as Batch
Normalization, but without normalizing the standard deviation. Taking Channel Volume Normalization (CVN) as an example,
it can be described by the Algorithm 2.

2. More Experiment Results
2.1. Detailed Ablation Results

We present the detailed ablation results of Sec 4.3, as shown in Tables S1 and S2.
Textural Image. As shown in Table S1. For most textural categories, occurring performance degradation when the proposed
methods are ablated. However, the results on the carpet show abnormal performance improvement. This means that inductive
bias brings positive or negative effects on various categories.
Object Image. As shown in Table S2. Due to the image patch in object categories with larger variances, the influence of
volume normalization and the latent template is also larger. The performance of the object categories is less influenced by
pyramid difference, indicating that multi-scale is not a critical factor for object defect detection.
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Algorithm 1 Dual Coupling Block. (Python-like Pseudocode)
Input: x0, x1, x2
Output: z0, z1, z2
xcat0 = Interpolate(x0, x1.shape)
xcat2 = Interpolate(x2, x1.shape)
xcat = Concat(xcat0, xcat2)
s1, t1 = AffineParamBlock(xcat)
y1 = exp (s1) � x1 + t1
z0, z1, z2 = x0, InvConv(y1), x2

def AffineParamBlock(x, clamp=2):
params = CNN2d(x) % only two convolutional layers and one

activation layer
s0, t = Chunk2d(params)
s = VolumeNorm2d(clamp*0.636*atan(s0/clamp)) % as shown in

Algorithm 2. Where 0.636 is an approximation of 2/π.
return s, t

def InvConv(y):
s̃i = si - mean(si)
kernel = PL(U + diag(exp (s̃i))
z = Conv2d(y, kernel)
return z

Algorithm 2 Volume Normalization. (Pytorch-like Pseudocode)
Input: input x, momentum β
Output: output y
def VolumeNorm2d(x, β = 0.1):
if training:
x̄ = mean(x, dim=1) % CVN: zero-mean normalization along

channel dimensions
y = x - x̄
x̄running = (1 − β) × x̄running + β × x̄ % update running mean

else:
y = x - x̄running

return y

Table S1. The ablation study on textural images in MVTecAD. For each cell in the table, the first row is Pixel-AUROC% and the second
is AUPRO% .

Method
Texture

Meancarpet grid leather tile wood

Ours (baseline)
90.8 94.2 99.6 97.9 93.8 95.2
91.0 92.7 99.7 95.8 96.2 95.1

I. w/o Volume
Normalization

93.5 88.5 99.5 74.4 91.3 89.4
93.7 88.1 95.5 65.7 94.2 87.5

II. w/o Latent
Template

91.8 86.8 99.4 94.8 93.0 93.1
91.3 88.0 97.7 89.9 92.7 91.9

III. w/o Pyramid
Difference

75.9 78.0 99.3 96.0 89.7 87.8
76.1 76.1 99.4 94.4 93.0 87.8

IV. w/o Fourier
Loss

90.5 84.3 99.4 96.2 89.7 92.0
91.4 86.2 99.6 92.6 94.0 92.8



Table S2. The ablation study on object images in MVTecAD. For each cell in the table, the first row is Pixel-AUROC% and the second
is AUPRO% .

Method
Object

Meanbottle cable capsule hazelnut metalnut pill screw toothbrush transistor zipper

Ours (baseline)
95.9 92.1 96.1 98.0 92.8 96.2 94.0 98.9 97.4 95.4 95.7
94.0 86.4 93.1 97.3 89.5 96.3 94.1 97.9 91.4 95.1 93.5

I. w/o Volume
Normalization

76.5 84.7 82.9 97.9 87.9 94.8 94.1 56.4 82.2 95.0 85.2
77.8 75.1 81.3 95.4 81.5 81.5 94.0 74.2 82.7 92.6 83.6

II. w/o Latent
Template

83.2 87.8 90.0 97.9 87.6 94.6 93.0 84.7 94.8 93.7 90.7
82.4 76.6 87.3 83.9 74.2 89.3 92.7 90.7 77.4 92.8 84.7

III. w/o Pyramid
Difference

92.8 91.4 96.0 97.5 86.4 95.3 92.7 98.0 95.4 85.2 93.1
83.4 84.1 94.0 97.6 81.2 95.4 93.1 97.1 90.7 77.2 89.4

IV. w/o Fourier
Loss

88.0 88.6 95.1 97.3 88.9 96.2 94.2 98.3 95.1 90.9 93.3
88.0 81.2 94.0 98.3 89.0 96.9 94.4 97.9 88.0 90.8 91.9
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Figure S1. Visualization of competitive results on MVTecAD. From top to bottom are original images, AE-SSIM results, SPADE results,
PaDiM results, our results, and ground truths. The red box indicates the localization is ambiguous and non-unique, while the green indicates
successful results.

2.2. More Visualization Results

In this subsection, we present more visualization results of Sec 4.4. Since many categories, we separated results into two
charts for visualization, as shown in Figs. S1 and S2.
MVTecAD. As Figs. S1 and S2 shows, AE-SSIM performs better for simple categories, such as the bottle and zipper.
However, it does not work in complex scenarios, e.g., it cannot localize carpet defects with fixed patterns or pill defects with
high-frequency noises. It is worth noticing that AE-SSIM is a template-based method, which maintains the resolution during
processing, enabling preserve the details in defect localization.

SPADE and PaDiM are pre-trained-based methods. They achieve better results in almost all categories but still maintain
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Figure S2. Visualization of competitive results on MVTecAD and BTAD. From top to bottom are original images, AE-SSIM results,
SPADE results, PaDiM results, our results, and ground truths. The last three columns are the results of BTAD. The red box indicates the
localization is ambiguous and non-unique, while the green indicates successful results.

some shortcomings. On the one hand, their localization results are blurry and larger than ground truths. On the other hand,
they cannot localize tiny defects, such as cracks in the wood.

Our proposed PyramidFlow is based on latent templates, which allows for preserving details effectively, with the ability
to detect tiny defects and show their scale. In all categories in MVTecAD, our method achieves the best visual performance.
BTAD. BTAD is more challenging than MVTecAD, as shown in the last three columns of Fig. S2. The AE-SSIM method
almost failed in BTAD without beneficial results. For categories 01 and 02, the localization areas of SPADE and PaDiM are
obviously larger than ground truths. For the most challenging category 03, their results are incredibly varied from GT.

Our method provides more accurate results for BTAD defect localization. For the 01 categories, the localization results
preserve the original details. Categories 02 and 03 also mostly reflect the essential shape of the defect.


