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Abstract

Weakly-supervised temporal action localization (WTAL)
learns to detect and classify action instances with only cat-
egory labels. Most methods widely adopt the off-the-shelf
Classification-Based Pre-training (CBP) to generate video
features for action localization. However, the different opti-
mization objectives between classification and localization,
make temporally localized results suffer from the serious in-
complete issue. To tackle this issue without additional anno-
tations, this paper considers to distill free action knowledge
from Vision-Language Pre-training (VLP), since we sur-
prisingly observe that the localization results of vanilla VLP
have an over-complete issue, which is just complementary
to the CBP results. To fuse such complementarity, we pro-
pose a novel distillation-collaboration framework with two
branches acting as CBP and VLP respectively. The frame-
work is optimized through a dual-branch alternate train-
ing strategy. Specifically, during the B step, we distill the
confident background pseudo-labels from the CBP branch;
while during the F step, the confident foreground pseudo-
labels are distilled from the VLP branch. And as a result,
the dual-branch complementarity is effectively fused to pro-
mote a strong alliance. Extensive experiments and ablation
studies on THUMOS14 and ActivityNetl.2 reveal that our
method significantly outperforms state-of-the-art methods.

1. Introduction

Temporal action localization (TAL), which aims to lo-
calize and classify action instances from untrimmed long
videos, has been recognized as an indispensable component
of video understanding [ 1 1,66,85]. To avoid laborious tem-
poral boundary annotations, the weakly-supervised setting
(WTAL) [27,56,58,72], i.e. only video-level category la-
bels are available, has gained increasing attentions.

To date in the literature, almost all WTAL methods rely
on Classification-Based Pre-training (CBP) for video fea-
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Figure 1. (A) Complementarity. Most works use Classification-
Based Pre-training (CBP) for localization, causing high TN yet
serious FN. Vanilla Vision-Language Pre-training (VLP) confuses
action and background, leading to high TP yet serious FP. (B) Our
distillation-collaboration framework distills foreground from
the VLP branch while background from the CBP branch, and pro-
motes mutual collaboration, bringing satisfactory results.

ture extraction [3,67]. A popular pipeline is to train an ac-
tion classifier with CBP features, then threshold the frame-
level classification probabilities for final localization re-
sults. As demonstrated in Figure 1 (A), these CBP meth-
ods suffer from the serious incompleteness issue, i.e. only
detecting sparse discriminative action frames and incurring
high false negatives. The main reason is that the optimiza-
tion objective of classification pre-training, is to find sev-
eral discriminative frames for action recognition, which is
far from the objective of complete localization. As a re-
sult, features from CBP are inevitably biased towards par-
tial discriminative frames. To solve the incompleteness is-
sue, many efforts [29, 39, 50, 89] have been attempted, but
most of them are trapped in a ‘performance-cost dilemma’,
namely, solely digging from barren category labels to keep
costs low. Lacking location labels fundamentally limits the
performance, leaving a huge gap from strong supervision.

To jump out of the dilemma, this paper raises one novel



question: is there free action knowledge available, to help
complete detection results while maintain cheap annotation
overhead at the same time? We naturally turn our sights to
the prevalent Vision-Language Pre-training (VLP) [20, 60].
VLP has demonstrated great success to learn joint visual-
textual representations from large-scale web data. As lan-
guage covers rich information about objects, human-object
interactions, and object-object relationships, these learned
representations could provide powerful human-object co-
occurrence priors: valuable gifts for action localization.

We here take one step towards positively answering the
question, i.e. fill the research gap of distilling action priors
from VLP, namely CLIP [60], to solve the incomplete issue
for WTAL. As illustrated in Figure 1 (A), we first naively
evaluate the temporal localization performance of VLP by
frame-wise classification. But the results are far from satis-
factory, suffering from the serious over-complete issue, i.e.
confusing multiple action instances into a whole, causing
high false positives. We conjecture the main reasons are:
(1) due to data and computational burden, almost all VLPs
are trained using image-text pairs. Hence, VLP lacks suffi-
cient temporal knowledge and relies more on human-object
co-occurrence for localization, making it struggle to distin-
guish the actions with visually similar background contexts;
(2) some background contexts have similar (confusing) tex-
tual semantics to actions, such as run-up vs. running.

Although simply steering VLP for WTAL is infeasible,
we fortunately observe the complementary property be-
tween CBP and VLP paradigms: the former localizes high
true negatives but serious false negatives, while the latter
has high true positives but serious false positives. To lever-
age the complementarity, as shown in Figure | (B), we de-
sign a novel distillation-collaboration framework that uses
two branches to play the roles of CBP and VLP, respec-
tively. The design rationale is to distill background knowl-
edge from the CBP branch, while foreground knowledge
from the VLP branch, for strong alliances. Specifically, we
first warm up the CBP branch using only category super-
vision to initialize confident background frames, and then
optimize the framework via an alternating strategy. Dur-
ing B step, we distill background pseudo-labels for the VLP
branch to solve the over-complete issue, hence obtaining
high-quality foreground pseudo-labels. During F step, we
leverage high-quality pseudo-labels for the CBP branch to
tackle the incomplete issue. Besides, in each step, we intro-
duce both confident knowledge distillation and representa-
tion contrastive learning for pseudo-label denoising, effec-
tively fusing complementarity for better results.

On two standard benchmarks: THUMOS14 and Activi-
tyNetl.2, our method improves the average performance by
3.5% and 2.7% over state-of-the-art methods. We also con-
duct extensive ablation studies to reveal the effectiveness of
each component, both quantitatively and qualitatively.

To sum up, our contributions lie in three folds:

e We pioneer the first exploration in distilling free action
knowledge from off-the-shelf VLP to facilitate WTAL,;

e We design a novel distillation-collaboration framework
that encourages the CBP branch and VLP branch to comple-
ment each other, by an alternating optimization strategy;

e We conduct extensive experiments and ablation studies
to reveal the significance of distilling VLP and our superior
performance on two public benchmarks.

2. Related Work

Vision-Language Pre-training (VLP) aims to learn cross-
modal representations [8,51,76] from large-scale web data.
Comparing to video, image requires fewer costs for anno-
tation and computation, hence almost all VLPs are image-
based, e.g. [1,20, 060,74, 84,86]. Recently, several studies
adopted VLP to provide free visual-semantic knowledge for
downstream image tasks, such as detection [14, 87], seg-
mentation [61, 95], human-object interaction [25, 32], syn-
thesis [42], and generation [7,70,71]. In terms of the video
domain, [38, 46, 73] equipped VLP with temporal trans-
formers for action recognition. [21, 53] introduced prompt
learning for efficient retrieval or detection. However, these
studies focus more on open-vocabulary scenarios or short
video understanding. On the contrary, this paper makes the
first exploration to steer VLP for long video temporal local-
ization, under the weakly-supervised setting.

Strongly-supervised Temporal Action Localization has
achieved great progress [34,41,59,88], given precise action
boundaries and categories. There are two popular pipelines:
the top-down framework [4, 12,36,63,65,69,75,77,78,96]
pre-defines massive anchors based on the action distribu-
tion prior, and uses fixed-length sliding windows to gener-
ate initial proposals, then regresses to refine boundaries; the
bottom-up framework [2, 6,33, 35,37,52,68,78,80,92,93]
trains frame-wise boundary detectors for extreme frames
(start, end, center), then groups extreme frames or estimates
action lengths to produce proposals. In addition, some pa-
pers [9, 44, 81] proposed various fusion strategies to com-
plement these frameworks. Several studies [40, 88] are de-
voted to better post-processing. Nevertheless, all the above
methods demand precise boundary annotations, which are
time-consuming and expensive in reality.

Weakly-supervised Temporal Action Localization signif-
icantly alleviates annotation costs, training with only cate-
gory labels. The pivotal component is CAS [19, 56,58, 72]
obtained from Classification-Based Pre-training (CBP). But
due to the gap of classification and localization, CBP suf-
fers from the serious incomplete issue: only detect discrim-
inative action fragments or even background. To solve this
issue, [23, 50, 94] introduced the erasing strategy. [39, 47,

] produced multiple CAS in parallel for complementar-
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Figure 2. Distillation-Collaboration Framework. It covers two parallel branches, named CBP and VLP, and is optimized by an alternating
strategy. We warm up the CBP branch in advance. In B step, we freeze both CLIP encoders, and distill confident background pseudo-labels
from the CBP branch, to train prompt vectors and temporal Transformer in the VLP branch. In F step, confident foreground pseudo-labels
are distilled for the CBP branch. We utilize both knowledge distillation loss and contrastive loss during dual-branch collaboration.

ity. [28,29,57,62] proposed background modeling and con-
text separation. [10, 15, 17,90] enhanced features by intra-
and inter-video modeling. To iteratively refine results, some
recent papers [48, 82, 89] introduced the self-training strat-
egy, [45,64] adopted outer-inner contrastive learning. While
encouraging, most of them are trapped in the ‘performance-
cost dilemma’, i.e. solely digging from barren category la-
bels to keep costs low. But the lack of annotations leads to
a huge performance gap between strong and weak supervi-
sions. To this end, [22,24,26,49,55,79] explored the idea
of adding instance-number or single-frame annotations for
further improvements. As a fresh departure from existing
work, to pursue better performance without additional an-
notation costs, this paper intends to distill free action knowl-
edge from off-the-shelf VLPs, to assist WTAL.

3. Method

3.1. Notations and Preliminaries

Task Formulation. Given N untrimmed videos {vi}ij\il,

and their video-level category labels {y; € RE}Y;, where
C means the total number of action categories, WTAL in-
tends to detect and classify all action instances, in terms of
a set of quadruples {(s, e, c,p)}, where s, e, ¢, p represent
the start time, the end time, the action category and detec-
tion score of the action proposal, respectively. Note that
each video may contain multiple action instances.

Motivation. There exists significant complementarity be-
tween the localization results of Classification-Based Pre-

training and Vision-Language Pre-training, as concluded in
Table 3. The former suffers from incomplete results (serious
false negatives), but has good true negatives; the latter suf-
fers from over-complete results (serious false positives), but
has good true positives. Such investigations motivate us to
collaborate the complementary results for strong alliances,
through a distillation-collaboration framework.

Framework Overview. As demonstrated in Figure 2, the
distillation-collaboration framework consists of two parallel
branches, named CBP branch and VLP branch respectively,
and is optimized by an alternating strategy. The CBP branch
is first warmed-up to produce rich background information
with only classification supervision. During B step, we dis-
till confident background pseudo-labels from CBP branch,
for VLP branch to tackle the over-complete issue, and thus
localize high-quality foreground and background informa-
tion. During F step, we distill superior pseudo-labels from
the well-trained VLP branch, for CBP branch to tackle the
incomplete issue. Through such dual-branch collaboration,
we effectively fuse the complementary results.

3.2. Foreground and Background Distillation

The CBP Branch is utilized to identify a large number of
background frames as well as several discriminative action
frames, by exploiting Classification-Based Pre-training.
Following literature [29, 39], we adopt CB pre-training,
i.e. the I3D architecture pre-trained on Kinetics [3], to ex-
tract RGB and Flow features, and then concatenate them
to form the two-stream features Fisq € RT*2P, where T



and D refer to the temporal length and feature dimension.
Next, feeding with F3q, the CBP branch uses the backbone
network for feature fine-tuning and localization, and finally
outputs the frame-level action probabilities P> € RT*C.

To achieve action classification, we adopt multiple in-
stance learning, i.e. for the output PP from the backbone
network, we aggregate (pool) the top-k frames’ scores as
video-level category scores y € R, then supervise it via
the binary cross-entropy loss, which is formulated as:

c
I ;
Las =) ~yelogBe. Te=0(; D KPP), (1)

c=1

where KC denotes the top-k score set in the temporal domain,
and o refers to the softmax function.

Remark. Under CB Pre-training and category-only supervi-
sion, PP is well known for focusing on sparse discrimina-
tive action frames, i.e. high true negatives but serious false
negatives, thus can provide rich background information.

The VLP Branch is designed to mine free action knowl-
edge from VL Pre-training, e.g. CLIP [60]. Since image-
text pre-training lacks sufficient temporal priors, its vanilla
localization results have a serious over-complete issue, i.e.
high false positives. To tackle this issue, we propose to fine-
tune CLIP using extensive background samples.

Instead of linear probing, we use efficient prompt learn-
ing [21,30] for fine-tuning: we freeze the CLIP backbone,
only optimize several prompt vectors and temporal layers.

Concretely, for the visual stream, we first split the video
into consecutive frames, and then utilize the CLIP image
encoder to extract frame-level features F.;s € RT*P. For
temporal relationship construction, we strengthen F;5 into
F.iqa € RT*P through simple temporal transformer layers
Diemp(). While for the textual stream, we first prepend
and append several learnable prompt vectors ®p.mp(-) to
category names, then feed them into the CLIP text encoder,
to obtain textual features Fiy, € RE*D, Formally,

Fvid — q)temp(Fvis)v tht = (I>txt((bprmp(cname))a (2)

where Cpame refers to action category names, and Py (+)
is the CLIP textual encoder. Thereafter, the frame-level lo-
calization results P! for this branch can be calculated as:

PV = o(Fyq-Fl,) € RT*C, 3)

Remark. For the VLP branch, we only optimize lightweight
model parameters for false-positive suppression, naturally
bringing two main benefits: (1) the frozen CLIP backbone
preserves the action prior knowledge in pre-training, thus
maintaining high true-positive results; (2) it matches the
demand for less supervision data under weakly-supervised
settings, and also saves the memory footprint.

Confident Pseudo-labels. Since both P¥! and P°" con-
tain somewhat noise, to make reliable use of complemen-
tary information, we distill confident location pseudo-labels
of foreground and background respectively. That is, for the
CBP branch, we distill extensive background pseudo-labels
from the output P<b: while for the VLP branch, we distill
sufficient foreground pseudo-labels from the output P!,
For both branches, we leverage double thresholds d;, and
8; (8, > &;), to convert localization results P into fernary
pseudo-labels H € R7*C, which are formally written as:

1 if p; >, and p. = y.

0 1f pt<5l or pc#yc (4)
-1 otherwise

ht,c =

where the subscripts c and ¢ refer to the indices of category
and frame. More specifically, for either branch, we regard
frames with scores more than ¢;, and the correct action cat-
egory as the foreground; while frames with scores less than
0; or with the wrong action category are treated as the back-
ground; the remaining frames are considered uncertain. As
a result, the pseudo-labels H" cover vast confident back-
ground frames, as well as trivial foreground frames; while
the pseudo-labels H"! contain dense confident foreground
frames, and partial background frames. Note that, for both
branches, we generate positive and negative frames to avoid
trivial solutions, and facilitate contrastive learning for fea-
ture enhancement, as detailed in the following section.

3.3. Dual-Branch Collaborative Optimization

In this section, we encourage two branches to collabo-
rate with each other, such that forming a strong alliance of
their complementary localization results. To reduce serious
noises in pseudo-labels, we introduce an alternate training
strategy for dual-branch collaborative optimization.

The design rationale is to distill Background knowledge
from the CBP branch for B step, while distill Foreground
knowledge from the VLP branch in F step. To be specific,
we warm up the CBP branch in advance, using only cate-
gory supervision, to initialize reliable background frames.
During B Step, we freeze the well-trained CBP branch, and
then generate confident background pseudo-labels H® to
supervise the VLP branch. As a result, these false-positive
confusions from vanilla CLIP pre-training are greatly tack-
led, and the resultant pseudo-labels contain a large num-
ber of confident foreground frames and background frames.
During F Step, the high-quality pseudo-labels H"! are dis-
tilled from the frozen VLP branch, to guide the CBP branch
for the false-negative suppression. Under such an alternat-
ing strategy, these two branches not only complement each
other, but also correct each other, thus jointly contributing
to more precise and complete action localization.

During each step, to supervise either branch, we adopt
both the knowledge distillation loss L4 and foreground-



background contrastive loss Ly,. The total optimization loss
can be written with a balancing ratio )\, as follows:

ﬁall = Ekd(H/aP) + )\Efb(\I’Jrv\IJi)' (5)

Here, Lyq regularizes one branch to output similar detec-
tion results with pseudo-labels from the other branch. Given
that there exist some noises in pseudo-labels, i.e. uncertain
frames, we only make supervision on confident frames.

C

o)
LaE,P) = S5 Dl llpe), ©)
c=1t=1
where Dkr,(p(x) || ¢(z)) refers to the Kullback-Leibler di-
vergence of distribution p(x) from distribution ¢(zx), O is
the total number of confident frames, and H’ denotes the
pseudo-labels from the other branch. Note that, the pseudo-
labels contain two types of confident frames: foreground
and background, which could help to avoid falling into the

trivial solutions under one single type of labels.

Moreover, in untrimmed long videos, some background
contexts could appear visually similar with the action (fore-
ground). We further introduce contrastive learning to pull
foreground features and push background features. Specif-
ically, we treat confident foreground frames from the same
action category as the positive set U+, while all confident
background frames as the negative set ¥ —, then foreground-
background contrastive loss is formulated as:

> mewt exp(fi - £ /7)
>jewexp(fi-£5/7) 7

where f € RP refers to the frame feature, 7 means the tem-
perature hyper-parameter for scaling, and * means the union
of W;" and W . Take the VLP branch as an example, suf-
ficient background pseudo-labels contain considerable hard
negative samples, to help distinguish features of foreground
and contexts. In addition, the enhanced features of uncer-
tain frames also become more discriminative, further facili-
tating more complete temporal action localization.

Lan(WF,07) =3 ~log

%

)

Discussion. Comparing to various fusion strategies, our al-
ternating strategy produces more precise and complete re-
sults (see Table 4 for details). This strategy plays a simi-
lar role as the multi-view co-training, where CBP and VLP
branches can be deemed as two distinctive views, thus being
quite robust to pseudo-label noises. For B step, we prompt
the VLP branch for high-quality pseudo-labels, where some
frames with conflicting predictions are still treated as uncer-
tain. In F step, we use feature contrastive loss to make their
results more discriminative, i.e. further denoising.

3.4. Inference

At testing time, we leverage the results from the CBP
branch for post-processing, as vision-language pre-training

cannot handle Optical Flow, which is essential for WTAL.
Given an input video, we first obtain video-level category
probabilities and frame-level localization scores. For action
classification, we select the classes with probability greater
than 0;,; and for localization, we threshold detection scores
with 6;,., concatenate consecutive snippets as action pro-
posals, and eliminate redundant proposals with soft non-
maximum suppression (NMS). Each proposal is scored with
the detection maximum in the proposal interval.

4. Experiments
4.1. Implementation

Datasets. THUMOS14 owns 413 untrimmed videos from
20 categories, and each video contains an average of 15 in-
stances. As conventions, we train on 200 validation videos,
and evaluate on 213 testing videos. Despite its small scale,
this dataset is challenging, since video lengths vary widely
and actions occur frequently. ActivityNetl.2 covers 9682
videos of 100 categories, dividing into 4619 training videos,
2383 validation videos, and 2480 testing videos. Almost all
videos contain one single category, and action regions take
up more than half of the duration in most videos. We train
on the training set and evaluate on the validation set.

Metrics. To evaluate localization performance, we follow
the standard protocol to use mean Average Precision (mAP)
at different intersections over union (IoU) thresholds. Note
that a proposal is regarded as positive only if both the cate-
gory prediction is correct and IoU exceeds the set threshold.
To clearly evaluate the quality of pseudo-labels, we also re-
port mean Intersection over Union (mloU) averaged over
the foreground categories and the background category.

Details. To handle the large variety in video durations, we
randomly sample 7" consecutive snippets for each video. T’
is set to 1000 on THUMOS 14, and 400 on ActivityNetl.2.
We utilize the TV-L1 algorithm to extract optical flow from
RGB data. For the CBP branch, we use Transformer archi-
tectures (multi-head self-attention, layer norm, and MLPs)
as the backbone network. For the VLP branch, we use a 2-
layer temporal Transformer, prepend and append 16 prompt
vectors to textual inputs, both are initialized by A/(0,0.01).
Both CLIP image encoder and text encoder are adopted
from ViT-B/16. The framework is optimized by Adam with
the learning rate of 10~%. All hyper-parameters are set by
grid search: pseudo-label thresholds d;, = 0.3, §; = 0.1, in-
ference thresholds 6.5 = 0.85, 6;,. = 0.45, the balancing
ratio A = 0.05, the temperature 7 = 0.07.

4.2. Comparison with State-of-the-art Methods

Here, we make comprehensive comparisons with current
state-of-the-art methods across multiple IoU thresholds.
Performance. The comparisons on THUMOS 14 are pro-
vided in Table 1. Here, we separate two levels of supervi-



Supervision Method Feature mAP@IoU AVG AVG
0.1 0.2 0.3 0.4 0.5 0.6 0.7 (0.1-0.5)  (0.3-0.7)

DBS [13] 56.7 547 50.6 43.1 343 244 147 479 334

BUMR [92] - - 539 50.7 454 38.0 285 - 433

Strong GCM [88] 13D 725 709 66,5 60.8 519 - - 64.5 -

RCL [75] - - 70.1 623 529 4277 30.7 - 51.7

ActionFormer [91] - - 82.1 778 71.0 594 439 - 66.8

HAM-Net [19] 654 590 503 41.1 31.0 207 114 494 30.9

UM [29] 630 56,6 49.0 409 304 21.0 104 48.0 30.3

TS-PCA [43] 67.6 61.1 534 434 343 247 137 52.0 33.9

FTCL [10] 696 634 552 452 356 237 122 53.8 34.4

ACGNet [83] 3D 68.1 626 531 446 347 226 120 52.6 334

DCC [31] 69.0 638 559 459 357 243 137 54.1 35.1

ASM-Loc [15] 712 655 57.1 468 36.6 252 134 55.4 35.8

Weak CO2-Net [16] 70.1 63,6 545 457 383 264 134 54.4 35.7

RSKP [18] 713 653 558 475 382 254 125 55.6 359

DELU [5] 715 662 565 477 405 272 153 56.5 37.4

CO2-Nett 66.5 594 50.7 417 342 224 120 50.5 322

CO2-Nett 13D 688 620 51.7 422 354 223 117 51.9 32.7

DELUY} + 685 612 521 43.1 350 23.1 12.7 52.0 33.2

DELU} CLIP 705 645 552 457 385 257 138 54.9 35.8

Ours 735 688 615 538 420 294 16.8 60.0 40.8

Table 1. Comparison with state-of-the-art methods on THUMOS14. For fair comparisons, we reproduce the results of SOTA methods:

CO2-Net [

] and DELU [5], by inputting both I3D [3] and CLIP [

] features. T and I refer to averaging or concatenating these two

features. AVG(0.1-0.5) and AVG(0.3-0.7) are the average mAP from IoU 0.1 to 0.5 and from IoU 0.3 to 0.7. Our framework significantly
surpasses all weakly-supervised competitors using identical features, and is even comparable to early strongly-supervised methods.

mAP@IoU

Method Feature 03 075 095 AVG
CleanNet [45] 37.1 20.3 5.0 21.6
CMCS [39] 36.8 22.0 5.6 22.4
TSCN [89] 37.6 237 5.7 23.6
BasNet [27] 38.5 24.2 5.6 24.3
DGAM [62] 13D 41.0 235 5.3 24.4
UM [29] 412  25.6 6.0 25.9
ACGNet [83] 41.8 26.0 5.9 26.1
D2-Net [54] 42.3 25.5 5.8 26.0
CO2-Net [16] 433 26.3 5.2 26.4
DELU [5] 442  26.7 54 26.9
CO2-Netf 44.3 26.6 54 26.9
CO2-Nett 13D 44.7 26.9 5.8 274
DELUt + 449 269 5.6 27.2
DELU} CLIP 456 275 5.8 27.8
Ours 483 293 6.1 29.6

Table 2. Comparison with state-of-the-art methods on Activi-
tyNetl.2. For fair comparisons, we reproduce CO2-Net [16] and
DELU [5], by inputting I3D [3] and CLIP [60] features. t and §
refer to averaging or concatenating these features. AVG is the aver-
age mAP at the thresholds 0.5:0.05:0.95. Our method significantly
surpasses all competitors, especially at loose IoU thresholds.

sion: strong and weak, for better quantification. Generally
speaking, our framework achieves new state-of-the-art on

all IoU regimes. Comparing with recent methods, the gain
of the average mAP (0.3-0.7) even reaches 4-5%, further
narrowing the performance gap between weak and strong
supervisions. Moreover, our method achieves considerable
gains on strict and loose evaluations. For example, when
comparing to DELU [5], the gains are 3.5% average mAP
(0.1-0.5) and 3.4% average mAP (0.3-0.7), indicating that
our results are complete and precise. Furthermore, despite
being weakly-supervised settings, at several low IoU thresh-
olds, our framework even performs comparably with some
earlier strongly-supervised methods [12, 13,93].

Table 2 shows the comparison results on ActivityNet].2.
On all IoU thresholds, our designed framework surpasses
existing methods by a large margin. In terms of the average
mAP, the performance improvement can reach 2.7%, tak-
ing the state-of-the-art to a new level. However, due to the
lack of precise location annotations, the gain decreases as
the ToU threshold becomes stricter, e.g. 4.1% @IoU 0.5 vs.
0.7% @IoU 0.95, when comparing to DELU [5].

Source of Gain. Comparing to existing methods, we lever-
age Vision-Language Pre-training for free knowledge. To
make fair comparisons, we also input both I3D and CLIP
features into two SOTA methods [5, 1 6], by one early fusion
mode (average or concatenate these features). In general,
simply adding CLIP features gives only slight or even neg-
ative gains on both datasets, which is due to the bad over-



. THUMOS ActivityNet mAP@IoU AVG
Setting Fore  Back | Fore  Back Model | Lia Lo —5=—65 07 | 03-07)
CB Pre-traiming | 560 887 | 547 833 Al v 571 370 126 | 360
VL Pre-training | 75.6 341 | 721 450 A2 v 517 312 94 30.9
Ours 724 800 | 695 717 A3 Vv | 615 420 168 | 408

Table 3. Complementarity of pre-training. CB Pre-training has
good background mloU but inferior foreground mloU. VL Pre-
training has good foreground mloU but inferior background mloU.
Our method achieves both high foreground and background mloU.

Table 5. Contribution of optimization losses on THUMOS14.
The single knowledge distillation loss Lxq has brought gratify-
ing localization results, and the additional foreground-background
contrastive loss Ly, further boosts the performance to the best.

Fusion Strategy mAP@IoU AVG Method mAP@IoU AVG
0.3 0.5 0.7 (0.3-0.7) 0.3 0.5 0.7 (0.3-0.7)

Only F step (AVG) 40.0 16.1 33 19.1 UM [29] 49.0 30.4 104 30.3

Only F step (Weight) | 52.8  25.5 6.1 27.7 UM + Ours 53.9 34.7 13.6 34.3

Only B step (AVG) 56.7 336 113 34.1 CO2-Net [16] 54.5 38.3 134 35.7

Only B step (Weight) | 58.5  38.8 14.8 37.8 CO2-Net + Ours 56.2 39.7 15.9 37.5

Alternating 61.5 420 1638 40.8

Table 4. Comparison of optimization strategies. “Only F step™:
extract pseudo-labels from vanilla VLP to train the CBP branch.
“Only B step”: get pseudo-labels from the warm-up CBP branch
to train the VLP branch. We combine two branches by averaging
and weighting. Our alternating strategy shows clear superiority.

complete issue of CLIP (detailed in Table 3). For THUMOS
with complex and frequent actions, over-complete worsens
results. While in ActivityNet, most videos only contain one
action that takes up half of the video duration, thus bene-
fiting a bit from over-complete. Nevertheless, with identi-
cal features, our method significantly outperforms existing
competitors, proving the effectiveness of our framework.

4.3. Ablation Study and Comparison

Here, we evaluate the contributions of each component
and framework designs, to further dissect our framework.

Complementarity of pre-training. As the detection per-
formance is mainly determined by pseudo-labels, here we
show the quality of pseudo-labels, in terms of foreground
mloU and background mloU. Table 3 provides the compre-
hensive results for various settings on both benchmarks.
For common Classification-Based Pre-training, its local-
ization results suffer from the incomplete issue. In detail,
the background mloU is impressive, i.e. high true negatives,
while the foreground mloU is poor, i.e. serious false nega-
tives. The main reason is that features pre-trained on action
classification datasets only highlight sparse discriminative
frames. While the results of Vision-Language Pre-training
are just the opposite: suffering from the over-complete is-
sue. The foreground mloU is considerable, i.e. high true
positives, but the background mloU is terrible, i.e. serious
false positives. The main reason is that VLP using image-

Table 6. Framework generalization on THUMOS14. Our pro-
posed framework is generalized, i.e. existing methods can serve as
our CBP branch, to achieve further improvements.

text pairs lacks temporal priors. The above results strongly
prove the complementarity between these two pre-training.

Moreover, on both datasets, our method achieves high
foreground and background mloU, that is, more precise and
complete localization. This mainly benefits from extensive
background supervision provided by the CBP branch, and
extensive foreground supervision distilled from the VLP
branch. Besides, comparing to VL Pre-training, our results
achieve immediate gains on the background mloU, while
only slight drops on the foreground mlIoU. This reveals that
the lightweight trainable parameters, i.e. prompts + Trans-
former, indeed retain the action prior knowledge in VLP,
and also significantly suppress false-positive results.

Comparison of optimization strategy. To evaluate the ef-
ficacy of our alternating strategy, Table 4 makes comparison
with another two solutions. (1) ‘Only F step’: extract fore-
ground pseudo-labels from vanilla VLP to train the CBP
branch; (2) ‘Only B step’: distill background pseudo-labels
from the warm-up CBP branch to train the VLP branch. For
each solution, we combine the results from two branches via
averaging and weighting, respectively.

‘Only F step’ performs the worst, mainly suffering from
heavy noise in vanilla VLP pseudo-labels (over-complete).
By fine-tuning vanilla VLP with many background frames,
‘Only B step’ gets great improvements, but still lacks full
fusion of complementarity. Moreover, the weighted opera-
tion could suppress noise somewhat, and thus causes better
results than the average operation. By comparison, our al-
ternating strategy shows great advantages over competitors,
proving the non-trivial nature of fusing complementary in-
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Figure 3. Qualitative comparisons. The first two rows are videos and ground-truth action intervals. The last six rows are frame-level action
probabilities, and localization results of Classification-Based Pre-training (CBP), Vision-Language Pre-training (VLP), and our framework,
respectively. CBP suffers from the incomplete issue, while VLP has the over-complete issue. Our framework distills foreground knowledge
from VLP and background from CBP, for the strong collaborative alliance, thus bringing more complete and precise results.

formation, and robust denoising to pseudo-labels.

Contribution of various losses. To train our method, both
knowledge distillation loss L4 and foreground-background
contrastive loss Ly, are leveraged. In Table 5, we analyze
the effectiveness of optimization losses on THUMOS14.
The single L4 (model Al) already brings gratifying per-
formance. This reveals that the confident pseudo-labels of
foreground and background distilled from two branches, are
well fused by the alternate optimization. On the other hand,
with only Lg,, model A2 also performs barely satisfactory
results. This is because Ly, differentiates foreground fea-
tures and background features, thus eliminating extensive
uncertain frames, and also making the localization task eas-
ier. Overall, these two losses jointly contribute to the best
performance, indicating that both are essential.

Framework generalization. Our distillation-collaboration
framework is generalized, which means that existing WTAL
methods can be employed as the CBP branch. Table 6 takes
two typical methods: CO2-Net [16] and UM [29], as exam-
ples. Our framework further improves their performance by
up to 2-4% average mAP, showing a good generalization to
other methods and other backbone designs.

4.4. Qualitative Results

To intuitively demonstrate the superiority, Figure 3 visu-
alizes detection results from various types of videos.

In general, Classification-Based Pre-training highlights
only several discriminative action frames (the incomplete
issue), which is more prominent for videos covering low-
frequency actions. On the contrary, Vision-Language Pre-
training tends to over-activate the action foreground to the
background (the over-complete issue), which is especially

evident in videos with high-frequency actions. We design
the distillation-collaboration framework to fuse the comple-
mentarity from these two pre-training. In B step, extensive
confident background information is distilled from the well-
trained CBP branch, to supervise the VLP branch for false-
positive suppression. In F step, sufficient confident fore-
ground locations are distilled from the VLP branch, to guide
the CBP branch for false-negative elimination. Hence, our
method establishes the strong alliance by collaborative op-
timization. The detection results are more precise and more
complete, regardless of dense or sparse actions.

5. Conclusion

This work proposes the novel distillation-collaboration
framework to distill free knowledge from Vision-Language
Pre-training, for weakly-supervised temporal action local-
ization. Our core insight is that existing VLP often local-
izes over-complete actions, which is just complementary to
the incomplete results of conventional Classification-Based
Pre-training. And to form strong alliances, we optimize the
framework containing complementary dual branches by an
alternating strategy: distill confident background pseudo-
labels from the CBP branch, and the confident foreground
pseudo-labels from the VLP branch, for collaborative train-
ing. Extensive experiments show the significance of distill-
ing VLP and our superior performance. Thorough ablations
are studied both quantitatively and qualitatively.

6. Limitations and Future Work

For the CBP branch, we freeze the 13D architecture pre-
trained on Kinetics [3], to extract RGB and Flow features.



Such one frozen extractor could save computing resources,
but may somewhat limit the performance.

For the VLP branch, we leverage the CLIP [

], which is

pre-trained with 400M image-text pairs collected from web,
thus could potentially bias towards web data.

As the future work, we expect more computing resources
available, to further optimize our distillation-collaboration
framework into the end-to-end training setups, also render-
ing asynchronous online training.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In Advances in Neural
Information Processing Systems, 2022. 2

Yueran Bai, Yingying Wang, Yunhai Tong, Yang Yang,
Qiyue Liu, and Junhui Liu. Boundary content graph neu-
ral network for temporal action proposal generation. In Pro-
ceedings of the European Conference on Computer Vision,
2020. 2

Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017. 1, 3, 6, 8

Yu-Wei Chao, Sudheendra Vijayanarasimhan, Bryan Sey-
bold, David A Ross, Jia Deng, and Rahul Sukthankar. Re-
thinking the faster r-cnn architecture for temporal action lo-
calization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018. 2

Mengyuan Chen, Junyu Gao, Shicai Yang, and Changsheng
Xu. Dual-evidential learning for weakly-supervised tempo-
ral action localization. In Proceedings of the European Con-
ference on Computer Vision, 2022. 6

Feng Cheng and Gedas Bertasius. Tallformer: Temporal ac-
tion localization with long-memory transformer. In Proceed-
ings of the European Conference on Computer Vision, 2022.
2

Katherine Crowson, Stella Biderman, Daniel Kornis,
Dashiell Stander, Eric Hallahan, Louis Castricato, and Ed-
ward Raff. Vqgan-clip: Open domain image generation and
editing with natural language guidance. In Proceedings of
the European Conference on Computer Vision, 2022. 2
Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc’ Aurelio Ranzato, and Tomas Mikolov. De-
vise: A deep visual-semantic embedding model. In Advances
in Neural Information Processing Systems, 2013. 2

Jiyang Gao, Kan Chen, and Ram Nevatia. Ctap: Comple-
mentary temporal action proposal generation. In Proceed-
ings of the European Conference on Computer Vision, 2018.
2

Junyu Gao, Mengyuan Chen, and Changsheng Xu. Fine-
grained temporal contrastive learning for weakly-supervised
temporal action localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2022. 3,6

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Nevatia.
Tall: Temporal activity localization via language query. In
Proceedings of the International Conference on Computer
Vision, 2017. 1

Jiyang Gao, Zhenheng Yang, Kan Chen, Chen Sun, and Ram
Nevatia. Turn tap: Temporal unit regression network for tem-
poral action proposals. In Proceedings of the International
Conference on Computer Vision, 2017. 2, 6

Zhanning Gao, Le Wang, Qilin Zhang, Zhenxing Niu, Nan-
ning Zheng, and Gang Hua. Video imprint segmentation for
temporal action detection in untrimmed videos. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, 2019.
6

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui.
Open-vocabulary object detection via vision and language
knowledge distillation. In Proceedings of the International
Conference on Learning Representations, 2021. 2

Bo He, Xitong Yang, Le Kang, Zhiyu Cheng, Xin Zhou, and
Abhinav Shrivastava. Asm-loc: Action-aware segment mod-
eling for weakly-supervised temporal action localization. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2022. 3, 6

Fa-Ting Hong, Jia-Chang Feng, Dan Xu, Ying Shan, and
Wei-Shi Zheng. Cross-modal consensus network for weakly
supervised temporal action localization. In Proceedings of
ACM International Conference on Multimedia, 2021. 6,7, 8
Linjiang Huang, Liang Wang, and Hongsheng Li.
Foreground-action consistency network for weakly su-
pervised temporal action localization. In Proceedings of the
International Conference on Computer Vision, 2021. 3
Linjiang Huang, Liang Wang, and Hongsheng Li. Weakly
supervised temporal action localization via representative
snippet knowledge propagation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2022. 6

Ashraful Islam, Chengjiang Long, and Richard Radke. A
hybrid attention mechanism for weakly-supervised temporal
action localization. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2021. 2, 6

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In Proceedings of the
International Conference on Machine Learning, 2021. 2

Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi
Xie. Prompting visual-language models for efficient video
understanding. In Proceedings of the European Conference
on Computer Vision, 2022. 2, 4

Chen Ju, Peisen Zhao, Siheng Chen, Ya Zhang, Yanfeng
Wang, and Qi Tian. Divide and conquer for single-frame
temporal action localization. In Proceedings of the Interna-
tional Conference on Computer Vision, 2021. 3

Chen Ju, Peisen Zhao, Siheng Chen, Ya Zhang, Xi-
aoyun Zhang, and Qi Tian. Adaptive mutual supervision
for weakly-supervised temporal action localization. [EEE
Transactions on Multimedia, 2022. 2



[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Chen Ju, Peisen Zhao, Ya Zhang, Yanfeng Wang, and
Qi Tian. Point-level temporal action localization: Bridg-
ing fully-supervised proposals to weakly-supervised losses.
arXiv preprint arXiv:2012.08236, 2020. 3

Apoorv Khandelwal, Luca Weihs, Roozbeh Mottaghi, and
Aniruddha Kembhavi. Simple but effective: Clip embed-
dings for embodied ai. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2022. 2
Pilhyeon Lee and Hyeran Byun. Learning action complete-
ness from points for weakly-supervised temporal action lo-
calization. In Proceedings of the International Conference
on Computer Vision, 2021. 3

Pilhyeon Lee, Youngjung Uh, and Hyeran Byun. Back-
ground suppression network for weakly-supervised temporal
action localization. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2020. 1, 6

Pilhyeon Lee, Youngjung Uh, and Hyeran Byun. Back-
ground suppression network for weakly-supervised temporal
action localization. In Proceedings of the AAAI Conference
on Artificial Intelligence, 2020. 3

Pilhyeon Lee, Jinglu Wang, Yan Lu, and Hyeran Byun.
Weakly-supervised temporal action localization by uncer-
tainty modeling. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2021. 1,3,6,7, 8

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In Proceed-
ings of the Conference on Empirical Methods in Natural
Language Processinng, 2021. 4

Jingjing Li, Tianyu Yang, Wei Ji, Jue Wang, and Li
Cheng. Exploring denoised cross-video contrast for weakly-
supervised temporal action localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022. 6

Yue Liao, Aixi Zhang, Miao Lu, Yongliang Wang, Xiaobo
Li, and Si Liu. Gen-vlkt: Simplify association and enhance
interaction understanding for hoi detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022. 2

Chuming Lin, Jian Li, Yabiao Wang, Ying Tai, Donghao
Luo, Zhipeng Cui, Chengjie Wang, Jilin Li, Feiyue Huang,
and Rongrong Ji. Fast learning of temporal action proposal
via dense boundary generator. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2020. 2

Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-free
temporal action localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2021. 2

Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation. In Proceedings of the International Con-
ference on Computer Vision, 2019. 2

Tianwei Lin, Xu Zhao, and Zheng Shou. Single shot tem-
poral action detection. In Proceedings of ACM International
Conference on Multimedia, 2017. 2

Tianwei Lin, Xu Zhao, Haisheng Su, Chongjing Wang, and
Ming Yang. Bsn: Boundary sensitive network for temporal

10

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

(50]

action proposal generation. In Proceedings of the European
Conference on Computer Vision, 2018. 2

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de
Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and Hongsheng
Li. Frozen clip models are efficient video learners. In Pro-
ceedings of the European Conference on Computer Vision,
2022. 2

Daochang Liu, Tingting Jiang, and Yizhou Wang. Complete-
ness modeling and context separation for weakly supervised
temporal action localization. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2019. 1,2,3,6

Qinying Liu and Zilei Wang. Progressive boundary refine-
ment network for temporal action detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2020. 2
Xiaolong Liu, Song Bai, and Xiang Bai. An empirical study
of end-to-end temporal action detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2022. 2

Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang,
Arman Chopikyan, Yuxiao Hu, Humphrey Shi, Anna
Rohrbach, and Trevor Darrell. More control for free! image
synthesis with semantic diffusion guidance. arXiv preprint
arXiv:2112.05744,2021. 2

Yuan Liu, Jingyuan Chen, Zhenfang Chen, Bing Deng, Jian-
giang Huang, and Hanwang Zhang. The blessings of un-
labeled background in untrimmed videos. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021. 6

Yuan Liu, Lin Ma, Yifeng Zhang, Wei Liu, and Shih-Fu
Chang. Multi-granularity generator for temporal action pro-
posal. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019. 2

Ziyi Liu, Le Wang, Qilin Zhang, Zhanning Gao, Zhenxing
Niu, Nanning Zheng, and Gang Hua. Weakly supervised
temporal action localization through contrast based evalua-
tion networks. In Proceedings of the International Confer-
ence on Computer Vision, 2019. 3, 6

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study
of clip for end to end video clip retrieval. Neurocomputing,
2021. 2

Wang Luo, Tianzhu Zhang, Wenfei Yang, Jingen Liu, Tao
Mei, Feng Wu, and Yongdong Zhang. Action unit memory
network for weakly supervised temporal action localization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 2

Zhekun Luo, Devin Guillory, Baifeng Shi, Wei Ke, Fang
Wan, Trevor Darrell, and Huijuan Xu. Weakly-supervised
action localization with expectation-maximization multi-
instance learning. In Proceedings of the European Confer-
ence on Computer Vision, 2020. 3

Fan Ma, Linchao Zhu, Yi Yang, Shengxin Zha, Gourab
Kundu, Matt Feiszli, and Zheng Shou. Sf-net: Single-frame
supervision for temporal action localization. In Proceedings
of the European Conference on Computer Vision, 2020. 3
Kyle Min and Jason J Corso. Adversarial background-aware
loss for weakly-supervised temporal activity localization. In



(51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Proceedings of the European Conference on Computer Vi-
sion, 2020. 1, 2

Yasuhide Mori, Hironobu Takahashi, and Ryuichi Oka.
Image-to-word transformation based on dividing and vector
quantizing images with words. In Proceedings of ACM In-
ternational Conference on Multimedia, 1999. 2

Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xiang.
Temporal action detection with global segmentation mask
learning. In Proceedings of the European Conference on
Computer Vision, 2022. 2

Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xi-
ang. Zero-shot temporal action detection via vision-language
prompting. In Proceedings of the European Conference on
Computer Vision, 2022. 2

Sanath Narayan, Hisham Cholakkal, Munawar Hayat, Fa-
had Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao. D2-
net: Weakly-supervised action localization via discrimina-
tive embeddings and denoised activations. In Proceedings of
the International Conference on Computer Vision, 2021. 2,
6

Sanath Narayan, Hisham Cholakkal, Fahad Shahbaz Khan,
and Ling Shao. 3c-net: Category count and center loss for
weakly-supervised action localization. In Proceedings of the
International Conference on Computer Vision, 2019. 3
Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.
Weakly supervised action localization by sparse temporal
pooling network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018. 1,2
Phuc Xuan Nguyen, Deva Ramanan, and Charless C
Fowlkes. Weakly-supervised action localization with back-
ground modeling. In Proceedings of the International Con-
ference on Computer Vision, 2019. 3

Sujoy Paul, Sourya Roy, and AmitK Roy-Chowdhury. W-
talc: Weakly-supervised temporal activity localization and
classification. In Proceedings of the European Conference
on Computer Vision, 2018. 1,2

Zhiwu Qing, Haisheng Su, Weihao Gan, Dongliang Wang,
Wei Wu, Xiang Wang, Yu Qiao, Junjie Yan, Changxin Gao,
and Nong Sang. Temporal context aggregation network for
temporal action proposal refinement. In Proceedings of the
International Conference on Computer Vision, 2021. 2

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In Proceedings
of the International Conference on Machine Learning, 2021.
2,4,6,9

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong
Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu.
Denseclip: Language-guided dense prediction with context-
aware prompting. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2022. 2

Baifeng Shi, Qi Dai, Yadong Mu, and Jingdong Wang.
Weakly-supervised action localization by generative atten-
tion modeling. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2020. 3, 6

11

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

(74]

[75]

Zheng Shou, Jonathan Chan, Alireza Zareian, Kazuyuki
Miyazawa, and Shih-Fu Chang. Cdc: Convolutional-de-
convolutional networks for precise temporal action localiza-
tion in untrimmed videos. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2017.
2

Zheng Shou, Hang Gao, Lei Zhang, Kazuyuki Miyazawa,
and Shih-Fu Chang. Autoloc: Weakly-supervised temporal
action localization in untrimmed videos. In Proceedings of
the European Conference on Computer Vision, 2018. 3
Zheng Shou, Dongang Wang, and Shih-Fu Chang. Temporal
action localization in untrimmed videos via multi-stage cnns.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 2

Tianmin Shu, Dan Xie, Brandon Rothrock, Sinisa Todorovic,
and Song Chun Zhu. Joint inference of groups, events and
human roles in aerial videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2015. 1

Karen Simonyan and Andrew Zisserman. Two-stream con-
volutional networks for action recognition in videos. In Ad-
vances in Neural Information Processing Systems, 2014. 1
Haisheng Su, Weihao Gan, Wei Wu, Yu Qiao, and Junjie
Yan. Bsn++: Complementary boundary regressor with scale-
balanced relation modeling for temporal action proposal gen-
eration. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021. 2

Jing Tan, Jiagi Tang, Limin Wang, and Gangshan Wu. Re-
laxed transformer decoders for direct action proposal gen-
eration. In Proceedings of the International Conference on
Computer Vision, 2021. 2

Guy Tevet, Brian Gordon, Amir Hertz, Amit H Bermano,
and Daniel Cohen-Or. Motionclip: Exposing human motion
generation to clip space. In Proceedings of the European
Conference on Computer Vision, 2022. 2

Can Wang, Menglei Chai, Mingming He, Dongdong Chen,
and Jing Liao. Clip-nerf: Text-and-image driven manipula-
tion of neural radiance fields. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2022. 2

Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool.
Untrimmednets for weakly supervised action recognition
and detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 1, 2
Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip:
A new paradigm for video action recognition. arXiv preprint
arXiv:2109.08472,2021. 2

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai,
Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, and
Hongxia Yang. Ofa: Unifying architectures, tasks, and
modalities through a simple sequence-to-sequence learning
framework. In Proceedings of the International Conference
on Machine Learning, 2022. 2

Qiang Wang, Yanhao Zhang, Yun Zheng, and Pan Pan. Rcl:
Recurrent continuous localization for temporal action detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2022. 2, 6



[76]

(771

(78]

[79]

(80]

[81]

[82]

(83]

[84]

[85]

[86]

(87]

(88]

[89]

Jason Weston, Samy Bengio, and Nicolas Usunier. WSA-
BIE: Scaling up to large vocabulary image annotation. In
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 2011. 2

Huijuan Xu, Abir Das, and Kate Saenko. R-c3d: Region
convolutional 3d network for temporal activity detection. In
Proceedings of the International Conference on Computer
Vision, 2017. 2

Mengmeng Xu, Chen Zhao, David S Rojas, Ali Thabet, and
Bernard Ghanem. G-tad: Sub-graph localization for tempo-
ral action detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2020. 2
Yunlu Xu, Chengwei Zhang, Zhanzhan Cheng, Jianwen Xie,
Yi Niu, Shiliang Pu, and Fei Wu. Segregated temporal as-
sembly recurrent networks for weakly supervised multiple
action detection. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019. 3

Haosen Yang, Wenhao Wu, Lining Wang, Sheng Jin, Boyang
Xia, Hongxun Yao, and Hujie Huang. Temporal action pro-
posal generation with background constraint. In Proceedings
of the AAAI Conference on Artificial Intelligence, 2022. 2
Le Yang, Houwen Peng, Dingwen Zhang, Jianlong Fu, and
Junwei Han. Revisiting anchor mechanisms for temporal ac-
tion localization. IEEE Transactions on Image Processing,
2020. 2

Wenfei Yang, Tianzhu Zhang, Xiaoyuan Yu, Tian Qi, Yong-
dong Zhang, and Feng Wu. Uncertainty guided collabora-
tive training for weakly supervised temporal action detec-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2021. 3

Zichen Yang, Jie Qin, and Di Huang. Acgnet: Action com-
plement graph network for weakly-supervised temporal ac-
tion localization. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2022. 6

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe
Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and
Chunjing Xu. Filip: Fine-grained interactive language-image
pre-training. In Proceedings of the International Conference
on Learning Representations, 2022. 2

Ting Yao, Tao Mei, and Yong Rui. Highlight detection with
pairwise deep ranking for first-person video summarization.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 1

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo-
jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive
captioners are image-text foundation models. In Advances in
Neural Information Processing Systems, 2022. 2

Alireza Zareian, Kevin Dela Rosa, Derek Hao Hu, and Shih-
Fu Chang. Open-vocabulary object detection using captions.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2021. 2

Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-
volutional networks for temporal action localization. In Pro-
ceedings of the International Conference on Computer Vi-
sion, 2019. 2, 6

Yuanhao Zhai, Le Wang, Wei Tang, Qilin Zhang, Junsong
Yuan, and Gang Hua. Two-stream consensus network for

12

[90]

(91]

(92]

(93]

[94]

[95]

(96]

weakly-supervised temporal action localization. In Proceed-
ings of the European Conference on Computer Vision, 2020.
1,3,6

Can Zhang, Meng Cao, Dongming Yang, Jie Chen, and
Yuexian Zou. Cola: Weakly-supervised temporal action lo-
calization with snippet contrastive learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2021. 3

Chenlin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers. In Proceed-
ings of the European Conference on Computer Vision, 2022.
6

Peisen Zhao, Lingxi Xie, Chen Ju, Ya Zhang, Yanfeng Wang,
and Qi Tian. Bottom-up temporal action localization with
mutual regularization. In Proceedings of the European Con-
ference on Computer Vision, 2020. 2, 6

Yue Zhao, Yuanjun Xiong, Limin Wang, Zhirong Wu, Xi-
aoou Tang, and Dahua Lin. Temporal action detection with
structured segment networks. In Proceedings of the Interna-
tional Conference on Computer Vision, 2017. 2, 6

Jia-Xing Zhong, Nannan Li, Weijie Kong, Tao Zhang,
Thomas H Li, and Ge Li. Step-by-step erasion, one-by-one
collection: A weakly supervised temporal action detector. In
Proceedings of ACM International Conference on Multime-
dia,2018. 2

Chong Zhou, Chen Change Loy, and Bo Dai. Extract free
dense labels from clip. In Proceedings of the European Con-
ference on Computer Vision, 2022. 2

Zixin Zhu, Wei Tang, Le Wang, Nanning Zheng, and Gang
Hua. Enriching local and global contexts for temporal action
localization. In Proceedings of the International Conference
on Computer Vision, 2021. 2



	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Notations and Preliminaries
	3.2 . Foreground and Background Distillation
	3.3 . Dual-Branch Collaborative Optimization
	3.4 . Inference

	4 . Experiments
	4.1 . Implementation
	4.2 . Comparison with State-of-the-art Methods
	4.3 . Ablation Study and Comparison
	4.4 . Qualitative Results

	5 . Conclusion
	6 . Limitations and Future Work

