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Abstract

In this paper, we study the problem of temporal video
grounding (TVG), which aims to predict the starting/ending
time points of moments described by a text sentence within
a long untrimmed video. Benefiting from fine-grained 3D
visual features, the TVG techniques have achieved remark-
able progress in recent years. However, the high complexity
of 3D convolutional neural networks (CNNs) makes extract-
ing dense 3D visual features time-consuming, which calls
for intensive memory and computing resources. Towards
efficient TVG, we propose a novel text-visual prompting
(TVP) framework, which incorporates optimized perturba-
tion patterns (that we call ‘prompts’) into both visual in-
puts and textual features of a TVG model. In sharp con-
trast to 3D CNNs, we show that TVP allows us to effec-
tively co-train vision encoder and language encoder in a
2D TVG model and improves the performance of cross-
modal feature fusion using only low-complexity sparse 2D
visual features. Further, we propose a Temporal-Distance
IoU (TDIoU) loss for efficient learning of TVG. Experi-
ments on two benchmark datasets, Charades-STA and Ac-
tivityNet Captions datasets, empirically show that the pro-
posed TVP significantly boosts the performance of 2D TVG
(e.g., 9.79% improvement on Charades-STA and 30.77%
improvement on ActivityNet Captions) and achieves 5× in-
ference acceleration over TVG using 3D visual features.
Codes are available at Open.Intel.

1. Introduction
In recent years, we have witnessed great progress on

temporal video grounding (TVG) [30, 74]. One key to
this success comes from the fine-grained dense 3D vi-
sual features extracted by 3D convolutional neural networks
(CNNs) (e.g., C3D [56] and I3D [3]) since TVG tasks de-
mand spatial-temporal context to locate the temporal inter-
val of the moments described by the text query. However,
due to the high cost of the dense 3D feature extraction, most
existing TVG models only take these 3D visual features ex-

Figure 1. The architecture and performance comparison among TVG
methods: a) 3D TVG methods [14, 16, 18, 34, 43, 60–62, 64, 67, 69, 71, 73],
b) 2D TVG methods [1, 7], and c) TVP-based 2D TVG (Ours), d) over-
all performance comparison. Ours is the most efficient (least inference
time) and achieves competitive performance compared to 3D TVG meth-
ods. In contrast to existing TVG methods, which utilize dense video fea-
tures extracted by non-trainable offline 3D CNNs and textual features, our
proposed framework utilizes a trainable 2D CNN as the vision encoder to
extract features from sparsely-sampled video frames with a universal set of
frame-aware visual prompts and adds text prompts in textual feature space
for end-to-end regression-based modeling.

tracted by offline 3D CNNs as inputs instead of co-training
during TVG model training.

Although models using 3D visual features (that we
call ‘3D methods or models’) outperform these using the
2D features (that we call ‘2D methods or models’), a
unique advantage of 2D methods is that extracting 2D
visual features can significantly reduce the cost in TVG
tasks [14, 15, 30, 34, 61, 62, 69, 74, 75]. An efficient and
lightweight solution with reasonable performance is also
demanded in computer vision, NLP, and video-language
tasks [19, 23, 38, 41, 68, 76–80]. As discussed above, the
methods employing 3D video features are challenging to be
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employed in practical applications. It thus has significant
practical and economic value to develop compact 2D solu-
tions for TVG tasks. In this paper, we ask:

How to advance 2D TVG methods so as to achieve
comparable results to 3D TVG methods?

To address this problem, we propose a novel text-visual
prompting (TVP) framework for training TVG models us-
ing 2D visual features. As shown in Fig. 1, for existing
2D TVG and 3D TVG methods, they all utilize offline pre-
trained vision encoders and language encoders to perform
feature extraction. In contrast, our proposed TVP frame-
work is end-to-end trainable. Furthermore, benefiting from
text-visual prompting and cross-modal pretraining on large-
scale image-text datasets, our proposed framework could
achieve comparable performance to 3D TVG methods with
significant inference time acceleration.

Conventionally, TVG methods consist of three stages:
① extracting feature from visual and text inputs; ② multi-
modal feature fusion; ③ cross-modal modelling. In contrast
to conventional methods, TVP incorporates optimized input
perturbation patterns (that we call ‘prompts’) into both vi-
sual inputs and textual features of a TVG model. We apply
trainable parameters in the textual features as text prompts
and develop a universal set of frame-aware patterns as visual
prompts. Specially, we sample a fixed number of frames
from a video and optimize text prompts for the input query
sentence and a set of visual prompts for frames with differ-
ent temporal locations during training. During testing, the
same set of optimized visual prompts and textual prompts
are applied to all test-time videos. We refer readers to Fig. 2
for illustrations of visual prompts and text prompts intro-
duced. To the best of our knowledge, our work makes the
first attempt to utilize prompt learning to successfully im-
prove the performance of regression-based TVG tasks using
2D visual features.

Compared to 3D CNNs, 2D CNNs loses spatiotempo-
ral information of the video during feature extraction. In-
spired by the success of transformers on the vision-language
tasks [9, 22, 35, 44, 47, 54, 55] and the recent application of
prompt learning to transformers in both vision and language
domains [2,25,27,32,37,40], we choose transformer as our
base TVG model and propose to utilize prompts to compen-
sate for the lack of spatiotemporal information in 2D visual
features. Furthermore, we develop a Temporal-Distance
IoU (TDIoU) loss for training our proposed framework.
There are two aspects that distinguish our proposed frame-
work from existing works. First, our proposed framework is
designed to boost the performance of the regression-based
TVG methods utilizing 2D CNNs as the vision encoder,
not for transfer learning [2, 21, 26] Second, our proposed
framework utilizes 2D CNN to extract visual features from

(a) Text Prompts (b) Frame-aware Visual Prompts

Figure 2. Text-visual prompting illustration. (a) Text prompts are directly
applied in the feature space. (b) A set of visual prompts are applied to
video frames in order.

sparsely-sampled video frames, which requires less mem-
ory and is easier to be applied in practical applications com-
pared to 3D methods [34,60–62,69,75], especially for long
videos. Furthermore, thanks to the compact 2D CNN as
the vision encoder, our proposed framework could imple-
ment the language encoder and visual encoder co-training
for better multimodal feature fusion. In summary, the con-
tributions of this work are unfolded below:

• We propose an effective and efficient framework to
train 2D TVG models, in which we leverage TVP
(text-visual prompting) to improve the utility of sparse
2D visual features without resorting to costly 3D fea-
tures. To the best of our knowledge, it is the first work
to expand the application of prompt learning for re-
solving TVG problems. Our method outperforms all
of 2D methods and achieves competitive performance
to 3D TVG methods.

• Technology-wise, we integrate visual prompt with text
prompt to co-improve the effectiveness of 2D visual
features. On top of that, we propose TDIoU (temporal-
distance IoU)-based prompt-model co-training method
to obtain high-accuracy 2D TVG models.

• Experiment-wise, we show the empirical success of
our proposal to boost the performance of 2D TVG on
Charades-STA and ActivityNet Captions datasets, e.g.,
9.79% improvement in Charades-STA, and 30.77% in
ActivityNet-Captions together with 5× inference time
acceleration over 3D TVG methods.

2. Related Work
Video Temporal Grounding (TVG). The objective of the
TVG is to predict the starting/ending time points of target
moments within an untrimmed video, which is described by
a text sentence. Early TVG solutions [7,14,20,39,62,64,70]
mainly employ two-stage “propose-and-rank” pipeline: ①



Propose: utilize sliding windows or proposal network to
generate proposal candidates from the input video. ②
Rank: the proposed candidates would be ranked accord-
ing to the text query, and then the proposal with the high-
est ranking would be the final prediction decision. In con-
trast to proposal-based methods, regression-based meth-
ods [16, 67, 69] directly predict the starting/ending time
points of the target moments without ranking massive pro-
posal candidates. Thus, regression-based methods are much
faster than proposal-based methods, which is one reason
why our work focuses on the regression-based TVG. Fur-
thermore, reinforcement learning (RL)-based methods for-
mulate the TVG task as a sequence of decisions to make
[18, 60]. In particular, they train an agent to control the
movement of a window by shifting or scaling. During train-
ing, the agent would be rewarded or punished based on
whether the window is close to the target moment after an
adjustment.
Temporal Action Detection (TAD). TAD aims to deter-
mine whether predefined actions occur in a video and to
predict the corresponding time intervals during which these
actions occur [12,13,48,53,56,59,63]. Different from TVG,
the input of TAD is only a video. In other words, TAD only
requires a semantic understanding of videos. Compared to
TAD, TVG is more challenging since it requires a semantic
understanding of both videos and natural languages. Fur-
thermore, TVG needs to process the multimodal interaction
between videos and natural languages.
Text Prompting. Prompting has recently achieved great
success in the domain of natural language processing [25,
32, 37, 40, 46, 49–52, 58]. Text prompting is a process that
leverages a data-agnostic perturbation operation applied to
text inputs or their embeddings to improve the performance
of the downstream task. The simplest way is to construct
an input context template originating from human contem-
plation [46, 49–51]. Although the manually-crafted context
templates are simple and interpretable, they are typically
not the optimal input prompts. To tackle this issue, other
work has focused on searching the optimal prompting in the
discrete input space [25, 52, 58] or in the language model’s
embedding space [32, 37, 40].
Visual Prompting. Inspired by the idea of prompt learning
in NLP [37], visual prompting (VP) was first proposed by
Bahng et. al. [2] to reprogram a source vision model (e.g.,
ImageNet-pretrained classifier) to accomplish downstream
target tasks (e.g., CIFAR-10 image classification). VP
shares almost the same idea with the model reprogramming
technology in the vision domain [4–6, 11, 57, 65, 72, 81],
which incorporates a universal input perturbation into test-
ing data so as to improve a desired performance metric, e.g.,
target task accuracy, robustness, and fairness.
Multi-Modal Prompting. Although visual prompting and
text prompting have recently attracted much attention, they

are under-explored in the multi-modal learning, especially
on the temporal video grounding task. The existing works
[2, 27, 66] mainly focus on integrating text and visual
prompts with the CLIP (Contrastive Language–Image Pre-
trained) model to improve downstream tasks with imagery
data. The problem of multi-modal prompting in the video
understanding task has not been studied. In this paper,
we for the first time develop the text-visual prompting
technique to improve the performance of temporal video
grounding using 2D visual features.

3. Methods
In this section, we begin with the problem formulation of

regression-based TVG. Then we demonstrate the design of
TVP (text-visual prompts) and present the overview of our
proposed TVP framework.

3.1. Problem Definition

Let v ∈ RNvid×C×H×W be an untrimmed video con-
sisting of a sequence of Nvid video frames, and s ∈ RNtex

be a text query consisting of a sequence of Ntex language
tokens. Here, the video-query pair (v, s) belongs to a video-
language datasetD. Given v and s, TVG aims to predict the
time interval T̂ = (t̂sta, t̂end) of the target video moments
described by the query s. The TVG model that fuses the
vision-language modalities can be described as:

T̂ = f( gtex(s), gvid(v) ), (1)

where f denotes TVG model, and gvid and gtex represent
vision encoder and language encoder, respectively.

3.2. TDIoU Loss Function

Conventionally, the TVG model can be learned by mini-
mizing the temporal IoU loss LtIoU defined below:

LtIoU =

(
1− T̂(θ)

⋂
T

T̂(θ)
⋃

T

)
, (2)

where for ease of notation let θ denote all the trainable pa-
rameters involved in (1), and T = (tsta, tend) is the label
(i.e., the ground-truth time interval) of the target moment
associated with the input video-query pair (v, s). The ratio-
nale behind (2) is to maximize the overlapping between the
predicted time interval and its ground truth.

However, for non-overlapping cases, the temporal IoU
loss LtIoU would encounter a gradient vanishing problem.
Inspired by [82], we develop a novel TDIoU (Temporal-
Distance IoU) loss for training our proposed TVG models
by incorporating the normalized central time point distance
and duration difference between the predicted video clips
and the target video clips. We elaborate on the proposed
loss below.
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Figure 3. Overview of our proposed TVP (text-visual prompting) framework for 2D TVG (temporal video grounding). The whole process contains four
phases: ❶ Video frame preprocessing: uniformly sample frames from input video and apply a set of frame-aware visual prompts to the sampled frames in
order; ❷ Feature extraction: 2D CNN extracts features from sampled video frames with visual prompts, and the language encoder extracts textual features.
In addition, the visual features would be spatially downsampled and temporally fused by max pooling and mean pooling, respectively. ❸ Multimodal feature
processing: after spatial downsampling and temporal fusion, the 2D visual features would be integrated into the prompted textual features. ❹ Crossmodal
fusion: the multimodal features would be processed by a 12-layer transformer encoder, and MLP would predict the starting/ending time points of the target
moment.

Distance Loss Ldis. To avoid the gradient vanishing prob-
lem caused by the non-overlapping case, we involve dis-
tance loss Ldis to directly minimize the normalized central
time point distance. In addition, we add a threshold α1 to
prevent oscillation in the later training phase. The distance
loss is then given by:

Ldis = max

(
| (tsta + tend) /2−

(
t̂sta + t̂end

)
/2|

|T̂
⋃

T|
, α1

)
,

(3)

where recall that T = (tsta, tend), T̂ is predicted by the
TVG model (1), and we choose α1 = 0.2 in experiments.
Duration Loss Ldur. The introduction of distance loss Ldis

avoids the gradient vanishing problem but only considers
the central time point distance. Yet, this may not be pre-
cise enough. For example, even if the central time points
are completely overlapped, the duration of two video clips
may not be identical. Inspired by the above, we propose the
duration loss:

Ldur = max

(
|T− T̂(θ)|
|T|

, α2

)
, (4)

where α2 is the precision tolerance threshold and set by 0.4
in our experiments.

Finally, the proposed Temporal-Distance IoU (TDIoU)
loss is given by

L = LtIoU + β1Ldis + β2Ldur, (5)

where β1 > 0 and β2 > 0 are regularization parameters.

3.3. Text-Visual Prompt Design

Inspired by the application of prompts on transform-
ers [2, 21, 36, 37], we propose jointly text-visual prompting
to boost the performance of our models, in which prompts
are optimized perturbation patterns. To improve data pro-
cessing efficiency, we uniformly sample video frames from
the untrimmed video v to obtain vsam ∈ RNsam×C×H×W ,
where Nsam is the number of sampled video frames. In ad-
dition, we introduce a set of frame-aware visual prompts
δvp ∈ RNsam×dvp in the pixel space of sampled video
frames vsam, and introduce text prompts δtp ∈ RNtp×dtp

in the textual feature space. By incorporating video frame
sampling and text-visual prompts into the TVG model (1),
we obtain:

(t̂sta, t̂end) = f( δtp, gtex(s), gvid(vsam + δvp) ). (6)

Given a pre-trained 2D TVG model f , the objective of
text-visual prompting (TVP) is to learn a universal set of vi-
sual prompts δvp and text prompts δtp to be integrated into
sampled video frames and textual features, respectively.
Specially, a set of different visual prompts are applied to
uniformly-sampled frames of one untrimmed video in or-
der. During training, only the set of visual prompts and text
prompts are updated through backpropagation. During fine-
tuning, prompts are frozen, and the parameters of the TVG
model and encoders are updated. During testing, the set of
optimized visual prompts and the optimized text prompts
are applied to all test-time video-query pairs.



3.4. Framework

Inspired by the success of transformers in vision-
language tasks, we choose ClipBERT [31] as the base
model for 2D TVG. Extended from ClipBERT, the in-
put of our regression-based TVG model would be de-
scribable sentences and uniformly sampled frames of one
untrimmed video as shown in Fig. 3. Then, the predicted
starting and ending time points of the target video clip
would be model outputs. As described in Algorithm 1,
there are four phases of our proposed TVP framework: ❶
Video frame preprocessing: We obtain sparsely-sampled
frames vsam from one input untrimmed video v, and apply
universal frame-aware visual prompts δvp on top of frames
at the padding location. ❷ Feature extraction: 2D vision
encoder (first 5 ConvBlock of ResNet-50) gvid and language
encoder (a trainable word embedding layer) gtex would ex-
tract features from the prompted frames v′

sam and textual
inputs s, respectively. ❸ Multimodal feature processing:
Following the setting of Pixel-BERT [22], the 2D visual
features Qvid are downsampled spatially by a 2 × 2 max-
pooling layer and fused temporally by a mean-pooling layer.
Then, text prompts δtp are integrated into textual features
Qtex. In addition, trainable 2D visual position embeddings
M2D and textual position embeddings Mpos are applied to
the processed 2D visual features Q′

vid and prompted tex-
tual features Q′

tex, respectively [10, 31]. Afterwards, the
processed and position-encoded 2D visual features Q′′

vid

are flattened and integrated into prompted and position-
encoded textual features Q′′

tex. Moreover, type embed-
dings Mtype would be added to the integrated multimodal
features Qall to indicate the source type of features. ❹
Crossmodal fusion: A 12-layer transformer [10] is utilized
for crossmodal fusion on Qall, and then multilayer percep-
tron (MLP) ending with sigmoid function is used as the pre-
diction head to process the last-layer crossmodal represen-
tation QCM of the transformer for generating the predicted
starting/ending time points (t̂sta, t̂sta) of the target moments
described by the text query input.

4. Experiments
In this section, we demonstrate the effectiveness of our

proposed TVP framework on Charades-STA and Activi-
tyNet Captions datasets.

4.1. Experiment Setup

Datasets. The evaluations are implemented on two stan-
dard benchmark datasets for TVG task, Charades-STA [14]
and ActivityNet Captions [28]. Tab. 1 summarizes the
details of both datasets. Charades-STA dataset contains
6, 672 videos and 16, 124 text queries in total. The aver-
age length of videos is 30.6s, and the average length of text
query is 7.2 words . The average length of moments cor-

Algorithm 1 Overview of TVP framework

Input: vision encoder gvid, language encoder gtex, posi-
tion embeddings Mpos, 2D position embeddings M2D,
type embeddings Mtype, transformer f , prediction
head MLP , visual prompts δvp, text prompts δtp

Output: Predicted time interval T̂ = (t̂sta, t̂end)
Phase ❶: Video frame preprocessing

1: vsam ← uniformly sample video frames from an
untrimmed video v

2: v′
sam ← apply visual prompts δvp to the sampled video

frames vsam

Phase ❷: Feature Extraction
3: Qvid = gvid(v

′
sam)← extracting 2D visual features

4: Qtex = gtex(s)← extracting textual features
Phase ❸: Multimodal feature processing

5: Q′
vid ← apply spatial downsampling and temporal fu-

sion to 2D visual features Qvid

6: Q′
tex ← apply text prompts δtp to textual features Qtex

7: Q′′
vid ← add 2D visual position embeddings M2D on

the processed 2D visual features Q′
vid

8: Q′′
tex ← add position embeddings Mpos to prompted

textual features Q′
tex

9: Qall ← integrate the processed and position-encoded
textual features Q′′

tex and the processed and position-
encoded 2D visual features Q′′

vid

10: Qall + Mtype ← add type embeddings Mtype to the
integrated multimodal features Qall

Phase ❹: Crossmodal fusion
11: QCM = f(Qall + Mtype) ← implement crossmodal

fusion through transformer f
12: (t̂sta, t̂end) = MLP (QCM) ← prediction head gener-

ates the predicted time interval according to crossmodal
representation QCM

Table 1. Statistics of TVG benchmark datasets (Charades-STA and Activ-
ityNet Captions datasets).

Dataset Charades-STA ActivityNet Captions

Domain Indoor Activity Indoor/Outdoor Activity

# Videos 6, 672 14, 926
Avg. Video Length (second) 30.6 117.6

# Moments 11, 767 71, 953
Avg. Moment Length (second) 8.1 37.1

Vocabulary Size 1, 303 15, 505
# Queries 16, 124 71, 953

Avg. Query Length (word) 7.2 14.4

responding to the text query is 8.1s. Following the same
dataset split as [14] for fair comparisons, there are 12, 408
video-query pairs for training and 3, 720 pairs for testing.
ActivityNet Captions dataset contains 14, 926 videos and
71, 953 text queries in total. The average length of videos is
117.6s, and the average length of text query is 14.4 words.



The average length of moments corresponding to the text
query is 37.1s. ActivityNet Captions dataset is split into
training set, validation set, and testing set in a 2 : 1 : 1 ra-
tio. Since the testing set is withheld for competition, only
a training set and two validation sets (val1 and val2) can be
accessed publicly. For fair comparisons, we evaluate our
proposed framework on val1.
Baselines. We compare our proposal with 15 baseline
methods: ① Proposal-based: CTRL [14], MCN [1],
SAP [7], BPNet [62], LPNet [61], QSPN [64], MAN [71];
② Proposal-free: ABLR [67], DRN [69], CPNet [34], DE-
BUG [43], ExCL [16], VSLNet [73]; ③ Reinforcement
learning: TSP-PRL [60], TripNet [18].
Evaluation metrics. Following [14], we adopt Acc(R@1,
IoU=m) as the performance evaluation metric, which repre-
sents the percentage accuracy of top-1 predicted moments
whose tIoU (temporal IoU) with the ground-truth moment
is larger than m. By convention, we consider the following
tIoU threshold values m = {0.3, 0.5, 0.7}.
Crossmodal pretraining setup. Our 2D vision encoder
(ResNet-50) is initialized with the weight from grid-
feat [24], which can extract effective grid features from vi-
sual inputs. In addition, both the language encoder and 12-
layer transformer are initialized with the BERT-base model
weight [10], which are pretrained on English Wikipedia
and BookCorpus [83]. Thanks to the compact 2D vi-
sion encoder, TVP (our proposal) is able to directly uti-
lize image-text pairs for end-to-end training. Since the
benefits of cross-modal pretraining has been demonstrated
by [22, 44, 55], our base model is pretrained on two large-
scale image-text datasets, which are Visual Genome Cap-
tions [29] and COCO Captions [8]. To be more specific,
image-text matching [44, 55] and masked language model-
ing [10] are employed for cross-modal pretraining.
Implementation setup. For video inputs, we uniformly
sample Nsam frames from a video (Nsam = 48 for
Charades-STA and Nsam = 64 for ActivityNet Captions).
In addition, all video frames are resized to have a maxi-
mum longer side of 448 with an original aspect ratio, and
then the frames are zero-padded to 448 × 448. The de-
fault visual prompt sizes for both dataset are 96. The de-
fault text prompt sizes are 10 and 20 for Charades-STA and
ActivityNet Captions, respectively. We utilize the first 5
ConvBlocks of ResNet-50 as the 2D vision encoder and
a trainable embedding layer as the language encoder for
both Charades-STA and ActivityNet Captions datasets. For
text queries, all word tokens are maintained after lower-case
conversion and tokenization. We use AdamW [42] for end-
to-end model training, with β1 = 1.0, β2 = 0.1, α1 = 0.2,
α2 = 0.4. Initial learning rates are 1e − 1 and 5e − 7 for
prompt training and model finetuning, respectively. In ad-
dition, the learning rate linearly decays to 0 with the first
10% training step for warmup. Our experiments are imple-

Table 2. Performance comparison of different thresholds m on the
Charades-STA dataset.

Type Method Visual Acc(R@1, IoU=m)
Feature m=0.3 m=0.5 m=0.7

3D TVG

CTRL [14] C3D - 23.63 8.89
ABLR [67] C3D - 24.36 9.01
BPNet [62] C3D 55.46 38.25 20.51
LPNet [61] C3D 59.14 40.94 21.13
QSPN [64] C3D 54.70 35.60 15.80

TSP-PRL [60] C3D - 45.45 24.75
TripNet [18] C3D 54.64 38.29 16.07

DRN [69] C3D - 45.40 26.40
CPNet [34] C3D - 40.32 22.47

DEBUG [43] C3D 54.95 37.39 17.92
ExCL [16] I3D 61.50 44.1 22.40

VSLNet [73] I3D 64.30 47.31 30.19
MAN [71] I3D - 46.53 22.72

2D TVG MCN [1] VGG - 17.46 8.01
SAP [7] VGG - 27.42 13.36

Ours

TVP-Based
2D TVG

Base w/o prompts

ResNet

61.29 40.43 19.89
Base + Visual Prompts 65.38 44.31 20.22
Base + Text Prompts 65.81 43.44 20.65
Base + Both Prompts 65.92 44.39 21.51

Table 3. Performance comparison of different thresholds m on the Activi-
tyNet Captions dataset.

Type Method Visual Acc(R@1, IoU=m)
Feature m=0.3 m=0.5 m=0.7

3D TVG

CTRL [14] C3D 28.70 14.00 -
BPNet [62] C3D 59.98 42.07 24.69
LPNet [61] C3D 64.29 45.92 25.39
QSPN [64] C3D 45.30 27.70 13.60

TSP-PRL [60] C3D 56.02 38.83 -
TripNet [18] C3D 48.42 32.19 13.93

DRN [69] C3D - 45.45 24.36
CPNet [34] C3D - 40.56 21.63
ABLR [67] C3D 55.67 36.79 -

DEBUG [43] C3D 55.91 39.72 -
ExCL [16] C3D 63.00 43.60 24.10

VSLNet [73] C3D 63.16 43.22 26.16

Ours

TVP-Based
2D TVG

Base w/o prompts

ResNet

57.20 40.16 19.14
Base + Visual Prompts 60.12 43.39 23.71
Base + Text Prompts 60.48 42.58 24.39
Base + Both Prompts 60.71 43.44 25.03

mented in PyTorch [45], and models and prompts are fine-
tuned separately for 12 epochs with the mixed precision on
8 NVIDIA V100 GPUs.

4.2. Experiment Results

Effectiveness of TVP on Charades-STA. The perfor-
mance comparisons with SOTA methods on the Charades-
STA dataset are summarized in Tab. 2. Our proposed
TVP framework can achieve competitive performance at all
tIoU thresholds m in the case of utilizing 2D visual fea-
tures extracted by ResNet-50, and reach the highest score
at m = 0.3. Compared to the 2D TVG methods using
VGG as the vision encoder, our proposed framework could
achieve around 2.5× and 2.7× performance gain at thresh-
olds 0.5 and 0.7, respectively. Furthermore, we can find
that for our base model only one of visual prompts and text
prompts can achieve up to 7.37% and 9.60% improvement
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Figure 4. Impact of sampled frame numbers.

at tIoU thresholds m = 0.3 and m = 0.5. The combina-
tion of text and visual prompts can not only achieves 7.55%
and 9.79% improvements at tIoU thresholds m = 0.3 and
m = 0.5, but also improve the performance by 8.14% at
m = 0.7. This demonstrates the effectiveness and necessity
of the joint text-visual prompting.
Effectiveness of TVP on ActivityNet Captions. We focus
on the performance comparisons with 3D TVG methods on
ActivityNet since there are no results of 2D TVG method
reported on ActivityNet Captions. The results of multiple
methods on ActivityNet Captions datasets are reported in
Tab. 3. Even on this more challenging dataset, our pro-
posed method still has achieved competitive performance
compared to 3D TVG methods. Different from the perfor-
mance of TVP on Charades-STA dataset, text prompts or
visual prompts can achieve a significant performance boost
on the base model over all IoU thresholds m alone (5.73%
at m = 0.3, 8.04% at m = 0.5, 27.43% at m = 0.7 ) ,
and the text-visual prompt combination could further boost
the performance (6.14% at m = 0.3, 8.17% at m = 0.5,
30.77% at m = 0.7). It is worth noting that the perfor-
mance gap over m = 0.7 between 2D TVG methods and
3D TVG methods is narrowed significantly.
In summary, through the experimental results on
Charades-STA and ActivityNet Captions datasets, we can
find that our proposed TVP framework could achieve com-
petitive performance overall tIoU thresholds on Charades-
STA and ActivityNet Captions by improving the utility of
sparse 2D visual features. Thanks to the lightweight 2D
vision encoder, cotraining language encoder and vision en-
coder on large-scale image-text datasets can be performed,
which benefits the base model to achieve good performance.
Furthermore, the combination of text and visual prompts
can achieve better results than any single kind of prompts on
both datasets, which again proves the importance of cross-
modal training.
Video frame sampling effect. Fig. 4 demonstrates the
performance of base model with different number Nsam

Table 4. The performance comparison of different visual prompt sizes on
Charades-STA dataset.

Visual Prompt Size Acc(R@1, IoU=m) Prompt + Frame
m=0.3 m=0.5 m=0.7

0 61.29 40.43 19.89
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

16 61.29 40.43 20.00
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

32 61.94 39.78 19.35
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

48 63.66 42.37 20.00
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

72 63.87 43.66 19.78
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

96 65.38 44.31 20.22
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

p

p

128 64.73 43.66 19.78
Video Frame

(without visual prompts)
Pad Size

p = 16
Pad Size

p = 32
Pad Size

p = 48
Pad Size

p = 72
Pad Size

p = 96
Pad Size
p = 128

Table 5. The performance comparison of different text prompt sizes on
Charades-STA dataset.

Text Prompt Size Acc(R@1, IoU=m)
m=0.3 m=0.5 m=0.7

0 57.20 40.16 19.14

5 65.38 41.94 20.43
10 65.81 43.44 20.65
15 65.59 43.23 21.29
20 64.95 43.87 21.51
25 63.66 42.80 20.65
30 64.46 42.63 20.51

of sampled video frames as visual inputs. For Charades
dataset, the base model performance keeps increasing be-
fore Nsam reaches 48, but when it exceeds 48, performance
starts to degrade. This is because frequent background
changes harm the performance of object re-identification in
videos, which are noisy for object motion analysis [17].

For ActivityNet Caption dataset, base model perfor-
mance continues to improve even when sampled frame
number Nsam exceeds 48, due to the longer average video
length in ActivityNet Captions dataset. Balancing the frame
number and batch size for training, we choose Nsam = 64
for ActivityNet Captions.
TVP performance vs. prompt size. As shown in Tab. 4,
we can find that when visual prompts are small, they cannot
bring changes to the base model, and when visual prompts
are too large, the performance starts to decrease. This is
because key information within video frames might be re-
moved. However, the text prompts can bring significant per-
formance boost even when the text prompt size is small as
shown in Tab. 5, which is because the textual features has a
smaller dimension compared to visual features, and also the
text prompts are directly optimized in feature space during
training.
TVP performance vs. visual prompt operation. Visual
prompt is first proposed by [2], where visual prompts are



Table 6. The performance comparison of different visual prompt opera-
tions (‘remove’, ‘add’, ‘replace’) with fixed visual prompt size p = 96 on
Charades-STA and ActivityNet Captions datasets.

Operation Charades-STA ActivityNet Captions

R@1, IoU=m R@1, IoU=m
m=0.3 m=0.5 m=0.7 m=0.3 m=0.5 m=0.7

Original 61.29 40.43 19.89 57.20 40.16 19.14

Remove 61.29 40.43 20.0 57.20 40.16 19.14
Add 61.08 39.57 20.22 57.15 40.16 19.27

Replace 65.38 44.31 20.22 60.12 43.39 23.71
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Figure 5. Inference time comparison. (a) inference time comparison
between 2D vision encoder (ResNet-50) and 3D vision encoder (C3D).
(b)inference time comparison between the vision encoder and the other
modules of the 2D TVG model, where the sampled frame number for our
TVP framework is 1.2× the length of the video in seconds.

added to the image for transfer learning on classification
tasks. In contrast, our proposed prompting framework is
designed to compensate for the spatiotemporal information
loss in 2D visual features. Due to the differences in the
task, we try two different prompt operation strategies, ‘re-
place’ and ‘add’. ‘add’ is to add the visual prompts to the
pixel value of the video frame at the corresponding padding
locations. ‘replace’ is to replace the pixel values of video
frames with visual prompts at corresponding padding loca-
tions. ‘remove’ is in order to study the impact of remov-
ing the pixel values at the padding location. As shown in
Tab. 6, ‘add’ or ‘remove’ prompt operations have limited
effects on the base model. However, ‘replace’ does boost
the base model performance.
TVP achieves inference efficiency. As shown in Fig. 5,
we can find that the inference time required for visual fea-
ture extraction accounts for more than half of the infer-
ence time of the whole model, while the inference time
required for the 3D vision encoder is more than 5× com-
pared to the 2D vision encoder, and even more than the
time required for the whole TVG model using 2D vision
encoder, which fully demonstrates the feasibility of accel-
erating the overall inference speed by reducing the com-
plexity of the vision encoder. Need to note that if there are

Table 7. The performance comparison of different loss designs on
Charades-STA dataset.

Loss Function Selection R@1, IoU=m
m=0.3 m=0.5 m=0.7

LtIoU 55.05 29.89 11.82

LtIoU + Ldis 60.64 31.18 16.77
LtIoU + Ldur 59.78 30.97 16.34

LtIoU + Ldis + Ldur 61.29 40.43 19.89
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Figure 6. Loss landscape visualization in 2D plane: Finetuning w/o
prompts (left) and using prompts (right); see [33] for implementation.

multiple model weights for different sampled frame num-
ber settings and model weights can be adopted adaptively
for different lengths of videos, the inference speed for short
videos should increase, and the prediction results for long
videos will be further improved.
Ablation studies. Through Tab. 7, we can find that the
addition of either distance loss Ldis or duration loss Ldur

will result in a performance increase, but the combination
of the two will result in a significant performance increase
(11.34% at m = 0.3, 35.26% at m = 0.5, 68.27% at
m = 0.7, ), especially over tIoU thresholds m = 0.5 and
m = 0.7. This demonstrates that distance loss Ldis and du-
ration loss Ldur could provide more precise training guides
compared to only using temporal IoU loss LtIoU. Fur-
thermore, we posit that prompting may encode additional
spatial-temporal supervision to help the model trainer to es-
cape from bad local optima as shown in Fig. 6, where fine-
tuning w/ prompts yields a flatter loss landscape than the
one w/o prompts.

5. Conclusion
In this paper, we propose text-visual prompting to boost

the performance of 2D TVG methods by compensating for
the lack of spatiotemporal information in 2D visual features.
In contrast to 3D TVG methods, TVP allows us to effec-
tively co-train vision encoder and language encoder in a 2D
TVG model and improves the performance of cross- modal
feature fusion using only low-complexity sparse 2D visual
features. The effectiveness of our proposed TVP (text-
visual prompting) framework has been demonstrated on
two standard datasets, Charades-STA and ActivityNet. Our
models outperform all 2D models significantly, and also
achieve comparable performance to 3D models. What is
more, we achieve over 5× inference speedup over TVG
methods of using 3D visual features.
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