
NIRVANA: Neural Implicit Representations of Videos with
Adaptive Networks and Autoregressive Patch-wise Modeling

Shishira R Maiya1,2*, Sharath Girish1*, Max Ehrlich1, Hanyu Wang1, Kwot Sin Lee2,
Patrick Poirson2, Pengxiang Wu2, Chen Wang2, Abhinav Shrivastava1

1University of Maryland 2Snap Inc
{maxehr,sgirish,shishira,hwang}@umd.edu

{klee6, ppoirson, pwu,cwang6}@snapchat.com abhinav@cs.umd.edu

Abstract

Implicit Neural Representations (INR) have recently
shown to be powerful tool for high-quality video compres-
sion. However, existing works are limiting as they do not
explicitly exploit the temporal redundancy in videos, lead-
ing to a long encoding time. Additionally, these methods
have fixed architectures which do not scale to longer videos
or higher resolutions. To address these issues, we pro-
pose NIRVANA, which treats videos as groups of frames and
fits separate networks to each group performing patch-wise
prediction. The video representation is modeled autoregres-
sively, with networks fit on a current group initialized using
weights from the previous group’s model. To further en-
hance efficiency, we perform quantization of the network
parameters during training, requiring no post-hoc pruning
or quantization. When compared with previous works on
the benchmark UVG dataset, NIRVANA improves encod-
ing quality from 37.36 to 37.70 (in terms of PSNR) and the
encoding speed by 12×, while maintaining the same com-
pression rate. In contrast to prior video INR works which
struggle with larger resolution and longer videos, we show
that our algorithm is highly flexible and scales naturally
due to its patch-wise and autoregressive designs. More-
over, our method achieves variable bitrate compression by
adapting to videos with varying inter-frame motion. NIR-
VANA achieves 6× decoding speed and scales well with
more GPUs, making it practical for various deployment
scenarios.

1. Introduction
In the information age today, where petabytes of con-

tent is generated and consumed every hour, the ability to
compress data fast and reliably is important. Not only

*First two authors contributed equally

Pixelwise prediction

SIREN

Framewise prediction
NeRV

Single
model

Single
model

Frame-group 1

Patchwise

prediction

Full video frames

Frame-group 2 Frame-group Ng

Frame
 1 2 3 4 5 6 N-2 N

Pixel coordinates

(x , y)p p

Time coordinates
(t)(x ,y), t

Autoregressive

modeling

Patch coordinates

N-1

Initialize

Figure 1. Overview of NIRVANA: Prior video INR works per-
form either pixel-wise or frame-wise prediction. We instead per-
form spatio-temporal patch-wise prediction and fit individual neu-
ral networks to groups of frames (clips) which are initialized using
networks trained on the previous group. Such an autoregressive
patch-wise approach exploits both spatial and temporal redundan-
cies present in videos while promoting scalability and adaptability
to varying video content, resolution or duration.

does compression make data cheaper for server hosting, it
makes content accessible to population/regions with low-
bandwidth. Conventionally, such compression is achieved
through codecs like JPEG [45] for images and HEVC [40],
AV1 [10] for videos, each of which compresses data via tar-

1

ar
X

iv
:2

21
2.

14
59

3v
1

 [
cs

.C
V

]
 3

0
D

ec
 2

02
2

getted hand-crafted algorithms. These techniques achieve
acceptable trade-offs, leading to their widespread usage.

With the rise of deep learning, machine learning-based
codecs [4,5,31,43] showed that it is possible to achieve bet-
ter performance in some aspects than conventional codecs.
However, these techniques often require large networks as
they attempt to generalize to compress all data from the
distribution. Furthermore, such generalization is contin-
gent on the training dataset used by these models, leading
to poor performance for Out-of-Distribution (OOD) data
across different domains [47] or even when the resolution
changes [7]. This greatly limits its real-world practical-
ity especially if the input data to be compressed is sig-
nificantly different from what the model has seen during
training. In recent years, a new paradigm, Implicit Neu-
ral Representations (INR), emerged to solve the drawbacks
of model-learned compression methods. Rather than at-
tempting to generalize to all data from a particular distri-
bution, its key idea is to train a network that specifically
fits to a signal, which can be an image [37], video [8], or
even a 3D scene [30]. With this conceptual shift, a neu-
ral network is no longer just a predictive tool, rather it is
now an efficient storage of data. Treating the neural net-
work as the data, INR translate the data compression task
to that of model compression. Such a continuous function
mapping further benefits downstream tasks such as image
super-resolution [23], denoising [32], and inpainting [37].

Despite these advances, videos vary widely in both spa-
tial resolutions and temporal lengths, making it challenging
for networks to encode videos in a practical setting. To-
wards solving this task, an early method, SIREN [37], at-
tempted to learn a direct mapping from 3D spatio-temporal
coordinates of a video to each pixel’s color values. While
simple, this is computationally inefficient and does not fac-
tor in the spatio-temporal redundancies within the video.
Later, NeRV [8] proposed to instead map 1D temporal co-
ordinates in the form of frame indices directly to generate a
whole frame. While this improves the reconstruction qual-
ity, such a mapping still does not capture the temporal re-
dundancies between frames as it treats each frame individ-
ually as a separate image encoding task. Finally, mapping
only the temporal coordinate also means one would need to
modify the architecture in order to encode videos of differ-
ent spatial resolutions.

To address the above issues, we propose NIRVANA, a
method that exploits spatio-temporal redundancies to en-
code videos of arbitrary lengths and resolutions. Rather
than performing a pixel-wise prediction (e.g., SIREN) or
a whole-frame prediction (e.g., NeRV), we predict patches,
which allows our model to adapt to videos of different spa-
tial resolutions without modifying the architecture. Our
method takes in the centroids of patches (patch coordinates)
(xp, yp) as inputs and outputs a corresponding patch vol-

ume. Since patches can be arranged for different resolu-
tions, we do not require any architectural modification when
the input video resolution changes. Furthermore, to exploit
the temporal nature of videos, we propose to train individ-
ual, small models for each group of video frames (“clips”)
in an autoregressive manner: the model weights for pre-
dicting each frame group is initialized from the weights of
the model for the previous frame group. Apart from the
obvious advantage that we can scale to longer sequences
without changing the model architecture, this design ex-
ploits the temporal nature of videos that, intuitively, frame
groups with similar visual information (e.g., static video
frames) would have similar weights, allowing us to further
perform residual encoding for greater compression gains.
This adaptive nature, that static videos gain greater com-
pression than dynamic ones, is a big advantage over NeRV
where the compression for identical frames remain fixed as
it models each frame individually. To obtain further com-
pression gains, we employ recent advances in the literature
to add entropy regularization for quantization, and encode
model weights for each video during training [19]. This fur-
ther adapts the compression level to the complexity of each
video, and avoids any post-hoc pruning and fine-tuning as
in NeRV, which can be slow.

Finally, we show that despite its autoregressive nature,
our model is linearly parallelizable with the number of
GPUs by chunking each video into disjoint groups to be
processed. This strategy largely improves the speed while
maintaining the superior compression gains of our method,
making it practical for various deployment scenarios.

We evaluate NIRVANA on the benchmark UVG dataset
[29]. We show that NIRVANA reaches the same levels of
PSNR and Bits-per-Pixel (BPP) compression rate with al-
most 12× the encoding speed of NeRV. We verify that our
algorithm adapts to varying spatial and temporal scales by
providing results on videos in the UVG dataset with 4K res-
olution at 120fps, as well as on significantly longer videos
from the YouTube-8M dataset, both of which are challeng-
ing extensions which have not been attempted on for this
task. We show that our algorithm outperforms the base-
line with much smaller encoding times and that it naturally
scales with no performance degradation. We conduct abla-
tion studies to show the effectiveness of various components
of our algorithm in achieving high levels of reconstruction
quality and understand the sources of improvements.

Our contributions are summarized below:

• We present NIRVANA, a patch-wise autoregressive
video INR framework which exploits both spatial and
temporal redundancies in videos to achieve high levels
of encoding speedups (12×) at similar reconstruction
quality and compression rates.

• We achieve a 6× speedup in decoding times and scale
well with increasing number of GPUs, making it prac-

2

tical in various deployment scenarios.
• Our framework adapts to varying video resolutions and

lengths without performance degradations. Different
from prior works, it achieves adaptive bitrate compres-
sion based on the amount of inter-frame motion for
each video.

2. Related Work
Implicit Neural Representations (INR) are a novel fam-
ily of methods designed to map a set of coordinates to a
specific signal - such as a single image or video - using a
neural network as a function for such mappings. SIREN
[37] demonstrates that by utilizing periodic activation func-
tions in MLPs, such a function can be fit and used to map
a wide array of signals, including images, 3D shapes and
videos. As an alternative, [42] shows than an INR net-
work with standard activations can be trained by utilizing
random Fourier features. [28] and [35] propose adaptive
block-based approaches whose complexity mirrors the un-
derlying signals. Frequency-based approaches are proposed
in [15, 27, 36] that enable multi-scale representations. The
first image specific INR method is COIN [12], which is ex-
tended to encode multiple images through network modu-
lations in COIN++ [13]. A method for learning local im-
plicit functions is proposed in [9] that results in smoother
super-resolution outputs. Several methods [11, 39, 41] have
explored meta-learning approaches to reduce the long en-
coding times of image INRs; [22] further shows that directly
initializing a meta-sparse network not only gives a good ini-
tialization but also helps with model compression.
INR for videos. Despite the significant advances in INR
methods for image compression, videos present a more
challenging task for INR methods. For example, if we
naively add time as an extra dimension to image-based
methods, such as in SIREN [37], the resulting outputs
are grainy. In [34, 48], INR methods that utilize flow-
based information to encode videos are introduced; how-
ever, they cannot scale beyond short low-resolution videos.
NeRV [8] is the first method to scale video compression
using INRs. They modify the implicit mapping function
to learn a direct mapping from a video frame index to an
entire frame. Further extensions of NeRV, such as patch-
based versions [3, 25], provide minor improvements over
the original architecture. Despite good reconstruction, the
problems of long encoding times, the lack of inter-frame
encoding, and the inability to adapt to video content act as
major drawbacks for widespread adoptions.
Model compression is typically achieved by pruning or
quantization of network weights. A plethora of works
perform model pruning with minimal loss of performance
[16–18,20]. Pruned models contain a majority of zeros and
can be stored in sparse matrix formats [21] for reduction in
model size. Alternatively, quantization works [14,26,38,44]

to reduce the number of bits needed to store each model
weight, resulting in reduced disk space. As implicit neu-
ral networks represent the data using their model weights,
data compression translates to model compression. In this
work, we adopt the works of [19,33] for model compression
by maintaining a set of quantized parameters during train-
ing which are then stored on disk. These recent methods
have shown to achieve high levels of compression through
entropy regularization without sacrificing downstream net-
work performance. We perform quantization and model
compression during training, unlike the post-hoc pruning
and quantization in NeRV [8].

3. Approach
3.1. Background

Given a video V ∈ RN×H×W×3 consisting of N
frames, each with spatial resolution H × W , an INR de-
fines a mapping from the spatio-temporal coordinate X =
(x, y, t);X ∈ R3 to the pixel value p ∈ R3. Thus, it im-
plicitly represents a parameterized function hθ : R3 → R3

parameterized by θ. The function is typically trained by
minimizing the MSE-loss ||hθ(X) − V ||2. While this is
a straightforward extension of image-based INR methods
to the spatio-temporal domain, it fails to exploit the spatial
and temporal consistency in videos. Pixel-wise prediction
leads to redundant computation and long encoding times
while also producing blurry outputs [37], [12]. To mitigate
this issue, NeRV [8] proposes to directly encode the frame
index t ∈ R as a positional embedding input to a model
which outputs the entire image frame RH×W×3. NeRV
consists of several MLP layers followed by convolution lay-
ers which upsamples the latent representation to the target
frame’s spatial resolution. While this formulation improves
upon the naive pixel-based formulation, it does not adapt to
arbitrary resolutions, and does not capture the temporal de-
pendencies between frames as it effectively acts as only an
image encoder for each frame.

3.2. Autoregressive Patch-wise Modeling

Patch prediction. The two dominant INR paradigms for
video encodings, SIREN [37] and NeRV [8] represents two
extreme ends of a spectrum: the former predicts every pixel
in a video volume independently, while the latter predicts
the pixels for a single frame simultaneously. Through pixel-
wise prediction, SIREN accommodates varying the output
image’s spatial resolution but does not exploit the spatial
consistency of the image. In contrast, while NeRV exploits
the spatial consistency of an image through convolutions,
it cannot vary the image’s spatial resolution. We adopt a
middle ground between these two extremes by adopting a
modeling approach that instead predicts patches of an im-
age. This gives us the best of both approaches, since our

3

Frame-group 1

Initialize weights

before training

Frame-group 2 Frame-group N

+

Encode residuals

Upsample
Block

Network architecture

+

Positional

encoding

MLP

Layers

Patch
coordinates

Decoder
Quantized
Weights 3x3

Conv-1

3x3

Conv-2

3x3

Conv-G

Upsample

block

Input

Conv 3x3

Pixel-Shuffle

Activation

Output
Frame

g

1 2 G

Full video frames

(Sec. 3.4)

Model compression (Sec. 3.3)

Autoregressive

modeling (Sec. 3.2)

Patch-wise

prediction

Pass weights

for residual encoding

- +-

(Sec. 3.2)
(x , y)p p

Frame 1 2 G Frame 1 2 G

Model 1 Model 2 Model Ng

Encode residuals

Figure 2. Overview of NIRVANA: We propose an autoregressive video INR framework which performs patch-wise prediction of groups of
frames by fitting separate networks to each group. Each network is initialized with the previous group’s network weights. Our architecture
consists of several SIREN MLP layers followed by an upsampling block (right). It takes patch coordinates as inputs and outputs patches
across a group of G frames. We maintain a set of quantized weights which are decoded to obtain the network weights. Post training, we
encode weight residuals which are the difference between the quantized weights of the current and previous group’s network.

model utilizes the spatial consistency of an image while still
naturally scaling to varying image resolutions.

We push further in this direction by exploiting the tem-
poral consistency in videos to predict a volume of patches
across neighboring frames. We thus predict a patch group
P ∈ RG×Hp×Wp×3, where G is the number of frames in a
group and (Hp,Wp) is the patch size. This method enables
us to reduce the amount of redundant computation in both
the spatial and temporal dimensions, leading to significantly
shorter encoding times compared to NeRV or SIREN.

Autoregressive networks. While it is straightforward to
input a 3D patch coordinate (xp, yp, g) (where (xp, yp) are
the patch centroids within a frame and g is the frame in-
dex within each group) and output a patch volume using
a single network, it still suffers from adaptability to vary-
ing video content, resolutions, or durations as mentioned in
Section 3.1. To overcome these challenges, we propose to
autoregressively fit separate networks to each frame group.
Each network is fed with the same set of inputs, namely the
centroids of patches (xp, yp), and it outputs the correspond-
ing 3D patch volume of the group. Every subsequent net-
work is finetuned from the previous one, leading to shorter
encoding times. As video content does not change much
over a short time period of multiple frames, the difference
in weights (or weight residuals) after fine-tuning is small.
Thus, encoding the weight residuals instead of the weights
themselves leads to higher compression rates. The design
of the algorithm 1 allows us to encode multiple chunks of a
long video in a parallel manner, a key feature missing from
existing methods. This means NIRVANA can scale linearly
with the number of GPUs without any drop in performance
(see Section 4.6).

3.3. Model Compression and Weight Storage

Since the network weights are the latent representations
for the video, network size directly translates to bitrate of
the video encoding. To reduce network size, we adapt exist-
ing works which perform model weights/latent representa-
tion compression [19, 33]. For a weight parameter W ∈ θ,
where θ is the set of model parameters, we maintain a cor-
responding quantized latent weight W̃ . The continuous
weight parameter W is then obtained as W = fφ(W̃)
where fφ is a learned linear transform. The entire setup
is trained end to end, without any post-hoc quantization
and fine-tuning. As previously explained, we encode the
quantized latent residuals instead of the latents themselves
to achieve higher levels of compression. We encode these
residuals using arithmetic coding [46], a lossless entropy-
based compression algorithm. In order to encourage the
latents to have lower entropy, we add an entropy regular-
ization term to our loss function. This term encourages the
network to have a lower entropy and hence a lower bitrate.
When decoding, each weight is obtained sequentially by cu-
mulatively adding residuals. This approach helps in making
the bitrate of NIRVANA adaptive to the video content: for
frame-groups that have little motion, they are already closer
to convergence and thus have small differences in their net-
work weights, leading to sparser residuals and subsequently,
lower bitrates. This feature is missing in other methods as
the models are fixed for a given video.

3.4. Network Architecture

In this section, we describe the network architecture
which is used for each frame group, as illustrated in Fig.
2. For a group of G frames, we segment patch volumes

4

Algorithm 1 Sequential Video INR

1: Init Randomly initialize network hθ0 with initial
weights θ0 and training iterations T . The video con-
tainsN frames segmented intoNg frame groups of size
G each.

2: for g in 0, 1, 2, · · · , Ng − 1 do
3: if g = 0 then
4: Train hθ0 for T iterations for all patches
5: Store weights hθ0
6: else
7: Initialize weights hθk ← hθk−1

8: Finetune hθk for Tr iterations for all patches
9: Store quantized latent of residuals hθk − hθk−1

10: end if
11: end for

of shape (Hp,Wp, G). The input to the network is the 2D
patch coordinate (xp, yp) ∈ R2 and the output is the cor-
responding RGB patch volume P ∈ RG×Hp×Wp×3. We
stack multiple MLP layers with SIREN activations to ob-
tain an output feature representation vector sp ∈ Rd of di-
mension d. We replicate sp by G times, and add positional
encoding vectors based on the position of the frame within
the group, using the following embedding function:

τ(t, 2i) = sin

(
t

f2i

)
τ(t, 2i+ 1) = cos

(
t

f2i

)
, i ∈ [0, d)

(1)

where t ∈ [0, G) represents the position of the frame within
the group of G frames. We then add a decoder block as
in [8] followed by a 3 × 3 convolutional layer to output G
patches. For a video with N frames, we segment it into
Ng frame-groups with each group consisting of G frames
(N = Ng × G). For the gth frame-group (g ∈ [0, Ng)),
the corresponding network is represented as hθg consisting
of parameters θg . The overall loss objective for training the
network for the gth frame-group is therefore

Lg = Lmse(hθg (p), vg) + λILent(θg) (2)

where p represents patch grid coordinates and vg means
the corresponding ground-truth frame-group pixel values.
Lent(θg) represents the entropy regularization loss on the
model parameters θg . It is weighed by the coefficient λI
controlling the rate-distortion trade-off for reconstructing
the frame groups.

4. Experiments
4.1. Datasets and Implementation Details

The standard benchmark UVG dataset [29] is used to
compare our approach NIRVANA with prior video INR

works. Following similar setups [8], our approach is evalu-
ated on 7 videos from the dataset at 1080p resolution (UVG-
HD) and 120 fps with 6 videos consisting of 600 frames and
1 with 300 frames. To show our scalability for higher reso-
lution videos, we show results for the 7 videos at 4K reso-
lution (UVG-4K) as well. We additionally include a video
from the Youtube-8M (see Appendix) [1] dataset at 1080p
resolution and 60 fps with 3 separate versions segmented at
2000/3000/4000 frames to demonstrate our model’s capa-
bility for long videos. We use the standard PSNR (in dB) to
measure the reconstruction quality and bits-per-pixel (BPP)
to measure the compression rate. We also include encoding
times as well as their decoding speed in fps.

The MLP network consists of 5 SIREN layers with a
layer size of 512 and sine activation. The network predicts
32×32 patches for 3 frames (G = 3) in all our experiments
unless mentioned otherwise. The number of iterations is set
to 16000 for the first group in order to obtain a good ini-
tialization and 2000 iterations for subsequent groups. We
set the learning rate to be 5e−4 and optimize the network
with the MSE and entropy regularization loss. The entropy
loss weight coefficient λI as defined in Equation 2 is set
to 1e−4. In practice, the coefficient can be varied to con-
trol the trade-off between PSNR and BPP. We use the tor-
chac library to perform arithmetic encoding of the quan-
tized weight residuals. Since the convolutional layers typ-
ically contain only a fraction of the total network parame-
ters (∼10%), we do not quantize their weights and use the
LZMA compression method for storing their residuals.

We use pixel-wise method SIREN [37] and frame-wise
method NeRV [8] as our baselines. For SIREN, we use a 5-
layer MLP with hidden dimension of 2048. For NeRV, we
use the NeRV-L configuration as specified in the paper. En-
coding times reported are equivalent to when fully run on a
single NVIDIA RTX 2080 GPU. For NeRV, we fit separate
models to each video and remove 40% of the parameters
during the pruning stage with the remaining weights quan-
tized to lowest possible bit-width without significant perfor-
mance drop. Further implementation details can be found in
the Appendix.

4.2. UVG-HD

Comparisons on the UVG-HD dataset are summarized
in Table 1. By varying the patch size, we let NIR-
VANA achieve similar BPP to SIREN and NeRV respec-
tively. NIRVANA outperforms SIREN by a significant mar-
gin in terms of PSNR while having 6× shorter encoding
times. Similarly, our approach obtains speedups of ∼12×
compared to NeRV while still achieving marginally higher
PSNR (+0.34dB) and lower BPP. Additionally, we obtain a
decoding speed of ∼65 FPS which is nearly 65× and 6×
speedup in inference time/decoding compared to SIREN
and NeRV respectively. This shows the efficacy of our

5

Dataset Method Encoding Time
(Hours) ↓

Decoding
Speed (FPS) ↑

PSNR
↑

BPP
↓

UVG-HD

SIREN ∼30 15.62 27.20 0.28
NIRVANA (Ours) 5.44 87.91 34.71 0.32

NeRV ∼80 11.01 37.36 0.92
NIRVANA (Ours) 6.71 65.42 37.70 0.86

UVG-4K
NeRV ∼134 8.27 35.24 0.28
NIRVANA (Ours) 20.89 50.83 35.18 0.27

Table 1. Comparison with video INR approaches on UVG
benchmarks. We vary patch size of NIRVANA on UVG-HD
to match the BPP of SIREN and NeRV respectively. NIRVANA
achieved much faster encoding and decoding speed, while main-
taining better or on-par quality at comparable BPP.

framework to reduce redundant computation in both the
spatial and temporal domains. We show our qualitative re-
sults in Fig. 6.

4.3. UVG-4K

To analyze the spatial adaptability of our approach, we
test our method on the UVG-4K dataset, with results shown
in Table 1. Compared to NeRV, we achieve a ∼6× speedup
in both encoding and decoding times, while maintaining
similar PSNR (35.24 vs 35.18) and slightly better BPP (0.28
vs 0.27). Furthermore, to adapt to such higher resolution
data, our method does not require any architectural modi-
fications. In contrast, NeRV requires architectural modifi-
cations by adding a 2× upsampling block to increase the
resolution of the predicted image frames. Note that a higher
PSNR can be achieved with longer training schedules as we
show in Section 5.4, but we limit to 2000 iterations to main-
tain consistency across datasets.

4.4. Long Videos

We now analyze the effect of increasing video duration
for our approach. We utilize a video from the Youtube-8M
dataset and evaluate on 3 separate segments consisting of
the first 2000/3000/4000 frames. Results are summarized
in Table 2. Our approach maintains a similar PSNR (< 0.3
drop) with increased number of frames while still encoding
at a similar bitrate (< 0.04 increase). In contrast, even with
higher encoding times (4× slower), NeRV suffers from sig-
nificant degradation on longer videos with PSNR dropping
from 33.38→ 31.6→ 30.53. Since NeRV’s model size re-
mains constant, its BPP reduces with increased number of
frames. However, the fixed number of network parameters
limits its ability to fit to a larger set of frames, leading to
performance drops.

Additionally, since our approach is autoregressive, it
needs to be trained only once even with increasing number
of frames. Networks for future frames are simply initial-
ized with the weights of the previous networks and trained
before encoding the weight residuals. Such a modeling
makes it suitable for online scenarios as well with a constant

Num
Frames

Method Encoding Time
(Hours) ↓

PSNR ↑ BPP ↓

2000
NeRV 84.44 33.38 0.22
NIRVANA (Ours) 20.85 35.43 0.62

3000
NeRV 134.58 31.6 0.16
NIRVANA (Ours) 31.37 35.21 0.64

4000
NeRV 190.30 30.53 0.12
NIRVANA (Ours) 41.84 35.15 0.65

Table 2. Video duration adaptability: For longer videos, we
maintain similar reconstruction quality (∼35 PSNR) and compres-
sion rate (∼0.62 BPP). We retain a significantly faster encoding
speed than NeRV which suffers from significant degradation with
increased number of frames.

stream of frames. In contrast, NeRV requires separate mod-
els to be trained for different video durations as each train-
ing epoch consists of training on all frames. Note that both
approaches scale linearly with increased video duration, but
NeRV fits the same model to larger video signals, leading
to performance drops. Specific architectural modifications
are necessary to improve the PSNR for longer videos which
comes at the cost of even higher encoding times.

4.5. Adaptive Compression

Videos can consist of different levels of inter-frame mo-
tion with more static videos containing higher levels of tem-
poral redundancy in comparison to dynamic ones. To illus-
trate the capability of our approach to exploit such redun-
dancies, we evaluate the compression rate on 6 videos in the
UVG-HD dataset which consist of 600 frames. We sort each
video according to their average MSE between subsequent
frames, which serves as a proxy to the amount of temporal
redundancy in the video. More static scenes like Honey-
bee have a lower MSE compared to highly dynamic scenes
like Jockey. We plot the PSNR and BPP of NIRVANA and
NeRV with increasingly dynamic video content and show
the results in Fig. 3. Note that the average PSNR/BPP over
the 6 videos can be increased or decreased by varying other
hyperparameters such as patch size, number of groups, en-
tropy loss coefficient etc. (as shown in Section 5), but we
focus on adaptability to videos for a given hyperparameter
configuration. We see that our approach has an adaptive
bitrate compression with more static scenes like Honeybee
(MSE 2.2e−4) that has a lower bitrate (0.51), compared to
dynamic scenes such as Jockey (MSE 0.9e−3) which are
allocated more bits (0.96). We maintain similar PSNR as
NeRV which has a constant BPP due to the same model ap-
plied to all videos. While NeRV’s quantization bit width can
be reduced further for lower BPP, it is a post-hoc approach
which comes at the cost of PSNR and requires tuning for
each video. In contrast, our approach adaptively varies the
BPP during training with no change in hyperparameters.

6

Honeybee

Bosphorus
Beauty

Yachtrid
e

Jocke
y

ReadySetGo

Dynamic scenes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Bi
ts

-P
er

-P
ixe

l (
BP

P)

BPP (NeRV)
BPP (Ours)

20

25

30

35

40

45

PS
NR

 (d
B)

Adaptive compression

PSNR (NeRV)
PSNR (Ours)

Figure 3. Video content adaptability: 6 videos are sorted in
increasing order of variation between subsequent frames. Our
approach shows adaptive bitrate compression, with more static
scenes exhibiting lower BPP, while highly dynamic ones being al-
located more bits while maintaining a similar PSNR as NeRV (and
12× encoding speed).

4.6. GPU Parallelization

We now analyze the scalability of our approach with a
larger number of GPUs. In Fig. 4 we plot the encoding
times for “Jockey” (both 1080p and 4K versions) from UVG
dataset for NeRV (using distributed training) and our meth-
ods. The design in Algorithm 1 allows different chunks of
the source video to be processed autoregressively on sep-
arate GPUs. As the number of GPUs are scaled with a
factor of 2×, our approach achieves close to linear scaling
with very little overhead for the case of UVG-4K (1.0× →
2.0× → 3.8× → 7.3×) compared to a weaker scaling of
NeRV (1.0× → 1.7× → 2.7× → 4.3×). UVG-HD shows
a higher amount of overhead but still scales fairly well with
increased GPUs compared to NeRV. Thus, we see the ca-
pability of parallelization of our approach with higher num-
ber of GPUs. Also note that the time taken by NeRV for
HD videos on 8 GPUs is still higher than the time taken by
NIRVANA on a single GPU.

5. Ablation Studies

In this section, we study the impact of various parame-
ters of our approach on the PSNR-BPP tradeoff curves as
seen in Fig. 5. By varying the entropy loss coefficient, we
obtain different points on the tradeoff curve with a higher
coefficient leading to lower BPP (low rate) but also lower
PSNR (high distortion). We additionally show the con-
vergence effects of longer training for each group with in-
creased number of iterations. Results are evaluated on the
Jockey video of the UVG-HD dataset. While varying each
parameter along with the entropy coefficient, we fix other
parameters to their default values of patch size at 32 × 32,
group size at 3, and number of iterations at 2000. We sam-
ple values of the entropy coefficient λI between 1e−5 and

GPU: 1 GPU: 2 GPU: 4 GPU: 80

20

40

60

80

100

120

140

E
nc

od
in

g
Ti

m
e

(h
rs

)

1.0x

1.7x

2.4x

4.3x

1.0x

1.7x

2.7x
4.2x1.0x

2.0x 3.8x 7.3x1.0x 1.7x 3.3x 5.8x

Encoding Time vs GPUs
NeRV 4K
NeRV HD
NIRVANA 4K
NIRVANA HD

Figure 4. GPU scalability of NIRVANA: We compare scalabil-
ity of our approach with NeRV in terms of encoding time with
increasing number of GPUs at two video resolutions: 1080p and
4K. We scale close to linear for 4K and have much lower overhead
compared to NeRV for both resolutions.

5e−4 to obtain various points on the tradeoff curve.

5.1. Effect of Entropy Regularization

We analyze the effect of varying the entropy coefficient
λI and obtain a PSNR-BPP curve visualized in Fig. 5(a).
In general, we see that increasing λI decreases the BPP
at the cost of PSNR. This is to be expected as increasing
the entropy regularization forces the quantized weights of
each frame group’s networks to lie in fewer quantization
bins. Consequently, more weight residual (difference be-
tween quantized weights of subsequent frame groups’ net-
works) values are 0 leading to lower entropy of the weights
and subsequently lower BPP of the model. The entropy
coefficient thus provides a natural way of controlling the
PSNR-BPP tradeoff according to the required application.

5.2. Effect of Patch Size

We vary the patch prediction size of our network from
8 × 8 to 48 × 48 in steps of 8. We visualize the results in
Fig. 5(b). In general, increasing patch size shifts the curve
upwards and to the right corresponding to higher PSNR but
also high BPP. A higher patch size results in an increase in
number of network parameters (both in convolutional and
SIREN layers) and hence its expressivity, leading to higher
PSNR. However, as patches are less localized, the outputs
of networks between subsequent frame-groups vary more
significantly with dynamic scenes (such as Jockey), leading
to larger residuals. This increases the entropy of the residu-
als and as a result, the BPP.

5.3. Effect of Frame Group Size

We vary the frame group size from 2 to 8 in steps of 1
and visualize the results in Fig. 5(c). Increasing the group
size, in general, reduces BPP at the cost of PSNR. This
is expected as a single model shares computation across a
larger group of frames effectively leading to fewer param-
eters per frame and lower BPP. However, we notice that
group size 3 obtains the best tradeoff curve in the < 0.8

7

0.5 0.6 0.7 0.8
BPP

35.5

36.0

36.5

37.0

PS
NR

Effect of I

1

2

3

4

5I(1e 4)

0.5 1.0 1.5
BPP

34

36

38

PS
NR

Effect of Patch Size

Patch Size
8×8
16×16
24×24

32×32
40×40
48×48

0.6 0.8 1.0 1.2 1.4
BPP

34

36

38

PS
NR

Effect of Group Size

Group Size
2
3
4

5
6
8

0.6 0.8 1.0 1.2
BPP

36

37

38

PS
NR

Effect of Iterations

Iterations
500
1000
1500
2000
2500
3500
5000

(a) (b) (c) (d)
Figure 5. (a) Effect of entropy regularization: the larger λI is, the lower the entropy and the BPP. (b, c) As the patch size or group size
increases, PSNR increases at the cost of higher BPP. (d) The longer the training iteration (encoding time) is, the higher the PNSR gains.

Figure 6. (Left) Ground truth video frames. (Center) Reconstruction from NIRVANA. (Right) Reconstruction from NeRV. We show that
NIRVANA is able to preserve the image fidelity after reconstruction, capturing important details such as the veins in the eye of Beauty, and
the color quality in the Bosphorus video.

BPP regime with higher group size detrimental to the per-
formance. This is likely because of the fixed MLP represen-
tation capability which learns a shared global representation
for all frames within a group. For a dynamic scene such as
Jockey with significant pixel shift between frames (Section
4.5), a larger MLP is necessary for capturing the variations
within a group.

5.4. Effect of Number of Training Iterations

To analyze the effect of longer training schedules, we
vary the number of training iterations for the network for
each frame group from 500 to 5000. Results are shown in
Fig. 5(d). As expected, increasing the number of iterations
improves the PSNR-BPP tradeoff with the curve shifting
upwards. This shows that our network can obtain higher
quality reconstructions for longer training times at no cost
to the compression rate. This can be made feasible with
higher number of GPUs as shown in Section 4.6. How-
ever, increasing iterations provides diminishing gains as we
observe the curves approaching closer to each other with
higher iterations.

6. Qualitative results

We visualize the reconstructions of frames in videos
from the UVG-HD dataset in Fig. 6. Our approach (cen-
ter) preserves image fidelity after reconstruction when com-
pared to the ground-truth frame (left). It captures subtle de-
tails such as the veins in the eye (top row) or maintaining the
color information of the boat (bottom row) when compared
to the ground-truth. Further visualizations from videos in
the UVG-4K dataset are provided in the Appendix.

7. Conclusion

In this work, we propose an autoregressive video INR
framework, NIRVANA, which segments videos into groups
of frames and fits separate neural networks to each group.
Each network performs a patch-wise prediction across the
group of frames thus exploiting both the spatial and tempo-
ral redundancy present in videos, improved from the previ-
ous works. Each network is initialized with the weights of
the previous frame-group’s trained network. We addition-
ally quantize weights during training, requiring no post-hoc
pruning or quantization and store weight residuals between

8

subsequent frame group’s networks to obtain high levels of
compression. NIRVANA achieves 12× speedups on stan-
dard datasets compared to previous methods while main-
taining similar levels of reconstruction quality and com-
pression rate. NIRVANA adapts to varying video resolution
and duration without large performance degradation and no
architectural modifications. Additionally, our framework
adaptively compresses videos based on their inter-frame
variation. We achieve high levels of decoding speed com-
pared to prior video INR approaches and also scale better
with higher number of GPUs.

References
[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul

Natsev, George Toderici, Balakrishnan Varadarajan, and
Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. arXiv preprint
arXiv:1609.08675, 2016. 5

[2] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller,
Magnus Oskarsson, Kalle Åström, and Mark D. Fairchild.
Flip: A difference evaluator for alternating images. Proc.
ACM Comput. Graph. Interact. Tech., 3(2), aug 2020. 12

[3] Yunpeng Bai, Chao Dong, and Cairong Wang. Ps-nerv:
Patch-wise stylized neural representations for videos. arXiv
preprint arXiv:2208.03742, 2022. 3

[4] Johannes Ballé, Valero Laparra, and Eero P Simoncelli.
End-to-end optimized image compression. arXiv preprint
arXiv:1611.01704, 2016. 2

[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018. 2, 11

[6] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 11

[7] Linfeng Cao, Aofan Jiang, Wei Li, Huaying Wu, and
Nanyang Ye. Oodhdr-codec: Out-of-distribution generaliza-
tion for hdr image compression. Proceedings of the AAAI
Conference on Artificial Intelligence, 36(1):158–166, Jun.
2022. 2

[8] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. Advances in Neural Information Processing Systems,
34:21557–21568, 2021. 2, 3, 5, 12

[9] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. arXiv preprint arXiv:2012.09161, 2020. 3

[10] Yue Chen, Debargha Murherjee, Jingning Han, Adrian
Grange, Yaowu Xu, Zoe Liu, Sarah Parker, Cheng Chen, Hui
Su, Urvang Joshi, et al. An overview of core coding tools in
the av1 video codec. In 2018 Picture Coding Symposium
(PCS), pages 41–45. IEEE, 2018. 1

[11] Yinbo Chen and Xiaolong Wang. Transformers as meta-
learners for implicit neural representations. In European
Conference on Computer Vision, 2022. 3

[12] Emilien Dupont, Adam Goliński, Milad Alizadeh, Yee Whye
Teh, and Arnaud Doucet. Coin: Compression with implicit
neural representations. arXiv preprint arXiv:2103.03123,
2021. 3

[13] Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam
Goliński, Yee Whye Teh, and Arnaud Doucet. Coin++:
Data agnostic neural compression. arXiv preprint
arXiv:2201.12904, 2022. 3

[14] Angela Fan, Pierre Stock, Benjamin Graham, Edouard
Grave, Rémi Gribonval, Herve Jegou, and Armand Joulin.
Training with quantization noise for extreme model com-
pression. arXiv preprint arXiv:2004.07320, 2020. 3

[15] Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and
J. Zico Kolter. Multiplicative filter networks. In ICLR, 2021.
3

[16] Jonathan Frankle and Michael Carbin. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. arXiv
preprint arXiv:1803.03635, 2018. 3

[17] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M
Roy, and Michael Carbin. Stabilizing the lottery ticket hy-
pothesis. arXiv preprint arXiv:1903.01611, 2019. 3

[18] Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019. 3

[19] Sharath Girish, Kamal Gupta, Saurabh Singh, and Abhinav
Shrivastava. Lilnetx: Lightweight networks with extreme
model compression and structured sparsification. ArXiv,
abs/2204.02965, 2022. 2, 3, 4, 11

[20] Sharath Girish, Shishira R Maiya, Kamal Gupta, Hao Chen,
Larry S Davis, and Abhinav Shrivastava. The lottery ticket
hypothesis for object recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 762–771, 2021. 3

[21] Andrei Ivanov, Nikoli Dryden, and Torsten Hoefler. Sten:
An interface for efficient sparsity in pytorch. 3

[22] Jaeho Lee, Jihoon Tack, Namhoon Lee, and Jinwoo Shin.
Meta-learning sparse implicit neural representations. In Ad-
vances in Neural Information Processing Systems, 2021. 3

[23] Xiaoqi Li, Jiaming Liu, Shizun Wang, Cheng Lyu, Ming Lu,
Yurong Chen, Anbang Yao, Yandong Guo, and Shanghang
Zhang. Efficient meta-tuning for content-aware neural video
delivery. In European Conference on Computer Vision, pages
308–324. Springer, 2022. 2

[24] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy,
and Megha Manohara. Toward A Practical Perceptual Video
Quality Metric, 2016. 12

[25] Zizhang Li, Mengmeng Wang, Huaijin Pi, Kechun Xu, Jian-
biao Mei, and Yong Liu. E-nerv: Expedite neural video rep-
resentation with disentangled spatial-temporal context. arXiv
preprint arXiv:2207.08132, 2022. 3

[26] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate
binary convolutional neural network. Advances in neural in-
formation processing systems, 30, 2017. 3

[27] David B Lindell, Dave Van Veen, Jeong Joon Park, and
Gordon Wetzstein. Bacon: Band-limited coordinate net-
works for multiscale scene representation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 16252–16262, 2022. 3

9

[28] Julien NP Martel, David B Lindell, Connor Z Lin, Eric R
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:
Adaptive coordinate networks for neural scene representa-
tion. arXiv preprint arXiv:2105.02788, 2021. 3

[29] Alexandre Mercat, Marko Viitanen, and Jarno Vanne. Uvg
dataset: 50/120fps 4k sequences for video codec analysis and
development. In Proceedings of the 11th ACM Multimedia
Systems Conference, MMSys ’20, page 297–302, New York,
NY, USA, 2020. Association for Computing Machinery. 2, 5

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European conference on computer vision, pages
405–421. Springer, 2020. 2

[31] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in neural information processing
systems, 31, 2018. 2

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. arXiv preprint arXiv:2201.05989,
2022. 2

[33] D. Oktay et al. Scalable model compression by entropy pe-
nalized reparameterization. In ICLR, 2020. 3, 4, 11

[34] Daniel Rho, Junwoo Cho, Jong Hwan Ko, and Eunbyung
Park. Neural residual flow fields for efficient video represen-
tations. arXiv preprint arXiv:2201.04329, 2022. 3

[35] Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan,
Richard G Baraniuk, and Ashok Veeraraghavan. Miner:
Multiscale implicit neural representations. arXiv preprint
arXiv:2202.03532, 2022. 3

[36] Shayan Shekarforoush, David B Lindell, David J Fleet,
and Marcus A Brubaker. Residual multiplicative filter
networks for multiscale reconstruction. arXiv preprint
arXiv:2206.00746, 2022. 3

[37] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 2, 3,
5

[38] Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin
Graham, and Hervé Jégou. And the bit goes down: Re-
visiting the quantization of neural networks. arXiv preprint
arXiv:1907.05686, 2019. 3

[39] Yannick Strümpler, Janis Postels, Ren Yang, Luc Van Gool,
and Federico Tombari. Implicit neural representations for
image compression. arXiv preprint arXiv:2112.04267, 2021.
3

[40] Vivienne Sze, Madhukar Budagavi, and Gary J Sullivan.
High efficiency video coding (hevc). In Integrated cir-
cuit and systems, algorithms and architectures, volume 39,
page 40. Springer, 2014. 1

[41] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In CVPR, 2021. 3

[42] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. NeurIPS, 2020. 3

[43] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc
Huszár. Lossy image compression with compressive autoen-
coders. arXiv preprint arXiv:1703.00395, 2017. 2

[44] Frederick Tung and Greg Mori. Clip-q: Deep network com-
pression learning by in-parallel pruning-quantization. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7873–7882, 2018. 3

[45] G.K. Wallace. The jpeg still picture compression standard.
IEEE Transactions on Consumer Electronics, 38(1):xviii–
xxxiv, 1992. 1

[46] Ian H Witten, Radford M Neal, and John G Cleary. Arith-
metic coding for data compression. Communications of the
ACM, 30(6):520–540, 1987. 4

[47] Mingtian Zhang, Andi Zhang, and Steven McDonagh. On
the out-of-distribution generalization of probabilistic image
modelling. Advances in Neural Information Processing Sys-
tems, 34:3811–3823, 2021. 2

[48] Yunfan Zhang, Ties van Rozendaal, Johann Brehmer,
Markus Nagel, and Taco Cohen. Implicit neural video com-
pression. arXiv preprint arXiv:2112.11312, 2021. 3

10

Appendix
A. Additional Implementation Details
A.1. NeRV

We use the NeRV-L config from the original paper. The
model takes in positional embedding of time coordinate as
input. We set the number of sine levels to 80 and base value
to 1.25. The hidden dimension of the 2-layer MLP in the
beginning is set to 1024, with 128 output channels and an
8× channel expansion for the first NeRV Block. We stack
5-NeRV blocks with upscale factors of {5, 3, 2, 2, 2} for HD
version and an additional block with 2× upsampling for the
4K version. Following the standard training schedule, we
use cosine learning rate schedule starting with 5e−4, with
a warmup of 0.2. We use the combination of L1 and SSIM
loss and train the model with a batch size of 1, as mentioned
in the paper.

A.2. Entropy Loss and Weight Quantization

We follow the works of [19, 33] for performing model
compression with small variations. We represent our MLP
layer weights as W 1,W 2, ...,WL for L layers with the lth

layer weight matrix W l ∈ ROl×Il having a shape Ol × Il
consisting of continuous values. For each weight matrix,
we maintain a corresponding flattened latent quantized rep-
resentation vector W̃ l ∈ ZOlIl . W̃ l consists of integer
values for each corresponding element in W l. For ease of
notation, we drop the subscript l.

We then maintain decoders fφ(.) parameterized by pa-
rameters φ. The weight matrix W is then obtained from the
quantized weights W̃ as W = fφ(W̃). Prior works use
matrices or vectors to represent the weight decoders while
we use a single scalar φ as a parameter of the decoder. The
weight matrix is thus simply, W = reshape(φW̃), where
the scale parameter φ is multiplied with individual values
of W̃ . We make the scale parameter learnable by pass-
ing gradients. Thus, it effectively controls the bit width of
the weight matrix. We maintain separate decoders for each
layer of the MLP.

To make the network fully differentiable, we maintain
continuous surrogates Ŵ for the discrete latents W̃ . Dur-
ing training, we simply round the surrogates to their nearest
integer to obtain the discrete latents which are then passed
to the decoder. We make the rounding operation differen-
tiable using the straight-through estimator [6] to pass the
gradients from Ŵ to W̃ .

To reduce the entropy of the quantized latents, we use
probability models from [5]. For each continuous surrogate
Ŵ , we maintain probability models cθ(.) parameterized by
θ which output the CDF of the latent distributions. Similar
to prior works, we use uniform noise n ∼ U

(
− 1

2 ,
1
2

)
as a

Video Frames Link

Mario Kart 4000 http://bit.ly/3XjIvfR

Dota 4261 http://bit.ly/3Xf6Nru

Ride 4000 http://bit.ly/3TOEgWI

Submarine 3626 http://bit.ly/3EJKzGM

Water Scooter 4199 http://bit.ly/3OhF99h

Mortal Kombat 3239 http://bit.ly/3EdvNGU

Table 3. Details of videos from the Youtube-8M dataset.

substitute for quantization. The entropy of the model can
now be minimized by minimizing the self-information I as
follows:

I(W̃) = − log2(cθ(Ŵ + n)). (3)

This serves as the entropy regularization loss which controls
the rate-distortion tradeoff. A higher entropy coefficient λI
leads to more compressed latents (lower rate), but usually
at the cost of PSNR (higher distortion). The network la-
tents, decoder parameter, and probability model parame-
ters are learnable and jointly optimized. Following prior
works, we use a learning rate of 1e−4 for the probability
model weights and the same learning rate for the decoder
weights. We set the learning rate of the latents to 5e−4. All
the parameters are optimized in an end-to-end manner with
an Adam optimizer during training, thus requiring no post-
hoc approaches. After training, we discard the probability
models and use the frequency of each quantized value in
the latent vector to obtain the probability tables required for
arithmetic entropy coding. Note that the continuous surro-
gates are discarded and only their rounded discrete latents
are stored using entropy coding. These latents can then be
decoded using the probability tables. The decoder param-
eters and probability tables have almost no overhead com-
pared to the overall model latents.

B. Additional Dataset Details
B.1. UVG-4K

In addition to the datasets shown in Section 4 of the
main paper, we show quantitative and qualitative results
on 7 more videos from the UVG dataset at the 4K reso-
lution: Twilight, Sunbath, CityAlley, FlowerFocus, Flow-
erKids, RiverBank, and RaceNight. We dub this dataset
UVG-4K (Set 2).

B.2. Youtube-8M

We select 5 more videos from the Youtube-8M dataset,
with varying video content to further test the ability of our
model to encode longer videos. This is an extension of the
experiments from Section 4.4 which consists of a single
video (Mario Kart). We present the details of each video
used in Table 3.

11

http://bit.ly/3XjIvfR
http://bit.ly/3Xf6Nru
http://bit.ly/3TOEgWI
http://bit.ly/3EJKzGM
http://bit.ly/3OhF99h
http://bit.ly/3EdvNGU

Video Name
NIRVANA (Ours) NeRV

PSNR ↑ VMAF ↑ FLIP ↓ BPP ↓ PSNR ↑ VMAF ↑ FLIP ↓ BPP ↓

ReadySteadyGo 35.43 98.04 0.0862 1.26 34.59 96.95 0.0862 0.81
Bosphorus 40.53 90.97 0.0549 0.68 39.11 88.26 0.0621 0.81
Beauty 35.77 84.46 0.0524 0.96 34.57 86.35 0.0605 0.81
Honeybee 38.83 91.31 0.0505 0.51 39.71 95.08 0.0419 0.81
Jockey 37.56 93.07 0.0710 0.96 38.16 95.76 0.0653 0.81
Yachtride 37.94 91.31 0.0668 1.03 35.68 88.70 0.0786 0.81
ShakeNDry 37.82 88.81 0.0608 0.76 39.68 95.20 0.0468 1.61

Average 37.70 91.14 0.0632 0.86 37.35 92.33 0.0631 0.92

Table 4. Video-wise performance on UVG-HD: We show video-wise results of the 7 videos in UVG-HD and compare the reconstruction
quality using the 3 metrics of PSNR, VMAF, FLIP along with compression rate measured by BPP. We see that we maintain similar
performance as NeRV in all 3 metrics and BPP while having 12× faster encoding speed (as also shown in Table 1 of the main paper).

Video Name
NIRVANA (Ours) NeRV

PSNR BPP PSNR BPP

ReadySteadyGo 33.85 0.41 33.22 0.24
Bosphorus 38.71 0.21 39.0 0.24
Beauty 31.96 0.28 31.05 0.24
Honeybee 35.64 0.14 36.36 0.24
Jockey 35.05 0.30 35.9 0.24
Yachtride 36.33 0.33 35.05 0.24
ShakeNDry 34.78 0.24 36.09 0.49

Average 35.18 0.27 35.23 0.28

Video Name
NIRVANA (Ours) NeRV

PSNR BPP PSNR BPP

FlowerFocus 36.50 0.12 37.08 0.24
CityAlley 37.43 0.17 38.39 0.24
Twilight 38.02 0.13 20.99 0.24
FlowerKids 34.62 0.26 33.77 0.24
RiverBank 33.83 0.26 32.35 0.24
RaceNight 32.72 0.27 32.92 0.24
Sunbath 37.75 0.24 44.17 0.49

Average 35.84 0.21 34.23 0.28

(a) UVG-4K (Set 1) (b) UVG-4K (Set 2)

Table 5. Video-wise comparison on different sets of UVG-4K: We show video-wise results on 2 different sets of 7 UVG videos at 4K
resolution. Set-1 consists of videos from UVG-HD at 4K resolution while Set 2 consists of additional 7 videos from the dataset. We
maintain similar performance in terms of PSNR and BPP as NeRV while also being ∼6× faster for both sets and being 6× faster in terms
of encoding time.

C. Video-wise comparison

We show additional quantitative results on UVG-4K (Set
2) and Youtube-8M mentioned above.

C.1. UVG-HD

We provide video-wise results of our approach along
with that of NeRV [8]. We evaluate the video on the ad-
ditional perceptual quality metrics of FLIP [2] and VMAF
[24] as well, along with the standard PSNR. Results are
summarized in Table 4. We see that we continue to obtain
similar performance compared to NeRV in terms of these
metrics while being ∼12× faster. Also note the adaptive
BPP of our method, which is based on the amount of mo-
tion in each video. In contrast, NeRV maintains a fixed BPP
due to fixed model size (ShakeNDry shows twice the BPP
due to half the number of frames). We observe a small drop
in VMAF (92.33→ 91.14) while maintaining similar value
of FLIP (∼ 0.0632) compared to NeRV.

C.2. UVG-4K

We provide video-wise results on the 2 sets of UVG
at 4K resolution. For Set 1, we obtain comparable per-
formance to NeRV while obtaining ∼6× faster encoding
speed. Similar to UVG-HD, we continue to show the bene-
fits of adaptive compression, with static videos such as Hon-
eybee showing lower levels of BPP (0.14) compared to the
most dynamic video, ReadySteadyGo (0.41 BPP). For Set
2, we outperform NeRV by 1.5 PSNR while still obtaining
25% lower BPP 0.28→ 0.21. The PSNR drop of NeRV on
the Twilight video is largely due to quantization at the fixed
bit width of 20. Hand-tuning is necessary in order to main-
tain higher PSNR but at the cost of BPP. In contrast, our
approach maintains the reconstruction quality for a variety
of videos and adaptively quantizes for each video.

C.3. Youtube-8M

We now provide video-wise results of 5 videos picked
from the Youtube-8M dataset at 1080p resolution. Details

12

0.6 0.8 1.0
BPP

36

37

38
PS

NR
Effect of Number of MLP Layers

Num Layers
3
4
5
6

0.25 0.50 0.75 1.00 1.25 1.50
BPP

32

34

36

38

PS
NR

Effect of MLP Layer Size

Layer Size
128
256
384

512
640
768

(a) (b)
Figure 7. Increasing number of layers improves the PSNR/BPP curve upto 5 layers in the lower BPP regime (<0.8). Increasing layer size
shifts the PSNR/BPP curve upwards and to the right as representation capacity increases along with more parameters.

Video Name
NIRVANA (Ours) NeRV

PSNR BPP PSNR BPP

Dota 38.03 0.62 35.53 0.34
Ride 36.65 1.09 29.74 0.36
Submarine 38.48 0.69 33.64 0.40
Water Scooter 37.79 0.84 30.46 0.34
Mortal Kombat 36.02 1.03 31.36 0.45

Average 37.39 0.85 32.14 0.38

Table 6. Results on Youtube-8M videos with long duration. We
provide video-wise results on 5 videos picked from the Youtube-
8M datasets with approximately 4000 frames compared to the typ-
ical 600 from UVG. Still we maintain PSNR/BPP with no change
in hyperparameters, whereas NeRV shows large degradation in
performance for the same network and similar encoding times.

of the videos are provided in Table 3. Results are summa-
rized in Table 6. We see that our reconstruction quality does
not degrade with longer videos. This behavior is differ-
ent from NeRV, which obtains a significant drop in PSNR
(about −5.2). This is in line with the observations in Sec-
tion 4.4 of the main paper, where we see that increasing
number of frames results in drop of NeRV’s reconstruction
quality while we maintain similar levels of performance.

D. Additional Ablations
In addition to the ablations shown in Fig. 5, we analyze

the effect of layer size and the number of layers of the MLP
in our network when evaluating on the Jockey video of the
UVG-HD dataset. Note that the default values of layer size
is 512 and the number of layers is 5.

D.1. Effect of Layer Number

We increase the number of layers from 3 to 6, while
keeping other parameters at their default values and varying
the entropy coefficient λI for each curve as in Section 5.

Results are summarized in Figure 7(a). We see that increas-
ing the number of layers from 3 to 5 improves the tradeoff
curve (shifts upwards) in the low BPP regime (<0.8). How-
ever, increasing it further shifts the curve upwards and to
the right. This might be because the MLP network requires
higher levels of non-linearity to learn a global representa-
tion for a group of 3 frames which typically contain signifi-
cant motion in the case of Jockey. However, for 6 layers the
network shifts the curve upwards and to the right, and we
no longer obtain increase in PSNR at no cost of BPP.

D.2. Effect of Layer Size

We vary the layer size from 128 to 768 progressively, in
steps of 128 for each of the 5 layers. Results are summa-
rized in Figure 7(b). We see that increasing the layer size
simply shifts the curve upwards and to the right, which is
expected as a higher number of parameters leads to more
representation capability of the network at the cost of more
parameters. While increasing the number of layers in-
creases number of parameters as well, a similar tradeoff is
not present in that case up to a certain level, suggesting that
a minimum number of non-linearities/activation functions
are important to achieve the optimal tradeoff.

E. Qualitative Results
We qualitatively visualize the reconstruction results for

3 videos from UVG-4K (Set 2) in Fig. 8. We obtain higher-
quality, more faithful reconstructions while preserving de-
tails at similar/lower BPP compared to NeRV; e.g., Twi-
light (0.24 → 0.13), RiverBank (0.24 → 0.26), CityAl-
ley (0.24 → 0.17). Notice the bird which is reconstructed
by our approach in Twilight (top), or finer details of the
branches in RiverBank (middle), or maintaining the right
color information of the door and the people’s shirts in
CityAlley (bottom).

13

Ground Truth NIRVANA NeRV

Figure 8. Qualitative results from UVG-4K Set-2: (Left) Ground truth video frames. (Center) Reconstruction from NIRVANA. (Right)
Reconstruction from NeRV. Top to bottom: We show additional examples where NIRVANA is able to preserve the image fidelity after
reconstruction, such as the bird in Twilight, the tree in RiverBank, and the humans in CityAlley.

14

	1 . Introduction
	2 . Related Work
	3 . Approach
	3.1 . Background
	3.2 . Autoregressive Patch-wise Modeling
	3.3 . Model Compression and Weight Storage
	3.4 . Network Architecture

	4 . Experiments
	4.1 . Datasets and Implementation Details
	4.2 . UVG-HD
	4.3 . UVG-4K
	4.4 . Long Videos
	4.5 . Adaptive Compression
	4.6 . GPU Parallelization

	5 . Ablation Studies
	5.1 . Effect of Entropy Regularization
	5.2 . Effect of Patch Size
	5.3 . Effect of Frame Group Size
	5.4 . Effect of Number of Training Iterations

	6 . Qualitative results
	7 . Conclusion
	A . Additional Implementation Details
	A.1 . NeRV
	A.2 . Entropy Loss and Weight Quantization

	B . Additional Dataset Details
	B.1 . UVG-4K
	B.2 . Youtube-8M

	C . Video-wise comparison
	C.1 . UVG-HD
	C.2 . UVG-4K
	C.3 . Youtube-8M

	D . Additional Ablations
	D.1 . Effect of Layer Number
	D.2 . Effect of Layer Size

	E . Qualitative Results

