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Abstract

In this paper, we study the problem of procedure plan-
ning in instructional videos, which aims to make goal-
directed plans given the current visual observations in un-
structured real-life videos. Previous works cast this prob-
lem as a sequence planning problem and leverage either
heavy intermediate visual observations or natural language
instructions as supervision, resulting in complex learning
schemes and expensive annotation costs. In contrast, we
treat this problem as a distribution fitting problem. In this
sense, we model the whole intermediate action sequence
distribution with a diffusion model (PDPP), and thus trans-
form the planning problem to a sampling process from this
distribution. In addition, we remove the expensive inter-
mediate supervision, and simply use task labels from in-
structional videos as supervision instead. Our model is a
U-Net based diffusion model, which directly samples ac-
tion sequences from the learned distribution with the given
start and end observations. Furthermore, we apply an ef-
ficient projection method to provide accurate conditional
guides for our model during the learning and sampling pro-
cess. Experiments on three datasets with different scales
show that our PDPP model can achieve the state-of-the-
art performance on multiple metrics, even without the task
supervision. Code and trained models are available at
https://github.com/MCG-NJU/PDPP.

1. Introduction

Instructional videos [1,35,44] are strong knowledge car-
riers, which contain rich scene changes and various actions.
People watching these videos can learn new skills by fig-
uring out what actions should be performed to achieve the
desired goals. Although this seems to be natural for hu-
mans, it is quite challenging for AI agents. Training a model
that can learn how to make action plans to transform from
the start state to goal is crucial for the next-generation AI
system as such a model can analyze complex human be-
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Figure 1. Procedure planning example. Given a start observation
ostart and a goal state ogoal, the model is required to generate
a sequence of actions that can transform ostart to ogoal. Previous
approaches rely on heavy intermediate supervision during training,
while our model only needs the task class labels (bottom row).

haviours and help people with goal-directed problems like
cooking or repairing items. Nowadays the computer vision
community is paying growing attention to the instructional
video understanding [4, 8, 9, 26, 43]. Among them, Chang
et al. [4] proposed a problem named as procedure planning
in instructional videos, which requires a model to produce
goal-directed action plans given the current visual observa-
tion of the world. Different with traditional procedure plan-
ning problem in structured environments [12, 33], this task
deals with unstructured environments and thus forces the
model to learn structured and plannable representations in
real-life videos. We follow this work and tackle the proce-
dure planning problem in instructional videos. Specifically,
given the visual observations at start and end time, we need
to produce a sequence of actions which transform the envi-
ronment from start state to the goal state, as shown in Fig. 1.

Previous approaches for procedure planning in instruc-
tional videos often treat it as a sequence planning prob-
lem and focus on predicting each action accurately. Most
works rely on a two-branch autoregressive method to pre-
dict the intermediate states and actions step by step [2,4,34].
Such models are complex and easy to accumulate errors
during the planning process, especially for long sequences.
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Recently, Zhao et al. [42] proposed a single branch non-
autoregressive model based on transformer [38] to predict
all intermediate steps in parallel. To obtain a good per-
formance, they used a learnable memory bank in the trans-
former decoder, augmented their model with an extra gen-
erative adversarial framework [14] and applied a Viterbi
post-processing method [39]. This method brought multiple
learning objectives, complex training schemes and tedious
inference process. Instead, we assume procedure planning
as a distribution fitting problem and planning is solved with
a sampling process. We aim to directly model the joint dis-
tribution of the whole action sequence in instructional video
rather than every discrete action. In this perspective, we can
use a simple MSE loss to optimize our generative model
and generate action sequence plans in one shot with a sam-
pling process, which results in less learning objectives and
simpler training schemes.

For supervision in training, in addition to the action se-
quence, previous methods often require heavy intermediate
visual [2,4,34] or language [42] annotations for their learn-
ing process. In contrast, we only use task labels from in-
structional videos as a condition for our learning (as shown
in Fig. 1), which could be easily obtained from the key-
words or captions of videos and requires much less labeling
cost. Another reason is that task information is closely re-
lated to the action sequences in a video. For example, in a
video of jacking up a car, the possibility for action add
sugar appears in this process is nearly zero.

Modeling the uncertainty in procedure planning is also
an important factor that we need to consider. That is, there
might be more than one reasonable plan sequences to trans-
form from the given start state to goal state. For example,
change the order of add sugar and add butter in making
cake process will not affect the final result. So action se-
quences can vary even with the same start and goal states.
To address this problem, we consider adding randomness to
our distribution-fitting process and perform training with a
diffusion model [19, 29]. Solving procedure planning prob-
lem with a diffusion model has two main benefits. First, a
diffusion model changes the goal distribution to a random
Gaussian noise by adding noise slowly to the initial data
and learns the sampling process at inference time as an iter-
ative denoising procedure starting from a random Gaussian
noise. So randomness is involved both for training and sam-
pling in a diffusion model, which is helpful to model the un-
certain action sequences for procedure planning. Second, it
is convenient to apply conditional diffusion process with the
given start and goal observations based on diffusion models,
so we can model the procedure planning problem as a con-
ditional sampling process with a simple training scheme. In
this work, we concatenate conditions and action sequences
together and propose a projected diffusion model to perform
conditional diffusion process.

Contributions. To sum up, the main contributions of
this work are as follows: a) We cast the procedure plan-
ning as a conditional distribution-fitting problem and model
the joint distribution of the whole intermediate action se-
quence as our learning objective, which can be learned with
a simple training scheme. b) We introduce an efficient ap-
proach for training the procedure planner, which removes
the supervision of visual or language features and relies on
task supervision instead. c) We propose a novel projected
diffusion model (PDPP) to learn the distribution of action
sequences and produce all intermediate steps at one shot.
We evaluate our PDPP on three instructional videos datasets
and achieve the state-of-the-art performance across differ-
ent prediction time horizons. Note that our model can still
achieve excellent results even if we remove the task super-
vision and use the action labels only.

2. Related work
Procedural video understanding. The problem of proce-
dural video understanding has gained more and more atten-
tion with an aim to learn the inter-relationship between dif-
ferent events in videos recently. Zhao et al. [43] investigated
the problem of abductive visual reasoning, which requires
vision systems to infer the most plausible visual explana-
tion for the given visual observations. Furthermore, Liang
et al. [26] proposed a new task: given an incomplete set of
visual events, AI agents are asked to generate descriptions
not only for the visible events and but also for the lost events
by logical inferring. Unlike these works trying to learn
the abductive information of intermediate events, Chang et
al. [4] introduced procedure planning in instructional videos
which requires AI systems to plan an action sequence that
can transform the given start observation to the goal state.
In this paper, we follow this work and study the procedu-
ral video understanding problem by learning goal-directed
actions planning.
Diffusion probabilistic models. Nowadays, diffusion
probabilistic models [31] have achieved great success in
many research areas. Ho et al. [19] used a reweighted ob-
jective to train diffusion model and achieved great synthesis
quality for image synthesis problem. Janner et al. [22] stud-
ied the trajectory planning problem with diffusion model
and get remarkable results. Besides, diffusion models are
also used in video generation [18, 21], density estimation
[24], human motion [36], sound generation [41], text gen-
eration [25] and many other domains, all achieved compet-
itive results. In this work, we apply diffusion process to
procedure planning in instructional videos and propose our
projected diffusion model, which achieves state-of-the-art
performance only with a simple learning scheme.
Projected gradient descent. Projected gradient descent is
an optimal solution suitable for constrained optimization
problems, which is proven to be effective in optimization
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Figure 2. Overview of our projected diffusion model (prediction horizon T = 3). We first train a task classifier to generate conditional
information c, which will be used as guidance along with the given observations os and og . Then we compute the denoising process
iteratively. In each step, we first conduct a condition projection to the input, then predict the initial distribution by the learned model fθ .
After that we calculate x̂n−1 with the predicted x̂0. We finally select the action dimensions as our result after N denoising steps.

with rank constraints [5], online power system optimization
problems [15] and adversarial attack [6]. The core idea of
projected gradient descent is to add a projection operation
to the normal gradient descent method, so that the result is
ensured to be constrained in the feasible region. Inspired
by this, we add a similar projection operation to our diffu-
sion process, which keeps the conditional information for
diffusion unchangeable and thus provides accurate guides
for learning.

3. Method
In this section, we present the details of our projected

diffusion model for procedure planning (PDPP). We will
first introduce the setup for this problem in Sec. 3.1. Then
we present the diffusion model used to model the action
sequence distribution in Sec. 3.2. To provide more precise
conditional guidance both for the training and sampling pro-
cess, a simple projection method is applied to our model,
which we will discuss in Sec. 3.3. Finally, we show the
training scheme (Sec. 3.4) and sampling process (Sec. 3.5)
of our PDPP. An overview of PDPP is provided in Fig. 2.

3.1. Problem formulation

We follow the problem set-up of Chang et al. [4]: given
a start visual observation os and a visual goal og , a model
is required to plan a sequence of actions a1:T so that the
environment state can be transformed from os to og . Here
T is the horizon of planning, which denotes the number of
action steps for the model to take and {os, og} indicates two
different environment states in an instructional video.

We decompose the procedure planning problem into two
sub-problems, as shown in Eq. (1). The first problem is
to learn the task-related information c with the given {os,
og} pair. This can be seen as a preliminary inference for
procedure planning. Then the second problem is to gener-
ate action sequences with the task-related information and
given observations. Note that Jing et al. [2] also decompose
the procedure planning problem into two sub-problems, but
their purpose of the first sub-problem is to provide long-
horizon information for the second stage since Jing et al. [2]
plans actions step by step, while our purpose is to get con-
dition for sampling to achieve an easier learning.

p(a1:T |os, og) =
∫

p(a1:T |os, og, c)p(c|os, og)dc. (1)

At training time, we first train a simple model (imple-
mented as multi-layer perceptrons (MLPs)) with the given
observations {os, og} to predict which the task category is.
We use the task labels in instructional videos c to super-
vise the output c. After that, we evaluate p(a1:T |os, og, c) in
parallel with our model and leverage the ground truth (GT)
intermediate action labels as supervision for training. Com-
pared with the visual and language supervision in previous
works, task label supervision is easier to get and brings sim-
pler learning schemes. At inference phase, we just use the
start and goal observations to predict the task class infor-
mation c and then samples action sequences a1:T from the
learned distribution with the given observations and pre-
dicted c, where T is the planning horizon.
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Figure 3. Schematic diagram for the forward and reverse diffusion
processes.

3.2. Projected diffusion for procedure planning

Our method consists of two stages: task class predic-
tion and action sequence distribution modeling. The first
stage learning is a traditional classification problem which
we implement with a simple MLP model. The main part
of our model is the second one. That is, how to model
p(a1:T |os, og, c) to solve the procedure planning problem.
Jing et al. [2] assume this as a Goal-conditioned Markov
Decision Process and use a policy p(at|ot) along with a
transition model τµ(ot|c, ot−1, at−1) to perform the plan-
ning step by step, which is complex to train and slow for
inference. We instead treat this as a direct distribution fit-
ting problem with a diffusion model.

Diffusion model. A diffusion model [19,29] solves the data
generation problem by modeling the data distribution p(x0)
as a denoising Markov chain over variables {xN ...x0} and
assume xN to be a random Gaussian distribution. The for-
ward process of a diffusion model is incrementally adding
Gaussian noise to the initial data x0 and can be represented
as q(xn|xn−1), by which we can get all intermediate noisy
latent variables x1:N with a diffusion step N . In the sam-
pling stage, the diffusion model conducts iterative denoising
procedure p(xn−1|xn) for N times to approximate samples
from the target data distribution. The forward and reverse
diffusion processes are shown in Fig. 3.

In a standard diffusion model, the ratio of Gaussian noise
added to the data at diffusion step n is pre-defined as {βn ∈
(0, 1)}Nn=1. Each adding noise step can be parametrized as

q(xn|xn−1) = N (xn;
√
1− βnxn−1, βnI). (2)

Since hyper-parameters {βn}Nn=1 are pre-defined, there is
no training in the noise-adding process. As discussed in
[19], re-parameterize Eq. (2) we can get:

xn =
√
αnx0 +

√
1− αnϵ, (3)

where αn =
∏n

s=1(1− βs) and ϵ ∼ N (0, I).
In the denoising process, each step is parametrized as:

pθ(xn−1|xn) = N (xn−1;µθ(xn, n),Σθ(xn, n)), (4)

where µθ is produced by a learnable model and Σθ can be
directly calculated with {βn}Nn=1 [19]. The learning objec-
tive for a typical diffusion model in [19] is the noise added
to the uncorrupted data x0 at each step. When training,
the diffusion model first selects a diffusion step n ∈ [1, N ]
and calculates xn as shown in Eq. (3). Then the learnable

model will compute ϵθ(xn, n) and calculate loss with the
true noise add to the distribution at step n. After training,
the diffusion model can simply generate data like x0 by iter-
atively processing the denoising step starting from a random
Gaussian noise.

However, applying this kind of diffusion model to pro-
cedure planning directly is not suitable. First, the sampling
process in our task is condition-guided while no condition
is applied in the standard diffusion model. Second, the
distribution we want to fit is the whole action sequence,
which has a strong semantic information. Directly pre-
dicting the semantically meaningless noise sampled from
random Gaussian distribution can be hard. In experiments
which take noise as the predicting objective, our model just
fails to be trained. To address these problems, we make two
modifications to the standard diffusion model: one is about
input and the other is the learning objective of model.

Conditional action sequence input. The input of a stan-
dard diffusion model is the data distribution it needs to fit
and no guided information is required. For the procedure
planning problem, the distribution we aim to fit is the in-
termediate action sequences [a1, a2...aT ], which depends
on the given observations and task class we get in the first
learning stage. Thus we need to find how to add these
guided conditions into the diffusion process. Although there
are multiple guided diffusion models presented [7,20], they
are expensive for learning and need complex training or
sampling strategy. Inspired by Janner et al. [22], we here
apply a simple way to achieve our goal: just treat these
conditions as additional information and concatenate them
along the action feature dimension. Notably, we concate-
nate os and a1 together, same for og and aT . In this way,
we introduce a prior knowledge that the start/end observa-
tions are more related to the first/last actions, which turns
out to be useful for our learning (details are provided in the
supplementary material). Thus our model input for training
now can be represented as a multi-dimension array: c c c c

a1 a2 ... aT−1 aT
os 0 0 og

 . (5)

Each column in our model input represents the condition
information, action one-hot code, and the corresponding ob-
servation for a certain action. Note that we do not need the
intermediate visual observations as supervision, so all ob-
servation dimensions are set to zero except for the start and
end observations.

Learning objective of our diffusion model. As mentioned
above, the learning objective of a standard diffusion model
is the random noise added to the distribution at each diffu-
sion step. This learning scheme has demonstrated great suc-



cess in data synthesis area, partly because predicting noise
rather than the initial input x0 brings more variations for
data generation. For procedure planning problem, however,
the distribution we need to fit contains high-level features
rather than pixels. Since the planning horizon T is relatively
short and the one-hot action features require less random-
ness than in data generation, predicting noise in diffusion
process for procedure planning will just increase the diffi-
culty of learning. So we modify the learning objective to
the initial input x0, which will be described in Sec. 3.4.

3.3. Condition projection during learning

Our model transforms a random Gaussian noise to the fi-
nal result, which has the same structure with our model in-
put (see Eq. (5)) by conducting N denoising steps. Since we
combine the conditional information with action sequences
as the data distribution, these conditional guides can be
changed during the denoising process. However, the change
of these conditions will bring wrong guidance for the learn-
ing process and make the observations and conditions use-
less. To address this problem, we add a condition projec-
tion operation into the learning process. That is, we force
the observation and condition dimensions not to be changed
during training and inference by assigning the initial value.
The input x of condition projection is either a noise-add data
(Alg.1 L5) or the predicted result of model (Alg.1 L7). We
use {ĉ, â, ô} to represent different dimensions in x, then our
projection operation Proj() can be denoted as:ĉ1 ĉ2 ĉT

â1 â2 ... âT
ô1 ô2 ôT

 →

 c c c
â1 â2 ... âT
os 0 og

 ,

x Proj(x)

(6)

where ĉi, ôi and âi denote the ith horizon class, observation
dimensions and predicted action logits in x, respectively. c,
os, og are the conditions.

3.4. Training scheme

Our training scheme contains two stages: a) training a
task-classifier model Tϕ(c|os, og) that extracts conditional
guidance from the given start and goal observations; b)
leveraging the projected diffusion model to fit the target ac-
tion sequence distribution.

For the first stage, we apply MLP models to predict the
task class c with the given os, og . Ground truth task class la-
bels c are used as supervision. In the second learning stage,
we follow the basic training scheme for diffusion model, but
change the learning objective as the initial input x0. We use
a U-Net model [30] fθ(xn, n) as the learnable model and
our training loss is:

Ldiff =

N∑
n=1

(fθ(xn, n)− x0)
2, (7)

Algorithm 1 Training

Input Initial input x0, total diffusion steps number N ,
model fθ, {αn}Nn=1, weight matrix w

1: repeat
2: n ∼ Uniform({1, ..., N})
3: ϵ ∼ N (0, I)
4: xn =

√
αnx0 +

√
1− αnϵ

5: x̂0 = fθ(Proj(xn), n)
6: Take gradient descent step on
7: ▽θ ||(x0 − Proj(x̂0)) ∗ w||2
8: until converged

We believe that a1 and aT are more important because
they are the most related actions for the given observations.
Thus we rewrite Eq. (7) as a weighted loss by multiplying a
weight matrix to Ldiff as follows:1 1 1 1

w 1 ... 1 w
1 1 1 1

 . (8)

Besides, we add a condition projection step to our diffusion
process. So given the initial input x0 which contains action
sequences, task conditions and observations, we first add
noise to the input to get xn, and then apply condition pro-
jection to ensure the guidance not changed. With xn and the
corresponding diffusion step n, we calculate the denosing
output fθ(xn, n), followed by condition projection again.
Finally, we compute the weighted Ldiff and update model,
as shown in Algorithm 1.

3.5. Inference

At inference time, only the start observation os and goal
observation og are provided. We first predict the task class
by choosing the maximum probability value in the output of
task-classifier model Tϕ. Then the predicted task class c is
used as the class condition. To sample from the learned ac-
tion sequence distribution, we start with a Gaussian noise,
and iteratively conduct denoise and condition projection for
N times. The detailed inference process is shown in Algo-
rithm 2.

Once we get the predicted output x̂0, we take out the ac-
tion sequence dimensions [â1, ..., âT ] and select the index
of every maximum value in âi(i = 1, ..., T ) as the action
sequence plan for procedure planning. Note that for the
training stage, the class condition dimensions of x0 are the
ground truth task labels, not the output of our task-classifier
as in inference.

4. Experiments
In this section, we evaluate our PDPP model on three

real-life datasets and show our competitive results for vari-
ous planning horizons. We first present the result of our first



Algorithm 2 Inference

Input total diffusion steps number N , model fθ, {αn}Nn=1,
{βn}Nn=1

1: x̂N ∼ N (0, I)
2: for n = N, ..., 1 do
3: x̂0 = fθ(Proj(x̂n), n)
4: if n > 1 then
5: µ̂n =

√
αn−1βn

1−αn
x̂0 +

√
αn(1−αn−1)

1−αn
x̂n

6: Σ̂n = 1−αn−1

1−αn
· βn

7: x̂n−1 ∼ N (x̂n−1; µ̂n, Σ̂nI)
8: end if
9: end for

10: return x̂0

training stage, which predicts the task class with the given
observations in Sec. 4.3. Then we compare our performance
with other alternative approaches on the three datasets and
demonstrate the effectiveness of our model in Sec. 4.4. We
also study the role of task-supervision for our model in
Sec. 4.5. Finally, we show our prediction uncertainty eval-
uation results in Sec. 4.6.

4.1. Implementation details

We use the basic U-Net [30] as our learnable model for
projection diffusion, in which a modification is made by
using a convolution operation along the planning horizon
dimension for downsampling rather than max-pooling as
in [22]. For training, we use the linear warm-up training
scheme to optimize our model. We train different steps for
the three datasets, corresponding to their scales. More de-
tails about training and model architecture are provided in
the supplementary material.

4.2. Evaluation protocol

Datasets. We evaluate our PDPP model on three instruc-
tional video datasets: CrossTask [44], NIV [1], and COIN
[35]. CrossTask contains 2,750 videos from 18 different
tasks, with an average of 7.6 actions per video. The NIV
dataset consists of 150 videos about 5 daily tasks, which
has 9.5 actions in one video on average. COIN is much
larger with 11,827 videos, 180 different tasks and 3.6 ac-
tions/video. We randomly select 70% data for training and
30% for testing as previous work [2,4,42]. Note that we do
not select 70%/30% for videos in each task, but in the whole
dataset. Following previous work [2, 4, 42], we extract all
action sequences {[ai, ..., ai+T−1]}n−T+1

i=1 with predicting
horizon T from the given video which contains n actions
by sliding a window of size T . Then for each action se-
quence [ai, ..., ai+T−1], we choose the video clip feature
at the beginning time of action ai and clip feature around
the end time of ai+T−1 as the start observation os and goal

CrossTaskBase CrossTaskHow COIN NIV
T = 3 83.87 92.43 79.42 100.00
T = 4 83.64 92.98 78.89 100.00
T = 5 83.37 93.39 - -
T = 6 83.85 93.20 - -

Table 1. Classification results on all datasets. CrossTaskBase uses
features provided by the dataset while CrossTaskHow applies fea-
tures extracted by HowTo100M trained encoder.

state og , respectively. Both clips are 3 seconds long. For ex-
periments conduct on CrossTask, we use two kinds of pre-
extracted video features as the start and goal observations.
One are the features provided in CrossTask dataset: each
second of video content is encoded into a 3200-dimensional
feature vector as a concatenation of the I3D, ResNet-152
and audio VGG features [3, 16, 17], which are also applied
in [2,4]. The other kind of features are generated by the en-
coder trained with the HowTo100M [27] dataset, as in [42].
For experiments on the other two datasets, we follow [42]
to use the HowTo100M features for a fair comparison.

Metrics. Following previous work [2,4,42], we apply three
metrics to evaluate the performance. a) Success Rate (SR)
considers a plan as a success only if every action matches
the ground truth sequence. b) mean Accuracy (mAcc) cal-
culates the average correctness of actions at each individ-
ual time step, which means an predicted action is consid-
ered correct if it matches the action in ground truth at the
same time step. c) mean Intersection over Union (mIoU)
measures the overlap between predicted actions and ground
truth by computing Iou |{at}∩{ât}|

|{at}∪{ât}| , where {at} is the set of
ground truth actions and {ât} is the set of predicted actions.

Previous approaches [2, 42] compute the mIoU metric
on every mini-batch (batch size larger than one) and calcu-
late the average as the result. This brings a problem that
the mIoU value can be influenced heavily by batch size.
Consider if we set batch size is equal to the size of training
data, then all predicted actions can be involved in the ground
truth set and thus be correct predictions. However, if batch
size is set to one, then any predicted action that not appears
in the corresponding ground truth action sequence will be
wrong. To address this problem, we standardize the way to
get mIoU as computing IoU on every single sequence and
calculating the average of these IoUs as the result (equal to
setting of batch size = 1).

Baselines. Models for procedure planning [2, 4, 42] and
other fully supervised planning approaches [10, 11, 33] are
all involved in our comparison. Descriptions for these meth-
ods are available in the supplementary material.



T = 3 T = 4
Models Supervision SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑
Random - <0.01 0.94 1.66 <0.01 0.83 1.66
Retrieval-Based - 8.05 23.30 32.06 3.95 22.22 36.97
WLTDO [10] - 1.87 21.64 31.70 0.77 17.92 26.43
UAAA [11] - 2.15 20.21 30.87 0.98 19.86 27.09
UPN [33] V 2.89 24.39 31.56 1.19 21.59 27.85
DDN [4] V 12.18 31.29 47.48 5.97 27.10 48.46
Ext-GAILw/o Aug. [2] V 18.01 43.86 57.16 - - -
Ext-GAIL [2] V 21.27 49.46 61.70 16.41 43.05 60.93
P3IV [42] L 23.34 49.96 73.89 13.40 44.16 70.01
OursBase C 25.52 53.43 56.90 15.40 49.42 56.99
OursHow C 37.20 64.67 66.57 21.48 57.82 65.13

Table 2. Evaluation results on CrossTask for procudure planning with prediction horizon T ∈ {3, 4}. The Supervision column denotes
the type of supervision applied in training, where V denotes intermediate visual states, L denotes language feature and C means task class.
Note that we compute mIoU by calculating average of every IoU of a single antion sequence rather than a mini-batch.

T = 3 T = 4 T = 5 T = 6
Models SR↑ SR↑ SR↑ SR↑
Retrieval-Based 8.05 3.95 2.40 1.10
DDN [4] 12.18 5.97 3.10 1.20
P3IV [42] 23.34 13.40 7.21 4.40
OursBase 25.52 15.40 9.37 6.76
OursHow 37.20 21.48 13.45 8.41

Table 3. Success Rate evaluation results on CrossTask with longer
planning horizons.

4.3. Results for task-classifier

The first stage of our learning is to predict the task class
with the given start and goal observations. We implement
this with MLP models and the detailed first-stage training
process is described in the supplementary material. The
classification results for different planning horizons on three
datasets are shown in Tab. 1. We can see that our clas-
sifier can perfectly figure out the task class in the NIV
dataset since only 5 tasks are involved. For larger datasets
CrossTask and COIN, our model can make right predictions
most of the time.

4.4. Comparison with other approaches

We follow previous work [42] and compare our approach
with other alternative methods on three datasets, across
multiple prediction horizons.

CrossTask (short horizon). We first evaluate on CrossTask
with two prediction horizons typically used in previous
work. We use OursBase to denote our model with fea-
tures provided by CrossTask and OursHow as model with
features extracted by HowTo100M trained encoder. Note
that we compute mIoU by calculating the mean of every
IoU for a single antion sequence rather than a mini-batch as
explained in Sec. 4.2, though the latter can achieve a higher
mIoU value. Results in Tab. 2 show that OursBase beats all

NIV COIN
Horizon Models Sup. SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

T = 3

Random - 2.21 4.07 6.09 <0.01 <0.01 2.47
Retrieval - - - - 4.38 17.40 32.06
DDN [4] V 18.41 32.54 56.56 13.9 20.19 64.78
Ext-GAIL [2] V 22.11 42.20 65.93 - - -
P3IV [42] L 24.68 49.01 74.29 15.4 21.67 76.31
Ours C 30.20 48.45 57.28 21.33 45.62 51.82

T = 4

Random - 1.12 2.73 5.84 <0.01 <0.01 2.32
Retrieval - - - - 2.71 14.29 36.97
DDN [4] V 15.97 27.09 53.84 11.13 17.71 68.06
Ext-GAIL [2] V 19.91 36.31 53.84 - - -
P3IV [42] L 20.14 38.36 67.29 11.32 18.85 70.53
Ours C 26.67 46.89 59.45 14.41 44.10 51.39

Table 4. Evaluation results on NIV and COIN with prediction hori-
zon T ∈ {3, 4}. Sup. denotes the type of supervision in training.
Note that we compute IoU on every action sequence and take the
mean as mIoU.

methods for most metrics except for the success rate (SR)
when T = 4, where our model is the second best, and
OursHow just significantly outperforms all previous meth-
ods. Specifically, for using HowTo100M-extracted video
features, we outperform [42] by around 14% and more than
8% for SR when T = 3, 4, respectively. As for features
provided by CrossTask, OursBase outperforms the previous
best method [2] by around 4% both for SR and mAcc when
T = 3.

CrossTask (long horizon). We further study the ability
of predicting with longer horizons for our model. Follow-
ing [42], we here evaluate the SR value with planning hori-
zon T = {3, 4, 5, 6}. We present the result of our model
along with other approaches that reported results for longer
horizons in Tab. 3. This result shows our model can get
a stable and great improvement with all planning horizons
compared with the previous best model.

NIV and COIN. Tab. 4 shows our evaluation results on the
other two datasets NIV and COIN, from which we can see
that our approach remains to be the best performer for both
datasets. Specifically, in the NIV dataset where mAcc is



Dataset
w. task sup. w.o. task sup.

SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

T = 3

CrossTaskBase 25.52 53.43 56.90 22.82 51.56 54.36
CrossTaskHow 37.20 64.67 66.57 35.69 63.91 66.04
NIV 30.20 48.45 57.28 28.37 45.96 54.31
COIN 21.33 45.62 51.82 16.48 36.57 43.48

T = 4

CrossTaskBase 15.40 49.42 56.99 14.91 49.55 56.28
CrossTaskHow 21.48 57.82 65.13 20.52 57.47 64.39
NIV 26.67 46.89 59.45 26.50 46.08 58.94
COIN 14.41 44.10 51.39 11.65 35.04 41.75

T = 5
CrossTaskBase 9.37 45.93 56.32 8.95 45.77 56.34
CrossTaskHow 13.45 54.01 65.32 12.80 53.44 64.01

T = 6
CrossTaskBase 6.76 43.61 57.51 6.06 44.15 57.07
CrossTaskHow 8.41 49.65 64.70 8.15 50.45 64.13

Table 5. Ablation study on the role of task supervision. The w.
task sup. denotes learning with task supervision and w.o. task
sup. means training with the basic action labels only.

relatively high, our model raises the SR value by more than
6% both for the two horizons and outperforms the previous
best by more than 8% on mAcc metric when T = 4. As
for the large COIN dataset where mAcc is low, our model
significantly improves mAcc by more than 20%.

All the results suggest that our model performs well
across datasets with different scales.

4.5. Study on task supervision

In this section, we study the role of task supervision for
our model. Tab. 5 shows the results of learning with and
without task supervision, which suggest that the task su-
pervision is quite helpful to our learning. Besides, we find
that task supervision helps more for learning in the COIN
dataset. We assume the reason is that fitting the COIN
dataset is hard to our model since the number of tasks in
COIN is large. Thus the guidance of task class information
is more important to COIN compared with the other two
datasets. Notably, training our model without task supervi-
sion also achieves state-of-the-art performance on multiple
metrics, which suggests the effective of our approach.

4.6. Evaluating probabilistic modeling

As discussed in Sec. 1, we introduce diffusion model to
procedure planning to model the uncertainty in this prob-
lem. Here we follow [42] to evaluate our probabilistic mod-
eling. We focus on CrossTaskHow as it has the most un-
certainty for planning. Results on other datasets and further
details are available in the supplement.

Our model is probabilistic by starting from random
noises and denoising step by step. We here introduce two
baselines to compare with our diffusion based approach. We
first remove the diffusion process in our method to establish
the Noise baseline, which just samples from a random noise
with the given observations and task class condition in one
shot. Then we further establish the Deterministic baseline
by setting the start distribution x̂N = 0, thus the model

Metric↓ Model T = 3 T=4 T=5 T=6

NLL
Deterministic 3.57 4.29 4.70 5.12

Noise 3.58 4.04 4.45 4.79
Ours 3.61 3.85 3.77 4.06

KL-Div
Deterministic 2.99 3.40 3.54 3.82

Noise 3.00 3.15 3.30 3.49
Ours 3.03 2.96 2.62 2.76

Table 6. Evaluation results of the plan distributions metrics.

Metric↑ Model T = 3 T=4 T=5 T=6

SR
Deterministic 38.79 21.17 12.59 7.47

Noise 34.92 18.99 12.04 7.82
Ours 37.20 21.48 13.45 8.41

ModePrec
Deterministic 55.60 45.65 35.47 25.24

Noise 51.04 43.90 34.35 24.51
Ours 53.14 44.55 36.30 25.61

ModeRec
Deterministic 34.13 18.35 11.20 6.75

Noise 39.42 25.56 15.67 11.04
Ours 36.49 31.10 29.45 22.68

Table 7. Evaluation results of diversity and accuracy metrics.

directly predicts a certain result with the given conditions.
We reproduce the KL divergence, NLL, ModeRec and Mod-
ePrec in [42] and use these metrics along with SR to evalu-
ate our probabilistic model. The results in Tab. 6 and Tab. 7
suggest our approach has an excellent ability to model the
uncertainty in procedure planning and can produce both di-
verse and reasonable plans(visualizations available in the
supplement). Specifically, our approach improves ModeRec
greatly for longer horizons. There is less uncertainty when
T = 3, thus the diffusion based models performs worse than
the deterministic one.

5. Conclusion

In this paper, we have casted procedure planning in in-
structional videos as a distribution fitting problem and ad-
dressed it with a projected diffusion model. Compared with
previous work, our model requires less supervision and can
be trained with a simple learning objective. We evaluate
our approach on three datasets with different scales and
find our model achieves the state-of-the-art performance
among multiple planning horizons. Our work demonstrates
that modeling action sequence as a whole distribution is
an effective solution to procedure planning in instructional
videos, even without intermediate supervision.
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A. Supplementary Material
Our supplementary material consists of the following:

Sec. B provides the details of our model architecture, train-
ing process and dataset curation. Sec. C describes the base-
lines we compare with. Sec. D shows the details of training
the task classifier in the first learning stage. We talk about
another different evaluation protocol used by previous ap-
proach [34] and present the performance of our model with
this protocol in Sec. E. Then in Sec. F, we study how batch
size affects the value of mIoU metric and show the results
of evaluating mIoU with different batch size on the same
model. In Sec. G, we discuss the importance of introducing
prior knowledge that the start/end observations are more re-
lated to the first/last actions to our model. Finally, we pro-
vide more results, details and visualizations about the abil-
ity to model uncertainty of our approach in Sec. H.

B. Implementation Details
B.1. Details of model architecture

The maintain of our model is the learnable model fθ,
which we implement as a basic 3-layer U-Net [30]. As
in [22], each layer in our model consists of two residual
blocks [16] and one downsample or upsample operation.
One residual block consists of two convolutions, each fol-
lowed by a group norm [40] and Mish activation function
[28]. Time embedding is produced by a fully-connected
layer and added to the output of first convolution. We apply
a 1d-convolution along the planning horizon dimension as
the downsample/upsample operation. Considering that the
value of planning horizon is small (T = {3, 4, 5, 6}), we set
the kernel size of 1d-convolution as 2, stride as 1, padding
as 0 so the length change of planning horizon dimension
keeps 1 after each downsample or upsample.

The input for our model is the concatenation of task
class, actions labels and observation features, so the size of
feature dimension is dim = Lc +La +Lo. Here Lc means
the number of task classes in the dataset, La is the number
of different actions in the dataset and Lo is the length of
visual features. Our model embeds the input feature with
shape [dim → 256 → 512 → 1024] in the downsample
process and recover to the initial size in the upsample pro-
cess as [1024 → 512 → 256 → dim].

For diffusion, we use the cosine noise schedule to pro-
duce the hyper-parameters {βn}Nn=1, which denote the ratio
of Gaussian noise added to the data at each diffusion step.

B.2. Dataset curation details

Each video in the dataset is annotated with action labels
and temporal boundaries. That is, the start time and end
time of each action in an instructional video are annotated
as {si, ei}numi=1 , where si and ei denote the start and end
time of the ith action, num denotes the number of actions

𝒂𝒊 𝒂𝒊+𝟏 . . . 𝒂𝒊+𝑻−𝟏

Time
𝒔𝒊 𝒆𝒊+𝑻−𝟏

𝒐s 𝒐𝒈

Figure 1. Selection of observations with a given action sequence.

in the video. We in this paper follow previous work [2,
4] to extract all action sequences with predicting horizon
T {[ai, ..., ai+T−1]}num−T+1

i=1 from the given video which
contains num actions by sliding a window of size T . Thus
each action sequence we need to predict can be presented as
{ai, ai+1, ..., ai+T−1}. We choose the video clip feature at
the beginning time of action ai and clip feature around the
end time of ai+T−1 as the start observation os and goal state
og , respectively. Specifically, we first round the start and
end time of this action sequence to get ⌊si⌋ and ⌈ei+T−1⌉.
Then we choose clip feature starts from ⌊si⌋ and clip feature
ends with ⌈ei+T−1⌉ as os, og , as shown in Fig. 1. Both clips
are 3 seconds long.

B.3. Details of training process

We train our model with a linear warm-up scheme. For
different datasets, the training scheme changes due to dif-
ferent scales. In CrossTaskBase, we set the diffusion step
as 200 and train our model for 12, 000 steps with learning
rate increasing linearly to 8× 10−4 in the first 4, 000 steps.
Then the learning rate decays to 4×10−4 at step 10, 000. In
CrossTaskHow, we keep diffusion step as 200 and train our
model for 24, 000 steps with learning rate increasing lin-
early to 5× 10−4 in the first 4, 000 steps and decays by 0.5
at step 10, 000, 16, 000 and 22, 000. In NIV, the diffusion
step is 50 and we train 6, 500 steps due to its small size. The
learning rate increases linearly to 3×10−4 in the first 4, 500
steps and decays by 0.5 at step 6, 000. The COIN dataset re-
quires much more training steps due to its large scale. We
set diffusion step as 200 and train our model for 160, 000
steps. The learning rate increases linearly to 1 × 10−5 in
the first 4, 000 steps and decays by 0.5 at step 14, 000 and
step 24, 000. Then we keep learning rate as 2.5× 10−6 for
the remaining training steps. The training batch size for all
experiments is 256. For the weighted loss in our training
process, we set w = 10. All our experiments are conducted
with ADAM [23] on 8 NVIDIA TITAN Xp GPUs.

C. Baselines

In this section, we introduce the baselines we used in our
paper.
- Random. This policy randomly selects actions from the
available action space in dataset to produce the plans.
- Retrieval-Based. Given the observations {os, og}, the



Choices T = 3 T=4 T=5 T=6
MLP+Crossentropy 81.94 82.61 83.14 84.08

ResMLP+Crossentropy 81.60 82.47 82.77 82.83
ResMLP+MSEloss 83.87 83.64 83.37 83.85

Table 1. Task classification results in the first stage with different
training choices for CrossTaskBase.

retrieval-based method retrieves the closest neighbor by cal-
culating the minimum visual feature distance in the train
dataset. Then the action sequence associated with the re-
trieved result will be used as the action plan.
- WLTDO [10]. This approach applies a recurrent neural
network(RNN) to predict action steps with the given obser-
vation pairs.
- UAAA [11]. UAAA is a two-stage approach which uses
RNN-HMM model to predict action steps autoregressively.
- UPN [33]. UPN is a physical-world path planning algo-
rithm and learns a plannable representation to make predic-
tions. To produce the discrete action steps, we follow [4] to
add a softmax layer to the output of this model.
- DDN [4]. DDN model is a two-branch autoregressive
model, which learns an abstract representation of action
steps and tries to predict the state-action transition in the
feature space.
- PlaTe [34]. PlaTe model follows DDN and uses trans-
former modules in two-branch to predict instead. Note that
the evaluation protocol of PlaTe is different with other mod-
els, so we move the comparison with PlaTe to supplemen-
tary material, which we will discuss later.
- Ext-GAIL [2]. This model solves the procedure plan-
ning problem by reinforcement learning techniques. Simi-
lar to our work, Ext-GAIL decomposes the procedure plan-
ning problem into two sub-problems. However, the purpose
of the first sub-problem in Ext-GAIL is to provide long-
horizon information for the second stage while our purpose
is to get condition for sampling.
- P 3IV [42]. P3IV is a single-branch transformer-based
model which augments itself with a learnable memory bank
and an extra generative adversarial framework. Like our
model, P3IV predicts all action steps at once during infer-
ence process.

D. Details of the first learning stage

In the first learning stage, we need to predict the task
class with the given observations {os, og}. We use a sim-
ple 4-layer MLP model to achieve this and calculate the
cross entropy loss for the output of the model and the
ground truth task class label to train our model, except for
CrossTaskBase. A two-layer Res-MLP [37] trained with
MSE loss is applied to CrossTaskBase. The task classifi-
cation results in the first learning stage for different models

Model T = 3 T=4 T=5 T=6
CrossTaskBase 81.71 83.63 84.65 84.53
CrossTaskHow 91.78 93.31 93.50 93.75

Table 2. Task classification results with protocol2.

Models T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

PlaTe [34] 16.00 36.17 65.91 14.00 35.29 55.36
OursBase 33.61 50.83 49.86 24.17 51.48 54.33

Table 3. Evaluation results with protocol2 on CrossTask. Predic-
tion horizon set to T = {3, 4}. Note that we compute IoU on
every action sequence and take the mean as mIoU.

with different training losses on CrossTaskBase are shown
in Tab. 1.

E. Evaluation with another evaluation protocol

As talked in Sec. C, PlaTe [34] used another protocol for
evaluation. P3IV [42] later evaluated SR with this protocol
to compare with PlaTe. We name this as ”protocol 2”. In
all experiments of the main paper, we follow previous work
[2,4,42] to use a 70%/30% split for training/testing and rely
on a sliding window to get our learning data. In this section,
we evaluate our model with ”protocol 2” and compare our
performance with previous works that evaluated with this
protocol.

The main differences of ”protocol 2” are as followed: a)
”protocol 2” uses a 2390/360 split for train/test. b) ”proto-
col 2” randomly selects one procedure plan with prediction
horizon T in each video for training and testing, rather than
relying on a T -size sliding window to consider all proce-
dure plans in each video. c) Given the planning horizon T ,
”protocol 2” only predicts T − 1 actions.

We evaluate our model with ”protocol 2” on CrossTask
and compare the results with the previous best approach,
considering both short and long horizons. Specifically, we
use CrossTaskBase to compare with PlaTe for shorter hori-
zons and CrossTaskHow to compare with P3IV for longer
horizons. In this way we align the visual features used in
different approaches with our model to conduct a fair com-
parison. The task classification accuracy results for T =
{3, 4, 5, 6} with ”protocol 2” are provided in Tab. 2. Tab. 3
shows the results of our model with short horizons, and
Tab. 4 shows the results of SR metric with longer predic-
tion horizons. Note that we compute mIoU by calculating
the mean of every IoU for a single antion sequence rather
than a mini-batch. We can see that our method keeps the
top performance for all prediction horizons.



Models T = 3 T = 4 T = 5 T = 6
SR↑ SR↑ SR↑ SR↑

P3IV [42] 24.4 15.8 11.8 8.3
OursHow 53.06 35.28 21.39 13.33

Table 4. Evaluation results of SR with protocol 2 on CrossTask.
Prediction horizon set to T = {3, 4, 5, 6}.

F. Impact of batch size on mIoU
As we discussed in the main paper, previous approaches

calculate the IoU value on every mini-batch and take their
mean as the final mIoU. However, the batch size value for
different methods may be different, which results in an un-
fair comparison. In this section, we study the impact of
batch size on mIoU, which can illustrate the importance for
the standardization of computing mIoU.

We use our trained models to compute the mIoU met-
ric on CrossTask with different evaluation batch size. Plan-
ning horizon is set to {3, 4, 5, 6}. The results are shown in
Tab. 5, which validate our thought and show the huge im-
pact of batch size on mIoU. The value of mIoU evaluated
on the same model can vary widely as batch size changes,
so comparing mIoU with different evaluation batch size has
no meaning. To address this problem, we standardize the
way to compute mIoU as setting evaluation batch size to 1
at inference time.

Batch size T = 3 T=4 T=5 T=6

OursBase

1 56.90 56.99 56.32 57.51
4 65.30 67.14 67.10 70.48
8 68.83 69.64 67.39 69.31

16 69.79 67.26 64.53 63.19

OursHow

1 66.57 65.13 65.32 65.38
4 75.21 77.07 78.56 78.59
8 79.74 81.74 81.73 80.88

16 80.50 82.32 81.41 78.64

Table 5. Evaluation results of mIoU with different batch size on
CrossTask.

G. Role of prior knowledge
In this section, we study the role of leveraging a prior

knowledge that the start/end observations are more related
to the first/last actions for our model.

Inspired by [13], we establish a baseline not using this
prior knowledge by tiling the observations and task class
conditions to the output of the U-Net encoder before de-
coding. A residual convolution block is applied to reduce
the channel dimension of observation features. Then the
features and conditions are replicate k times(k is the hori-
zon length of the U-Net encoder output) and concatenated
along the channel dimension. We conduct experiments
on CrossTask and the results are shown in Tab. 6, which

demonstrates that the introduced prior knowledge is quite
useful to the learning process with visual features provided
by CrossTask(OursBase), while not good when better visual
features are provided(OursHow).

T=3 T=4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

TileBase 22.34 49.10 53.71 14.13 45.80 55.03
OursBase 25.52 53.43 56.90 15.40 49.42 56.99
TileHow 36.21 65.12 66.79 22.31 59.00 66.20
OursHow 37.20 64.67 66.57 21.48 57.82 65.13

Table 6. Ablation study on the role of prior knowledge.

H. Additional study on modeling uncertainty
In the main paper, we study the probabilistic modeling

ability of our model on CrossTaskHow and show that our
diffusion based model can produce both diverse and accu-
rate plans. Here we provide more details, results and visual-
izations about modeling the uncertainty in procedure plan-
ning by our model.

Details of evaluating uncertainty modeling. For the De-
terministic baseline, we just sample once to get the plan
since the result for Deterministic is certain when observa-
tions and task class conditions are given. For the Noise
baseline and our diffusion based model, we sample 1500
action sequences as our probabilistic result to calculate the
uncertain metrics. Furthermore, in order to efficiently com-
plete the process of 1500 sampling, we apply the DDIM
[32] sampling method to our model, with which one sam-
pling process can be completed with 10 steps(accelerating
the sampling for CrossTask and COIN by 20 times and NIV
by 5 times). Note that the multiple sampling process is
only required while evaluating probabilistic modeling and
our model can generate a good plan just by sampling once.

Uncertainty modeling results on other datasets.
We here provide the uncertainty modeling results on
NIV(Tab. 7,Tab. 8) and COIN(Tab. 9,Tab. 10). Different
with CrossTask, we here find the diffusion process still
helps for NIV, but harms the performance on COIN. We
suspect the reason for this is that data scales and variability
in goal-conditioned plans of these datasets are different.
To verify our thought, we calculate the average number
of distinct plans with the same start and goal observations
in these datasets, as in [42]. The results in Tab. 11 show
that the variability in CrossTask is the much larger than the
other two datasets. And longer horizons can bring more
diverse plans for all datasets. Thus our diffusion based
approach performs best on CrossTask with longer horizons
T = 4, 5, 6. For NIV, we hypothesize that our model can
fit this small dataset well thus adding noises to the learning



T=3 T=4

KL-Div↓ NLL↓ KL-Div↓ NLL↓
Deterministic 5.40 5.49 5.13 5.26

Noise 4.92 5.00 5.04 5.17

Ours 4.85 4.93 4.62 4.75

Table 7. Evaluation results of the plan distributions metrics on
NIV.

T=3 T=4

SR↑ Prec↑ Rec↑ SR↑ Prec↑ Rec↑
Deterministic 27.94 29.63 27.44 25.43 26.64 24.08

Noise 25.73 26.87 38.37 22.84 23.05 31.89

Ours 30.20 31.78 33.09 26.67 29.10 33.08

Table 8. Evaluation results of diversity and accuracy metrics on
NIV.

T=3 T=4

KL-Div↓ NLL↓ KL-Div↓ NLL↓
Deterministic 4.52 5.46 4.43 5.84

Noise 4.55 5.50 4.52 5.92

Ours 4.76 5.71 4.62 6.03

Table 9. Evaluation results of the plan distributions metrics on
COIN.

T=3 T=4

SR↑ Prec↑ Rec↑ SR↑ Prec↑ Rec↑
Deterministic 27.96 34.35 27.40 19.98 30.65 19.63

Noise 18.49 25.67 29.82 12.58 22.25 19.32

Ours 21.33 28.03 23.49 14.41 24.83 16.28

Table 10. Evaluation results of diversity and accuracy metrics on
COIN.

does not harm the accurancy of planning much. With our
diffusion based method, the model makes a good trade-off
between the diversity and accuracy of planning, resulting
in the best results. However, for the large COIN dataset,
our model can not fit it really well and introducing noises
to our model just makes the learning harder.

Visualizations for uncertainty modeling. In Figures Fig. 2
to Fig. 5, we show the visualizations of different plans with
the same start and goal observations proceduced by our dif-
fusion based model CrossTaskHow for different prediction
horizons. In each figure, the images denote the start and

Datasets T=3 T=4 T=5 T=6

CrossTask 4.02 7.82 10.92 11.51
NIV 1.31 1.50 - -

COIN 1.74 2.52 - -

Table 11. Average number of paths with the same start and goal
states across multiple horizons and datasets.

goal observations, the first row denotes the ground truth
actions(rows with ”GT”), the last row denotes a failure
plan(rows with ”Failure”) and the middle rows denote mul-
tiple reasonable plans produced by our model, respectively.
Here the reasonable plans are plans that share the same start
and end actions with the ground truth plan and exist in the
test dataset.



pour jello powder stir mixture pour alcohol

pour jello powder pour water pour alcohol

pour jello powder pour alcoholpour alcohol

pour jello powder stir mixture pour alcoholGT

pour jello powder pour water stir mixtureFailure

Figure 2. Visualization of diverse plans produced by our model with horizon T = 3.

pour water add sugar

pour lemon juice stir mixture pour waterGT

Failure

stir mixture

pour lemon juice stir mixture pour water stir mixture

pour lemon juice stir mixture

add sugarpour lemon juice stir mixturestir mixture

pour water add icepour lemon juice stir mixture

Figure 3. Visualization of diverse plans produced by our model with horizon T = 4.

pour milk whisk mixture add flourGT

Failure

whisk mixture pour mixture into pan

pour milk whisk mixture pour mixture into panwhisk mixture

pour milk whisk mixture whisk mixture pour mixture into panpour milk

pour milk whisk mixture add flour whisk mixture pour mixture into pan

add flour

whisk mixture pour egg pour milk whisk mixture pour mixture into pan

Figure 4. Visualization of diverse plans produced by our model with horizon T = 5.

season steak put steak on grill close lidGT

Failure

open lid flip steak open lid

season steak put steak on grill close lid open lid open lidclose lid

season steak put steak on grill close lid open lid flip steak open lid

season steak put steak on grill close lid open lidclose lidflip steak

season steak put steak on grill flip steak close lid close lidopen lid

Figure 5. Visualization of diverse plans produced by our model with horizon T = 6.
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