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Abstract

Humans possess a versatile mechanism for extracting
structured representations of our visual world. When look-
ing at an image, we can decompose the scene into entities
and their parts as well as obtain the dependencies between
them. To mimic such capability, we propose Visual Depen-
dency Transformers (DependencyViT) ' that can induce vi-
sual dependencies without any labels. We achieve that with
a novel neural operator called reversed attention that can
naturally capture long-range visual dependencies between
image patches. Specifically, we formulate it as a depen-
dency graph where a child token in reversed attention is
trained to attend to its parent tokens and send information
following a normalized probability distribution rather than
gathering information in conventional self-attention. With
such a design, hierarchies naturally emerge from reversed
attention layers, and a dependency tree is progressively in-
duced from leaf nodes to the root node unsupervisedly.

DependencyViT offers several appealing benefits. (i) En-
tities and their parts in an image are represented by dif-
ferent subtrees, enabling part partitioning from dependen-
cies; (ii) Dynamic visual pooling is made possible. The
leaf nodes which rarely send messages can be pruned with-
out hindering the model performance, based on which we
propose the lightweight DependencyViT-Lite to reduce the
computational and memory footprints; (iii) DependencyViT
works well on both self- and weakly-supervised pretraining
paradigms on ImageNet, and demonstrates its effectiveness
on 8 datasets and 5 tasks, such as unsupervised part and
saliency segmentation, recognition, and detection.

1. Introduction

Humans have a rich mental representation of our sur-
rounding environments. When looking at an image (see
Figure 1(a)), we can recognize the scene and also can
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Figure 1. (a) is an example of hierarchical dependency structure.
(b) illustrates the dynamic pooling and information aggregation
process of Dependency ViT.

quickly decompose it into hierarchical elements with de-
pendencies, e.g., a laptop consisting of a screen and a key-
board is placed on the table. This ability to construct depen-
dencies between objects (and/or their parts) serves as the
cornerstone of human intelligence, enabling us to perceive,
interact, and reason about the world.

From the pre-deeplearning era, many classical image de-
pendency parsing algorithms [29,31, 83,87, R ] have
been proposed. For example, Bayesian framework [87],
And-Or graph [31], and hierarchical probabilistic mod-
els [29, 83] for parsing images into their constituent visual
patterns. Apart from that, Capsule Network [49, 74] shows
the potential to learn geometrically organized parts from
images. After that, visual grounding methods [14,22, 25,

, 105] try to align the semantic meaning between visual
objects and words to distill effective structures for the vi-
sion branch from language. Similarly, human-object inter-
action approaches [40] learn the relationships between two
objects, e.g., a boy “holds” an ice cream, from manually
annotated labels. Such methods struggle to learn hierarchi-
cal visual structures, such as different parts of an object,
unless exhaustive and time-consuming manual annotations
are provided. Recently, vision-language (VL) grammar in-
duction [89] proposes to extract shared hierarchical object
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dependencies for both vision and language unsupervisedly
from image-caption pairs. However, the above works suffer
two key issues: 1) the parsing relies heavily on supervision
from natural language or human annotations rather than
the image itself, and 2) their parsed structures are object-
level based on a pre-trained object detection model, like
Faster/Mask-RCNN [35, 71], hindering their generalizabil-
ity in part-level and non-detector scenarios.

This paper answers a question naturally raised from the
above issues: can we efficiently induce visual dependencies
and build hierarchies from images without human annota-
tions? Currently, visual parsing works mainly lie in seman-
tic and instance segmentation. Unlike detector-based works
that rely on pre-trained detectors, they parse the image at the
pixel level, which is resource-intensive and costly. Inspired
by vision transformers [26] that take image patches as input
and leverage self-attention to perform interactions between
patches, we propose to build a dependency tree at the patch
level. Taking patches as basic elements and building a tree
structure based on them has two benefits: 1) it unifies part-
level and object-level dependencies, all of which are formu-
lated into subtrees; 2) in the dependency structure, informa-
tion can be aggregated from leaves to the parent (as shown
in Figure 1(b)) to produce a hierarchy of representations for
different parts and object along the path.

In practice, it is non-trivial to build the dependency tree
with the standard transformer. Although the self-attention
mechanism is designed to collect information dynamically
from other patches, the number of attention heads con-
straints the number of tokens that a patch can attend to. 1)
However, each parent could have an arbitrary number of
children in a dependency tree, while each child only has
one parent. Thus it’s more straightforward for a node to
select its parent instead of selecting the child. 2) Further-
more, the transformer treats each patch equally, it does not
distinguish between root and leaf nodes. Contributions for
different subtrees should be distinct.

Motivated by the above observations, in this work, we
propose a dependency-inspired vision transformer, named
Visual Dependency Transformers (DependencyViT). We
propose three innovations to the standard self-attention, as
shown in Figure 2. Firstly, to form a root-centric depen-
dency parser, we introduce a reversed self-attention mecha-
nism by transposing the adjacency matrix. In this way, leaf
nodes can send information to their parents and form hi-
erarchical subtrees. Secondly, we propose a message con-
troller to determine how a node or subtree sends messages.
Thirdly, a soft head selector is introduced to generate a
unique dependency graph for each layer. As a result, self-
attentions in DependencyViT naturally form a dependency
tree parser. We did extensive studies in both supervised and
self-supervised pretraining to show DependencyViT is ca-
pable of capturing either object- or part-level dependencies.

Intuitively, dependency parsing should ease scene under-
standing, as humans can understand complex scenes at a
glance based on visual dependencies. Based on this, we
further introduce a lightweight model Dependency ViT-Lite
by proposing a dynamic pooling scheme, reducing the com-
putational cost largely. Within each subtree, we prune those
leaf nodes with the least information received because they
have sent information to their parent node. We show the
pruned nodes can be retrieved by soft aggregations from
their parents, preserving the model capability and dense
representation capability.

We make three main contributions. (i) DependencyViT
performs visual dependency parsing by reversed attention
in self- or weakly-supervised manners. We demonstrate
its effectiveness in both part-level and object-level parsing.
(i) We propose a visual dynamic pooling scheme for De-
pendency ViT hence DependencyViT-Lite. The dependency
tree can also be progressively built during the pruning pro-
cess. (iii) Extensive experiments on both self- and weakly-
supervised pretraining on ImageNet, as well as five down-
stream tasks, show the effectiveness of Dependency ViT.

2. Related Work

Dependency Parsing in Vision. Unsupervised dependency
parsing is a long-standing task in computer vision with
many classical image dependency parsing algorithms that
have been proposed in the pre-deeplearning era [29,31, 83,

, , ]. Dating back to [87] proposed a Bayesian
framework for parsing images into their constituent visual
patterns. [31, R ] surveyed on stochastic and con-
text sensitive grammar of images with Bayesian framework,
And-Or graph and probabilistic models. [29, 83] proposed
to use hierarchical probabilistic models for detection and
recognition of objects in cluttered environments.

In the deep learning era, a representative accomplish-
ment is Capsule Network [74], where the activity vec-
tor of a capsule represents the instantiation parameters
of an object part. After that, Stacked Capsule Autoen-
coders [49] leverages dynamic routing among capsules to
automatically discover sub-patterns and recover the com-
positional relations on the MNIST dataset [21]. There are
also works [28,39,43, s s ] that further extend the
composition relations in Capsule Networks and apply them
to more tasks, e.g., generative adversarial scenarios. How-
ever, it remains challenging to make them work on com-
plex natural images. Most recently, supervised hierarchical
semantic segmentation [53, 57, 58] became more popular.
There are works to perform human parsing [93, 94] based
on human part relations. Recently there are also attempts to
perform part segmentation [7, 17,42,62] in an unsupervised
manner. [79] explored spectral clustering on self-supervised
features and pseudo labels on unsupervised saliency detec-
tion.



This work provides a new perspective, discovering visual
dependencies automatically from neural attention in vision
transformers. We believe it is of great significance to both
the traditional grammar induction field, and the recent vi-
sion transformer and multimodal learning research. We pro-
vide an initial study that enables a flexible model that can
simultaneously work on hierarchical parsing, scene graph,
and downstream tasks like detection and segmentation. Fur-
thermore, our model can adaptively induce different kinds
of structures conditions on the given task.

Vision Transformers. ViT [20] first applies self-attention
directly to a sequence of image patches. Works [15, 30, 38,

,73,82,85,92,98,113] follows the discipline to stack mul-
tiple self-attention layers to model the information across
patch tokens. After that hierarchical designs are widely
adopted to vision transformers [1,10,23,24,32,41,51,52,55,
for better efficiency and lower memory cost. For exam-
ple, Swin [63], ViL [114], and HaloNet [88] apply local
windows attention to the patch tokens, which reduce the
quadratic complexity to linear, but lose the ability of long-
range dependency modeling. PVT [92] and CvT [97] per-
form attention on the squeezed tokens to reduce the compu-
tational cost. However, previous transformer models fail to
discover object parts in images and resolve their dependen-
cies.

In this work, we focus on efficient transformers for de-
pendency parsing, based on the standard ViT [26]. We pro-
pose DependencyViT, a dependency-inspired vision trans-
former built on reversed self-attention, which captures hi-
erarchies and dependencies between patches automatically.
DependencyViT is orthogonal and seamlessly compatible
with the SoTA transformer training methods, makes it more
attractive than traditional grammar models from a practi-
cal perspective. Moreover, we show that the standard ViT
layout can be highly efficient with our DependencyViT-Lite
and dynamic pooling technique.

3. Method

This work proposes Visual Dependency Transformers
(Dependency ViT), a dependency-inspired backbone model
based on reversed self-attention, capturing dependencies
between patches automatically from self- or weakly-
supervised signals for vision tasks.

Preliminaries. Let us assume a RY*¢ dimensional visual
feature X, where IV is the number of total image patches
and C is the number of token dimensions. The number
of heads is H. The standard (forward) multi-head self-

attention is defined as:

A¢(Q,K,V) = Concat(heady, ..., head s )W,
where head;, = Attention(Qy,, Ky, Vi) (1)
T
= softmax {Q}L(Kh)} V;
VCh

where Q, = XW2, K;, = XWEK, and V), = XWV
are RV*Cr dimensional visual features of H heads, X €
RN *C denotes the input feature and W), € R€*C» denotes
the projection weights of the hy;, head for Q, K, V, C =
Cr « H, and W, is the weight of the output projection.
Af = softmax(QKT) € REXNXN g called the attention
matrix of the layer. In subsequent sections, we will omit the
head dimension and focus on analyzing the attention within
a single head.

3.1. Reversed Attention

The standard self-attention mechanism learns the N x NV
attention adjacency matrix to exchange information be-
tween different image patches. It treats all patches equally
and does not follow a tree or graph structure, i.e., it does not
distinguish root and leaf nodes. To generate an adjacency
graph, let us assume that each node can find its parent node
via the argmax (-) function since the second dimension
of the matrix follows a normalized probability distribution.
In this case, the forward self-attention works by gathering
information from parent nodes following the soft probabil-
ities. All the nodes receive information from others, and
eventually, they are dominated by the root node and the
structural information of the image is lost. This learning
scheme may perform well on visual recognition tasks due
to its powerful attentive fusion and interaction capabilities,
but it is not based on explicit hierarchical structures and de-
pendencies.

Ideally, to build a dependency tree, we need to identify
which patches are child nodes or parent nodes, so that in-
formation can be progressively aggregated to the root node.
In turn, the root node distributes messages to leaf nodes.
We achieve this by proposing reversed self-attention, which
simply transposes the adjacency probability matrix so that
the child node sends messages to the parent node. Consid-
ering each element a;; in the attention matrix A, we have:

qikj }
a;; = softmax { , 2)
’ ( v Ch je[O,N)>j

where g; is the i, element of Q, and k; is the j, element
of K. Then, after transposing the matrix A, the information



flow also changes as follows:

0; = Zaiﬂ]j WO — 0; = Zajivj WO,
J J
(3)

where o; denotes the iy, output and W, is the weight of
the output projection. We can see the child node ‘receive’
messages in forward attention but ‘send’ messages in re-
versed attention following the softmax probability dis-
tribution. Each child node has only one parent, but each
parent node can have multiple children. In this way, infor-
mation can be collected progressively from leaf nodes to the
root node through multiple reversed attention layers. At the
same time, the dependency tree is also built bottom-up, and
different subtrees may represent part-level or object-level
semantics.

3.2. Dependency Block

Simply applying transposed attention matrices does not
guarantee a good dependency graph induced. This is be-
cause: (i) The amount of token that a patch can attend to is
controlled by multiple attention heads, thus the dependency
graph is not unique. (ii) Contributions for different sub-
trees are not well distinguished. In some downstream tasks
like image classification, foreground and background trees
should be distinct. To solve the above questions: we further
introduce two modules: a head selector and a message con-
troller. An overview of our dependency block is shown in
Figure 2.

Head Selector. The head selector P is used to choose
proper reversed attention heads for dependency induc-
tion. We obtain it by applying the softmax (:) func-
tion on the linear projections of the input tokens: P =
softmax (XW,,), where W,, € RE* is the projection
weight. By the head selector, we can build dependencies
over all attention heads following the learnable soft prob-
abilities and generate a unique dependency graph for each
layer.

Message Controller. Similarly, the message controller M
is learnable weights imposed on tokens during reversed self-
attention. The goal of M is to determine the extent to which
anode or a subtree sends messages. Specifically, we use two
linear grojection layers (who have the dimensions R g
and R= *1) with a GELU activation [37] between them to
learn it. After that, a sigmoid (-) function is used to get
the probability in [0, 1] of sending messages.

Note that the weights learned by the message controller
are cumulative across all layers. The message controller M
in the iy, layer is computed by M; - Ms... - M;, where the
subscript represents the index of the layer. We also use M
to weight the pooling to get the final representation over all
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Figure 2. An architecture overview of our proposed reversed at-
tention block in DependencyViT. FeedForward Networks (FFNs)
and residual paths are omitted here. The input and output tokens
are X, and X, with the number of tokens /N and token dimen-
sions C, respectively. The number of attention heads is H, and
the per-head token dimension is C},. We obtain the reversed atten-
tion matrices Ar by transposing the forward attention weights Ar
with a head selector P and a message controller M imposing on
it. After that, the soft dependency mask Ay is induced by apply-
ing summation on Ag over the head dimension. ‘*’ indicates the
dimension that is normalized by softmax probability distribution.

patches. It has two benefits: (i) If a node does not send in-
formation in a layer, it keeps the status in subsequent layers,
making the induced structure clearer. (ii) Different subtrees
are weighted differently, which filters meaningless patches,
benefiting downstream tasks like recognition and detection.
In summary, we have the reversed attention Ag = Ap -
P - M with dimensional permutations, where Ar is the for-
ward attention, as shown in Figure 2. We then compute
the soft dependency mask by applying the sum (-) opera-
tor on Ar over the head dimension. The dependency graph
and tree structure are then obtained by argmax (-) and the
chu-liu-edmonds algorithm [ 9], respectively.

3.3. Dynamic Pooling based on Dependencies

Our dependency block is able to learn dynamic and com-
prehensive information flow between patches for depen-
dency induction. Intuitively, with such visual dependen-
cies, scene understanding can be simplified with less com-
putational effort as most of the information can be repre-
sented by a few nodes. With this inspiration, we introduce
a dynamic visual pooling scheme that reduces the compu-
tational cost largely (i.e., FLOPs and GPU memory), and
propose a lightweight model Dependency ViT-Lite.

Specifically, we rank and prune those leaf nodes which
have the least information received, because 1) they are not



the parent of any node and 2) they rarely transmit messages
or they have sent enough information to their parent nodes.
We progressively prune the leaf nodes with the least mes-
sages as the depth of the network increases. In this way,
the memory and resource costs are largely reduced. Mean-
while, the tree architecture is still maintained by recording
relationships between the pruned nodes and their parents to
form a complete tree. Most importantly, Dependency ViT-
Lite is able to perform dense prediction tasks though some
of its tokens are removed. According to the dependency
graph, we retrieve those pruned nodes by a soft aggregation
from their parents.

3.4. Model Analysis and Protocols

Model Instantiation. In this work, we follow the design
strategy of the standard ViT (DeiT) [26, 85]. To show
the efficiency and effectiveness of our model, we choose
two different model sizes and build DependencyViT-T and
DependencyViT-S based on tiny and small ViTs as back-
bones, respectively. We set the number of attention heads
H = 12, the number of dependency blocks L. = 12 with
residual paths and FFNs of ratio 4 as in standard ViT. We
set the token dimensions C' = {192,384} for tiny and
small models, respectively. Take an image with an arbi-
trary resolution, a C'-dimensional 16 x down-sampling fea-
ture is obtained after the patch embedding layer. There are
no overlaps between any of the two patches. Conditional
positional encoding is used as in [ 8]. Based on our obser-
vation that the ‘cls’ token passes information between two
visual patches and leads to confusion in dependencies, we
remove it from our model. For DependencyViT-Lite mod-
els, we prune 16% number of nodes (e.g., 32 of 196) at the
{2,5, 8, 11}, layers, respectively.

Complexity Analysis. Simply applying the standard global
self-attention leads to a complexity of O(2N2C'+ 12N C?),
which contains O(2N?C) for self-attentions, O (4N C?) for
linear projections, and O (8N C?) for feedforward networks
(FFNs). Our head selector and message controller lead to
additional costs of O(NCH) and O(NC), respectively,
which are much smaller than the costs of other components.
In contrast, our Dependency ViT-Lite reduces the number of
tokens IV to 0.3 N and even smaller through dynamic pool-
ing, which lowers the complexity exponentially (to 10%
and even smaller). Dependency ViT-Lite can run with batch
sizes more than three times that of ViT on a same GPU.
Pretraining Protocols. We apply two different pretraining
methods on DependencyViT: weakly-supervised and self-
supervised. The first one is supervised pretraining on Im-
ageNet by leveraging the information in class-level labels.
The supervision encourages the model to learn high-level
object-aware semantics, based on which DependencyViT
learns to model object-aware dependencies by gathering in-
formation from subtrees to the root node (centered object).

Self-sup.

3

e k=

Input Image Patch Merging

Part Dependency

Figure 3. Visualizations of dependency trees parsed by self-
and weakly-supervised pretrained DependencyViT, respectively.
Patches are aggregated gradually until the root node is formed. To
facilitate observation, the background area is not filled to the root
node. It can be seen that weakly-supervised DependencyViT fo-
cuses more on the whole object, while the self-supervised Depen-
dencyViT captures more fine-grained part-aware dependencies.

For self-supervised pretraining, we take inspiration from
recent contrastive learning and masked image modeling
methods [3,8, 11, 13,34, 118] as they can learn both object-
level global representations and part-level local features.
Specifically, we follow the same pretraining protocol as
iBOT [118] (e.g., employ self-distillation and masked im-
age modeling on DependencyViT) and enjoy the benefit of
its powerful pretraining capabilities. After pretraining, De-
pendency ViT can establish a dependency tree for an unseen
image, containing part-to-part, part-to-object, and object-
to-object dependencies.

Figure 3 shows the dependency trees of an image from
ImageNet parsed by weakly-supervised and self-supervised
pretrained DependencyViT, respectively. It can be seen
that weakly-supervised pretrained DependencyViT focuses
more on the entire object, while the self-supervised pre-
trained Dependency ViT can capture more fine-grained part-
aware dependencies. The parsed dependency tree is ex-
pected to help many downstream tasks, such as saliency
detection and part segmentation. For more analysis and de-
tailed settings, please refer to Appendix.

4. Experiments

In this section, we conduct extensive experiments
to show the effectiveness of DependencyViT and
DependencyViT-Lite on visual parsing and recogni-
tion. They are: unsupervised part segmentation on the
Pascal-Part [12] and Car-Parts [68] datasets; unsupervised
saliency detection on the ECSSD [78], DUTS [90] and



Figure 4. Visualization of part partitioning on the Pascal-Part [12]
and Car-Parts [68] datasets. From top to bottom: 1) the original
image; 2) our generated part mask of which each color represents
a subtree in the hierarchy; 3) the ground truth part segments.

DUT-OMRON [107] datasets; dependency parsing on
the COCO dataset [061]; and image classification on
ImageNet-1K [20].

4.1. Unsupervised Part Segmentation

To show the effectiveness of DependencyViT on vi-
sual dependency parsing, we apply it to the unsupervised
part segmentation task without part labels, which is chal-
lenging and under-explored as it requires a comprehen-
sive dependency understanding between parts. Consider-
ing available part parsing datasets, e.g., Pascal-Part [12]
and Car-Parts [68], are of small resolution and data scale,
tiny ViT model is enough to work on this situation and
further scaling model size up brings no gains. We take
DependencyViT-T as our base model.

Both weakly- and self-supervised pretrained models are
evaluated. For DependencyViT, we average the learned de-
pendency masks of all layers, and then leverage the Chu-
Liu-Edmonds maximum spanning algorithm [19] to gener-
ate the dependency tree. After that, we perform matching
between all subtrees and part segments by the Hungarian
maximum matching algorithm [50] and compute the mean
intersection over union (mloU) and mean accuracy (mAcc)
metrics for evaluation. Note that we remove small part re-
gions from evaluation for more reliable results. We take
DeiT-Tiny [85] as the baseline. Since there are no explicit
dependencies in it, the Naive solution is to partition the
patches in their latent representation space by k-means clus-
tering [64] (k is set to 20 in this paper). To get a stronger
baseline, we also build tree structures on DeiT by applying
the maximum spanning algorithm on its mean pooled atten-
tion map. For self-supervised models, DependencyViT-T
is evaluated with the maximum spanning algorithm for de-
pendency tree generation. We take the self-supervised iBOT
(tiny DeiT) as a strong baseline for fair comparison.

From the results shown in Table 1, we observe that De-
pendencyViT consistently outperforms the baseline meth-

Figure 5. Visualization for unsupervised saliency detection on the
ECSSD [78], DUTS [90] and DUT-OMRON [107] datasets. From
top to bottom: 1) the original image; 2) our generated saliency
mask; 3) our results post-processed by the bilateral solver [4]; 4)
the ground truth part partitions.

ods by a large margin on both weakly- and self-supervised
settings and two datasets, demonstrating the effectiveness of
our dependency parsing. Self-supervised DependencyViT
shows better performance than the weakly-supervised one
as it can learn more fine-grained dependencies. We visual-
ize our patch-level part partitioning results in Figure 4.

4.2. Unsupervised Saliency Detection

Besides part-level partitioning, Dependency ViT can also
work on object-level comprehensions, thanks to its built-
in hierarchical dependencies. We evaluate the unsuper-
vised saliency detection results of DependencyViT on three
datasets. Except baseline methods [54,66, 106, 120] that are
specifically designed for the task based on pseudo-labels,
we evaluate weakly-supervised DeiT for fair comparison.
Following [95], we leverage normalized cut [77] on token
representations to get the salient area of an image for DeiT.
For DependencyViT, the soft dependency mask is added to
the representation for better results. Bilateral solver [4] is
used as post-processing for segment smoothing.

Figure 5 visualizes the saliency detection map of our
method DependencyViT (weakly-sup.). From the figure
and Table 2, we see that: 1) DependencyViT is superior to
its counterparts, including the pseudo label-based saliency
detection methods and DeiT. 2) Weakly-supervised Depen-
dencyViT outperforms the self-supervised one, indicating
weakly-supervised model is better at modeling object-level
semantics. 3) The failure case in the last column of Figure 5
demonstrates how DependencyViT works. The two birds
belong to the same semantic category but different objects,
hence two subtrees.

To verify the effectiveness of dependency for object-
level understanding, we make ablative comparisons by
whether adding the soft dependency (+dependency) to the
feature representation, see Figure 7). We see that 1) the
dependency mask improves the performance significantly,
showing the effectiveness of DependencyViT in learning



Table 1. Part segmentation results on the Pascal-Part [
on feature representations; ‘maximum spanning’ denotes the dependency tree is generated by Chu-Liu-Edmonds maximum spanning

algorithm [19].

] and Car-Parts [

] datasets. ‘clustering’ indicates applying k-means [

]

Method Pretraining Type Part Discovery by mIol? ?Z?l Par:n[ Ac]c (%) mIoUC(i/Z)PartSIL Aic %)
DeiT [85] weakly-sup. clustering 7.2 22.6 8.9 29.5
DeiT [85] weakly-sup. maximum spanning 18.9 35.5 17.8 37.7
Dependency ViT weakly-sup. clustering 11.6 31.7 10.9 29.7
Dependency ViT weakly-sup. maximum spanning 23.2 41.7 22.6 40.0
iBOT [118] self-sup. maximum spanning 25.1 44.8 25.7 46.1
DependencyViT self-sup. maximum spanning 28.7 47.9 27.0 47.2
Table 2. Unsupervised saliency detection on ECSSD [78], DUTS [90] and DUT-OMRON [107]. Tiny models, token normalized cut [77,95]

and bilateral solver [4] post-processing are used for DEIiT and Dependency ViT.

ECSSD [78] DUTS [90] DUT-OMRON [107]

Method maxFg IoU Acc. maxFg IoU Acc. mazFg IoU Acc.

(%) (%) (%) (%) (%) (%) (%) (%) (%)
DeepUSPS [66] 58.4 44.0 79.5 42.5 30.5 77.3 414 30.5 77.9
HS [106] 67.3 50.8 84.7 50.4 36.9 82.6 56.1 433 84.3
wCtr [120] 68.4 51.7 86.2 522 39.2 83.5 54.1 41.6 83.8
WSC [54] 68.3 49.8 85.2 52.8 38.4 86.2 523 38.7 86.5
DeiT [85] 49.3 40.5 72.7 342 26.8 72.7 332 27.2 71.1
Dependency ViT (self-sup.) 62.1 55.0 78.4 43.0 35.9 73.2 32.5 28.0 67.2
Dependency ViT (weakly-sup.) 62.0 48.4 83.6 53.8 37.0 87.5 52.0 39.7 88.4

Table 4. Comparison of image classification on ImageNet-1K. All
models are trained and evaluated with 224 x 224 resolution. *
denotes the method can not be used for dense predictions.

T #Params FLOPs Top-1
Model Hierarchical Cost M) G) ()
ResNet-18 [36] Va low 11.7 1.8 69.9
ConvMixer-512/16 [86] X high 5.4 - 73.7
DeiT-Tiny/16 [85] X high 5.7 1.3 722
CrossViT-Tiny [10] X high 6.9 1.6 734
PVT-Tiny [92] v low 132 1.9 751
Dependency ViT-Lite-T X low 6.2 0.8 737
Dependency ViT-T X high 6.2 1.3 754
ResNet-50 [36] VA low 250 4.1 762
ConvMixer-768/32 [86] X high 21.1 - 80.2
DeiT-Small/16 [85] X high 22.1 45 7938
CrossViT-Small [10] X high 26.7 5.6 81.0
PVT-Small [92] Vv low 245 38 798
Swin-Tiny [63] VA low 283 4.5 81.2
CvT-13 [97] IV high  20.0 45 8l1.6
DynamicViT-LV-S/0.5 [70]* X - 26.9 37 820
PVTv2-B2 [91] VA low 254 40 820
Dependency ViT-Lite-S X low 240 3.0 80.6
Dependency ViT-S X high 24.0 5.0 821

object-level dependencies; and 2) the bilateral solver brings
considerable improvement over all models.

4.3. Visualization

As shown in Figure 6, we visualize our visual depen-
dency parsing on images from the COCO dataset, which

does not overlap with the pretraining ImageNet dataset. We
can see that the foreground and the background areas are
represented by different subtrees, which further construct
the overall scene dependency tree. The root subtree is gen-
erally an important part of the foreground object.

More downstream experiments, e.g., semantic segmen-
tation on ADE20K [115], object detection on the COCO
dataset [61], and video recognition on Kinetics-400 [45],
can be found in Appendix.

4.4. Visual Recognition

We show DependencyViT can work as a visual back-
bone for recognition and its downstream tasks. Two
different model configurations, i.e., DependencyViT and
DependencyViT-Lite, are evaluated and compared with
many counterparts. We make the following summaries
from Table 4. 1) DependencyViT outperforms all counter-
parts, e.g., 3.2% and 2.3% improvements over DeiT-Tiny
and DeiT-small, respectively, indicating dependency pars-
ing is likely to contribute to visual recognition tasks. 2)
DependencyViT-Lite is the most efficient one (0.8 GFLOPs
only) of all models and shows good performance, demon-
strating the effectiveness of our progressively dynamic
pooling. Typically, hierarchical transformers are more ef-
ficient and save computations for downstream tasks. Our
Dependency ViT-Lite reduces costs through induced depen-
dencies even using a standard ViT layout. 3) Dynam-
icViT [70] is a pruning-based transformer for the classifi-
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Figure 6. Visualizations of dependency trees parsed by self-supervised DependencyViT (small). Different colors represent different
subtrees. Here we ignore the nodes in the small region (less important) and display the main subtrees.

Table 3. Comparisons of image classification on ImageNet-1K. All models (tiny) are trained Figure 7. Ablative comparsions (tiny) of

and evaluated with 224 x 224 resolution.

saliency detection on ECSSD dataset.

L Head Message #Params FLOPs Top-1 60 — Dei
Model Direction g 1ector Controller (M) G (%) 55— g‘ifz (weakly-sup.)
Baseline (DeiT) [85] forward X X 5.7 13 733 — Ouns(ecltup)
Forward + P forward Vv X 5.7 1.3 734 % 507
Forward + M forward X Vv 6.1 1.3 7438 i:;
Forward + P + M forward |/ v 6.2 13 748 2 4
Reverse + P reverse v X 5.7 1.3 736 401
Reverse + M reverse X Vv 6.1 1.3 749
Reverse + P + M (DependencyViT) | reverse v v 6.2 1.3 754 354
Dependency ViT-Lite (forward) forward Vv Vv 6.2 08 71.1 : : :
Dependency ViT-Lite (reverse) reverse v Vv 6.2 08 737 re p‘fese“m‘o“), depe“de“c‘ib'\\aﬁ"“‘ sokver

cation task. However, it can not perform dense predictions
because the information of its pruned patches is lost. On
the contrary, the pruned nodes in our Dependency ViT-Lite
can be retrieved from their parents for dense predictions,
showing the importance of dependency induction.

4.5. Ablation Study

We perform ablation studies on tiny models in Table 3. P
denotes the head selector, and M denotes the message con-
troller. We use ‘forward’ and ‘backward’ to indicate the
attention direction. We can see that the head selector brings
smaller gains than the message controller. And the gains in
reverse attention are larger than gains in forward attention.
Both the head selector and the message controller are im-
portant to dependency induction and the dynamic pooling
scheme, i.e., Dependency ViT-Lite.

More ablation studies and downstream experiments can
be found in Appendix.

5. Conclusion

This paper studies patch-level visual dependency pars-
ing using our proposed DependencyViT. We show that the
reversed self-attention mechanism in transformers can nat-
urally capture long-range visual dependencies between im-
age patches. With reversed self-attention, a child node is
trained to attend to its parent and send the information to
the parent node, and a hierarchical dependency tree can
be established automatically. Furthermore, dynamically
image pooling is made possible by learned dependencies,
i.e., merging child nodes into their corresponding parent
nodes, based on which we propose a lightweight model
DependencyViT-Lite. Extensive experiments on both self-
and weakly-supervised pretraining on ImageNet, as well as
five downstream tasks, show the model’s effectiveness.
Limitations. Although our work achieves good perfor-
mance on many tasks by visual dependency induction, it is
an initial study with a fixed patch size and efficient settings



The current patch size limits its performance on small ob-

jects.

We will explore more and further scale up our model.

The proposed approach has no ethical or societal issues on
its own, except those inherited from computer vision.
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Appendix

Overview

In this appendix, we supplement the main paper by pro-
viding more thorough evaluations and empirical analyses to
back up our claims. We also include more detailed descrip-
tions of our experiments to help readers better understand
our paper.

This appendix is organized as follows.

¢ In Section A, we give the notations used in this work.

¢ In Section B, we benchmark our models on two dense
prediction downstream tasks.

e In Section C, we introduce detailed analysis to our
model, including the relationship to pruning-based
transformers, the comparison between reversed atten-
tion and forward attention, possible applications on
video recognition, and some ablation studies.

¢ In Section D, we detail the training configurations and
implementation details for each downstream task.

A. Notations

We provide the notations shown in Table 5 for this work.

B. Downstream Tasks

We benchmark our models on two dense prediction
downstream tasks. All the model training follows common
practices and protocols, as in [85,92].

Semantic segmentation. In Table 6, we show the perfor-
mance of our models on ADE20K [115] against several
powerful counterparts. Considering DeiT [85] is the base-
line that can be apple-to-apple comparable to us, we pre-
train DeiT and our models on ImageNet-1K and produce
the results of them under the same setting. We can see that:
our DependencyViT consistently outperforms its counter-
parts including Swin [63]; and even DependencyViT-Lite
surpasses the baseline PVT [92] by a large margin. No-
tably, the backbone model for DependencyViT-Lite only
costs 1/3 computations (see the numbers in parentheses of
the table) of our DependencyViT, showing its efficiency.
Object detection and instance segmentation. We bench-
mark our models on object detection with COCO 2017 [61]
based on Mask R-CNN [35]. Table 7 show the detection
and instance segmentation results. The results of DeiT and
our models are implemented by us under the same set-
ting. We observe substantial gains across all settings and
metrics compared with several CNN and transformer base-
lines. Surprisingly, the backbone FLOPs consumption of
Dependency ViT-Lite-T is 3.5 GFLOPs, costing only 1.5%
of the entire network.

C. Analysis

In this section, we introduce detailed analysis to our
model.

C.1. Relation to Pruning-based Methods

Our work is related to dynamic-merged [99, ] or
pruning-based [9, 48, 70, ] vision transformers. For ex-
ample, DynamicViT [70] is a pruning-based transformer
by optimizing a learnable weight for each token through
Gumbel-Softmax.

However, the above methods mainly focus on the image
classification tasks. They can not perform dense predictions
because the information of their pruned patches is lost. On
the contrary, pruning in a tree structure preserves the infor-
mation lost by explicitly learned structures. As shown in the
main paper, the pruned nodes in our Dependency ViT-Lite
can be retrieved from their parents for dense predictions,
showing the importance of dependency induction.

C.2. Reversed attention vs. Forward one

Though forward attention well models the information
interaction between patches, it mainly focuses on the task-
specific region rather than the entire image, e.g., the fore-
ground region for the image classification task. This is be-
cause forward self-attention works through “gathering in-
formation”, thus the information in the background region
that does not contribute to the recognition task is to a large
extent suppressed and not gathered. The observation is evi-
denced by many previous works.

However, for our reversed self-attention, all the patches
are get attended, e.g., a subtree will be generated for the
background area. The background information is kept be-
cause we do not prune any parent nodes. We then use the
message controller to filter the useless information out for
the final image recognition. Therefore, reversed attention
has better generalization when extended to dense prediction
tasks such as semantic segmentation, which is empirically
validated by our experiments.

C.3. Pruning ratio

We also show Dependency ViT-Lite with different prun-
ing ratios by keeping the remaining token number as 32, 64,
and 128. The results are shown in Table 8. We can see that
when we keep 128 tokens, the performance drop is minor
relative to the full DependencyViT. The performance gap
could be larger when more tokens are pruned.

C.4. Dynamic Pruning on Video Recognition

We evaluate the models on the validation sets of
Kinetics-400 (K400). Kinetics-400 consists of 240K train-
ing videos and 20K validation videos that span 400 hu-
man action categories. The results can be found in Table 9.



Table 5. Notations and their corresponding representations for Dependency ViT.

Notation Representation Notation Representation
X Input Ar Forward Attention Map
Head Selector Agr ReverseAttention Map
M Message Controller N number of patches
Q Query H number of heads
K Key c token dims
v Value Ch token dims per head
W Projections

Table 6. Comparison with SOTA methods for semantic segmentation on ADE20K [
measured by 512 x 2048. Considering the segmentation head UperNet [

] val set. Single-scale evaluation is used. FLOPs are
] is heavy, while the network backbone occupies only a small

part of the computation, we mark the GFLOPs of the backbone of our works in parentheses.

Backbone Method #Params (M) FLOPs (G) mloU (%)
ResNet18 SemanticFPN [59] 15.5 128.8 32.9
PVT-Tiny [92] SemanticFPN [59] 17.0 132.8 35.7
DeiT-Tiny [85] UperNet [103] 10.7 142.8 37.8
Dependency ViT-Lite-T UperNet [103] 11.1 130.2 (7.8) 36.1
DependencyViT-T UperNet [103] 11.1 145.1 (22.7) 40.3
ResNet50 SemanticFPN [59] 28.5 729.6 36.7
PVT-Small [92] SemanticFPN [59] 28.2 712.0 39.8
DeiT-Small [85] UperNet [103] 41.3 566.8 43.0
Swin-Tiny [63] UperNet [103] 60.0 945.0 44.5
Dependency ViT-Lite-S UperNet [103] 43.1 515.2 (29.6) 41.2
DependencyViT-S UperNet [103] 43.1 574.4 (88.8) 45.7

Note that to use the pretrained model provided by Times-
Former [6], we only apply our dynamic pooling scheme on
TimesFormer without the message controller. We perform
dynamic pruning in the 24, 54, 841, 114, layers, with 20%
tokens pruned each time on both the temporal and spatial di-
mension. We can see under three different settings, the lite
models still maintain a good performance while the FLOPs
are reduced to 25%.

As shown in Figure 8, we show Dependency ViT-Lite can
learn the temporal dependency from videos. The sampled 8
frames are parsed into three subtrees (in gray boxes). And
we use black lines to show the dependencies between two
subtrees. We see that the root subtree contains keyframes
and the root frame is the most informative frame.

C.5. Related Work in NLPs

Unsupervised dependency parsing is also a long-
standing task in NLP. This task aims to induce dependency
trees from raw corpora that do not have human-annotated
tree structures. Traditional dependency grammar induction
methods [2, 33, 81] are based on Dependency Model with
Valence (DMV) [47]. DMV-based methods induce depen-
dency from the statistical relation between tokens and their
Part-of-Speech Tagging. Despite being very successful in

Figure 8. We show DependencyViT-Lite can learn the temporal
dependency from videos. The sampled 8 frames are parsed into
three subtrees (in gray boxes). And we use black lines to show
the dependencies between two subtrees. We see that the root sub-
tree contains keyframes and the root frame is the most informative
frame. A few frames are enough for video recognition.



Table 7. COCO object detection and segmentation results with Mask R-CNN [36]. All models are trained with 1x schedule and multi-scale
inputs. FLOPs are measured by 800 x 640. The GFLOPs of the backbone of our Dependency ViT and Dependency ViT-Lite are marked in
parentheses. The first three metrics are for object detection, while the last three for instance segmentation.

Backbone #Params FLOPs Mask R-CNN 1x
M) (G) AP® APb, APE, AP™ APl AP
ResNet18 [36] 31.2 190.0 340 540 367 312 510 327
PVT-Tiny [92] 32.9 195.0 36.7 592 393 351 56.7 373
Deit-Tiny [85] 27.3 244.6 306 468 328 274 447 289
Dependency ViT-Lite-T 27.8 238.1(3.5) | 352 588 38.6 34.1 562  36.1
Dependency ViT-T 27.8 245.6 (11.0) | 37.8 62.1 41.4 36.0 59.3 38.6
ResNet50 [36] 442 260.0 380 586 414 344 551 36.7
PVT-Small [92] 44.1 245.0 404 629 438 378  60.1 40.3
Deit-Small [85] 44.9 276.2 369 551 397 327 523 34.5
DependencyViT-Lite-S | 46.85 2499 (13.2) | 38.1 625 418 362 594 384
Dependency ViT-S 46.85 280.0(433)| 424 665 464 385 62.7 419
Table 8. Comparison of image classification on ImageNet-1K when different number of tokens are pruned.
Model kept tokens #Params (M) FLOPs (G) Top-1 (%)
Dependency ViT-Lite-32 32 6.2 0.6 72.4
Dependency ViT-Lite-64 64 6.2 0.8 73.7
Dependency ViT-Lite-128 128 6.2 1.0 74.9
DependencyViT 196 6.2 1.3 75.4

the natural language domain, similar methods can not be
directly applied to visual dependency induction due to two
reasons: 1) DMV-based methods require discrete tokens
as input, whereas visual inputs are continuous values; 2)
they also heavily rely on the sequential order of input to-
kens, whereas visual inputs have at least two dimensions.
In recent years, researchers proposed several transformer-
based unsupervised dependency parsing methods, including
Structformer [76] and UDGN [75]. However, unsupervised
vision dependency parsing using transformers is still very
challenging because images are composed of pixels that
contain no significant semantic or syntactic meaning. In
contrast, natural language is composed of words expressing
abstract concepts and belonging to specific syntactic roles.
To overcome the challenge, DependencyViT adapts a pro-
gressive parsing schema that gradually composes low-level
representations to high-level representations and makes pro-
gressive parsing decisions alongside the level of abstract-
ness.

D. Training Details
D.1. Details of Model Configuration

In this work, we simply follow the design strategy sug-
gested by the standard ViT (DeiT) [26, 85]. The non-
overlapping patch embedding layer is implemented by
stride convolution. The convolutional kernel and stride
value are 16 and 16, respectively. We stack our dependency

blocks with the resolution and feature dimension kept the
same. We set the number of attention heads = 12 and
the number of dependency blocks L = 12 for all models.
We set token dimensions C' = 192 for the tiny model and
C' = 384 for the small model. In the head selector, we intro-
duce a temperature hyper-parameter for the softmax func-
tion, which is set to 0.1 for all models.

For DependencyViT-Lite, similar to current hierarchical
models that divide the entire architecture into four stages,
we perform dynamic pruning in the 244, 5;1, 8¢5, 114, lay-
ers with a token kept number as 160, 128, 96, and 64, re-
spectively. For dense prediction tasks, the tree architecture
is still maintained by recording relationships (probability
distributions) between the pruned nodes and their parents
to form a complete tree. After the end of the network, we
retrieve those pruned nodes by a soft aggregation from their
parents, preserving the model capability and generating a
dense representation. As a result, the proposed architecture
can conveniently replace the backbone networks in existing
methods for various vision tasks.

D.2. Image Classification on ImageNet

The ILSVRC 2012 classification dataset (ImageNet-
1K) [20] consists of 1,000 classes, with a number of 1.2
million training images and 50,000 validation images.

We compare different methods on ImageNet-1K [20].
We implement our DependencyViT on the timm frame-
work [96]. Following [24,60,63,97, ], we use the same



Table 9. Video-level accuracy on the Kinetics-400 validation set.

Method Top-1 (%)  Top-5(%) FLOPs(G) Frames Resolution
TimeSformer 76.9 92.7 0.20 8 224
TimeSformer-Lite 70.6 89.3 0.08 8 224
TimeSformer-HR 78.1 93.3 1.70 16 448
TimeSformer-HR-Lite 73.1 90.4 0.67 16 448
TimeSformer-L 79.8 94.1 2.38 96 224
TimeSformer-L-Lite 74.1 91.3 0.61 96 224

set of data augmentation and regularization strategies used
in [85] after excluding repeated augmentation [5, 40] and
exponential moving average (EMA) [69]. We train all the
models for 300 epochs with a batch size 2048 and use
AdamW [65] as the optimizer. The weight decay is set
to 0.05 and the maximal gradient norm is clipped to 1.0.
We use a simple triangular learning rate schedule [80] as in
[86]. The stochastic depth drop rates are set to 0.1 and 0.2
for our tiny and small models, respectively. During training,
we crop images randomly to 224 x 224, while a center crop
is used during evaluation on the validation set. For fair com-
parisons, neither token labeling [44] nor distillation [85] is
used in all experiments.

D.3. Object Detection on COCO

The COCO dataset [61] contains over 200,000 images
labeled with object detection bounding boxes and instance
segmenation masks. We evaluate our approach on the
val2017, containing 5000 images.

We benchmark our models on object detection with
COCO 2017 [61]. The pre-trained models are used as vi-
sual backbones and then plugged into two representative
pipelines, RetinaNet [60] and Mask R-CNN [35]. All mod-
els are trained on the 118k training images and results re-
ported on the 5K validation set. We follow the standard to
use two training schedules, 1x schedule with 12 epochs and
3% schedule with 36 epochs. The same multi-scale training
strategy as in [63] by randomly resizing the shorter side of
the image to the range of [480, 800] is used. During train-
ing, we use AdamW [65] for optimization with initial learn-
ing rate 10~ and weight decay 0.05. We use 0.1 and 0.2
stochastic depth drop rates to regularize the training for our
tiny and small models, respectively.

D.4. Semantic Segmentation on ADE20k

Besides the instance segmentation results above, we fur-
ther evaluate our model on semantic segmentation, a task
that usually requires high-resolution input and long-range
interactions. ADE20K [115] is a scene-centric containing
20 thousands images annotated with 150 object categories.

We benchmark our method on ADE20K [115]. Specif-
ically, we use UperNet [103] as the segmentation method

and our DependencyViT as the backbone. For all mod-
els, we use a standard recipe by setting the input size to
512 x 512 and train the model for 160k iterations with batch
size 16.
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