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Abstract

The abundance of instructional videos and their narra-
tions over the Internet offers an exciting avenue for under-
standing procedural activities. In this work, we propose to
learn video representation that encodes both action steps
and their temporal ordering, based on a large-scale dataset
of web instructional videos and their narrations, without us-
ing human annotations. Our method jointly learns a video
representation to encode individual step concepts, and a
deep probabilistic model to capture both temporal depen-
dencies and immense individual variations in the step or-
dering. We empirically demonstrate that learning temporal
ordering not only enables new capabilities for procedure
reasoning, but also reinforces the recognition of individual
steps. Our model significantly advances the state-of-the-
art results on step classification (+2.8%/+3.3% on COIN
/ EPIC-Kitchens) and step forecasting (+7.4% on COIN).
Moreover, our model attains promising results in zero-shot
inference for step classification and forecasting, as well as
in predicting diverse and plausible steps for incomplete pro-
cedures. Our code is available at https://github.
com/facebookresearch/ProcedureVRL.

1. Introduction
Many of our daily activities (e.g. cooking or crafting)

are highly structured, comprising a set of action steps con-
ducted in a certain ordering. Yet how these activities are
performed varies among individuals. Consider the exam-
ple of making scrambled eggs as shown in Fig. 1. While
most people tend to whisk eggs in a bowl, melt butter in a
pan, and cook eggs under medium heat, expert chefs have
recommended to crack eggs into the pan, add butter, and
stir them under high heat. Imagine a vision model that can
account for the individual variations and reason about the
temporal ordering of action steps in a video, so as to infer
prior missing steps, recognize the current step, and forecast

*Work done while Yiwu Zhong was an intern at Meta.
†Co-corresponding authors.
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Figure 1. Top: During training, our model learns from procedu-
ral videos and step descriptions to understand individual steps and
capture temporal ordering and variations among steps. Bottom:
Once trained, our model supports zero-shot step classification and
forecasting, yielding multiple credible predictions.

a future step. Such a model will be immensely useful for
a wide range of applications including augmented reality,
virtual personal assistant, and human-robot interaction.

Understanding complex procedural activities has been a
long-standing challenge in the vision community [7, 18, 22,
41, 44, 49]. While many prior approaches learn from anno-
tated videos following a fully supervised setting [13,27,72],
this paradigm is difficult to scale to a plethora of activ-
ities and their variants among individuals. A promising
solution is offered by the exciting advances in vision-and-
language pre-training, where models learn from visual data
(images or videos) and their paired text data (captions or
narrations) [30, 46, 57, 73] in order to recognize a variety of
concepts. This idea has recently been explored to analyze
instructional videos [34, 39], yet existing methods are lim-
ited to recognize single action steps in procedural activities.

In this paper, we present a first step towards modeling
temporal ordering of action steps in procedural activities by
learning from instructional videos and their narrations. Our
key innovation lies in the joint learning of a video repre-
sentation aiming to encode individual step concepts, and a
deep probabilistic model designed to capture temporal de-
pendencies and variations among steps. The video represen-
tation, instantiated as a Transformer network, is learned by
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matching a video clip to its corresponding narration. The
probabilistic model, built on a diffusion process, is tasked
to predict the distribution of the video representation for a
missing step, given steps in its vicinity. With the help of
a pre-trained vision-and-language model [46], our model is
trained using only videos and their narrations from auto-
matic speech recognition (ASR), and thus does not require
any manual annotations.

Once learned, our model celebrates two unique bene-
fits thanks to our model design and training framework.
First, our model supports zero-shot inference given an input
video, including the recognition of single steps and fore-
casting of future steps, and can be further fine-tuned on
downstream tasks. Second, our model allows sampling mul-
tiple video representations when predicting a missing action
step, with each presenting a possibly different hypothesis of
the step ordering. Instead of predicting a single represen-
tation with the highest probability, sampling from a proba-
bilistic model provides access to additional high-probability
solutions that might be beneficial to prediction tasks with
high ambiguity or requiring user interactions.

We train our models on a large-scale instructional video
dataset collected from YouTube (HowTo100M [40]), and
evaluate them on two public benchmarks (COIN [58] and
EPIC-Kitchens-100 [10]) covering a wide range of pro-
cedural videos and across the tasks of step classification
and step forecasting. Through extensive experiments, we
demonstrate that (1) our temporal model is highly effec-
tive in forecasting future steps, outperforming state-of-the-
art methods by a large margin of +7.4% in top-1 accu-
racy on COIN; (2) modeling temporal ordering reinforces
video representation learning, leading to improved clas-
sification results (+2.8%/+3.3% for step classification on
COIN/EPIC-Kitchens) when probing the learned represen-
tations; (3) our training framework offers strong results for
zero-shot step classification and forecasting; and (4) sam-
pling from our probabilistic model yields diverse and plau-
sible predictions of future steps.
Contributions. Our work presents the first model that
leverages video-and-language pre-training to capture the
temporal ordering of action steps in procedural activities.
Our key technical innovation lies in the design of a deep
probabilistic model using a diffusion process, in tandem
with video-and-language representation learning. The re-
sult is a model and a training framework that establish new
state-of-the-art results on both step classification and fore-
casting tasks across the major benchmarks. Besides, our
model is capable of generating diverse step predictions and
supports zero-shot inference.

2. Related Work
Understanding Procedural Activities. Reasoning about
procedural activities, including their action steps and the

temporal ordering of these steps, has been a central problem
in activity recognition. While early works model tempo-
ral ordering with stochastic grammars [7, 18, 22, 41, 44, 49],
more recent works consider supervised learning to local-
ize steps and predict their ordering by learning from videos
with human annotated action steps [8,10,13,27,58,72,74].
To alleviate the burden of costly video annotations, sev-
eral works propose various forms of weakly supervised
settings, with assumptions that the ordered list of steps is
given without their temporal boundaries [5, 6, 70, 74], or
that the key steps and their ordering remain fixed across all
videos [1, 12, 13, 17, 28, 52].

Most of prior methods focus on the tasks of step classifi-
cation and localization [1,5,6,12,13,28,52,74]. Others have
considered the tasks of step forecasting [51], step verifica-
tion [45] and procedure planning [70]. Our work also seeks
to understand procedural activities. Different from these ap-
proaches, our method focuses on learning video represen-
tation from videos and their narrations without using hu-
man annotations. The resulting video representation can be
leveraged for step classification and step forecasting.

Learning from Procedural Videos and Narrations. The
success of vision-and-language pre-training has fueled a
new line of research that seeks to learn concepts of in-
dividual steps from instructional videos and their narra-
tions [19, 37, 53, 65]. For example, Miech et al. [39] pro-
pose MIL-NCE to learn representations from instructional
videos [40] and their narrations extracted using ASR.

The most relevant work is DistantSup [34], where they
propose using distant supervision from a textual knowl-
edge base (wikiHow) [26] to denoise text narrations from
ASR. Specifically, DistantSup leverages a pre-trained lan-
guage model [55] to link step descriptions from wikiHow
to text narrations from video ASR results, and thus to cre-
ate training labels for individual steps in videos. Differ-
ent from [34], our method models the temporal ordering
of steps in procedural activities, thus moves beyond rep-
resentations of single steps to support temporal reasoning
in videos. Further, our method learns from videos and nar-
rations only, with the help of a pre-trained image-language
model [46] yet without using a textual knowledge base.

Video-and-Language Pre-Training. A relevant topic is
video-and-language pre-training, aiming at learning video
representation from videos and their paired natural language
descriptions [3,15,16,29,31,36,57,62,66,67,69,73], often
generated from ASR outputs. Despite the latest develop-
ment in ASR, automatically-transcribed speech from videos
can be rather noisy and lacks precise temporal alignment
with the visual content. Several recent works seek to ad-
dress this challenge. VideoCLIP [66] starts from the pre-
trained MIL-NCE model and further improves the model
by retrieval augmented training with overlapped video-text
pairs. Bain et al. [3] collect a less noisy dataset of video alt-
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Figure 2. Overview of our approach. Left panel: Our model consists of (1) a video encoder that takes a video clip and encodes it
into a video embedding; (2) a transformer-based denoising model that samples noises from Gaussian distribution and generates video
embedddings conditioned on the embeddings of adjacent video clips. Right panel: We leverage trained image-language model CLIP to
create pseudo labels for individual video clips (a). After training, our model supports step classification given an input video clip (b), and
step forecasting given a video that records previous steps (c). Note that diverse embeddings can be generated by sampling various noises.

text pairs and geared the model to match these pairs. Our
work shares the key idea of learning from video and text
data as prior work, and seeks to leverage external knowl-
edge from a pre-trained image-language model [46].

Another relevant work is MERLOT [69]. While both
MERLOT and our work seek to learn video representa-
tion, our method differs from MERLOT in two folds. Our
method models the sequence order of video clips for under-
standing procedural activities. MERLOT learns binary rela-
tive order between two given video frames for multi-modal
reasoning and does not directly support action forecasting.
Both methods consider a masked prediction task, yet MER-
LOT predicts the most likely text embeddings, while our
method estimates the distribution of video representations
using a deep probabilistic model.
Diffusion Models. Diffusion models [54, 56] provide a
powerful approach to characterize the probability density of
high dimensional signals, and have recently demonstrated
impressive results on generating high fidelity visual data,
such as images [42,47,48,50], videos [21], and human body
motion [60]. Our work adapts diffusion process to model
the temporal ordering of steps in procedural videos. In do-
ing so, our method not only facilities the learning of ex-
pressive video representations for individual steps, but also
enables the anticipation of future action steps.

3. Method
We consider the problem of learning video representa-

tion for understanding procedural activities from instruc-
tional videos and their narrations. An input video is rep-
resented as a sequence of N clips {v1, v2, ..., vN}. Each

vi captures a potential action step in the input video, and
the time step i records the temporal ordering of these clips.
The video clips {vi} can be either segmented by using
the timestamps of ASR outputs (as we consider during
training), or densely sampled from a video following their
temporal ordering (as we use during inference). During
learning, we further assume that an ordered set of sen-
tences {s1, s2, ..., sN} is associated with the video clips
{v1, v2, ..., vN}, with each si describing the action step in
video clip vi. These sentences {si} can be the output text
from ASR, or given by matching the video clips to a text
corpus using an external vision language model [46].

Procedural-aware Video Representation. Our goal is to
learn video representation that encodes both action step
concepts and their temporal dependencies across a range
of procedural activities. Our representation consists of (a)
a video encoder f that extracts a representation xi from
an input clip vi (i.e., xi = f(vi)); and (b) a probabilistic
model that characterizes the conditional probability p(xj =
f(vj)|{xi = f(vi)}i 6=j) ∀j. This design is highly flexi-
ble and supports a number of procedural reasoning tasks.
f offers video representation suitable to classify individual
steps in a clip. p(xj |{xi}i 6=j) models the temporal depen-
dencies among steps, and can be used to predict the video
representation of missing steps and further infer their labels.

Method Overview. To learn our representation, we lever-
age a pre-trained text encoder g that remains fixed dur-
ing learning, and extend the idea of masked token mod-
eling, populated in natural language processing [24]. For
each input video and its narrations at training time, we ran-
domly sample a clip vj from {v1, v2, ..., vN} and mask it



out. We then train our model to predict the distribution of
xj = f(vj) from {xi = f(vi)}i6=j (i.e., p(xj |{xi}i 6=j)),
align the expectation of the predicted distribution E(xj)
with the corresponding text embedding yj = g(sj), and
match all other video representations {xi = f(vi)}i6=j to
their text embeddings {yi = g(si)}i 6=j .

Despite the conceptual similarity, our learning is fun-
damentally different from masked token prediction. Our
method seeks to characterize the distribution of xj instead
of predicting the most likely xj , resulting in a more princi-
pled approach to capture the temporal dependencies among
steps, as well as the new capability of sampling multiple
high-probability solutions for xj . Our method is illustrated
in Fig. 2. In what follows, we lay out the formulation of our
model, and describe its training and inference schemes.

3.1. Modeling Action Steps and Their Ordering

Formally, given an input video with its clips
{v1, v2, ..., vN} and their narrations {s1, s2, ..., sN}, our
method assumes a factorization of p(Y = {yi}|X = {xi})
with video representation xi = f(vi) (learnable) and text
embedding yi = f(si) (pre-trained and fixed).

p(Y |X) = p(yj |xj) · p(xj |{xi}i6=j) ·
∏

i p(yi|xi) ∀j. (1)

p(yi|xi) measures the alignment between a video represen-
tation xi and a text embedding yi. p(xj |{xi}i 6=j) charac-
terizes the distribution of a video representation for a miss-
ing step given the representations of all other steps, thereby
modeling the temporal ordering of steps. Note that our
model is not limited to single step prediction and can be
readily extended to predict multiple missing steps.

Matching Image and Text Representations. Our model
matches the video representation xi and text embedding yi
in a learned vector space, such that the alignment between
them can be measured by cosine similarity. We will later in-
stantiate this definition into a more tractable form for learn-
ing. Yet it suffices to notice that p(yj |xj) does not involve
additional learnable parameters given xi and yi.

Modeling Step Ordering with Diffusion Process. The
key challenge lies in the modeling of p(xj |{xi}i6=j), as the
video representation xi is at least of a few hundred dimen-
sions. To this end, we propose to model p(xj |{xi}i 6=j)
using a diffusion process [54, 56] conditioned on observed
video representations {xi}i 6=j . Here we briefly describe dif-
fusion process in the context of our model, and refer the
readers to recent surveys for more technical details [9, 68].

Specifically, we assume a diffusion process that gradu-
ally adds noise to the input xj over t ∈ [0, 1, ..., T ] steps.

p(x1:Tj |x0) =
T∏

t=1

p(xtj |xt−1
j ),

p(xtj |xt−1
j ) = N (

√
αtx

t−1
j , (1− αt)I).

(2)

where αt are constant hyper-parameters. The reverse diffu-
sion (denoising) process is parameterized with

p(x0:Tj |{xi}i6=j) = p(xTj |{xi}i6=j)
∏T
t=1 pθ(x

t−1
j |xtj , {xi}i 6=j). (3)

With sufficiently large T , p(xTj |{xi}i 6=j) ∼ N (0, I), i.e. a
standard Gaussian noise that is independent of {xi}i6=j . The
denoising process is approximated by pθ(xt−1j |xtj , {xi}i 6=j)
using a neural network with parameters θ such that

pθ(x
t−1
j |xtj , {xi}i 6=j) = N (µθ(x

t
j , {xi}i 6=j),Σθ(xtj , {xi}i 6=j)) (4)

In practice, we follow Ho et al. [20] and Tevet et al. [60]
to directly predict x0j by using a denoising model h. With
slight abuse of the symbols, we denote

x̂0j = h(xtj , {xi}i 6=j , t). (5)

h is realized using a Transformer network with the embed-
ding of step t as part of its inputs. Once learned, one can
sample from N (0, I) and apply h through the denoising
process to predict xj based on {xi}i6=j .

3.2. Learning from Videos and Their Narrations

Our training approximately maximizes the likelihood of
Eq. 1 given a set of training videos and their narrations.

Pseudo Labels from CLIP. It is straightforward to directly
align video representations to the embeddings of their corre-
sponding ASR text. Doing so, however, faces the challenges
of low-quality ASR text and imprecise alignment between
video and ASR sentences. To address these challenges, we
propose to create pseudo labels by leveraging a pre-trained
image-language model (e.g., CLIP [46]).

Specifically, we first create a pool of step descriptions in
the form of verb phrases (e.g., “add water”, “wear gloves”)
parsed from ASR sentences [53], with their embeddings as
{y1:K}. Then a trained CLIP model is applied to link each
video clip with verb phrases, by matching the averaged vi-
sual features across frames with the language embeddings
of verb phrases. The resulting matching scores are used as
our training target.

Our pseudo labeling instantiates the matching p(yi|xi)
between video representation and text embedding using

p(yi|xi) = softmax

(
xTi yi

τ‖xi‖|yi‖

)
, (6)

where yi is selected from pool of verb phrases, i.e. yi ∈
{y1:K}, and τ is the pre-defined temperature. The matching
problem thus is converted into a “classification” problem,
making the training feasible.

Learning Objective and Training Loss. Our training min-
imizes an evidence upper bound of the negative log like-
lihood − log p(Y |X) in Eq. 1. The detailed derivation of



evidence upper bound is described in the Appendix. Our
objective function constitutes three loss terms:

L = LXE + LMSE + LMC . (7)

The first term LXE seeks to match observed video repre-
sentation {xi} to their text embeddings {yi}, given by

LXE = 1
N−1

∑
iH (p′i, p(yi|xi)) , (8)

where H(·, ·) is the cross entropy, and p′i are soft targets
given by CLIP matching scores. p(yi|xi) defined in Eq. 6
measures the similarity between xi and yi.

The second term LMSE comes from the Kull-
back–Leibler (KL) divergence within our diffusion model,
and is computed as

LMSE = Ex0
j∼p(x0

j |{xi}i6=j), t∼[1,T ]

[
‖x0j − x̂0j‖22

]
. (9)

Note that unlike a standard diffusion model, our model di-
rectly predicts x̂0j . This term is applied at each step t.

The third term LMC is derived from matching the pre-
dicted video representation x̂0j to its text embedding yj .

LMC = Ex0
j∼p(x0

j |{xi}i6=j), t∼[1,T ]

[
H
(
p′j , p(yj |x̂0j )

)]
, (10)

where p′j are again soft targets given by CLIP model, and
x̂0j is denoised from a sampled noise. During training, we
adopt Monte Carlo estimation for Ep

[
− log p(yj |x̂0j )

]
, by

minimizing − log p(yj |x̂0j ) for each sampled x̂0j . We attach
this term at each step t.

A critical design choice lies in p(yj |x̂0j ). p(yj |x̂0j ) is
simplified into a score function between a video repre-
sentation and a finite set of text embeddings (defined us-
ing verb phrases). This allows us to reach our loss terms
without worrying about global normalization constant as
commonly encountered in energy-based models. Indeed,
H(p′j , p(yj |x̂0j )) can be interpreted as providing guidance
by matching video to text embeddings. This term thus
resembles the key idea of classifier guidance, which has
shown to be helpful for learning diffusion models [11].

3.3. Model Inference

Once trained, our model offers a procedure-aware rep-
resentation with two key components. First, the video en-
coder f(·) serves as a feature extractor for any input video
clips. Second, the diffusion model, represented as its de-
noising model h(·), captures the temporal dependencies
among steps. Our representation naturally supports a num-
ber of tasks. Here we demonstrate how our model can be
used for step classification and step forecasting.
Step Classification. An input video clip v can be encoded
using f(·). The video representation x = f(v) can be di-
rectly compared to the text embeddings [46], so as to sup-
port zero-shot step classification. Alternative, an additional

classifier can be attached on top of f and further fine-tuned
to recognize the action step in input clip.

Step Forecasting. A future video clip feature xj can be
sampled from the diffusion model by drawing from a Gaus-
sian distribution and denoising using h(·). The predicted xj
can be further classified into action steps. This prediction
can be done using again Monte Carlo estimation given by

Exj∼p(xj |{xi}i6=j) [p(yj |xj)] . (11)

Specifically, a noise xT is first sampled from Gaussian dis-
tribution and our denoising model gradually denoises it. At
each step t, the denoising model h takes a noisy xtj , predicts
clip feature x̂0j , and diffuses it to xt−1j based on the sampled
noise xTj , as demonstrated in Eq. 2. After T iterations, the
predicted clip feature at t = 0 is used to match text em-
beddings. By sampling noises for multiple times, we can
estimate the most likely yj .

However, sampling can be costly. In practice, to obtain
top-1 prediction for missing steps, we adopt approximate
inference, where the sampled noise is replaced with a fixed
zero vector, corresponding to peak in the Gaussian distribu-
tion. Our empirical results validate that approximate infer-
ence achieves a very close performance as the expectation
over multiple sampled noises.

4. Experiments and Results
In this section, we first introduce datasets, evaluation

protocols and implementation details. Then we demonstrate
our results on step forecasting and step classification bench-
marks. Finally, we show our qualitative results and conduct
ablations to study our model components.

Datasets. For pre-training, we consider HowTo100M
dataset [40] with 130K hours of YouTube tutorial videos.
The videos cover various daily tasks, such as foods, house-
work, vehicles, etc. We use a language parser [53] to ex-
tract the verb phrases from ASR sentences of these videos
and keep 9,871 most frequent verb phrases. For fine-tuning,
we train our model on COIN dataset [58, 59] and EPIC-
Kitchens-100 dataset [10], respectively. COIN has 476
hours of YouTube videos covering 180 tasks, such as dishes,
vehicles, housework, etc. Human annotators summarize
778 unique steps in total (e.g., “stir the egg”), and anno-
tate the temporal boundary and the category of each step in
all videos. EPIC-Kitchens-100 dataset [10] has 100 hours
of egocentric videos, capturing daily activities in kitchen.
Each action in the videos is annotated with an action label
and a noun label. There are 97/300 unique actions/nouns in
total. We use the human annotations in COIN and EPIC-
Kitchens-100 to evaluate the model performance.

Evaluation Protocols. Our evaluation considers zero-shot
and fine-tuning settings for step classification and step fore-



Model Pretraining Top-1 Acc. (%)
Supervision Dataset Zero-shot Fine-tuning

1 SlowFast [14] Supervised: action labels Kinetics – 25.6
2 TimeSformer [4] Supervised: action labels Kinetics – 34.7
3 S3D [64] Unsupervised: ASR w. MIL-NCE [39] HT100M – 28.1
4 TimeSformer [4] Unsupervised: ASR w. MIL-NCE [39] HT100M – 34.0
5 DistantSup [34] Unsupervised: ASR + wikiHow HT100M – 39.4

6 Random Guess – – 0.1 –
7 CLIP [46] Unsupervised: captions CLIP400M 9.4 –
8 Ours Unsupervised: ASR HT100M 11.3 46.8

9 Ours (oracle-5) Unsupervised: ASR HT100M 14.7 51.8

Table 1. Step forecasting on COIN dataset. We compare to a set of strong baselines and a oracle protocol built on our method.

casting on COIN and EPIC-Kitchens-100 datasets. Zero-
shot setting indicates that no human annotation is used dur-
ing pre-training. The pre-trained model is directly tested on
the evaluation dataset. Fine-tuning setting further fine-tunes
the pre-trained model using human annotations of action
steps. For a fair comparison, we follow the same fine-tuning
schemes as previous work in respective benchmarks.
Implementation Details. We adopted TimeSformer [4]
as our video encoder, and used the Transformer [61] from
CLIP’s text encoder as denoising model. We set the max-
imum step T to 4, maximum length of video sequence as
9, and the number of Transformer layers as 4. We used
a trained CLIP model (ViT-B/16) to create pseudo labels
and encode step descriptions. Following DistantSup [34],
for pre-training we used SGD for 5 epochs and then
AdamW [35] for 25 epochs with 128 videos in a batch. For
fine-tuning, we used AdamW for 15 epochs with batch size
of 64. Temperature τ was set to 0.02. Additional imple-
mentation details can be found in Appendix.

4.1. Step Forecasting

Setup. We follow the benchmark in DistantSup [34] to eval-
uate step forecasting on COIN, where top-1 accuracy is re-
ported. Given a video with previous steps, the model antic-
ipates the category of next single step (e.g., “stir the egg”).
This task thus requires explicit modeling of the temporal or-
dering among steps. We only fine-tune the diffusion model
while keeping the video encoder frozen.
Results. Table 1 compares results of our method with a se-
ries of baselines. The closest competitor is DistantSup [34]
in L5, which learns from ASR text and an external tex-
tual knowledge base [26] using the same video backbone
(TimeSformer [4]). We also include other baselines re-
ported in DistantSup, e.g., SlowFast [14], TimeSformer [4],
and S3D [64] from L1 to L4, where models are super-
vised using human-annotated action labels or video ASR
text. Our model significantly outperforms all baselines by
at least 7.4% for the fine-tuning setting (e.g., 46.8% in L8
vs. 39.4% in L5). Further, we consider a strong baseline
for the zero-shot setting by re-purposing CLIP model [46]

to match the input video with the descriptions of all step
candidates. Comparing L7 and L8, our model outperforms
this variant of CLIP by a clear margin (11.3% vs. 9.4%).

A unique property of our model is its ability to output
multiple, potentially different predictions. We further eval-
uate the upper bound of our results by assuming an oracle
ranking function that always selects the correction predic-
tion from 5 outputs sampled from our model (Ours (oracle-
5)). This oracle further improves the top-1 accuracy from
11.3% to 14.7% in L9, suggesting that our model is able to
produce diverse predictions for step forecasting.

4.2. Step Classification

Setup. Besides step ordering, we also evaluate step classi-
fication on COIN and EPIC-Kitchens-100 datasets, where a
model is tasked to classify a trimmed video clip into one of
the step categories. For COIN, we follow DistantSup [34] to
only fine-tune the additional linear layer on top of the pre-
trained video encoder. For EPIC-Kitchens-100, we fully
fine-tune the video encoder, following [2, 25, 34]. We re-
port the accuracy of step classification on COIN, and that of
verb, noun, and action on EPIC-Kitchens-100.

Results. Table. 2 summarizes the results on COIN. We con-
sider baselines as in DistantSup from L1 to L8 (e.g., Slow-
Fast [14], VideoCLIP [66]), where models are trained using
either action labels or video ASR text. To support zero-shot
inference, we re-implement a model variant (DistantSup†)
described in [34]. This model is pre-trained to match video
embeddings with language embeddings and thus supports
recognizing arbitrary step descriptions in L9. We also report
the results of CLIP [46], which creates the pseudo labels for
our pre-training in L10. As shown, our model consistently
outperforms all the other methods by a clear margin under
different settings. For example, ours outperforms CLIP by
1.8% in zero-shot setting (16.6% in L11 vs. 14.8% in L10),
and outperforms DistantSup by 2.8% (56.9% in L11 vs.
54.1% in L8) in fine-tuning setting.

Table. 3 presents our results on EPIC-Kitchens-100.
While TimeSformer [4] in L8 and DistantSup [34] in L9
use the same video encoder architecture as ours, our model



Model Pretraining Top-1 Acc. (%)
Supervision Dataset Zero-shot Fine-tuning

1 TSN (RGB+Flow) [58] Supervised: action labels Kinetics – 36.5*
2 S3D [64] Unsupervised: ASR w. MIL-NCE [39] HT100M – 37.5*

3 SlowFast [14] Supervised: action labels Kinetics – 32.9
4 TimeSformer [4] Supervised: action labels Kinetics – 48.3
5 ClipBERT [29] Supervised: captions COCO+VG – 30.8
6 VideoCLIP [66] Unsupervised: ASR HT100M – 39.4
7 TimeSformer [4] Unsupervised: ASR w. MIL-NCE [39] HT100M – 46.5
8 DistantSup [34] Unsupervised: ASR + wikiHow HT100M – 54.1
9 DistantSup† [34] Unsupervised: ASR + wikiHow HT100M 10.2 46.6
10 CLIP [46] Unsupervised: captions CLIP400M 14.8 45.9
11 Ours Unsupervised: ASR HT100M 16.6 56.9

Table 2. Step classification on COIN dataset. DistantSup† is re-implemented based on their official code base. It is a variant reported in
their paper that pre-trains the model to match language embeddings. * indicates the model is fully fine-tuned on COIN dataset.

Model Pretraining Supervision Pretraining Dataset Action (%) Verb (%) Noun (%)

1 TSN [63] – – 33.2 60.2 46.0
2 TRN [71] – – 35.3 65.9 45.4
3 TBN [23] – – 36.7 66.0 47.2
4 MoViNet [25] – – 47.7 72.2 57.3
5 TSM [33] Supervised: action labels Kinetics 38.3 67.9 49.0
6 SlowFast [14] Supervised: action labels Kinetics 38.5 65.6 50.0
7 ViViT-L [2] Supervised: action labels Kinetics 44.0 66.4 56.8
8 TimeSformer [4] Supervised: action labels Kinetics 42.3 66.6 54.4
9 DistantSup [34] Unsupervised: ASR + wikiHow HT100M 44.4 67.1 58.1
10 Ours Unsupervised: ASR HT100M 47.7 69.5 60.3

Table 3. Step classification on EPIC-Kitchens-100 dataset with fine-tuning setting. Our method outperforms the close competitors (TimeS-
former, DistantSup), with results on par with even stronger backbone models (MoViNet).

in L10 achieves a clear gain over them, e.g., +3.3%/2.2%
for action/noun. The only exception is the lower accuracy
(-2.7%) on verb when compared with MoViNet (MoViNet-
A6) in L4, a heavily optimized video backbone.

4.3. Predicting Diverse Future Steps

One of the defining characteristics of our model is that it
allows us to sample multiple predictions of video represen-
tation corresponding to a future step. This leads to an inter-
esting question about the diversity of the predictions, as par-
tially evaluated in our prior experiments. Here we present
further demonstration of this capability by visualizing the
step forecasting results, and more interestingly, using these
results to generate future video frames.

Fig. 3 presents the visualization for zero-shot step fore-
casting and key frame generation. In this setting, our model
is pre-trained without any human annotation and is directly
tested for step forecasting. We show multiple predictions
sampled from our diffusion model. Further, we demonstrate
that the text description of predicted step can be used to
generate the key frames by leveraging the stable diffusion
model [48]. To keep the generated images visually consis-
tent with the input video, we let stable diffusion model take
one input video frame and the description of predicted step
as input and generate an image.

As shown in Fig. 3, our model is capable of forecasting
multiple, reasonable next steps (e.g., “flatten the dough”,
“bake pizza”), based on which credible future frames can
be generated. These results suggest that our model not
only predicts meaningful video representations of individ-
ual steps, but also captures the variations in step ordering

4.4. Ablation Studies

We conduct ablation study on COIN, including step
classification/forecasting with zero-shot/fine-tuning setting.
Additional ablation results can be found in Appendix.

Does modeling of temporal order help? In Table 4, we
conduct a comparison on two different pre-training tasks:
(1) pre-training by only matching video representations to
text embeddings of the verb phrases; and (2) pre-training
by our method that combines matching and temporal order
modeling. In comparison to pre-training using matching
only, our method significantly improves the performance
for both zero-shot and fine-tuning settings and across step
classification and step forecasting tasks. For example, zero-
shot step classification is improved from 13.7% to 16.6%.
Our results after fine-tuning attains a major gain of +3.6%
and +1.8% for step classification and step forecasting, re-
spectively. Importantly, our method also enables zero-shot
step forecasting by predicting future video representations.



Diverse predictions and generated key frames for next stepModel input: videos

flatten the dough bake cookiesbake pizza

put the ingredients 
into the bowl

prepare seasonings 
and side dishes

pour some salt to 
the garlics

Figure 3. Visualization of zero-shot step forecasting and key frame generation. Without using any human annotation during training, our
trained model is directly evaluated on COIN dataset [59]. Given a video recording previous steps (left), our model is capable of forecasting
multiple reasonable predictions and each predicted step is further used for key frame generation (right). We adopt stable diffusion [48] for
key frame generation, taking inputs as a text description of step and a sampled frame from input video.

Model Pre-training task Order modeling Zero-shot (top-1 acc. %) Fine-tuning (top-1 acc. %)
Step classification Step forecasting Step classification Step forecasting

Ours Matching – 13.7 No zero-shot ability 52.8 41.6
Ours Matching + Ordering Mask 16.9 10.6 56.4 43.2
Ours Matching + Ordering Diffusion 16.6 11.3 56.9 46.8

Table 4. Ablation study of pre-training tasks and order modeling. Our proposed order pre-training not only enables zero-shot forecasting,
but also significantly improves zero-shot step classification and the fine-tuning results across evaluation tasks. Our diffusion models further
improves mask modeling, especially on fine-tuning step forecasting.

These results suggest that our procedure-aware pre-training
can effectively facilitate the learning for both video repre-
sentation and step ordering in procedure activities.

Masked Prediction vs. Diffusion Model. We explore a
model variant using the mask prediction, sharing similar
spirit as the well-known Masked Language Modeling in
BERT [24]. Specifically, this variant is trained to recover
the video embeddings of masked video clips so that it can
match to the assigned verb phrases. Our diffusion model
largely outperforms the results of this variant, especially on
the step forecasting (+0.7% and +3.6% for zero-shot and
fine-tuning, respectively, as in Table 4). This result indicates
that our diffusion model is a more suitable way to capture
the variation inside the step ordering.

Approximate Inference. In Table 5, we validate that our
approximate inference with a single zero-vector can achieve
close empirical results as the Monte Carlo estimation (e.g.,
within 0.1% difference). Monte Carlo estimation computes
the weighted average of multiple sampled predictions (e.g.,
from 5 sampled noises). We run the experiment for 5 times
and the variation is small (e.g., ±0.03%). Further, if we
assume an oracle ranking function to pick the correct one
from sampled predictions, our results can be further boosted
by 3.4% on average, suggesting diverse predictions from
our model and ample room to improve.

Model Inference Type Top-1 Acc. (%)

Ours Approximation 11.33
Ours Expectation 11.34 ± 0.03
Ours Oracle 14.73 ± 0.13

Table 5. Ablation study of inference schemes. “Approximation”
uses a zero-vector as noise, “Expectation” adopts Monte Carlo es-
timation, and “Oracle” further assumes an oracle ranking function
to pick the correct prediction derived from multiple noises.

5. Conclusion

In this work, we presented a model and a training frame
work for learning procedure-aware video representation
from a large-scale dataset of instructional videos and their
narrations, without the need for human annotations. The
key strength of our model lies in the joint learning of a
video encoder capturing concepts of action steps, as well
as a diffusion model reasoning about the temporal depen-
dencies among steps. We demonstrated that our model
achieves strong results on step classification and forecasting
in both zero-shot and fine-tuning settings and across COIN
and EPIC-Kitchens-100 datasets. We believe our work pro-
vides a solid step towards understanding procedural activi-
ties. We hope that our work will shed light on the broader
problem of video-language pre-training.
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Appendices
In appendices, we describe (1) the derivation of our training
loss, (2) the implementation details of data pre-processing,
our model architecture, and key frame generation, (3) exper-
iment results on the additional benchmark on COIN dataset,
and (4) additional ablation studies on open-vocabulary
recognition, the effects of using ASR phrases and backbone
architecture. For sections, figures, tables, and equations, we
use numbers (e.g., Sec. 1) to refer to the main paper and
capital letters (e.g., Sec. A) to refer to this appendix.

A. Derivation of Training Loss
Our method aims at minimizing the negative log likeli-

hood − log p(Y |X) (Eq. 1 in paper). Here, we provide the
derivation of its evidence lower bound, as shown in Eq. L,
where xi are video embeddings learned by our video en-
coder f(·), yi are text embeddings offered by a pre-trained
text encoder g(·) from CLIP [46] that remains fixed during
our training. {xi} and {yi} are observed video and text em-
beddings, while xj and yj are the missing (masked) video
and text embeddings.

There are three terms in the evidence lower bound, with
each one corresponding to a loss in our main paper. First,
p(yi|xi) is computed by Eq. 6 of the paper, as a softmax
over the cosine similarity between an input video embed-
ding and a set of text embeddings. This term corresponds
to the loss LXE (Eq. 8). Second, p(xj |{xi}i 6=j) is ap-
proximated using a diffusion model that consists of a dif-
fusion process and an reverse diffusion (denoising) pro-
cess. This term is performed by the loss LMSE (Eq. 9).
Third, p(yj |xj) seeks to predict text embedding yj using
the masked video embedding xj . It is again calculated by
Eq. 6 of the paper. This term corresponds to LMC (Eq. 10).

B. Additional Implementation Details
Data Pre-processing: During pre-training, we used the
timestamps of ASR sentences to segment video clips from
full videos. For step classification, the video clips are
trimmed by human-annotated step boundaries. When eval-
uating step classification, multi-view augmentation is ap-
plied with 3 clips sampled on the temporal dimension.
For step forecasting (both training and evaluation), we
cropped 68 seconds of video before the target action and
uniformly cut it into 8 video clips as the model input. For
HowTo100M [40] and COIN dataset [58, 59], we sampled
1 frame per second. For EPIC-Kitchens-100 dataset [10],
we sampled 16 frames per second. The text embedding of
each verb phrase was the averaged embedding over 28 ac-
tion prompts1.

1https://github.com/openai/CLIP/blob/main/data/prompts.md#kinetics700

Model Architecture and Hyper-parameters: We adopted
TimeSformer architecture [4] for our video encoder.
TimeSformer is a Transformer [61] based model that ap-
plies attention mechanism over both spatial and temporal di-
mension. For denoising model, we used Transformer from
CLIP’s implementation2 with bi-directional attention. In
denoising model, we implemented the maximum time level
T as 4, maximum length of video sequence as 9, and the
number of Transformer layers as 4. For time variable in dif-
fusion model, we first mapped it into vector representation
using position embeddings and then added it to the input of
Transformer. When calculating the matching score between
video and text embedding (Eq. 4 in main paper), we divided
the matching score by a temperature τ = 0.02 when com-
puting the softmax.
Details about Future Key Frame Generation: Future key
frame generation is posed as text guided image-to-image
translation, where the text is provided by our predicted step
and the image is from a sampled frame within the current
video. Specifically, we use a pre-trained stable diffusion
model3 and employ SDEdit [38]. SDEdit adds noise to the
sampled input video frame, and then denoises the resulting
image using stable diffusion model and the text of our pre-
dicted step, in order to generate a future video frame.

C. Additional Benchmarks
C.1. Procedural Activity Classification

We follow the benchmark in DistantSup [34] to evalu-
ate procedural activity recognition on COIN with top-1 ac-
curacy reported. Given a video that has recorded multiple
steps, the model classifies the entire video into an activity
category (e.g., “make coffee”). Similar to step forecasting,
we only fine-tune the diffusion model to predict activity cat-
egory, with the frozen video encoder as a feature extractor.

In Table A, we compare our model with a series of base-
lines as in DistantSup [34], such as SlowFast [14], TimeS-
former [4] and S3D [64]. These baselines are pre-trained
by either human-annotated action labels or video ASR sen-
tences. Our closest competitor is DistantSup [34] which
learns individual action concepts by leveraging an external
text knowledge base (wikiHow). Our model clearly outper-
forms all baseline models by a large margin (e.g., +1.9 over
DistantSup in L8). Our experimental results suggest that
our order pre-training approach, which captures the order
among steps, can also improve the recognition of the entire
sequence of steps, even if it was not designed for this task.

D. Additional Ablation Studies
We present additional ablation studies on our model. The

experiment settings follow the ablation study in the main
2https://github.com/openai/CLIP
3https://github.com/CompVis/stable-diffusion
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(L)

Model Pretraining Top-1
Supervision Dataset Acc. (%)

1 TSN (RGB+Flow) [58] Supervised: action labels Kinetics 73.4*
2 S3D [64] Unsupervised: ASR w. MIL-NCE [39] HT100M 70.2*

3 SlowFast [14] Supervised: action labels Kinetics 71.6
4 TimeSformer [4] Supervised: action labels Kinetics 83.5
5 ClipBERT [29] Supervised: captions COCO+VG 65.4
6 VideoCLIP [66] Unsupervised: ASR HT100M 72.5
7 TimeSformer [4] Unsupervised: ASR w. MIL-NCE [39] HT100M 85.3
8 DistantSup [34] Unsupervised: ASR + wikiHow HT100M 88.9
9 Ours Unsupervised: ASR HT100M 90.8

Table A. Procedural activity classification on COIN dataset. * indicates the model is fully fine-tuned on COIN dataset.

COIN steps Step descriptions during pre-training

fry eggs fry chicken, lay eggs

calibrate the liquid calibrate the meter

scrub the bathtub clean the bathroom

chase for the frisbee –

knead the meat cut the meat, cook the meat

bake pizza bake soda, bake powder, make pizza

put the sheet on the bed take a sheet, make a sheet

melt the wax with water melt the plastic, melt the cheese, put wax

wet and wash the hair moisturize hair, rinse hair, wet my brush

place light into pumpkin place your lights, adjust the light

Table B. Visualization of step concepts. We show COIN steps
(left) and the step descriptions in pre-training (HowTo100M) that
have common verb/noun (right).

paper, unless otherwise noticed.

Can our model identify open-vocabulary step concepts?
Part of our learning objective is to match the video rep-
resentations with text embeddings. Such a design allows
our model to support zero-shot recognition as we demon-
strated in the paper. One natural question is how well our
model performs during zero-shot recognition when facing
step concepts that have not been seen during pre-training.

Figure A measures the overlap between step concepts
during pre-training (from ASR results on HowTo100M)

and during zero-shot recognition (from human-annotated
categories on COIN), and reports per-category results for
both seen and novel step categories. Specifically, we adopt
BLEU-1 score [43] to match the step concepts, and report
per-category top-1 accuracy for zero-shot step classification
and forecasting. BLEU-1 score as zero indicates the novel
steps and BLEU-1 score as one suggests that the exact steps
have been seen during pre-training. In addition, we show
the steps that have a common verb/noun as COIN steps in
Table B.

We find that our model achieves high accuracy even if
facing novel steps, i.e. the steps have low BLEU-1 score
(e.g., 90.5% for “fry eggs”). Further, we compute the top-
1 accuracy for the steps with high BLEU-1 scores (e.g.,
≥ 0.7) and the steps with low BLEU-1 scores (e.g., < 0.7).
These two groups include 103 and 675 steps, respectively,
and have close top-1 accuracy across tasks (e.g., 15.9 vs.
16.7 for step classification, 14.2 vs. 10.9 for step forecast-
ing). These results suggest that our model is not limited
to the step concepts considered in pre-training and supports
open-vocabulary step recognition. We conjecture that our
model has learned the components from similar phrases
(e.g., “fry chicken” and “lay eggs” shown in Table B),
by learning to project video embeddings into the semantic
space defined by the text embeddings of CLIP.

Are ASR phrases sufficient to learn step concepts? We
propose to use the step phrases parsed from video ASR
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Figure A. Per-category top-1 accuracy for zero-shot step classifi-
cation and forecasting. We rank the step concepts in COIN dataset
by calculating its maximum BLEU-1 score [43] versus all step de-
scriptions used in pre-training.

Source Zero-shot Fine-tuning
Classification Forecasting Classification Forecasting

wikiHow sentences 11.6 8.3 48.6 38.0
ASR phrases 11.8 9.0 47.8 38.9

Table C. Ablation study on different sources of step descriptions.
Top-1 accuracy (%) on COIN dataset is reported. All models are
pre-trained on a subset of HowTo100M dataset, defined by [4,34].

sentences for learning step concepts. The latest work Dis-
tantSup [34] found that external text corpus for procedure
activities (e.g., wikiHow [26]) can largely reduce the noise
in ASR sentences. In this section, we explore using wiki-
How sentences to pre-train our model.

In Table C, we compare our model with a variant pre-
trained using wikiHow sentences, following [34]. Our re-
sults demonstrate that ASR phrases are sufficient to achieve
competitive results across tasks and settings (e.g., +0.7/+0.9
for step forecasting across zero-shot and fine-tuning set-
tings). In other word, our model only requires ASR phrases
generated from audio transcriptions of videos, without the
need of an external text corpus describing the procedural
activities as in [34].

Backbone Architecture of Video Encoder. In Table D, we
study the effects of backbone architectures for our video en-
coder. We replace the default backbone TimeSformer with
MViT-S [32] which is also a widely-used architecture for

Source Zero-shot
Classification Forecasting

Ours (TimeSformer) 16.6 11.3
Ours (MViT-S) 12.5 9.0

Table D. Ablation study on the different architectures of video en-
coder. All models are pre-trained on HowTo100M dataset.

video encoders. We slightly increase the frame sampling
rate of MViT-S from the default value of 4 to 6 so that the
encoder can take a longer video (e.g., on COIN, the average
duration of a step is 14 seconds). TimeSformer consistently
outperforms MViT-S across tasks (e.g., +4.1 on step clas-
sification). We conjecture that TimeSformer, which sam-
ples 8 frames from consecutive 256 frames, is better suited
for recognizing actions with long durations, such as COIN
steps. Conversely, MViT-S, which samples 16 frames from
consecutive 96 frames, may perform better for recognizing
actions with short durations and high-speed motion.
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