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Abstract

Answering questions about complex situations in videos
requires not only capturing the presence of actors, objects,
and their relations but also the evolution of these relation-
ships over time. A situation hyper-graph is a representa-
tion that describes situations as scene sub-graphs for video
frames and hyper-edges for connected sub-graphs and has
been proposed to capture all such information in a compact
structured form. In this work, we propose an architecture for
Video Question Answering (VQA) that enables answering
questions related to video content by predicting situation
hyper-graphs, coined Situation Hyper-Graph based Video
Question Answering (SHG-VQA). To this end, we train a
situation hyper-graph decoder to implicitly identify graph
representations with actions and object/human-object rela-
tionships from the input video clip. and to use cross-attention
between the predicted situation hyper-graphs and the ques-
tion embedding to predict the correct answer. The proposed
method is trained in an end-to-end manner and optimized by
a VQA loss with the cross-entropy function and a Hungarian
matching loss for the situation graph prediction. The effec-
tiveness of the proposed architecture is extensively evaluated
on two challenging benchmarks: AGQA and STAR. Our
results show that learning the underlying situation hyper-
graphs helps the system to significantly improve its perfor-
mance for novel challenges of video question-answering
tasks1.

1. Introduction
Video question answering in real-world scenarios is a

challenging task as it requires focusing on several factors
including the perception of the current scene, language un-
derstanding, situated reasoning, and future prediction. Visual
perception in the reasoning task requires capturing various
aspects of visual understanding, e.g., detecting a diverse set

1Code will be available at https://github.com/aurooj/SHG-
VQA

Figure 1. The situation hyper-graph for a video is composed of
situations with entities and their relationships (shown as subgraphs
in the pink box). These situations may evolve over time. Temporal
actions act as hyper-edges connecting these situations into one situ-
ation hyper-graph. Learning situation graphs, as well as temporal
actions, is vital for reasoning-based video question answering.

of entities [23, 24], recognizing their interactions, as well
as understanding the changing dynamics between these en-
tities over time. Similarly, linguistic understanding has its
challenges as some question or answer concepts may not be
present in the input text or video.

Visual question answering, as well as its extension over
time, video question answering, have both benefited from
representing knowledge in graph structures, e.g., scene
graphs [20, 39], spatio-temporal graphs [4, 60], and knowl-
edge graphs [40, 49]. Another approach in this direction is
the re-introduction of the concept of “situation cognition”
embodied in “situation hyper-graphs” [52]. This adds the
computation of actions to the graphs that capture the interac-
tion between entities. In this case, situations are represented
by hyper-graphs that join atomic entities and relations (e.g.,
agents, objects, and relationships) with their actions (Fig.
1). This is an ambitious task for existing systems as it is
impractical to encapsulate all possible interactions in the
real-world context.

Recent work [26] shows that transformers are capable
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of learning graphs without adapting graph-specific details
in the architectures achieving competitive or even better
performance than sophisticated graph-specific models. Our
work supports this idea by implicitly learning the underlying
hyper-graphs of a video. Thus, it requires no graph compu-
tation for inference and uses decoder’s output directly for
cross attention module. More precisely, we propose to learn
situation hyper-graphs, namely framewise actor-object and
object-object relations as well as their respective actions,
from the input video directly without the need for explicit
object detection or other required prior knowledge. While
the actions capture events across transitions over multiple
frames, such as Drinking from a bottle, the relationship en-
coding actually considers all possible combinations of static,
single frame actor-object, and object-object relationships as
unique classes, e.g., in the form of person – hold – bottle
or bottle – stands on – table, thus serving as an object and
relation classifier. Leveraging this setup allows us to stream-
line the spatio-temporal graph learning as a set prediction
task for predicting relationship predicates and actions in a
Situation hyper-graph Decoder block. To train the Situation
Graph Decoder, we use a bipartite matching loss between
the predicted set and ground truth hyper-graph tokens. The
output of the situation graph decoder is a set of action and
relationship tokens, which are then combined with the em-
bedding of the associated question to derive the final answer.
An overview of the proposed architecture is given in Fig. 2.
Note that, compared to other works targeting video scene
graph generation, e.g., those listed in [68], we are less fo-
cused on learning the best possible scene graph, but rather
on learning the representation of the scene which best sup-
ports the question answering task. Thus, while capturing the
essence of a scene, as well as the transition from one scene
to the other, we are not only optimizing the scene graph
accuracy but also considering the VQA loss.

We evaluate the proposed method on two challenging
video question answering benchmarks: a) STAR [52], fea-
turing four different question types, interaction, sequence,
prediction, and feasibility based on a subset of the real-
world Charades dataset [48]; and b) Action Genome QA
(AGQA) [11] dataset which tests vision focused reasoning
skills based on novel compositions, novel reasoning steps,
and indirect references. Compared to other VQA datasets,
these datasets provide dense ground truth hyper-graph infor-
mation for each video, which allows us to learn the respective
embedding. Our results show that the proposed hyper-graph
encoding significantly improves VQA performance as it has
the ability to infer correct answers from spatio-temporal
graphs from the input video. Our ablations further reveal
that achieving high-quality graphs can be critical for VQA
performance.

Our contributions to this paper are as follows:

• We introduce a novel architecture that enables the com-

putation of situation hyper-graphs from video data to
solve the complex reasoning task of video question-
answering;

• We propose a situation hyper-graph decoder module
to decode the atomic actions and object/actor-object
relationships and model the hyper-graph learning as a
transformer-based set prediction task and use a set pre-
diction loss function to predict actions and relationships
between entities in the input video;

• We use the resulting high-level embedding information
as sole visual information for the reasoning and show
that this is sufficient for an effective VQA system.

2. Related Work
Video Question Answering: Video question answering
is an active area of research with efforts in insightful di-
rections [41, 67], such as attention [16, 18, 33], cross-modal
interactions [25,28,45,57,61,64,65], hierarchical learning [5,
27, 42], and so on. A few other algorithms classes include
modular networks [5,27,54], symbolic reasoning [52,58,59],
and memory networks [8,10]. Several video QA benchmarks
are introduced to evaluate this task from varying perspec-
tives entailing description [38, 56, 62, 66], temporal reason-
ing [17, 58, 69], causal structures [53, 58], visual-language
comprehension [29, 50, 57], relational reasoning [50], and
measuring social intelligence [63]. STAR [52] benchmark
goes one step further providing a benchmark to perform di-
agnostic study at additional fronts such as predicting future
interactions and feasibility of next possible actions in the
unseen future. Existing approaches on the benchmark either
rely on object features [44] as nodes explicitly modeling their
interactions through a message passing mechanism [15, 52],
or benefit from efficient input sampling strategies during
training to learn robust visual representations [27, 28]. We,
however, take a different approach and focus on inferring
the underlying semantic graph structure in the video and use
it for QA reasoning. Our method is independent of using
pretrained object detectors and uses a simple approach to
learn to infer the sets of relationship predicates as well as
actions for each frame. The model is trained end-to-end with
the frozen backbone.

Graph-based VQA: Another related line of work is graph-
based VQA methods [22, 31]. Some of them work on object
features extracted from a pretrained detector (e.g., Faster-
RCNN [44]) [5,15,35,46,54], while some operate on frame-
level [19, 28, 61] (e.g., ResNet), clip-level features [42, 45,
57](e.g., C3D, S3D) or transformer-based backbones [7, 36,
43]. We focus on predicting atomic actions, and relationship
triplets from the frame-level or clip-level features directly
instead of an explicit graph.



Figure 2. The SHG-VQA architecture: we start with encoding the input video into spatio-temporal features using a pre-trained backbone.
These video features are flattened into a sequence of tokens of length T × h× w and position encoded to be further processed through a
visual encoder. These encoded tokens are input to the action decoder to predict the set of atomic actions from the input action queries as well
as to the relationship decoder which takes relationship queries as input along with the video tokens. The action decoder and relationship
decoder output the situation graph embeddings. In the text branch, the question and the answer choices are composed into a sequence
and passed through a text transformer to obtain encoded word embeddings; for open-ended VQA, only the question is passed to the text
transformer. The generated hyper-graph along with the encoded text tokens are then used as input to a cross-attentional transformer and the
combined representations are used to predict the correct answer with a classifier. Section 3.4 describes the losses and training objectives.

Scene Graph Generation: The proposed formulation of
situation hyper-graph deviates from existing scene-graph
generation approaches [2, 52, 68] as we do not require object
detections as input or object level supervision, nor do we
model it in an explicit graph structure. Our goal is simple:
given an input video, predict all object-relation-object and
actor-relation-object triplets as well as associated actions for
each video frame. Our intuition is that forcing the model to
predict these predicates will drive the system to learn a latent
graph structure for visual input. The predicted situation
hyper-graph is treated as an abstract video representation
and used for VQA reasoning in the next step.

3. The SHG-VQA Model

Situation video question answering has three essential
steps 1) the visual recognition capacities of visual entities,
their relationships, actions, and how these transition over
time, 2) the language understanding capacity to the questions,
3) the question-guided reasoning process over the representa-
tion learned in the first step. Sub-optimal performance at any
of these steps will affect the overall task performance. A key
problem here is that capturing the visual structures directly
from raw data, e.g., in the form of features often results in
a rather noisy signal and does not provide suitable input for
high-level language-guided reasoning. To overcome this mis-
match, we propose to learn the implicit structure of the visual
input as an intermediate step between learning the video rep-
resentation and question-based reasoning. Forcing the model

to learn to predict this implicit structure (actions, relations
between entities) not only improves the video representation
but also acts as a lightweight, high-level representation of
the video content and can be used for the VQA task. We
illustrate our architecture in Fig. 2.

3.1. Input Processing

Given the input video and the question, we encode the
inputs as described below:
Question Encoder: The question is first tokenized into
word tokens using a wordPiece tokenizer. These word tokens
along with the special class token [CLS] are the inputs of
an embedding layer. The output word embeddings from
this layer are input to a transformer encoder that encodes
each word using multi-head self-attention between different
words at each encoder layer.
Video Encoder: Let V ∈ RT×H×W×3 be the input video
clip, where T is the clip length with 3 color channels,
height H and width W . First, we extract video features
xV ∈ RT×h×w×dx using a convolutional backbone with
dx being the feature dimension, h and w are the reduced
feature’s height and width. As transformers process sequen-
tial input data, the video features xV are flattened into a
sequence (of size RThw×dx) and reduced to dimension d
through a linear layer. Then, we append a trainable vector of
dimension d for a special class token [V IS] to this sequence
of video features at index 0. These features are combined
with position encodings and input to a transformer-based
video encoder Ve.



The output features of the video are forwarded to the ac-
tion decoder and relationship decoder to infer the situation
graph capturing the action information, as well as the enti-
ties and their relationships. The output of the last layer of
both decoders is then combined and augmented with frame
positions, forming the final hyper-graph embedding. We fur-
ther attach a randomly initialized class token [HG]. These
situation graph embeddings are then input to a multi-layered
cross-attentional transformer encoder for more fine-grained
interaction between the question words and semantic knowl-
edge extracted from the video in the form of a graph. The
output features corresponding to [CLS] and [HG] tokens
are input to an answer classifier to produce an answer.

3.2. Situation hyper-graph Generation

Real-world video understanding relies on the scene un-
derstanding including changing relationships between the
objects over time and the evolving actions. Therefore, we
represent the given video as a “situation graph” denoted by
G which describes actions and relationships between objects.
Let G = (V,E), where V is the set of vertices represent-
ing all possible entities in the dataset, and E is the set of
edges representing all possible relationships between each
pair of entities. Given an input video, we want to learn a
situation graph gt = (vt, et), vt ∈ V, et ∈ E for each time
step t ∈ {1, 2, ..., T} in the video, that captures the entities
(objects, actors), their relationships as well as the associated
actions that are present in that frame. The hyper-graph for
one video is thus represented by the set of situation graphs
G = {g1, ...gT }. An action may comprise multiple relation-
ships and objects. For each frame, we further have a set
of actions At = a1, a2, ..., aN . The set of actions for the
full video is then given as A = {A1, ...AT }. Note that the
actions are predicted in addition to the graph structure and
that both will be merged in a situation hyper-graph embed-
ding in a separate step after the decoder block. Rather than
predicting the set of vertices and edges in the graph gt, we
propose to predict the graph structure by formulating this
graph prediction as follows:

Let xVe ∈ RT ′×h×w×d be the encoded video features,
where T ′ denotes the temporal length of encoded features,
h and w are spatial dimensions, and d is the feature’s di-
mension. A relationship predicate p describes interactions
between entities by triplet tokens object−relation−object
or actor− relation− object. We propose to predict the set
of relationship predicates R and the set of atomic actions A
occurring in each video frame. This is intuitive because the
ability to predict the atomic actions and relations between
entities for each time step benefits the high level reasoning
tasks such as video question answering in this work. There-
fore, for each time step t ∈ {1, 2, ..., T} in the video, we
predict the set of relationship predicates denoted by Rt in
each video frame where Rt = {p1, p2, ..., pM} and pi is the

Figure 3. Situation hyper-graph embeddings: We start with decoded
queries from action and relationship decoder. Then we add type
encoding vectors [ACT ] and [REL] for actions and relationships,
attention masks, and an embedding vector for the situation ID (t ∈
{1, ..., T}). The sums are input to the cross-attentional module.
See section 3.2.2 for details).

ith predicate between two entities, representing the vertices
vx and vy (object-object or actor-object) and the relation
resp. edge ei represented as < vx, ei, vy >, M = |Rt| is the
relationship set size. Additionally, we predict the set of N
actions At for each time step t where At = {a1, a2, ..., aN}
and aj is the jth action occurring at time step t. N = |At|
is the actions set size for each step t. M and N are hyperpa-
rameters in our system.

To obtain actions and relation predicates from the video,
we use a transformer decoder that takes video features as
memory to learn action queries and relation queries.

3.2.1 Prediction Head

The decoded output embeddings for action and relationship
queries are input to respective prediction heads. Prediction
heads use a 2-layer feed forward network (FFN) with GELU
activation and LayerNorm.

Considering that actions and relationships at a given
time step are permutation-invariant, we use optimal bi-
partite matching between predicted and ground truth ac-
tions/relationships. An optimal bipartite matching between
the predicted classes and ground-truth labels is the one with
the minimum matching cost. Once the optimal matching
pairs have been obtained, we use a Hungarian loss function
to optimize for ground truth classes [1]. See section 3.4 for
details of the loss function.

3.2.2 Situation hyper-graph Embedding

For the decoded queries of actions and relationships (re-
ferred as graph token embeddings), situation hyper-graph



Table 1. Results on AGQA dataset for different question types. The best results are shown in bold font. Numbers are reported in percentages.

Reasoning Semantic Structure Overall

Method obj-rel rel-action obj-action superlative sequencing exists duration activity obj rel action query compare choose logic verify binary open all

PSAC [34] 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 37.97 49.95 46.85 31.63 49.49 46.56 49.96 49.90 48.87 31.63 40.18
HME [9] 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 37.55 49.99 47.58 31.01 49.71 46.42 49.87 49.96 48.91 31.01 39.89
HCRN [27] 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 40.33 49.96 46.41 36.34 49.22 43.42 50.02 50.01 47.97 36.34 42.11

SHG-VQA 46.42 60.67 64.63 38.83 62.17 56.06 48.15 10.12 47.61 56.19 53.83 43.42 60.68 47.76 52.86 56.63 55.04 43.42 49.20

embeddings are constructed in order to be used with question
features for video question answering. First, these action and
relationship graph embeddings are combined for each time
step t representing a situation at t. Then, we add token type
embedding [ACT ] for actions and [REL] for relations to
their respective graph embeddings. A situation ID (or frame
position t) embedding is also added to these embeddings.
An additional attention mask is used to differentiate actual
tokens and padded tokens (no-class token ϕ) at training time.
At inference time, no attention mask is used as we do not
employ any information about the graph at test time. Fi-
nally, we add a special class token [HG] to this sequence of
features. See Fig. 3 for visualization.

3.3. Cross-attentional Transformer Module

The situation hyper-graph embeddings obtained at pre-
vious step (section 3.2.2) are input along with the ques-
tion to a cross-attentional transformer module which allows
fine-grained computation between the question features and
the graph features. A standard co-attentional transformer
module is used for cross-attention between the two sequen-
tial feature inputs. The feature outputs corresponding to
the [HG] token and [CLS] token from the cross-attentional
transformer block are fed to a feed-forward network (FFN)
for answer prediction.

3.4. Learning Objective

The SHG-VQA model is trained with the following train-
ing objective i.e.,

L = Lact + Lrel + Lvqa (1)

where Lact and Lrel are the set prediction loss terms for pre-
dicting the action set and relationship set for the video, and
Lvqa is the cross-entropy loss over the predicted situation
graph and question.

Actions and relationships set prediction loss: The sit-
uation graph prediction module infers fixed sets of sizes
|N | × T actions and |M | × T relationships for T -length
video clip in a single pass through the action decoder and re-
lationship decoder respectively. We modify the set prediction
loss used in [1] as follows. Let A be the set of ground-truth
actions and Â = {âi}|N |×T

i=1 be the predicted set of actions.
In a scenario where Â is larger than the set of actions present

in the video, a special class ϕ (no class) is padded to the
ground truth set A. We obtain a bipartite matching between
ground-truth and predicted set for each timestep t as follows:

σ̂a =

T∑
t

argminσt∈ζ|N|

|N |∑
i

Lmatch(ati , âσt(i)) (2)

Where, σt is a permutation of N elements for frame t,
Lmatch(ati, âσt(i)) is a pair-wise matching cost between ith

ground-truth action label in tth frame i.e., ati and a predicted
action label at index σt(i). This optimal assignment for each
step t is computed using the Hungarian algorithm and the
cost is summed over all T steps. The proposed set predic-
tion loss takes into account only the class predictions for all
video frames with no bounding box ground truths being used,
different from the original set prediction loss used in [1] for
object detection in images. Let p̂(ct(i)) be the class proba-
bility for the action prediction at σt(i), Lmatch(ati , âσt(i))
would be −1{ct(i) ̸=ϕ}p̂σt(i)(ct(i)). After we obtain a one-to-
one optimal matching between ground-truth and predicted
set items without duplicates at each time step, we can com-
pute the loss between the matched pairs using a Hungarian
loss as follows:

Lact(a, â) =

|N |×T∑
i=1

− log p̂σ̂(i)(ci) (3)

Likewise, R is the set of ground-truth relations and
R̂ = {p̂i}|M |×T

i=1 denotes the predicted relationships. Lrel is
formulated as follows:

σ̂p =

T∑
t

argminσt∈ζ|M|

|M |∑
i

Lmatch(pti , p̂σt(i)) (4)

Lrel(p, p̂) =

|M |×T∑
i=1

− log p̂σ̂(i)(ci) (5)

where σ̂(i) is the optimal matching obtained in the previ-
ous step for each frame. The inferred graph is input to the
cross-attentional transformer module along with the question
and the answer choices as explained in section 3.2.2. The
proposed network is trained in an end-to-end manner.



Table 2. Results on AGQA’s novel compositions test metric.

Sequencing Superlative Duration Obj-relation Overall

Method B O All B O All B O All B O All B O All

PSAC [34] 49.19 29.33 40.96 45.23 17.76 33.32 47.89 34.84 42.06 43.76 0.01 24.28 46.49 19.34 34.71
HME [9] 49.33 28.06 40.53 44.06 13.8 30.95 48.45 34.72 42.31 39.58 0.00 21.96 45.42 17.17 33.15
HCRN [27] 48.31 30.00 40.73 45.12 17.30 33.06 46.15 39.11 43.01 37.15 2.86 21.88 44.88 20.12 34.13

SHG-VQA 50.88 38.59 45.79 51.14 23.64 39.25 51.84 49.21 50.66 39.73 6.23 24.82 49.07 26.68 39.37

Table 3. Evaluation on AGQA’s more compositional steps.

More Compositional Steps Binary Open All

PSAC [34] 47.65 14.81 47.19
HME [9] 48.09 20.98 47.72

HCRN [27] 46.96 23.70 46.63
SHG-VQA 47.13 22.66 46.97

Table 4. Evaluation on AGQA’s indirect references test metric.

Method Object Action Temporal

B O All B O All B O All

Precision

PSAC 63.69 53.77 56.64 61.01 52.46 53.24 57.52 53.74 54.39
HME 62.95 52.31 55.39 58.21 48.12 49.04 55.99 52.42 53.04

HCRN 54.06 67.24 63.43 53.87 64.43 63.47 52.35 66.84 64.34
SHG-VQA 76.93 86.27 81.59 79.55 87.40 84.90 69.08 87.35 82.87

Recall

PSAC 45.06 27.36 38.80 40.91 22.18 25.96 35.13 26.84 30.64
HME 46.03 26.80 39.23 41.32 21.71 25.67 37.96 26.59 31.80

HCRN 44.84 35.46 41.52 44.01 30.43 33.17 35.11 34.38 34.71
SHG-VQA 53.86 43.98 49.85 54.16 37.83 43.10 52.21 43.57 46.78

4. Experiments

4.1. Datasets

AGQA Benchmark [11]: The Action Genome Question
Answering benchmark is a visual dataset comprising 192M
hand-crafted questions about 9.6K videos from the Charades
dataset [47]. In addition to VQA accuracy, AGQA presents
three testing metrics for testing the VQA methods: indi-
rect references, novel compositions, and more compositional
steps. We use the AGQA 2.0 Balanced dataset, which con-
sists of 2.27M question-answer pairs as a result of balancing
the original dataset using stricter procedures to reduce as
much language bias as possible. Of the 2.27M questions,
there are approximately 1.6M training questions and 669K
test questions [12]. To have a standard train-val-test setup
for our experiments, we randomly sampled 10% QA pairs
from training data for validation of hyperparameters.

STAR Benchmark [52]: The STAR dataset provides 60K
situated reasoning questions based on 22K trimmed situation
video clips, also based on the Charades dataset [47]. They
further provide ∼144K ground-truth situation graphs includ-
ing 111 actions, 37 unique objects, and 24 relationships. The
dataset is split into training, validation, and test sets where
test evaluation can be done on the evaluation server a limited
number of times. We perform ablations and analysis on the
validation set and report test set results to compare with the
baselines in Table 5.

4.2. Implementations

On the VQA task, we report accuracy; we also report
mAP for situation hyper-graph predictions. For AGQA’s
indirect references testing metric, precision and recall are
reported. For STAR benchmark, we follow the same training
protocol as [52] and train SHG-VQA from scratch on each
question type separately unless specified otherwise. Training
details are shared in the supplementary document.

Visual Embeddings: The video frames are resized to size
224×224 with a clip length of 16 frames. We use RandAug-
ment [3] for data augmentation during training. The video
clip is input to a pretrained convolutional network with freeze
weights to obtain video features of size 16× 7× 7× 2048.
A 2-layer 3D convolutional block with the kernel of size
5× 3×3 further processes the zero-padded extracted features
yielding features of size 8× 7× 7× d. The spatio-temporal
dimensions are then flattened to obtain a sequence of length
Thw = 392 d−dimensional tokens where d = 768. The
input encoders as well as situation hyper-graph decoders use
L = 5 transformer encoder layers with non-shared weights.

Query embeddings for action and relationship predi-
cates: The features output from the video encoder is
then input to a situation hyper-graph decoder comprising
transformer-based action and relationship decoders. Our
best model uses M = 8 relation queries and N = 3 action
queries for each situation; T is set to 16. AGQA has 157
total raw actions, 36 unique objects, and 44 unique relation-
ships which obtain 456 relationship triplets < vx, ei, vy > in
the training and validation set. For STAR dataset, there are
37 objects, and 24 relationships yielding 563 unique relation
predicates; it also has 111 action classes.

Situation graph embeddings: The decoded situation graph
queries are input to a cross-attentional transformer. The
input situation graph embedding is a sum of 4 different
encoding types: 1) decoded query embeddings for predicted
actions and relationship predicates, 2) situation IDs denoting
the situation (or frame) number for each query, 3) attention
mask set to 1 for actual tokens and 0 for padded tokens,
and 4) token type embeddings to distinguish between
action tokens and relationship tokens as shown in Fig. 3.
Our network uses a 2-layer co-attentional module [37] for
cross-attention.



Table 5. Results on STAR dataset. Best results are shown in bold font and second best results are underlined. Numbers are reported for
VQA accuracy in percentages.

Method(test) Backbone Obj. Hyper. Question Type

Inter. Seq. Pred. Feas. Overall

Q-type (Random) [21] - ✗ ✗ 25.06 24.93 24.79 24.81 24.89
Q-type (Frequent) [21] - ✗ ✗ 19.09 19.45 12.90 18.31 17.44
Blind Model (LSTM) [14] GloVe ✗ ✗ 32.24 32.17 28.56 28.41 30.34
Blind Model (BERT) [6] BERT ✗ ✗ 32.68 34.21 29.98 29.26 31.53
CNN-LSTM [58] ResNext101-K400 ✗ ✗ 33.25 32.67 30.69 30.43 31.76
CNN-BERT [32] ResNext101-K400 ✗ ✗ 33.59 37.16 30.95 30.84 33.14
LCGN [15] ResNext101-K400 ✓ ✗ 39.01 37.97 28.81 26.98 33.19
HRCN [27] ResNext101-K400 ✓ ✗ 39.10 38.17 28.75 27.27 33.32
ClipBERT [28] ResNext101-K400 ✗ ✗ 39.81 43.59 32.24 31.42 36.70
NS-SR [52] ResNext101-K400 ✓ ✓ 30.88 31.76 30.23 29.73 30.65
SHG-VQA (Ours) SlowR50-K400 ✗ ✓ 47.98 42.03 35.34 32.52 39.47
SHG-VQA (Ours) ResNext101-ImageNet1K ✗ ✓ 45.8 42.77 34.64 29.91 38.28

AGQA: For AGQA, we train our model with SlowR50 back-
bone and report results for VQA accuracy on the test set. We
also report our model’s generalization capability to indirect
references. Furthermore, we train our network to report its
generalization to novel compositions and to more compo-
sitional steps. For more compositional steps, we train our
network with randomly sampled 100K QA pairs.
STAR: Following [52], we train the model for each question
type separately to compare with the baselines. However,
this protocol is expensive in terms of time and resources.
To address the matter of limited resources, we also tried
combining all questions together after the questions filtering
from interaction and sequence types and train a single model
instead of multiple trainings. We use this training regime to
study models ablations.

5. Results and Analysis
5.1. Comparison to State-of-the-Art

AGQA: We compare our method with the existing state-of-
the-art methods on AGQA benchmark. The best baseline on
AGQA is HCRN [27] for overall accuracy. HCRN uses ap-
pearance features from ResNet101 as well as motion features
from ResNext101-Kinetics400 backbones. Our model out-
performs HCRN by a significant margin of 7.09% (HCRN:
42.11% vs. SHG-VQA: 49.20%) in terms of overall accu-
racy (see Table 1). We observe the biggest improvement of
14.63% absolute points on object-action reasoning questions
compared to the best model in that category i.e., PSAC [34]:
50.00% vs. SHG-VQA: 64.63%. We further report results
on the three novel testing metrics as follows:
a) Novel Compositions: For novel composition at test time,
we observe an overall gain of 4.70% when compared to the
best contender, i.e., PSAC [34]. For open-ended questions,
we outperform HCRN by 6.56% (see Table 2);
b) Indirect References: When tested for indirect references
questions in Table 4, we outperform all baselines by an
absolute 7.83%-16.62% in terms of recall; For precision, we
also gain similar improvements;

c) Compositional Steps: Our model is trained on only 15%
(100K QA pairs) of the training data and is still able to
perform on par with the baselines (trained on 1.6M QA
pairs) achieving second best results for each category of
more compositional steps (table 3).
STAR: For STAR dataset, we first compare the proposed
architecture to other state-of-the-art works in the field using
SlowR50 [13] video backbone and a ResNext101 [55] as
a frame-level backbone to evaluate accuracy based on 3D
video and 2D image architectures. It shows that for both
settings, SHG-VQA significantly outperforms other base-
line methods even with weaker backbones (see Table 5).
Concretely, we obtain an absolute gain of 8.53% over NS-
SR [52], 5.86% compared to HCRN [27], 5.99% improve-
ment over LCGN [15], and ∼ 2.5% over ClipBERT [28]
which is a SOTA model in terms of overall VQA accuracy.
We notice the substantial gain of 7.86% for interaction ques-
tions which test the understanding of interactions between
entities in a situation. Prediction is the next category of
questions that benefits the most with 2.48% improvement.

5.2. Ablation and Hyperparameter Analysis

We perform our ablation studies on the STAR benchmark
as discussed below:
Impact of situation graphs quality: To assess the ef-
fect of situation graphs’ quality on VQA accuracy, we
train a baseline version of our system, where the model
is trained on ground truth situation graphs for VQA tasks
only (Table 6). Since the ground truth situation graphs
are not available for the test set, we can only compare
SHG-VQA and this baseline on the validation set. As ex-
pected, when taking ground truth situation graphs as in-
put, the performance is significantly improved for inter-
action (GT=91.9% vs. predicted=46.78%) and sequence
(GT=80.5% vs. predicted=42.52%) questions. However,
for the questions about the unseen part of the video, the
model with ground truth graph tokens still struggles de-
spite better performance compared to SHG-VQA: predic-



Figure 4. Qualitative example for using frame-wise set prediction
loss. Col. 1 shows the frame, col. 2 shows the ground-truth
situation graph, col. 3 shows predicted graphs when trained with
set prediction loss for the full video, and col. 4 shows the predicted
graph when the model is trained by matching each timestep t. The
edges show the person-object relationship labels along with the
number of times it was predicted.

Table 6. Impact of hyper-graphs (HG) quality. Results shown
for STAR val set with SlowR50 backbone.

Method Interaction Sequence Prediction Feasibility Overall

Predicted hyper-graphs 47.08 42.52 37.82 33.61 40.26
GT hyper-graphs 91.9 80.5 41.22 35.42 62.46

tion (GT=41.22% vs. predicted=37.82%) and feasibility
(GT=35.42% vs. predicted=33.61%). We also report the
mAP scores for the prediction of action and relationship
predicates using our best model in Table 7. We obtain an
overall mAP of 87.63 for actions and 72.9 for relationships
respectively.
Input to cross-attentional transformer: To evaluate the
choice of input to the cross-attentional transformer, we exper-
iment with three settings: a) question and video embeddings,
b) question and situation graphs embeddings, c) question,
situation graphs, and video embeddings. We observe no gain
in the overall VQA accuracy when adding video embeddings
to the cross-attentional transformer and get our best results
with (b) (table 8).
Situation hyper-graph components: To study the impact
of different components of situation graphs, we train our
system with only action predicate tokens with objective
Lact+Lvqa, only relationship predicates (with Lrel+Lvqa),
and the full model (eq. 1). The action predicates are more
effective compared to the relationship predicates. When
compared in terms of predicate classification, we observe
high accuracy for action predicates. Nonetheless, using the
full situation graphs perform better than omitting actions or
relationship prediction task (table 9).
Number of queries: Number of action queries M and re-
lationship queries N is a hyperparameter for SHG-VQA.
We report the performance of the SHG-VQA with a vary-
ing number of queries for actions and relationships at each
timestep in Table 9. We report our best results with M = 3
and N = 8. Additional results are reported in the supple-
mentary document.
Frame-wise set prediction loss: Using the notion of time t

Table 7. Predicate classification results for situation hyper-graphs
in terms of mAP for STAR validation set from SHG-VQA with
SlowR50 backbone. Numbers are reported in percentages.

Interact Sequence Prediction Feasibility Overall

Actions 84.77 89.43 85.30 91.46 87.63
Relationships 72.83 73.5 70.05 72.82 72.9

Table 8. Results for cross-attention input. Results shown for
STAR test set with SlowR50 backbone.

Method Interaction Sequence Prediction Feasibility Overall

Q + V 33.28 35.60 27.93 26.43 30.81
Q + HG 47.98 42.03 35.34 32.52 39.47
Q + V + HG 45.45 44.19 34.22 32.87 39.18

Table 9. Model variations on STAR validation set with a single
model using SlowR50 backbone for all question types. Best re-
sults are shown in bold font and second best results are underlined.
Numbers are reported for VQA accuracy in percentages.

Method (val) Interaction Sequence Prediction Feasibility Overall

hyper-graph components
Action only – Act=3 40.94 38.08 35.58 30.56 38.68
Relation. only – Rel=8 35.94 35.79 34.78 27.86 35.16
Both – Act=3, Rel=8 42.93 38.20 36.06 30.56 39.20

Number of queries
Act=2, Rel=8 40.32 40.13 38.78 29.73 38.34
Act=3, Rel=8 42.93 38.20 36.06 30.56 39.20
Act=4, Rel=8 38.40 35.79 35.58 30.35 37.06
Act=3, Rel=12 41.32 40.80 39.42 31.39 39.90
Act=4, Rel=12 40.40 39.05 36.86 29.11 38.39

in the set prediction loss alleviates the problem of duplicate
predictions within each situation. See Fig. 4 for qualita-
tive examples of produced hyper-graphs with and without
this loss. Extra examples are in the supplementary document.

6. Conclusion
We presented a novel approach to model situation graph

prediction as an underlying sub-task for video question an-
swering. The proposed method predicts a situation hyper-
graph structure composed of existing actions and relation-
ships in the input video. The input question can then reason
over the predicted graph to solve VQA. We show the im-
pact of the proposed approach by evaluating on two video
question-answering benchmarks and achieving significant
performance gains overall baseline methods. Our method
demonstrates promise for further research in this direction
to improve VQA systems even further.
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and Tal Hassner, editors, Computer Vision – ECCV 2022,
pages 652–670, Cham, 2022. Springer Nature Switzerland. 1,
16



[25] Aisha Urooj Khan, Amir Mazaheri, Niels da Vitoria Lobo,
and Mubarak Shah. Mmft-bert: Multimodal fusion trans-
former with bert encodings for visual question answering,
2020. 2

[26] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho,
Moontae Lee, Honglak Lee, and Seunghoon Hong. Pure
transformers are powerful graph learners. arXiv preprint
arXiv:2207.02505, 2022. 1

[27] Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen
Tran. Hierarchical conditional relation networks for video
question answering. CoRR, abs/2002.10698, 2020. 2, 5, 6, 7,
13, 14

[28] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mo-
hit Bansal, and Jingjing Liu. Less is more: Clipbert for video-
and-language learning via sparse sampling. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7331–7341, 2021. 2, 7

[29] Jie Lei, Licheng Yu, Mohit Bansal, and Tamara L Berg.
Tvqa: Localized, compositional video question answering. In
EMNLP, 2018. 2

[30] Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Got-
mare, Shafiq Joty, Caiming Xiong, and Steven Hoi. Align
before fuse: Vision and language representation learning with
momentum distillation. In NeurIPS, 2021. 16

[31] Linjie Li, Zhe Gan, Yu Cheng, and Jingjing Liu. Relation-
aware graph attention network for visual question answering.
In Proceedings of the IEEE/CVF international conference on
computer vision, pages 10313–10322, 2019. 2

[32] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. Visualbert: A simple and perfor-
mant baseline for vision and language. arXiv preprint
arXiv:1908.03557, 2019. 7

[33] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu,
Wenbing Huang, Xiangnan He, and Chuang Gan. Beyond
rnns: Positional self-attention with co-attention for video
question answering. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 8658–8665, 2019. 2

[34] Xiangpeng Li, Jingkuan Song, Lianli Gao, Xianglong Liu,
Wenbing Huang, Xiangnan He, and Chuang Gan. Beyond
rnns: Positional self-attention with co-attention for video
question answering. In AAAI, 2019. 5, 6, 7, 13, 14

[35] Fei Liu, Jing Liu, Weining Wang, and Hanqing Lu. Hair:
Hierarchical visual-semantic relational reasoning for video
question answering. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1698–
1707, 2021. 2

[36] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. arXiv
preprint arXiv:2106.13230, 2021. 2

[37] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert:
Pretraining task-agnostic visiolinguistic representations for
vision-and-language tasks. arXiv preprint arXiv:1908.02265,
2019. 6

[38] Tegan Maharaj, Nicolas Ballas, Anna Rohrbach, Aaron
Courville, and Christopher Pal. A dataset and exploration of
models for understanding video data through fill-in-the-blank
question-answering. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 6884–
6893, 2017. 2

[39] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B
Tenenbaum, and Jiajun Wu. The neuro-symbolic concept
learner: Interpreting scenes, words, and sentences from nat-
ural supervision. In International Conference on Learning
Representations, 2018. 1

[40] Kenneth Marino, Xinlei Chen, Devi Parikh, Abhinav Gupta,
and Marcus Rohrbach. Krisp: Integrating implicit and
symbolic knowledge for open-domain knowledge-based vqa.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 14111–14121, 2021.
1

[41] Devshree Patel, Ratnam Parikh, and Yesha Shastri. Recent ad-
vances in video question answering: A review of datasets and
methods. In International Conference on Pattern Recognition,
pages 339–356. Springer, 2021. 2

[42] Liang Peng, Shuangji Yang, Yi Bin, and Guoqing Wang. Pro-
gressive graph attention network for video question answering.
In Proceedings of the 29th ACM International Conference on
Multimedia, pages 2871–2879, 2021. 2

[43] Tianwen Qian, Jingjing Chen, Shaoxiang Chen, Bo Wu, and
Yu-Gang Jiang. Scene graph refinement network for visual
question answering. IEEE Transactions on Multimedia, 2022.
2

[44] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with re-
gion proposal networks. Advances in neural information
processing systems, 28, 2015. 2

[45] Ahjeong Seo, Gi-Cheon Kang, Joonhan Park, and Byoung-
Tak Zhang. Attend what you need: Motion-appearance
synergistic networks for video question answering. In
Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 6167–6177, Online, Aug. 2021. As-
sociation for Computational Linguistics. 2

[46] Paul Hongsuck Seo, Arsha Nagrani, and Cordelia Schmid.
Look before you speak: Visually contextualized utterances.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16877–16887, 2021.
2

[47] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali
Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in
homes: Crowdsourcing data collection for activity understand-
ing. In European Conference on Computer Vision, pages
510–526. Springer, 2016. 6

[48] Gunnar A. Sigurdsson, Gül Varol, X. Wang, Ali Farhadi, Ivan
Laptev, and Abhinav Kumar Gupta. Hollywood in homes:
Crowdsourcing data collection for activity understanding.
ECCV, 2016. 2

[49] Ajeet Kumar Singh, Anand Mishra, Shashank Shekhar, and
Anirban Chakraborty. From strings to things: Knowledge-
enabled vqa model that can read and reason. In Proceedings
of the IEEE/CVF International Conference on Computer
Vision, pages 4602–4612, 2019. 1

[50] Makarand Tapaswi, Yukun Zhu, Rainer Stiefelhagen, Antonio
Torralba, Raquel Urtasun, and Sanja Fidler. Movieqa: Under-



standing stories in movies through question-answering. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4631–4640, 2016. 2

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 12

[52] Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum,
and Chuang Gan. Star: A benchmark for situated reasoning
in real-world videos. In Thirty-fifth Conference on Neural
Information Processing Systems, 2021. 1, 2, 3, 6, 7, 15

[53] Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua.
Next-qa: Next phase of question-answering to explaining tem-
poral actions. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9777–
9786, 2021. 2

[54] Junbin Xiao, Angela Yao, Zhiyuan Liu, Yicong Li, Wei
Ji, and Tat-Seng Chua. Video as conditional graph hierar-
chy for multi-granular question answering. arXiv preprint
arXiv:2112.06197, 2021. 2

[55] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July
2017. 7

[56] Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang,
Xiangnan He, and Yueting Zhuang. Video question answering
via gradually refined attention over appearance and motion.
In Proceedings of the 25th ACM international conference on
Multimedia, pages 1645–1653, 2017. 2

[57] Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and
Cordelia Schmid. Just ask: Learning to answer questions from
millions of narrated videos. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 1686–
1697, 2021. 2

[58] Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun
Wu, Antonio Torralba, and Joshua B Tenenbaum. Clevrer:
Collision events for video representation and reasoning.
ICLR, 2020. 2, 7

[59] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Push-
meet Kohli, and Joshua B Tenenbaum. Neural-Symbolic
VQA: Disentangling Reasoning from Vision and Lan-
guage Understanding. In Advances in Neural Information
Processing Systems (NIPS), 2018. 2

[60] Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu,
and Haifeng Wang. Ernie-vil: Knowledge enhanced vision-
language representations through scene graph. arXiv preprint
arXiv:2006.16934, 2020. 1

[61] Weijiang Yu, Haoteng Zheng, Mengfei Li, Lei Ji, Lijun Wu,
Nong Xiao, and Nan Duan. Learning from inside: Self-driven
siamese sampling and reasoning for video question answer-
ing. Advances in Neural Information Processing Systems,
34, 2021. 2

[62] Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. Activitynet-qa: A dataset
for understanding complex web videos via question answer-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 9127–9134, 2019. 2

[63] Amir Zadeh, Michael Chan, Paul Pu Liang, Edmund Tong,
and Louis-Philippe Morency. Social-iq: A question answering
benchmark for artificial social intelligence. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8807–8817, 2019. 2

[64] Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng
Zhao, Mohammadreza Salehi, Aditya Kusupati, Jack Hessel,
Ali Farhadi, and Yejin Choi. Merlot reserve: Neural script
knowledge through vision and language and sound. arXiv
preprint arXiv:2201.02639, 2022. 2

[65] Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi. Merlot:
Multimodal neural script knowledge models. Advances in
Neural Information Processing Systems, 34, 2021. 2

[66] Kuo-Hao Zeng, Tseng-Hung Chen, Ching-Yao Chuang, Yuan-
Hong Liao, Juan Carlos Niebles, and Min Sun. Leveraging
video descriptions to learn video question answering. CoRR,
abs/1611.04021, 2016. 2

[67] Yaoyao Zhong, Wei Ji, Junbin Xiao, Yicong Li, Weihong
Deng, and Tat-Seng Chua. Video question answering:
Datasets, algorithms and challenges, 2022. 2

[68] Guangming Zhu, Liang Zhang, Youliang Jiang, Yixuan Dang,
Haoran Hou, Peiyi Shen, Mingtao Feng, Xia Zhao, Qiguang
Miao, Syed Afaq Ali Shah, and Mohammed Bennamoun.
Scene graph generation: A comprehensive survey. CoRR,
abs/2201.00443, 2022. 2, 3

[69] Linchao Zhu, Zhongwen Xu, Yi Yang, and Alexander G
Hauptmann. Uncovering the temporal context for video ques-
tion answering. International Journal of Computer Vision,
124(3):409–421, 2017. 2



A. Supplementary Material: Learning to
Predict Situation Hyper-Graphs for Video
Question Answering

In this supplementary document, we discuss the following:

1. Additional architectural details (B)

2. Implementation and training details (C)

3. Additional experimental details (D)

4. Additional results and analyses (E)

5. Qualitative results (F)

6. Computational cost of SHG-VQA (G)

7. Ethical Considerations (H)

B. Additional Architectural Details
In this section, we provide the additional architectural details as follows:

B.1. Input processing
The SHG-VQA can be trained in both open-ended as well as multiple

choices settings. For multiple choice setup, C answer choices are also given
as input with the question. The goal hence becomes a C-way classification
task.

B.2. Question Encoder:
We encode the question (and answer choices) as follows: first, a learn-

able embedding layer is used to initialize each word token with an embed-
ding vector. These word embeddings along with the special token [CLS]
are input to the text transformer encoder encoding each word using multi-
head self-attention between different words at each encoder layer. In the
multiple choices setup, we append the answer choices to the question words
as follows:

QA = [CLS] +Q+ [SEP ] +A0 + [SEP ] +A1

+...+ [SEP ] +AC
(6)

where, QA is the sequence composed of question words and answer
choices separated by a special token [SEP ]; [CLS] is a special token ap-
pended at index 0 to aggregate question and answer choices into a sentence
vector; C denotes the number of answer choices. We empirically find that
composing the question and answer choices in the above format gives better
performance.

B.3. Action Decoder
Given the video clip features, we want to decode the set of actions A in

each frame. To decode the set of actions At at each timestep t, a sequence
of learnable embeddings of size d referred to as action queries of length
|N | × T is input to the action decoder. The action decoder comprises the
standard transformer decoder architecture and stacks L decoder layers. In
addition, the action decoder also takes encoded video tokens as memory
and a target mask (of size R(|N|×T )×(|N|×T )). The target mask is created
to perform parallel decoding predicting all actions in a frame at once based
on the decoded actions in previous frames. The target mask prevents
attending to the action queries from future frames (by setting values to
−∞) which masks them out [51]. Our approach deviates from using
traditional approach [51] or the parallel decoding approach [1] by using
a masking at frame-level e.g., to decode actions for frame 0, we set next
|N | × (T − 1) positions to −∞ and so on. The action decoder outputs the
decoded sequence of action features for each time step t.

Figure 5. Performance comparison with the baselines w.r.t. train-
ing data samples on AGQA dataset. SHG-VQA outperforms the
baselines even when trained with only 100K samples.

B.4. Relationship Decoder
Like the action decoder, we employ a relationship decoder to decode

the set of relations Rt in each frame. We input a sequence of |M | × T
learnable relation embeddings of size d called relation queries and encoded
video tokens xVe as input to the relationship decoder. The relationship
decoder has the same architecture as action decoder with variable weights.
The relation decoder also takes a target mask (of size R(|M|×T )×(|M|×T ))
and perform parallel decoding to predict all relations in a frame at once.
The relationships decoder outputs the decoded sequence of relation features
for the full video.

B.5. Prediction Heads:
Prediction heads take the decoded queries as input and classify them

as an action/relationship from the actual classes or the ”no-class” (denoted
by ϕ). Therefore, for each prediction head, the total number of classes are
#classes+ 1. See fig. 6 for illustration of prediction head.

C. Additional Implementation Details
C.1. Training details

SHG-VQA is trained with learning rate lr = 1e − 5, BERT [6] opti-
mizer, and batch size upto 128 for each training depending on the maximum
samples which could fit to the GPUs. The best reported results for both
datasets use M=8 relations and N=3 actions.

C.2. Hypergraph token handling at test time:
During the training of the situation hyper-graph embedding, we use

attention mask for masking padded tokens. However, these masks are not
available at inference time because we assume that we are only provided the
video and question with answer choices at test time. Thus, we set attention
mask to all 1’s at inference time. Moreover, the prediction is made to the
original video clip with out any data augmentation.

C.3. Data Augmentations
While we obtain a good increase in performance over existing methods for
interaction and sequence questions, SHG-VQA performed on par with the
baselines for prediction and feasibility. We attribute this to the less training



Figure 6. Prediction Head: Each decoded query is passed through
a FFN to predict one of the classes or a “no-class” label.

Figure 7. Overview of the bi-partite matching in SHG-VQA. Opti-
mal bipartite matching ( Lmatch(.)) is performed between the set
of predicted classes for all decoded queries (of actions/relationship
predicates) and the ground truth labels using the Hungarian al-
gorithm. Per frame optimal matching is carried ∀t ∈ {1, ..., T}.
Then, a loss is computed between the matched pairs of ground truth
labels and predicted classes using a cross-entropy loss function.
See section 3.4 (main paper) for details.

data available for prediction and feasibility. The number of questions for
each question type in training set are: interaction:∼16K , sequence: ∼22K,
prediction: ∼4K, feasibility: ∼3K. To address this matter, we add training
samples from other question types. We filter out the videos from interaction
and sequence question types which have the same video ID as prediction
and feasibility. This avoids the data leakage problem of peeping into future
frames during training. The remaining set of QA pairs are added to the
training set for prediction and feasibility resulting in ∼15K training samples
for feasibility and ∼16K samples for prediction question type. We observe
the expected performance gain when the model is provided proportional
amount of data.

D. Additional Experiment Details
D.1. Details about AGQA baselines

For AGQA, we consider three video QA methods as our baselines:
PSAC [34], HME [9], and HCRN [27]. PSAC uses ResNet-152 to extract
video features; HME uses ResNet or VGG for appearance features and use
C3D for motion features extraction; HCRN uses ResNet101 for appearance
features and ResNext101 pretrained on Kinetics-400 to extract motion
features. We use SlowR50 as our backbone model.

D.2. Training Details for STAR Dataset
Data preprocessing for ablation studies: Baselines on STAR dataset train
a separate model for each question type. Because training separate models
for each question time is not feasible in terms of time and computational
resources, we merged the data from all question types for our ablations. To
do so, we carefully removed the videos and the corresponding QA pairs
from interaction and sequence question types which appear in prediction
and feasibility questions. As prediction and feasibility questions are about
the future frames not available at inference time, keeping these questions
for other question types could give an advantage to the model of looking at
the full video even if it happens for solving a different question. Filtering
out those QA pairs before merging all questions makes it a fair training for
prediction and feasibility questions. However, these questions comprises
a large chunk for interaction and sequence. As expected, this declines the
VQA performance for interaction and sequence questions upto 2%-8%.
However, we notice a gain over prediction and feasibility questions just
by showing more examples to the model even if they are not for the same
question types. More specifically, on test set, we notice prediction accuracy
of 37.29% (merged data) vs. 35.34%(separate) and feasibility accuracy
of 33.04% (merged data) vs. 32.52%(separate). We also experimented
with using questions from all question types without any filtering and
obtained the overall validation accuracy of 48.25%. In Table 18, we provide
further details about the experiments including batch sizes for each model,
backbone, and loss function. All models were trained up to 100 epochs using
early stopping based on the validation accuracy. If not stated otherwise, all
ablations are performed with a single model (batch size=32) trained on all
questions together with filtering out the QA pairs with overlapped video
IDs between {interaction, sequence} and {feasibility, prediction}.
Different batch size per question type/model: As each question type is
trained on a separate model with different constrains such as amount of data,
but constant hardware requirements, we first evaluate different batch sizes
for training each model depending on the maximum number of samples
could be used for training. Column 3-Batch Size in Table 18 shows a
tuple with batch sizes for feasibility, prediction, sequence, and interaction
respectively. For training a separate model on each question type, we used
batch size=16 with Slow R50. For ResNext101, we used batch sizes (16, 16,
4, 4) for (feasibility, prediction, sequence, interaction). In our experiments,
we observe no significant difference in VQA accuracy when training the
models with different batch sizes. Nonetheless, our best results are reported
using batch sizes of (16, 16, 16, 16) with Slow R50 backbone, and batch
sizes (16, 16, 4, 4) for ResNext101.

E. Additional results and analyses
Here, we discuss further results and analyses on AGQA and STAR

benchmarks.

E.1. AGQA

E.1.1 Performance comparison w.r.t. training data
To train on AGQA, we split the AGQA training set into 90%-10% train-
val split. The new training set after this split comprises approximately
1.4M QA pairs. From this training set, we randomly sampled 100K data
samples to train our network. We find the SHG-VQA to outperform the
baselines even when trained with 100K samples which is ∼ 15× less
training data than the data used to train the baseline methods (see fig. 5).



Figure 8. Correlation between accuracy and compositional steps for binary answers, open answers, and overall. To do so, a linear regression
model is fit for each model’s performance. Our model is superior in performance than the baselines bridging the accuracy gap narrower with
the human performance. The shaded area indicates 80% confidence interval.

Table 10. Results on AGQA dataset for different question types w.r.t vision (w) and question-only (w/o) variants of all models. Best results
are shown in bold font, second best results are in blue font. SHG-VQA performs better or on par to the baselines with only 100K samples
(baselines use 1.6M training samples). Numbers are reported in percentages.

Reasoning Semantic Structure Overall

Method obj-rel rel-action obj-action superlative sequencing exists duration activity obj rel action query compare choose logic verify binary open all

PSAC [34] w/o 37.91 49.95 50.01 33.59 49.78 50.04 45.77 4.88 38.03 50.04 47.07 31.63 49.57 46.87 50.09 49.97 49.01 31.63 40.26
w 37.84 49.95 50.00 33.20 49.78 49.94 45.21 4.14 37.97 49.95 46.85 31.63 49.49 46.56 49.96 49.90 48.87 31.63 40.18

HME [9] w/o 36.44 49.98 50.09 32.53 49.79 50.02 42.67 6.53 36.58 50.05 45.84 29.52 49.16 46.12 50.17 49.93 48.68 29.52 39.03
w 37.42 49.90 49.97 33.21 49.77 49.96 47.03 5.43 37.55 49.99 47.58 31.01 49.71 46.42 49.87 49.96 48.91 31.01 39.89

HCRN [27] w/o 37.78 50.12 49.99 33.62 49.78 50.10 43.66 5.15 37.90 50.11 46.22 31.24 49.29 47.36 50.21 50.11 49.12 31.24 40.11
w 40.33 49.86 49.85 33.55 49.70 50.01 43.84 5.52 40.33 49.96 46.41 36.34 49.22 43.42 50.02 50.01 47.97 36.34 42.11

Ours (100K) w/o 37.42 49.94 50.06 32.53 49.77 49.97 46.62 5.06 37.57 49.96 47.27 30.92 49.66 46.69 50.01 49.97 48.98 30.92 39.88
w 41.93 49.26 51.52 35.24 50.11 52.24 45.62 5.61 42.17 51.14 46.36 38.69 49.82 42.37 50.84 52.59 48.77 38.69 43.69

Ours (full) w/o 38.72 50.03 49.99 33.87 49.85 50.02 48.23 5.80 38.83 50.01 48.11 32.58 49.94 47.96 50.16 49.98 49.43 32.58 40.95
w 46.42 60.67 64.63 38.83 62.17 56.06 48.15 10.12 47.61 56.19 53.83 43.42 60.68 47.76 52.86 56.63 55.04 43.42 49.20

More specifically, SHG-VQA obtains 43.69% vs. 42.11% for HCRN which
is the best model for AGQA on overall VQA accuracy. Similarly, we obtain
on par or often better performance on the three testing metrics of indirect
references, novel compositions and more compositional steps. We provide
a detailed breakdown of our results with 100K and 1.4M training samples
in comparison with the baselines which were trained on the full training set
of 1.6M QA pairs. See table 10, 11, 12 for detailed results.

E.1.2 Results for more compositional steps

AGQA provides a train-test split to test models’s generalization to more com-
positional steps where training split has questions with fewer compositional
steps. On this metric, SHG-VQA with 100K training samples achieves com-
parable results to the SOTA model. When compared to the best performing
model for each question type, our full model gains ↑ 4.15% absolute points
over the best model (HME: 48.09% vs. ours: 52.24%) for binary questions,
↑ 1.2% improvement over SOTA (HCRN:23.70% vs. ours:24.90%) for
open-answer questions, achieving overall ↑ 4.14% improvement on all ques-
tions. Fig. 8 shows correlation between accuracy and compositional steps.
A linear regression model is fit to each method’s performance w.r.t num-
ber of compositional steps. For binary questions, the baseline methods
perform significantly lower even with single compositional-step questions,
whereas our model unsurprisingly yields the highest accuracy. SHG-VQA
is consistently better for all compositional steps on binary question than the
baselines. Nonetheless, we observe a negative correlation between accuracy
and compositional steps for binary questions. For open questions, a slightly
positive correlation between accuracy and compositional steps is noticed
for all methods including SHG-VQA. For overall accuracy on this metric,
although SHG-VQA is able to bridge the gap between human accuracy and

VQA algorithms by providing SOTA results, there is still large room for
improvement on this novel task.

Table 11. Evaluation on AGQA’s novel compositions.

Method training data size Binary Open All

PSAC 1.6M 46.49 19.34 34.71
HME 1.6M 45.42 17.17 33.15

HCRN 1.6M 44.88 20.12 34.13

SHG-VQA 100K 46.55 22.2 36.01
SHG-VQA 1.4M 49.27 25.92 39.15

Table 12. Comparison on AGQA’s more compositional steps with
our model with 100K training samples and full training set.

Method training data size Binary Open All

PSAC [34] 1.6M 47.65 14.81 47.19
HME [9] 1.6M 48.09 20.98 47.72

HCRN [27] 1.6M 46.96 23.70 46.63

SHG-VQA 100K 47.13 22.66 46.97
SHG-VQA 1.4M 52.24 24.90 51.86



Table 13. Additional results on AGQA for all question types.

Question Types Blind Model (Q-Only) Deaf Model (V+HG) SHG-VQA-100K

R
ea

so
ni

ng

object-relationship 37.42 15.16 41.93
relationship-action 49.94 0.01 49.26

object-action 50.06 0.06 51.52
superlative 32.53 14.88 35.24
sequencing 49.77 0.04 50.11

exists 49.97 17.91 52.24
duration comparison 46.62 7.89 45.62
activity recognition 5.06 0.00 5.61

Se
m

an
tic object 37.57 13.71 42.17

relationship 49.96 13.92 51.14
action 47.27 2.92 46.36

St
ru

ct
ur

e query 30.92 15.63 38.69
compare 49.66 1.08 49.82

choose 46.69 9.72 42.37
logic 50.01 18.02 50.84

verify 49.97 18.12 52.59
binary 48.98 10.65 48.77

open 30.92 15.63 38.69
all 39.88 13.16 43.69

Table 14. Results for different training protocols. Results shown
for STAR test set. Rows 1,2, and 3 are with SlowR50 and rows 4,5
show results with MViT-B backbone.

Q. Type Interaction Sequence Prediction Feasibility Overall

(1) separate training 47.98 42.03 35.34 32.52 39.47
(2) all w/ filtered data 37.67 36.91 37.29 33.04 36.23
(3) all-SlowR50 42.38 42.49 37.85 30.78 38.37

(4) all–SlowR50 42.38 42.49 37.85 30.78 38.37
(5) all–MViTB 43.35 44.37 38.55 33.91 40.04

Table 15. SHG-VQA with SlowR50 backbone evaluated on STAR-
Humans. Numbers are reported in percentages.

Interaction Sequence Prediction Feasibility Overall

SHG-VQA 52.00 45.00 31.00 23.00 37.75

E.1.3 Additional results on AGQA for model varia-
tions

AGQA [11] report results for each baseline with language-only model to
compare with the respective full models. Following this, we train SHG-
VQA in three settings on AGQA: blind model (w/o vision), deaf model
(vision-only), and full model. We perform this study using our 100K subset.
Results are discussed below: Blind model performance We evaluate our
question-only model which is a BERT-like 5 layers transformer encoder
against our full vision model (table 13) to measure how much linguistic
bias our model is able to exploit from the dataset. With results compara-
ble to HCRN’s vision and no-vision counterparts, our language model is
able to achieve an overall video-question answering accuracy of 39.88%,
only 3.81% less than our vision model. The vision model outperforms
its language-only counterpart throughout a majority of the question types,
however the language-only model has slight improvements over the vision
model in duration comparison question types and action semantics, where it
performs 1% better. Additionally, the language model also performs slightly
better in regards to overall accuracy on binary question types. Further ex-
amining binary question categories (table 13) show that the model again
performs roughly 1% better than its vision counterpart on binary object-
relationship and duration comparison reasoning categories, as well as binary
object and action semantic question types. The most noteworthy difference
is that this model outperforms the vision model by 4.32% in the choose
structural category. Overall, the full model outperforms this language-only
model in most categories. Deaf model performance In addition to the
language-only model, we also train a deaf (vision-only) model to measure

biases that may arise from the visual input alone (table 13). This version
of our model obtained an overall VQA accuracy of 13.16% on all question
types, performing worse than both our full, and language-only models in
every question category. From this, we conclude that the visual bias is much
less than the language bias.
Ablation on T/M/N? We chose clip length T=16 following prior works.
We report results for varying clip length T on AGQA dataset in Tab. 16 with
models are trained for 10-15 epochs on 100K QA pairs. Hyperparameters
M and N capture the number of actions and relations we want to predict for
each frame. Therefore, video length does not effect M/N.

T binary open all

16 48.77 38.69 43.69
24 46.30 38.89 42.57
32 45.50 37.29 41.36

Table 16. Results on AGQA dataset for varying video clip length T.

E.2. STAR

E.2.1 Results w.r.t different training protocols
We experimented with different training protocols for STAR dataset includ-
ing separate trainings used in [52], single model with filtered questions as
explained in D.2, and training a single model on the full training set. We
use SlowR50 backbone for this study and find that using separate trainings
is most beneficial for interaction questions and overall accuracy. Using
filtered questions although perform best for feasibility questions, but it hurts
the performance on other question types. When trained on full training
data with SlowR50 and MViT-base backbones, using MViT yields better
performance.

Set Pred. Loss Interaction Sequence Prediction Feasibility Overall

full video 39.81 40.69 30.17 29.91 35.15
frame-wise 39.42 41.83 33.8 27.48 35.63

Table 17. Results for SHG-VQA model on STAR test set.

E.3. Results on STAR-Humans
STAR-Humans is a subset provided by [52] with 400 free-form ques-

tions asked by humans. We evaluate SHG-VQA-SlowR50 on STAR-
Humans and obtain the results shown in table 15. For this subset, SHG-VQA
performs best for interaction questions (52.00%) and worst on feasibility
questions (23%).

F. Qualitative results
Comparison between optimal matching with full video compared to
optimal matching for each timestep: Figures 9 and 10 show qualitative
comparison of predicted situation hyper-graphs from situation hyper-graph
decoder in the proposed model. Note that the situation hyper-graph solely
relies on the video input. Hence, we show the input video, ground-truth
graph, and predicted situation hyper-graphs in two settings: 1) optimal
matching with full video instead for each timestep t over LAct and Lrel

(baseline); 2) optimal matching for each timestep t for the actions and
relations set predictions (as described in eq.2 and eq.4 in the main paper).
We observe that when using the optimal matching without imposing the
time constraint (i.e., to do optimal matching at each time step), it results
in duplicate predictions at frame level. In figure 9 and 10, the first two
rows show the video frames and the corresponding ground truth situation
hyper-graph respectively. Row 3 shows the situation hyper-graphs we obtain
with the optimal matching for the full video. In edge labels, we show the
predicted relationship as well as the count of multiple edges between two
nodes. For brevity, we show every 4th frame i.e., frames 1, 5, 9, 13. We
can see in row 3, that the predicted graph is sparse and not able to capture



Table 18. Training configurations for SHG-VQA on STAR dataset.

Experiment backbone Batch Size Models trained Loss Test set Overall Acc.

Adapted batch size per QT:

SHG-VQA (Q + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.47
SHG-VQA (Q + HG) Resnext101 (16, 16, 4, 4) 4 L(eq.1) test 38.28
SHG-VQA (Q + V) Slow R50 (8, 8, 8, 8) 4 Lvqa test 30.81
SHG-VQA (Q + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.47
SHG-VQA (Q + V + HG) Slow R50 (16, 16, 16, 16) 4 L(eq.1) test 39.18

Hypergraph components:

SHG-VQA (Q + HG) Action only – Act=3 Slow R50 32 1 L(eq.1) val 38.68
SHG-VQA (Q + HG) Rel. only – Rel=8 Slow R50 32 1 L(eq.1) val 35.16
SHG-VQA (Q + HG) Both – Act=3, Rel=8 Slow R50 32 1 L(eq.1) val 39.20

Number of queries

SHG-VQA (Q + HG) Act=2, Rel=8 Slow R50 32 1 L(eq.1) val 38.34
SHG-VQA (Q + HG) Act=3, Rel=8 Slow R50 32 1 L(eq.1) val 39.20
SHG-VQA (Q + HG) Act=4, Rel=8 Slow R50 32 1 L(eq.1) val 37.06
SHG-VQA (Q + HG) Act=3, Rel=12 Slow R50 32 1 L(eq.1) val 39.90
SHG-VQA (Q + HG) Act=4, Rel=12 Slow R50 32 1 L(eq.1) val 38.39

all relationships due to suffering from the duplicate predictions problem.
Additionally, it sometimes predicts no-class ϕ label i.e. empty set for
actions and predictions as we can see in fig 9, row 3, column 3. Row 4
shows the predicted situation hyper-graphs with the imposed constraint of
optimal matching at frame-level. We can see that the proposed solution for
optimal matching greatly improves the quality of generated hyper-graphs.
See Tab. 17 for quantitative results.

G. Computational Cost of SHG-VQA
The computational cost of SHG-VQA includes video and text encoders

with the little overhead from decoders for decoding graph queries. At
inference time, the decoders’ output is directly sent to cross-attentional
transformer along with the meta embeddings without any graph prediction.
Given that we only use L=5 layers for all encoders and decoders in SHG-
VQA, the depth of the SHG-VQA is 12 layers i.e., comparable to existing
vision-language methods [24, 30], e.g., ALBEF.

H. Ethical considerations
As our system is trained on real-world data, it might capture negative

data inherent biases, such as actions only executed by people with specific
clothing or stereotype questions. We are not aware of such stereotypes in the
here used datasets AGQA and STAR but would recommend assessing the
fairness of any system based on this work before putting it in any production
environment.



Sample video

Groundtruth hypergraph

Optimal matching over full video

Optimal matching for each timestep t (proposed in eq.2 and eq.4 in the main paper)

Figure 9. Ground-truth and predicted situation hyper-graph for every 4th frame in a clip of length 16. Row 1 shows video frames, row 2
shows the ground-truth situation hyper-graph, row 3 shows predicted graphs from the model with set prediction loss without considering
frames, row 4 shows predicted hyper-graph when the model is trained by matching each timestep t (the proposed loss function). The edges
show the person-object relationship labels along with the number of times it was predicted. (see Section F for discussion about results.)



Sample video

Groundtruth hypergraph

Optimal matching over full video

Optimal matching for each timestep t (proposed in eq.2 and eq.4 in the main paper)

Figure 10. Ground-truth and predicted situation hyper-graph for every 4th frame in a clip of length 16. Row 1 shows video frames, row 2
shows the ground-truth situation hyper-graph, row 3 shows predicted graphs from the model with set prediction loss without considering
frames, row 4 shows predicted hyper-graph when the model is trained by matching each timestep t (the proposed loss function). The edges
show the person-object relationship labels along with the number of times it was predicted. (see Section F for discussion about results.)
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